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ABSTRACT 

 

Minimizing water consumption for producing hydropower is critical given that overuse of flows for energy 

production may result in a shortage of flows for other purposes such as irrigation and navigation. This paper 

presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing 

impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general 

insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric 

and hydraulic characteristics of the penstock, the total hydraulic head, and the desired power production. As part of 

this analysis, various dimensionless relationships between power production, flow discharge, and head losses were 

derived. These relationships were used to draw general insights on determining optimal flow discharge and optimal 

penstock diameter. For instance, it was found that for minimizing water consumption, the ratio of head loss to gross 

head should not exceed about 15%. An example of application is presented to illustrate the procedure for 

determining optimal flow discharge and optimal penstock diameter for an impulse turbine. It is worth mentioning 

that this paper presents part of the material published by the author in Leon and Zhu (2014).  

 

Keywords: Design, dimensional analysis, efficiency, hydropower, optimal power, turbine   

1. INTRODUCTION 

The world energy consumption will grow by 56% between 2010 and 2040 (U.S. Energy Information Administration 

2013). As world population continues to grow and the limited amount of fossil fuels begins to diminish, there is an 

increasing demand to exploit renewable sources of energy. In the United States, about 9% of all energy consumed in 

2012 was from renewable sources (U.S. Institute for Energy Research 2012). While this is a relatively small fraction 

of the U.S. energy supply, in 2012, the United States was the world’s largest consumer of renewable energy from 

geothermal, solar, wood, wind, and waste for electric power generation, producing almost 25% of the world’s total 

(U.S. Institute for Energy Research 2012). This institute also reports that in 2012, 30% of the renewable energy in 

the U.S. was from hydropower. This means that only about 3% of all energy consumed in the United States was 

from hydropower. 

 

Globally, hydropower accounted for 16% of all global electricity production in 2007, with other renewable energy 

sources totaling 3% (Schumann et al. 2010). Hence, it is not surprising that when options are evaluated for new 

energy developments, there is a strong impulse toward fossil fuel or nuclear energy as opposed to renewable 

sources.  However, as hydropower schemes are often part of a multipurpose water resources development project, 

they can often help to finance other important functions of the project (IEA Hydro, 2000). In addition, hydropower 

provides benefits that are rarely found in other sources of energy. In fact, dams built for hydropower schemes, and 

their associated reservoirs, provide human well-being benefits such as securing water supply, flood control, and 

irrigation for food production and societal benefits such as increased recreational activities and improved navigation 

(IEA Hydro, 2000). 
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Furthermore, hydropower, due to its associated reservoir storage, can provide flexibility and reliability for energy 

production in integrated energy systems. The storage capability of hydropower systems can be seen as a regulating 

mechanism by which other diffuse and variable renewable energy sources (wind, wave, solar) can play a larger role 

in providing electric power of commercial quality (Schumann et al. 2010). While development of all the remaining 

hydroelectric potential could not hope to cover total future world demand for electricity, implementation of the 

remaining potential can make a vast contribution to improving living standards in the developing world (South 

America, Asia and Africa), where the greatest potential still exists (U.S. Institute for Energy Research 2012). 

 

Minimizing water consumption for producing hydropower is critical given that overuse of flows for energy 

production may result in a shortage of flows for other purposes such as irrigation or navigation (Leon and Zhu 

2014).  The present work was motivated when the author was unable to find in literature a theoretical framework for 

determining optimal flow discharge and optimal penstock diameter for the design of impulse and reaction turbines.   

Recently, Pelz (2011) provided a theoretical approach for determining the upper limit for hydropower gained by a 

water wheel or turbine per unit width in a rectangular open-channel. This is somewhat different for impulse and 

reaction turbines, as in the latter turbines, the flow in the penstock is pressurized. 

 

This paper aims to provide general insights on determining optimal flows and optimal penstock diameters when 

designing impulse and reaction turbines for hydropower systems. This paper is divided as follows. First, 

dimensionless relationships between power production, flow discharge, and head losses are derived. Second, these 

relationships are used to draw general insights on determining optimal flow discharge and optimal penstock 

diameter. Third, an example of application for determining optimal flows when designing impulse turbines is 

presented. Finally, the key results are summarized in the conclusion. 

2. DIMENSIONAL ANALYSIS FOR OPTIMAL FLOW DISCHARGE, OPTIMAL 

HEAD LOSSES, AND OPTIMAL POWER 

The electric power, P, in Watts (W), can be determined by the following equation: 

 

 Lg hHQP   (1) 

 

where  (=  g) is the specific weight of water in kg/(m2 s2), Q is flow discharge in m3/s, Hg is gross head in m, hL is 

sum of head losses in m,  is water density in kg/m3, g is acceleration of gravity in m/s2, and  is overall 

hydroelectric unit efficiency, which in turn is the product of turbine efficiency (t) and generator efficiency (g). In 

all derivations presented in this paper, it is assumed that  (=t g) is constant. 

 

For an impulse turbine (see Figure 1), the sum of head losses can be written as 
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where L, D2, and A2 are length, diameter, and cross-sectional area of penstock, respectively. In addition, f is friction 

factor, k1-2 is the sum of local losses in penstock due to entrance, bends, penstock fittings and gates, AN is nozzle 

area at its exit (section 3 in Figure 1), and kN is nozzle head loss coefficient, which is given by (e.g., Brater and King 

1976) 
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where CV is nozzle velocity coefficient. According to Dixon (2005), CV varies between 0.98 and 0.99 for a typical 

Pelton turbine nozzle.  

 



 

For a reaction turbine (see Leon and Zhu 2014), the sum of head losses can be written as 
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where Ad is the draft tube cross-sectional area at its outlet (section Leon and Zhu 2014). The expression inside the 

brackets in Eqs. (2) and (4) is dimensionless, and it is denoted herein as 
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Figure 1.  Sketch of an impulse turbine 

 

Hence, the total head losses in Eq. (2) and Eq. (4) is equal to the product of CL and Q2/(2g(A2)2) and, thus, Eq. (1) 

can be written as  

 

        (6) 
 

For generalizing the findings in this paper, a dimensionless relationship between power and flow discharge is 

sought. To achieve this, Eq. (6) is divided by a reference power (Pr). Pr is assumed to be the maximum power that 

can be generated using a reference discharge (Qr) and a fixed gross head and penstock geometry (constant CL). For 

maximum power, the turbine and generator efficiencies need to be 100% (i.e., t = 100% and g = 100%). Also, 

maximum power for a fixed penstock geometry can be obtained by setting dP/dQ in Eq. (6) equal to zero, which 

gives 

 

hL = Hg/3               (7) 

 

The reference flow discharge Qr can be obtained by using Eq. (7) and the energy equation between the reservoir and 

the nozzle exit for an impulse turbine or between the reservoir and the tailrace for a reaction turbine, which gives 

 



 

          (8) 

 

where A3 is given by 

 

       (9) 

 

Substituting Eq. (7) and Eq. (8) into Eq. (1) gives the following relation for the reference power (Pr): 

 

            (10) 

 

Note that Qr and Pr (Eqs. 8 and 10) are a function of the penstock properties and the gross head only. Dividing each 

side of Eq. (6) by Pr (Eq. 10) and defining P/Pr as P+ and Q/Qr as Q+, and after some algebra, the following 

dimensionless relationship between power and discharge is obtained: 

 

        (11) 

 

Denoting with the product of CL and (A3/A2)2, Eq. (11) can be rewritten as 

 

         (12) 

where 

 

  (13) 

 

In practice, the ratios AN/A2 and Ad/A2 in Eq. (13) are typically kept constant, which means that  varies as a function 

of f, L, D2, and the coefficients of local head losses (k). In most applications, friction losses are more important 

than local head losses, that is f L/D2 >> k. Also, L is typically constant as it is restricted by topographic conditions. 

In addition, f does not show significant variation as a function of discharge or penstock diameter. Recall that for a 

given penstock diameter, f is independent of the Reynolds number for fully developed turbulent flows, which is the 

case of most penstock flows. Hence,  is more or less inversely proportional to the penstock diameter. The variation 

of P+ with respect to Q+ for a fixed  can be obtained by differentiating P+ with respect to Q+ in Eq. (12), which 

gives 

 

         (14) 

 

The maximum dimensionless power for a fixed  can be obtained by setting dP+/dQ+ in Eq. (14) equal to zero. The 

maximum power occurs when 

 

          (15) 

 

The maximum dimensionless power for a fixed  is obtained by substituting Q+ from Eq. (15) in Eq. (12), which 

gives 

 

          (16) 



 

 

In most applications,  should range between 0.01 and 1.0 for impulse turbines and between 10 and 1000 for 

reaction turbines. Likewise, CL should range between 1 and 100 for both impulse and reaction turbines. Even though 

 is used throughout the entire paper, as shown later, only CL is needed for design purposes. Figures 2 and 3 plot Q+ 

versus P+ in Eq. (12) for typical ranges of  for impulse and reaction turbines, respectively. An overall hydroelectric 

unit efficiency () of 0.8 was used for plotting these figures. As can be observed in Figures 2 and 3, the change in 

power production in relation to change in flow discharge (P+/Q+) for each dimensionless curve has a positive and 

negative gradient. For optimizing power production, only the positive gradient is of interest (P+/Q+ > 0). To 

visualize changes in power production in relation to changes in flow discharge, five ratios of dP+/dQ+ in Eq. (14) are 

plotted in Figures 2 and 3. Note in Figures 2 and 3 that for a given , the positive range of dP+/dQ+ varies from 

(3/2) to 0. Note also that dP+/dQ+ changes rapidly near (Q+)max and that in the positive range of dP+/dQ+, the 

maximum relative power P+ occurs for the maximum relative flow discharge Q+.  

 

 

Figure 2. Dimensionless discharge (Q+) versus dimensionless power (P+) for  = 0.8 and a typical range of  for 

impulse turbines 

 

For minimizing water consumption to produce a given amount of hydropower, it is necessary that dP+/dQ+ in Eq. 

(14) is close to its maximum value (3/2). Note in Figures 2 and 3 that for each curve between approximately 

dP+/dQ+ = (3/2) and dP+/dQ+ = 0.8, the increase in dimensionless power (P+) is approximately linear with 

increase in dimensionless discharge (Q+). Note also in these figures that for dP+/dQ+ smaller than about 0.8, the 

increase in P+ is small compared to the increase in Q+. Herein, to minimize water consumption, the optimal lower 



 

limit of dP+/dQ+ is set to 0.8. Substituting dP+/dQ+ = 0.8 into Eq. (14) gives the following upper limit for the 

dimensionless flow discharge: 

 

         (17) 

 

The corresponding upper limit for the dimensionless power is 

 

         (18) 

 

 

Figure 3. Dimensionless discharge (Q+) versus dimensionless power (P+) for  = 0.8 and a typical range of  for 

reaction turbines 

 

The optimal dimensionless head loss (hL+ = hL/Hg) can be obtained by assuming that the optimal upper limit for the 

flow discharge is Q+ = [7/(30)]1/2 (Eq. 17). In Eq. (12), dividing the second term of the right-hand side (RHS) by 

the first term of the RHS gives 

 

          (19) 

 

Substituting (Q+)opt upper = [7/(30)]1/2 into Eq. (19) gives 

 



 

          (20) 

 

Eq. (20) shows that for minimizing water consumption, the ratio of head loss to gross head (hL+ = hL/Hg) should not 

exceed 15.6%. The 15.6% ratio also provides the threshold for the optimal penstock diameter. Losses higher than 

15.6% mean that a small penstock diameter is used. The 15.6% ratio is about half of that derived for maximum 

power and maximum flow discharge, which is 33.3%. This means that the optimal conditions for producing power 

do not correspond to those that use maximum flow discharge for a given . This can be better understood by 

observing Figures 2 and 3, in which dP+/dQ+ decreases rapidly near (P+)max for all . So far the analysis assumed 

that  is constant, and, hence, the penstock diameter (D2). For the influence of changing the penstock diameter on 

power production, the reader is referred to Leon and Zhu (2014).  

 
For practical applications, the derived dimensionless relationships are made non-dimensionless. For instance, the 

optimal upper limit of the flow discharge can be obtained by combining Eqs. (8) and (17), which, after some 

algebra, gives  

 

          (21) 

 

Similarly, the optimal upper limit of the power can be obtained by combining Eqs. (10) and (18), which, after some 

algebra, gives 

 

         (22) 

 

When designing a turbine, it is necessary to specify either the flow discharge to use or the desired electric power. 

These cases are presented below. 

2.1. P is Specified 

If P is specified, the optimal upper limit of the flow discharge can be obtained by combining Eqs. (21) and (22), 

which gives 

 

          (23) 

 

The optimal penstock diameter (or CL) can be determined from Eq. (21), which gives 

 

          (24) 

 

where Q in Eq. (24) is the same as Qopt in Eq. (23). 

2.2. Q is Specified 

If Q is specified, the optimal upper limit of the power can be obtained by combining Eqs. (21) and (22), which gives 

 

          (25) 

 

In this case, the optimal penstock diameter can still be determined using Eq. (24). It is pointed out that the proposed 

methodology for determining the optimal flow discharge and optimal penstock diameter does not account for 



 

cavitation. Reaction turbines (not impulse turbines) are subjected to cavitation. In reaction turbines, cavitation may 

occur at the outlet of the runner or at the inlet of the draft tube where the pressure is considerably reduced (Dixon 

2005). In order to determine whether cavitation will occur in any portion of a reaction turbine, the Thoma's 

cavitation factor () is compared with the critical cavitation factor (c). If the value of  is greater than c, cavitation 

will not occur in the turbine under analysis, where c is a function of the specific speed of the turbine (Ns). Because 

Ns is not used in the proposed methodology, the occurrence of cavitation cannot be determined using the utilized 

parameters. The occurrence of cavitation in reaction turbines needs be checked after using the proposed 

methodology. Following, an example of application for determining optimal flow discharge and optimal penstock 

diameter for an impulse turbine is presented. For an example of application of reaction turbines, the reader is 

referred to Leon and Zhu (2014).  

3. EXAMPLE OF APPLICATION FOR AN IMPULSE TURBINE 

The site, penstock and nozzle characteristics for this example are as follows: 

1. Gross head (Hg) = 200 m 

2. Penstock length (L) = 500 m 

3. Ratio of penstock cross-sectional area to nozzle cross-sectional area at its outlet (A2/AN) = 16 

4. Nozzle velocity coefficient (CV ) = 0.985 

5. Sum of local losses in penstock due to entrance, bends, penstock fittings and gates (k1-2) = 1.5 

6. Roughness height of penstock material () = 0.045 mm (commercial steel) 

7. Kinematic viscosity () = 10-6 m2/s 

8. Turbine efficiency (t) = 82% 

9. Generator efficiency (g) = 90% 

3.1. Case A1: Q is Specified 

In this case, it is assumed that the design flow Q is 0.6 m3/s, and it is desired to know the optimal hydropower that 

can be extracted using this flow. First, it is necessary to determine the optimal penstock diameter. From Eq. (24), 

 

        (26) 

 

where CL = 500f/D2 + 1.5 + kN (162) . 

 

The nozzle coefficient is determined using Eq. (3), which gives kN = 0.0307. The friction factor (f) is determined 

using the explicit Swamee-Jain equation, which is given by 

 

                                                                (27) 

 

where  is the roughness height and Re is the Reynolds number. The Reynolds number is defined as VD2/, where V 

is the flow velocity. Note that when Q is known, f and CL are functions of D2 only. Solving for D2 in Eq. (26) gives 

D2 = 0.3968 m. In practice, a penstock with an internal diameter equal or slightly larger than 0.3968 m (397 mm) 

would be selected. Assuming that a schedule 80 steel pipe is required due to structural considerations, an 18-in 

outside diameter pipe would be selected. For this pipe, the wall thickness is 0.938 in, and, hence, the internal 

diameter is 16.124 in (409.5 mm). For this pipe diameter, the value of CL is 25.35. This value can be used to 

determine the dimensionless head loss as follows (e.g., see Eq. 6). 

 



 

                                                       (28) 

 

which satisfies the inequality in Eq. (20) (< 15.6%). The electric power that can be extracted from this system can be 

determined using Eq. (6), which gives, 

 

 

3.2. Case A2: P is Specified 

In this case, assume that P is 100 kW, and it is desired to determine the optimal flow discharge and optimal penstock 

diameter to produce this power. In this case, first, the optimal discharge is determined using Eq. (23) as follows: 

 

 
 

The optimal pipe diameter (inside diameter) can be determined in a similar way to Case A1, which gives 0.176 m.  
 

To facilitate the calculations, a MATLAB hydropower calculator was developed for which the graphical user 

interface (GUI) is shown in Figure 4. As can be observed in this figure, the consumption of flow is optimized in the 

linear region because the amount of power is proportional to the amount of flow used. Right before the large 

positive gradient in each curve, both the flow discharge and the penstock diameter are optimized. The hydropower 

calculator is available at http://web.engr.oregonstate.edu/~leona/Codes/Hydropower/. 

 

http://web.engr.oregonstate.edu/~leona/Codes/Hydropower/


 

 

Figure 4.  Graphical User Interface (GUI) of hydropower calculator 

4. CONCLUSIONS 

This paper presents a dimensional analysis for determining optimal flow discharge and optimal penstock diameter 

when designing impulse and reaction turbines for hydropower systems. The aim of this analysis is to provide general 

insights for minimizing water consumption when producing hydropower. The key findings are as follows: 

1. The analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head, 

and the desired power production. This analysis resulted in various dimensionless relationships between 

power production, flow discharge, and head losses. 

2. The derived relationships were used to draw general insights on determining optimal flow discharge and 

optimal penstock diameter. For instance, it was found that for minimizing water consumption, the ratio of 

head loss to gross head (hL/Hg) should not exceed about 15%.  

3. To facilitate the calculations, a MATLAB hydropower calculator was developed which is available at 

http://web.engr.oregonstate.edu/~leona/Codes/Hydropower/. 

http://web.engr.oregonstate.edu/~leona/Codes/Hydropower/


 

4. Overall, the present analysis is general and can be used for determining optimal design flow and penstock 

diameter when designing impulse and reaction turbines. 
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