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Computer -aided design of optimal infrared detector preamplifiers

D. Gary Frodsham, Doran J. Baker
Electro- Dynamics Laboratories, Department of Electrical Engineering

Utah State University, UMC 41, Logan, UT 84322

Abstract

A mathematical model is given for a frequency -compensated detector /preamplifier appro-
priate for cryogenically-cooled infrared sensors operating under low background conditions.
By use of a digital computer, this model is used to rapidly select the optimal combination
of design values. These parameters include load resistance, compensation resistance, com-
pensation capacitance, chopping frequency and detector area to meet desired specifications
of noise equivalent power, frequency response, dynamic range, and level of output noise.
This computer -aided optimal design approach is demonstrated using a contemporary infrared
sensor application.

Introduction

The optimal design of infrared detector /preamplifier configurations is complicated by
nonlinear interdependencies among system characteristic factors including the frequency
response, the dynamic range, the output noise level, the detector size and the noise equiva-
lent power of the sensor. The calculation and plotting of the interactive effects due to
varying design parameters is arduous. However, the advent of the desk -top computer - graphic
system has greatly facilitated the optimization procedure. Once the software has been de-
veloped, the engineer can in a matter of a few minutes plot a family of curves of NEP as a
function of load resistance, frequency or detector size, for example.

The mathematical model given in this paper is an expansion of the work previously re-
ported by Frodsham and Baker.1 The algorithms are limited to detector /preamplifier configu-
rations operating under low infrared background (zilch) and white input noise conditions.
However, the algorithms have proven to be sufficiently accurate for the designer in charac-
terizing most contemporary cryogenically- cooled detectors combined with JFET input electro-
meter preamplifiers.

Detector /preamplifier configuration

The infrared detector and preamplifier combination with frequency compensation is illus-
trated in Figure 1. The negative feedback elements of the operational preamplifier of open
loop gain A are shown as RL and CL. The external shunt capacitance CL (typically 1 to 3 pf)
is added to swamp out the stray capacitance distributed along the body of RL. The compensa-
tion elements Cc and Rs are then added to compensate for the frequency response roll -off due
to RL and CL. The capacitor Cs is a modification to the configuration previously published
by Frodsham and Baker;1 it is added to compensate for the roll -up associated with Ct = Ci +
Cd, where Ci is the capacitance inherent within the preamplifier and Cd is that associated
with the detector.

Detector

Vbias

cs

Rd

Vna

Figure 1. Configuration model for detector /preamplifier subsystem used in radiometer.

Mathematical model

The total in -band noise produced by the modeled detector /preamplifier under zilch infra-
red background conditions is Vnt = f(RL)f(w). The function f(RL) is given by

f(RL) = RL {[4kTGp + Vna2Gp2I(f2 - fl) + [Vna2TrCp]2(f23 - f13)/3}2 (1)
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Abstract

A mathematical model is given for a frequency-compensated detector/preamplifier appro­ 
priate for cryogenically-cooled infrared sensors operating under low background conditions. 
By use of a digital computer, this model is used to rapidly select the optimal combination 
of design values. These parameters include load resistance, compensation resistance, com­ 
pensation capacitance, chopping frequency and detector area to meet desired specifications 
of noise equivalent power, frequency response, dynamic range, and level of output noise. 
This computer-aided optimal design approach is demonstrated using a contemporary infrared 
sensor application.

Introduction

The optimal design of infrared detector/preamplifier configurations is complicated by 
nonlinear interdependencies among system characteristic factors including the frequency 
response, the dynamic range, the output noise level, the detector size and the noise equiva­ 
lent power of the sensor. The calculation and plotting of the interactive effects due to 
varying design parameters is arduous. However, the advent of the desk-top computer-graphic 
system has greatly facilitated the optimization procedure. Once the software has been de­ 
veloped, the engineer can in a matter of a few minutes plot a family of curves of NEP as a 
function of load resistance, frequency or detector size, for example.

The mathematical model given in this paper is an expansion of the work previously re­ 
ported by Frodsham and Baker. 1 The algorithms are limited to detector/preamplifier configu­ 
rations operating under low infrared background (zilch) and white input noise conditions. 
However, the algorithms have proven to be sufficiently accurate for the designer in charac­ 
terizing most contemporary cryogenically-cooled detectors combined with JFET input electro­ 
meter preamplifiers.

Detector/preamplifier configuration

The infrared detector and preamplifier combination with frequency compensation is illus­ 
trated in Figure 1. The negative feedback elements of the operational preamplifier of open 
loop gain A are shown as RL and CL. The external shunt capacitance CL (typically 1 to 3 pf) 
is added to swamp out the stray capacitance distributed along the body of RL. The compensa­ 
tion elements C c and Rs are then added to compensate for the frequency response roll-off due 
to RL and CL» The capacitor C s is a modification to the configuration previously published 
by Frodsham and Baker; 1 it is added to compensate for the roll-up associated with C-£ = Cj_ + 
Cj, where C-[ is the capacitance inherent within the preamplifier and C^ is that associated 
with the detector.

Detector

Vbias

Figure 1. Configuration model for detector/preamplifier subsystem used in radiometer.

Mathematical model

The total in-band noise produced by the modeled detector/preamplifier under zilch infra­ 
red background conditions is Vnt = ffRjJfCuO. The function £(RL) i s given by

= R L {[4kTGp + Vna2 Gp2 ](f2 - f x ) + [Vna 2TrCp] 2 (f 2 3 - £^3/3}* (D
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FRODSHAM, BAKER

where

k = 1.38 x 10-23 joule / °K

T = absolute temperature of RL and Rd

fl = upper cut -off frequency

Gp = 1 /RL + 1 /Rd

Cp = CL + Ci + Cd

The square of the frequency function is given by

[f(w)12 = (TS + Tc + 1)/{[TS + TL + apT1/K + aTd/K + p/K)w + (TLTSL -

+ [(1 + ap/K) - (TSTL + aT1Td/K + pTl/K + Td/K)w2]}2

where p = (RL + Rd) /Rd and the various time constants are given by

Ts = RSCs

TL = RLCL

T1 = RS(CL + Cs)

Td = RL(CL + Cd)

Tc = RsCc

TSL = RSCL

K = preamp open loop d.c. gain

a = preamp open loop frequency break point

AL» Rs

Cs + Cc» CL

(2)

Whereas the function f(w) describes the frequency response of the model for any values
of the capacitance Cs and Cc, the condition of interest is that of compensation, namely,2

Cc = RLCL/Rs - CS

Under conditions of compensation, the function f(w) simplifies to

f(w) = w112/[w2 (2 /wn2) + wn2]

where

wn = (K/RLC)

= RSCSw2/2

The value of frequency con is the upper cutoff frequency of the compensated detector /pre-
amplifier combination. Therefore,

f2(max) _ (1/27r) [K/RLCp]
i

(5)

Under critically- damped conditions, the ç damping factor is equal to unity. Thus, the value
of Cs for the non -oscillatory case is

Cs(crit) = (2/Rs)[RLCp/K]Z (6)

To ascertain the noise equivalent power from the model, we use the defining relationship

where

NEP = Vn(rms) /responsivity(rms /watt) = Vntc /RXRLTrf(w)

c = chopping factor

T
r
= transmittance

RX = detector current responsivity
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where

k = 1.38 x 10" 23 joule/°K 

T = absolute temperature of RL and R^ 

£ = upper cut-off frequency

GP = i/RL + i/Rd
cp = C L + q + c d

The square of the frequency function is given by

[f(u)] 2 = ( TS + T C + !)/{[T S + T L + apTj/K + aT d /K + p/K) u + ^L ^ SL - t^)^] 2

+ [(1 + ap/K) - (T S T L + ai^d/K + p^/K + T d /K)u) 2 ]} 2 (2)

where p = (R^ + Rd)/Rd and the various time constants are given by 

T = R C K = preamp open loop d.c. gain 

T T = RiCr a = preamp open loop frequency break point 

T X = RS (C L + C s ) RL >;> Rs 
t d = RL (C L + C d ) C s + C C »C L 

T C = RS C C

T SL = Rs C L

Whereas the function f (w) describes the frequency response of the model for any values 
of the capacitance C s and C c , the condition of interest is that of compensation, namely,2

C c = RLC L /RS - C s (3)

Under conditions of compensation, the function fO) simplifies to

£(*>) = a,n 2 /[ u 2 + (2c/ Un 2 ) + un 2 ] (4)

where

u) n = (K/RL Cp ) 

? = Rs C s co 2 /2

The value of frequency wn is the upper cutoff frequency of the compensated detector/pre­ 
amplifier combination. Therefore,

f 2 (ma>0 - (l/20[K/RL Cp ] (5)

Under critically-damped conditions, the c damping factor is equal to unity. Thus, the value 
of C s for the non-oscillatory case is

C s(crit) = (2/Rs )[R L Cp/ K ^ ^

To ascertain the noise equivalent power from the model, we use the defining relationship

NEP = Vn(rms) /responsivity(rms/watt) = V^c/R^^f (a,) (7)

where

c = chopping factor 

transmittance 

detector current responsivity

T = transmittance
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COMPUTER -AIDED DESIGN OF OPTIMAL INFRARED DETECTOR PREAMPLIFIERS

Finally, substitution of the algorithm (Eqs. 1 and 2) for Vnt into Equation (7) gives

NEP = C /RATr[(4kTGp + Vna2Gp2)(f2
- fl) +

(Vna27Cp)2(f23 - f13) /30 (8)

Two additional characterizing functions, which can be derived from Equations (1) and (2),
are preamplifier dynamic range Dr and preamplifier output noise density Vna(f). The dynamic
range is defined as the maximum possible rms signal output voltage divided by the zero
signal rms noise. Thus, a working value for Dr is simply

Dr = 4/f(RL) (9)

The noise density function Vnt(f) expressed in volts / Hz is derived from Vnt by substi-
tuting f = fl = f2 - 1 and w /2rr into Equations (1) and (2) to obtain

Vnt (f) = RL [4kTGp + Vna2 + (Vna2 rCp) 2 (f2 f + 1/3) ] 1/2

f (w)

Application to radiometer

To demonstrate the utility of the computer -aided design approach, an actual application
used in the design of a cryogenically -cooled, dual- channel radiometer is summarized. This
radiometer was subsequently flown on a space vehicle.

(10)

Equations (1) through (10) characterize the Frodsham -Baker detector /preamplifier model
for any given detector assuming the detector resistance Rd and capacitance Cc are known.
In Table 1 below, these detector parameters are characterized as a function of sensitive
area for three types of detectors: (1) intrinsic silicon at 77 °K, (2) extrinsic silicon at
10 °K, and (3) indium antimonide at 77 °K.

Table 1. Detector characteristics

Rd(ext. Si) = 1.35 x 1012/Ad (ohms)

Cd(ext. Si) = 2 x 10-13[Ad] (farads)

Rd(int. Si) = 1 x 1015 (ohms)

Cd(int. Si) = 1 x 10 11[Ad]2 (farads)

Rd(InSb) = 2 x 106/Ad (ohms)

Cd(InSb) = 5 X 10-8 Ad (farads)

where Ad = detector active area

The system design parameters for the dual- channel radiometer, which is liquid- nitrogen
cooled and is designated by the Model No. NR -7, are listed in Table 2 (computer listing).

Table 2. The system input parameters are:
Signal Coupling (AC or DC) -(F$)= AC
Electrical Bandwidth (F3)= 3.00E +001(HZ)
Chopper Frequency (F4)= 1.00E +002(HZ)
Preamp Input Capacitance (A1)= 8.00E- 012(FARAD)
Preamp Input Noise (A2)= 2.00E -008(V / HZ)
Feedback Resistance (A3)= 1.00E +009(OHMS)
Feedback Capacitance (A4)= 1.00E- 012(FARADS)
Component Temperature (A5)= 7.70E +001(KELVIN)
Detector Area (D1)= 7.85E- 003(SQ.CM)
Detector Responsivity
Det. Type(In:Sb,As:Si,Sil)
Collector Area
Field of View(Half Angle)
Optical Transmission

(D2)= 1.00E+000(A/W)
(D$)s In:Sb
(ol)= 1.82E+000(SQ.CM)
(02)= 2.00E+000(DEG)
(03)= 3.50E-001

The parameter values shown for the chopper frequency, the resistance and capacitance,
and the detector area are initial estimates for the working values. The final design
values, along with those for the compensation elements, were determined by the computer -
aided design approach as follows.
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Finally, substitution of the algorithm (Eqs . 1 and 2) for Vnt into Equation (7) gives

NEP = C/Rx T r [(4kTGp - f (f - £ (8)

Two additional characterizing functions, which can be derived from Equations (1) and (2), 
are preamplifier dynamic range Dr and preamplifier output noise density Vna (f). The dynamic 
range is defined as the maximum possible rms signal output voltage divided by the zero 
signal rms noise. Thus, a working value for Dr is simply

Dr = 4/f(RL ) (9)

The noise density function Vn ^-(f) expressed in volts//Hz is derived from Vnt by substi­
tuting f = f 1 = £ 2 - 1 and u/2n into Equations (1) arid (2) to obtain

nt (£) = RL [4kTGp - f 1/3) (10)

Application to radiometer

To demonstrate the utility of the computer-aided design approach, an actual application 
used in the design of a cryogenically-cooled , dual-channel radiometer is summarized. This 
radiometer was subsequently flown on a space vehicle.

Equations (1) through (10) characterize the Frodsham-Baker detector/preamplifier model 
for any given detector assuming the detector resistance R<-j and capacitance CQ are known. 
In Table 1 below, these detector parameters are characterized as a function of sensitive 
area for three types of detectors: (1) intrinsic silicon at 77°K, (2) extrinsic silicon at 
10°K, and (3) indium antimonide at 77°K.

Table 1. Detector characteristics

Rd (ext. Si) * 

C d (ext. Si) * 

Rd (int. Si) * 

C d (int. Si) - 

Rd (InSb) - 2 > 

C d (InSb) - 5 >

1.35 x 10 12 /Ad (ohms) 

2 x 10- 13 [Ad ] (farads) 

1 x 10 15 (ohms) 

1 x 10" l l [A,] 3* (farads)
Q

< 10 6 /Ad (ohms) 

< 10" 8   Ad (farads)

where A_, = detector active area

The system design parameters for the dual-channel radiometer, which is liquid-nitrogen
cooled and is designated by the Model No. NR- 7 , are listed in Table 2 (computer listing).

Table 2. The system input parameters are: _____
Signal Coupling (AC or DC)-(F$)= AC 
Electrical Bandwidth-- ----- (F3)= 3 . 00E+001 (HZ)
Chopper Frequency- --------- (F4)= 1 . 00E+002 (HZ)
Preamp Input Capacitance- -- (Al) = 8 . 00E-012 (FARAD) 
Preamp Input Noise- -------- (A2) = 2
Feedback Resistance- ------- (A3) = 1
Feedback Capacitance ------- (A4)= 1
Component Temperature ------ (A5) = 7
Detector Area- ------------- (Dl) = 7 . 85E-003 (SQ. CM)
Detector Responsivity-- ---- (D2)
Det. Type(In:Sb,As:Si,Sil) (D$)
Collector Area- ------------ (01) = 1 . 82E+000 (SQ . CM)
Field of View(Hal£ Angle) -- (02) = 2 . 00E+000 (DEC) 
Optical Transmission------- (03)= 3.50E-001

00E-008 (V//HZ) 
00E+009 (OHMS) 
00E-012 (FARADS) 
70E+001 (KELVIN)

1 . 00E+000 (A/W) 
In:Sb

The parameter values shown for the chopper frequency, the resistance and capacitance, 
and the detector area are initial estimates for the working values. The final design 
values, along with those for the compensation elements, were determined by the computer- 
aided design approach as follows.
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FRODSHAM, BAKER

The feedback load resistance RL was determined from the computer - generated curve shown
as Figure 2. The value was selected as 109 ohms since this gave an NEP which was less than
half of a decibel more than would occur for an infinite value for RL (indicated as zero db
on the ordinate scale) without impacting the dynamic range specification of 105 nor the
upper frequency cutoff requirement of 130 Hz.

Next, the detector area was examined with the aid of the generated curves shown in
Figure 3. Since the optimum value of the load resistance (recomputed for each value of
detector area) decreases as Ad increases, the resultant NEP value worsens as the area
increases. Consequently, the dynamic range capability also increases with increased
detector size. It can be seen from the curves that the NER is approaching a constant and
is less than 3 db above the asymptotic value at the preselected value of 7.85 x 10 73cm2
for area.

From the curve shown in Figure 4, the effect of changing the chopping frequency can be
analyzed. The practical application of the Nyquist rate dictates that the chopper frequency
be at least the 100 Hz initially selected. Any increase above the selected value of 100 Hz
would cause a degredation of both the dynamic range and the NEP.

Figure 5 gives the computed frequency curve for the detector /preamplifier combination
for Channel A of the radiometer using the actual and /or initially estimated parameter
values as shown. Curve 1 is the desired frequency response. Using the initially selected
values of 27 and 56 pf for Cs and Cc, respectively, the frequency response curve was then
experimentally measured. The unsatisfactory result is shown as Curve 1 in Figure 6. Using
this curve, the computer model parameters were adjusted to reproduce the unsatisfactory
response curve; the values of Cs and Cc given by the computer were 24 and 42 pf, respec-
tively. The next step was to ratio the two sets of values, giving a value set of 30 and
75 pf. The final step was to experimentally measure the response curve again using these
new values. The result is Curve 2 of Figure 6 which shows excellent agreement with the
frequency response desired.

Figures 7 and 8 show the similar computer -aided analyses applied to Channel B of the
radiometer. In this case a slightly larger value of CL was selected initially; the result
was the computer curve of Figure 7. The measured response curve, given in Figure 8, shows
excellent agreement without changing the compensation element values. Finally, the de-
tector /preamplifier noise density functions (volts / /Hz) were computed for both Channels A
and B. The results are shown in Figures 9 and 10, respectively. These data were generated
to verify preamplifier performance by comparing with measured data, and in this case good
agreement was found.
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Figure 2. Relative dynamic range, NEP and upper frequency cutoff as a function of RL.
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The feedback load resistance RL was determined from the computer-generated curve shown 
as Figure 2. The value was selected as 10 9 ohms since this gave an NEP which was less than 
half of a decibel more than would occur for an infinite value for RL (indicated as zero db 
on the ordinate scale) without impacting the dynamic range specification of 10 5 nor the 
upper frequency cutoff requirement of 130 Hz.

Next, the detector area was examined with the aid of the generated curves shown in 
Figure 3. Since the optimum value of the load resistance (recomputed for each value of 
detector area) decreases as Aj increases, the resultant NEP value worsens as the area 
increases. Consequently, the dynamic range capability also increases with increased 
detector size. It can be seen from the curves that the NER is approaching a constant and 
is less than 3 db above the asymptotic value at the preselected value of 7.85 x 10~ 3 cm2 
for area.

From the curve shown in Figure 4, the effect of changing the chopping frequency can be 
analyzed. The practical application of the Nyquist rate dictates that the chopper frequency 
be at least the 100 Hz initially selected. Any increase above the selected value of 100 Hz 
would cause a degredation of both the dynamic range and the NEP.

Figure 5 gives the computed frequency curve for the detector/preamplifier combination 
for Channel A of the radiometer using the actual and/or initially estimated parameter 
values as shown. Curve 1 is the desired frequency response. Using the initially selected 
values of 27 and 56 pf for C s and GC , respectively, the frequency response curve was then 
experimentally measured. The unsatisfactory result is shown as Curve 1 in Figure 6. Using 
this curve, the computer model parameters were adjusted to reproduce the unsatisfactory 
response curve; the values of C s and C c given by the computer were 24 and 42 pf, respec­ 
tively. The next step was to ratio the two sets of values, giving a value set of 30 and 
75 pf. The final step was to experimentally measure the response curve again using these 
new values. The result is Curve 2 of Figure 6 which shows excellent agreement with the 
frequency response desired.

Figures 7 and 8 show the similar computer-aided analyses applied to Channel B of the 
radiometer. In this case a slightly larger value of CL was selected initially; the result 
was the computer curve of Figure 7. The measured response curve, given in Figure 8, shows 
excellent agreement without changing the compensation element values. Finally, the de­ 
tector/preamplifier noise density functions (volts//Hz) were computed for both Channels A 
and B. The results are shown in Figures 9 and 10, respectively. These data were generated 
to verify preamplifier performance by comparing with measured data, and in this case good 
agreement was found.
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FRED. IN HZ

BE 10E 2 10E 3

PREAMP INPUT PARAMETERS:

T

RL (RI)= 1.88E +009(OHMS)

CL (C1)= 1.00E- 012(FARADS)

Rs- (R2)= 1.28E +007(OHMS)

Cin (C4)= 8.00E- 012(FARADS)
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Figure 5. Computed relative frequency response for two sets of values of compensation
capacitors Cs and Cc for Channel A detector /preamplifier.
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Figure 6. Measured relative frequency response for initial and final sets of values

for Cs and Cc for Channel A detector /preamplifier.
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Figure 5. Computed relative frequency response for two sets of values of compensation
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Figure 6. Measured relative frequency response for initial and final sets of values 
for C and C for Channel A detector/preamplifier.
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Figure 7. Computed frequency response for Channel B detector /preamplifier.

ma

NR7-I-CHB (PREAMP #5)

Cc= 68 Pf

CS= 27 Pf

-6 1

O 10
FREQUENCY (Hz)

100 1000

Figure 8. Measured response for Channel B detector /preamplifier.
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Figure 8. Measured response for Channel B detector/preamplifier.
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Figure 9. Computed preamplifier output noise density Vnt(f) versus frequency for
Channel A detector /preamplifier.
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Figure 10. Computed preamplifier output noise density Vr (f) versus frequency for
Channel B detector /preamplifier.
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Figure 9. Computed preamplifier output noise density Vnt_(f) versus frequency for 
Channel A detector/preamplifier.
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Figure 10. Computed preamplifier output noise density Vnt: (f) versus frequency for 
Channel B detector/preamplifier.

46 / SPIE Vol. 246 Contemporary Infrared Sensors and Instruments (1980)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/13/2014 Terms of Use: http://spiedl.org/terms



COMPUTER -AIDED DESIGN OF OPTIMAL INFRARED DETECTOR PREAMPLIFIERS

References

1. Frodsham, D. G. and D. J. Baker, "Optimization of Detector -Preamplifier for Cryogenic
Spectrometry," Proc. Soc. Photo Optical Instrumentation Engineers, Vol. 191, pp. 130 -134.
August 27 -28, 1979.

2. Baker, D. J., C. L. Wyatt, and F. R. Brown, Jr., "A Direct -Coupled DC Amplifier
Compensated to 20 KC for Use with Photoemissive Devices," IEEE Trans. on Instrumentation
and Measurement, Vol. IM -13, Nos. 2 F, 3, pp. 115 -118. June -September 1964.

Acknowledgments

The authors hereby express appreciation to our colleagues who have provided assistance
in both the preparation of this specific paper and in the general infrared systems area
research project which was sponsored by the Air Force Geophysics Laboratory. Among these
individuals are Al McIntire, A.T. Stair, Jr., Gene Ware, Lynn Bates, and Allan Steed.

SPIE Vol. 246 Contemporary Infrared Sensors and Instruments (1980) / 47

COMPUTER-AIDED DESIGN OF OPTIMAL INFRARED DETECTOR PREAMPLIFIERS

References

1. Frodsham, D. G. and D. J. Baker, "Optimization of Detector-Preamplifier for Cryogenic 
Spectrometry," Proe. Soo. Photo Optical Instrumentation Engineers, Vol. 191, pp. 130-134. 
August 27-28, 1979.

2. Baker, D. J., C. L. Wyatt, and F. R. Brown, Jr., "A Direct-Coupled DC Amplifier
KG for Use with Photoemissive Devices," IEEE Trans. on Instrumentation 

IM-13, Nos. 2 $ 3, pp. 115-118. June-September 1964.

Acknowledgments

Compensated to 20
and Measurement, Vol.

The authors hereby express appreciation to our colleagues who have provided assistance 
in both the preparation of this specific paper and in the general infrared systems area 
research project which was sponsored by the Air Force Geophysics Laboratory. Among these 
individuals are Al Mclntire, A.T. Stair, Jr., Gene Ware, Lynn Bates, and Allan Steed.

SPIE Vol. 246 Contemporary Infrared Sensors and Instruments (1980) / 47

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/13/2014 Terms of Use: http://spiedl.org/terms


	Computer-Aided Design of Optimal Infrared Detector Preamplifiers
	Recommended Citation

	tmp.1432320508.pdf.44UiE

