Utah State University

DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1982

Catalytic Oxidation of Sulfur Dioxide in Wastewater

Ernest J. Upton

V. Dean Adams

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management

Commons

Recommended Citation

Upton, Ernest J. and Adams, V. Dean, "Catalytic Oxidation of Sulfur Dioxide in Wastewater" (1982). Reports. Paper 49.

https://digitalcommons.usu.edu/water_rep/49

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

CATALYTIC OXIDATION OF SULFUR

DIOXIDE IN WASTEWATER

Ъу

Ernest J. Upton V. Dean Adams

Report to

International Environmental, Inc. Salt Lake City, Utah

Submitted by

Utah Water Research Laboratory
Utah State University
Logan, Utah 84322

February 1982

CATALYTIC OXIDATION OF SULFUR

DIOXIDE IN WASTEWATER

bу

Ernest J. Upton V. Dean Adams

Report to

International Environmental, Inc. Salt Lake City, Utah

Submitted by

Utah Water Research Laboratory
Utah State University
Logan, Utah 84322

February 1982

ACKNOWLEDGMENTS

This publication represents the final report of a project evaluating the catalytic oxidation of sulfur dioxide in wastewater which was supported by funds provided by International Environmental, Inc. of Salt Lake City, Utah.

The authors express gratitude to all who contributed to the completion of this study. A sincere thanks is also extended to the Utah Water Research Laboratory for providing laboratory equipment and facilities necessary to complete this study and to the capable editorial and secretarial staff for their assistance in preparation and publication of this report.

TABLE OF CONTENTS

																					Page
ACKNO	WLED	GMEN	TS				•	•						•	•		•	•		•	ii
LIST	OF T	ABLE	S					•		•	•	•	•	•	•		•	•	•	•	v
LIST	OF F	'IGUR	ES.					•	•	•		•		•		•	•	•	•	٠	viii
ABSTE	RACT	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	. •	•	•	хi
INTRO	DUCT	NOI		•	•	•	•	•		•		•	•	•	•	•	٠	•			1
OBJEC	CTIVE	s	•	•	•	•	•	•		•	•		•	•	•	•	•	•			3
LITER	RATUR	E RE	VIE	W	•		•	•			•	•	•		•	•	•	٠	•	•	4
	Meta Acti	ıl Ca vate				•											•		•	•	4 5
EXPER	RIMEN	ITAL	APP	ARA	TUS	AN	ID E	PRO	CEDI	JRE	S	•	•		•		•	•	•	•	8
	Sulf Anal	lyst ur D ytic	iox al	Pro	ced	ure	s		Sou	irce	e		•	•	•		•	•	•	•	8 9 10 11
		Upf	te low	co	nta				•				•	•				•		· ·	11 11 14
RESUI	LTS A	ND D	ISC	USS	ION	ſ	•	•	•		•	•	•		•	•		•	•		20
	Upf1	Test ow C	ont				•						· ·				•	•	•	•	21 26 27
COST	ANAL	YSIS	i				•	•		•	•	•	•		•	•		•			46
SUMMA	ARY A	ND C	ONC	LUS	ION	IS	•					•	•	•	•		•	•	•		52
ENGI	NEERI	NG S	IGN	IFI	CAN	CE				•			•	•	•		٠	•			54
RECON	ME NI	ATIC	NS			•				٠				•	•			•		•	55
ומירו	מזזייי א כ	F CT	חשיני																		56

TABLE OF CONTENTS (CONTINUED)

APPENDICES	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	•	•	58
Appendia	ĸ A	:	Manu	ufac	etu	rer	In	for	mat	ion									59
Appendia	K B	;	Raw	Dat	ta														61
Appendi	K C	:	0xyg	gen	Re	qui:	rem	ent	s	•									143
Appendi	x D	•	Cost	t Da	ata	_						_		_		_		_	144

LIST OF TABLES

Table			P	age
1.	City of Hyrum secondary clarifier effluent characteristics			10
2.	Variation of experimental design parameters			19
3.	Typical sulfur mass balance			25
4.	Typical upflow column data using activated carbon + Mn ⁺⁺ media	•	•	26
5.	Preliminary assessment of oxidation catalysts			28
6.	Summary design parameter variations and SO_2 breakthrough			38
7.	Summary of design criteria		•	47
8.	SO ₂ oxidation system capital cost estimate			47
9.	${\rm SO}_2$ oxidation system summary of annual costs			49
10.	Comparison of capital and operation and maintenance costs for various wastewater disinfection processes	•		50
11.	Summary cost (¢/1000 gallons treated) comparison betwee sulfur dioxide disinfection and other alternative disinfection systems		•	51
В-1.	SO_2 oxidation jar test4/22			63
B-2.	Preliminary assessment of oxidation catalysts			64
в-3.	SO ₂ oxidation column observations7/18			65
B-4.	SO ₂ oxidation column observations7/19			66
B-5.	SO ₂ oxidation column observations7/23			67
в-6.	SO ₂ oxidation column observations7/23			68
B-7.	SO_2 oxidation jar test8/7		•	69
в-8.	SO ₂ oxidation column observations8/10	•	•	70
в-9.	SO ₂ oxidation column observations8/12			71

LIST OF TABLES (CONTINUED)

Table										I	age
B-10.	so ₂	oxidation	column	observations8/14				•		•	72
B-11.	so_2	oxidation	column	observations8/18				•			73
B-12.	so_2	oxidation	column	observations8/20				•			74
B-13.	so_2	oxidation	column	observations8/27		•	•	•	٠		75
B-14.	so_2	oxidation	column	observations8/29			•	•			76
B-15.	so_2	oxidation	column	observations8/31						•	77
В-16.	so_2	oxidation	column	observations9/10			•	•	•		78
В-17.	so_2	oxidation	column	observations9/14				•	•		79
в-18.	so ₂	oxidation	column	observations9/16		•	•		•		81
B-19.	so_2	oxidation	column	observations9/18		•	•		•		83
B-20.	so_2	oxidation	column	observations9/21		•	•	. •	•		85
B-21.	so_2	oxidation	column	observations9/23					•		87
B-22.	so ₂	oxidation	column	observations9/28	•	•		•	•		89
B-23.	so_2	oxidation	column	observations9/30	•	•	•	•	•	•	91
B-24.	so ₂	oxidation	column	observations10/2	•	•	•		•		93
B-25.	so_2	oxidation	column	observations10/5	•	•	•	•	•	•	94
B-26.	so_2	oxidation	column	observations10/7	•	•	•	•	•		96
B-27.	so_2	oxidation	column	observations10/9	•		•		•		98
B-28.	so ₂	oxidation	column	observations10/9	•	•	•	•	•	٠	100
B-29.	so_2	oxidation	column	observations10/12	•			•	•		102
в-30.	so ₂	oxidation	column	observations10/12	•		•	•			104
в-31.	so_2	oxidation	column	observations10/14	•	•	•		•		106
B-32.	so_2	oxidation	column	observations10/14	•				•	•	108
в-33.	so_2	oxidation	column	observations10/16							110

LIST OF TABLES (CONTINUED)

Table							Page
B-34.	SO ₂ oxidation column observations10/19	•	•	• ,			. 112
в-35.	SO ₂ oxidation column observations10/21	•	•	•		•	. 114
в-36.	SO ₂ oxidation column observations10/23	•	•	•	•	•	. 116
в-37.	SO ₂ oxidation column observations10/26	•	•		•		. 118
B-38.	SO ₂ oxidation column observations10/28		•	•	•		. 120
в-39.	SO ₂ oxidation column observations10/30	•	•	•	•		. 122
B-40.	SO ₂ oxidation column observations11/2			•			. 124
B-41.	SO ₂ oxidation column observations11/4		•	٠	•		. 126
B-42.	SO ₂ oxidation column observations11/6	٠	•				. 128
B-43.	SO ₂ oxidation column observations11/9						. 130
B-44.	SO ₂ oxidation column observations11/11	•					. 132
B-45.	SO ₂ oxidation column observations11/13	•	•	•		•	. 134
B-46.	SO ₂ oxidation column observations11/16	٠	•			٠	. 136
B-47.	SO ₂ oxidation column observations11/17			•			. 138
B-48.	SO ₂ oxidation column observations11/20	•		•			. 139
B-49.	SO ₂ oxidation column observations11/23				•		. 141
D-1.	Summary of capital costs for sulfur diox infection systems	ide	dis			•	. 149
D-2.	Summary of O&M costs for sulfur dioxide infection systems excluding SO ₂ oxidatio	dis-	•				. 150

LIST OF FIGURES

Figure		Page
1.	Jar test apparatus	12
2.	Bench scale upflow contactor	13
3.	Bench scale downflow contactor	15
4.	5 cm downflow contactor	16
5.	Air diffuser arrangement in 5 cm column	17
6.	8.5 cm downflow contactor	18
7.	pH versus SO ₂ species	21
8.	SO ₂ removal-jar test results	23
9.	SO ₂ removal-jar test results	23
10.	Oxidation of SO_2 using raw iron	25
11.	Manganese oxide on alumina before and after column run	29
12.	SO ₂ breakthrough using activated carbon and metals medium	31
13.	${\rm SO}_2$ breakthrough using activated carbon + iron medium .	32
14.	${ m SO}_2$ breakthrough using activated carbon medium	33
15.	Variation in SO ₂ breakthrough for 5-24 hour runs (5 cm column)	34
16.	Variation in SO ₂ breakthrough for 5-24 hour runs (8.5 cm column)	35
17.	SO ₂ oxidation column observations	37
18.	Flow vs. carbon volume for zero SO ₂ breakthrough (24 hr runs)	38
19.	Air distribution at 70 l/hr	40
20.	Air distribution at 140 ℓ/h	41
21	96 hour column run	42

LIST OF FIGURES (CONTINUED)

Figure						Page
22.	Backwashed column results	•				44
23.	Flow sheet for SO_2 oxidation system		•	•	•	48
B-1.	${ m SO}_2$ oxidation column observations				•	80
B-2.	${ m SO}_2$ oxidation column observations		•	•	•	82
в-3.	${ m SO}_2$ oxidation column observations			•	•	84
В-4.	${ m SO}_2$ oxidation column observations		•			86
B-5.	${\rm SO}_2$ oxidation column observations			•	•	88
В-6.	${ m SO}_2$ oxidation column observations	•	•	•	•	90
B-7.	${ m SO}_2$ oxidation column observations	•	•	•	•	92
В-8.	${ m SO}_2$ oxidation column observations			•	•	95
В-9.	${ m SO}_2$ oxidation column observations		•		•	97
B-10.	${\tt SO}_2$ oxidation column observations	•	•	•	•	99
B-11.	${\rm SO}_2$ oxidation column observations	•		•	•	101
B-12.	${ m SO}_2$ oxidation column observations					103
B-13.	${\tt SO}_2$ oxidation column observations				•	105
B-14.	${ m SO}_2$ oxidation column observations	•	•		•	107
B-15.	${ m SO}_2$ oxidation column observations		•	•	•	109
B-16	${ m SO}_2$ oxidation column observations	•	•		•	111
B-17.	${ m SO}_2$ oxidation column observations		•		•	113
B-18.	${ m SO}_2$ oxidation column observations		•		•	115
B-19.	${ m SO}_2$ oxidation column observations		•	•		117
B-20.	${ m SO}_2$ oxidation column observations	•	•	•	•	119
B-21.	SO ₂ oxidation column observations					121

LIST OF FIGURES (CONTINUED)

Figure													Page
B-22.	so ₂	oxidation	column	observations					•				123
B-23.	so_2	oxidation	column	observations		•	•	•		•	•	•	125
B-24.	so ₂	oxidation	column	observations	•	•	•	•		•	•		127
B-25.	so_2	oxidation	column	observations	•	•	•	٠	•	•	•		129
B-26.	so_2	oxidation	column	observations	•	•		•			•	•	131
B-27.	so_2	oxidation	column	observations		•	•	•	•		•		133
B-28.	so_2	oxidation	column	observations	•	•		•	•	•	•		135
B-29.	so_2	oxidation	column	observations	•		•	•	•		•	•	137
в-30.	so_2	oxidation	column	observations									142

ABSTRACT

Sulfur dioxide has been shown to be an effective wastewater disinfectant. The aqueous sulfur dioxide creates an oxygen demand in the effluent which must be removed prior to discharge. Oxidation to sulfate is one means of accomplishing this task.

Experiments were carried out to determine the effectiveness of transition metals and activated carbon as catalysts for the oxidation of S+IV species in wastewater. Both the metals and carbon are known catalysts, but what inhibitory effect the wastewater might have was unknown. Effectiveness was defined as a combination of catalyst life, effluent quality, and cost.

Transition metals were eliminated as potential catalysts due to the high metal concentrations found in the effluent. The acidic nature of $500~\rm{mg/1}~\rm{SO_2}$ dissolved in wastewater (pH 2.5) would dissolve the metals or cause them to desorb from a carbon base.

Using downflow contactors, activated carbon was shown to catalyze the reaction as long as sufficient oxygen was available. At a loading rate of 5.5 g carbon/1 and a hydraulic loading of 38 $\rm M^3/\rm M^2\cdot day$, 24 hour runs were accomplished without $\rm SO_2$ breakthrough (less than 4 mg/1). Longer runs resulted in gradual breakthrough (40 mg $\rm SO_2/1$ after 96 hours). The cause of the failure was assumed to be the self-poisoning of the catalyst by sulfuric acid (the product of $\rm SO_2$ oxidation) and/or the reduced solubility of oxygen in the sulfuric acid solution. Carbon regeneration, as a catalyst, was accomplished by backwashing the column with tap water. The cost of sulfur dioxide disinfection ranged from 0.23-0.73/1000 gallons treated. In general, this process was much more costly than other disinfection systems.

INTRODUCTION

The use of chlorine as a wastewater disinfectant is receiving worldwide attention with respect to its potential adverse health effects. This is partially due to the formation of chlorinated organics which may be carcinogenic. Sulfur dioxide has been shown to be an effective disinfectant (Reynolds and Adams 1979). Sulfur dioxide is a strong reducing agent and when dissolved in water forms sulfite, bisulfite, or sulfurous acid, depending on the pH of the solution. The majority of the sulfur species remains essentially unchanged during and following the disinfection process. Sulfite and bisulfite ions are quite reactive and create an oxygen demand. This oxygen demand must be removed if wastewater discharge requirements are to be met. Oxidation of the sulfite and bisulfite ions to sulfate, catalyzed by transition metals or activated carbon, is one means of removing the oxygen demand.

There are other means of controlling sulfite. Watkins (1977) in his summary of methods for controlling sulfur compounds lists biological, chemical precipitation, electrodialysis, ion exchange, and reverse osmosis. Hesketh and Potokar (1977) found (by bubbling 1100 ppm SO₂ gas through fly ash or carbon slurries) that fly ash from coal burning operations had a sorptive capacity three times greater than activated carbon. Neither the type of carbon nor its catalytic oxidative capacity was compared, however.

Strong oxidants have also been investigated. Penkett et al. (1979) studied the effects of ozone and hydrogen peroxide on the oxidation of aqueous sulfur dioxide to sulfate.

Most of these latter means of controlling sulfite are considered too costly for large scale operations such as sewage treatment facilities using sulfur dioxide for disinfection. Therefore, the focus of this research shall be the catalytic oxidation of aqueous sulfur dioxide by transition metals and/or activated carbon.

OBJECTIVES

The main objective of this research is the development of an efficient means of removing the oxygen demand created in wastewater following disinfection by sulfur dioxide. Specific objectives include:

- Determination of an efficient catalyst for the oxidation of sulfite or bisulfite in wastewater.
- Development of design parameters for use of the catalyst as a means of removing sulfite from wastewater.
- Development of costs associated with use of the catalyst in sulfur dioxide-wastewater disinfection systems.

LITERATURE REVIEW

The oxidation of aqueous sulfur dioxide has been the subject of a great deal of research. This reaction does not occur at a measurable rate at low pH (0-3) without a catalyst present (EPA 1981). Thus most of this research has dealt with obtaining kinetic data in the presence of various catalysts.

Metal Catalysts

Fuller and Crist (1941) studied the effects of copper and pH on the rate of oxidation of sulfite in distilled water using pure oxygen. They found that copper ion concentrations greater than 10⁻⁹ M greatly increased the rate of oxidation. Lowering the pH from 8.2 to 3.2 decreased the rate of oxidation. Fuller and Crist accounted for this pH phenomenon by assuming the rate of oxidation is dependent on the sulfite ion concentration and the square root of the hydrogen ion concentration.

Other metals such as cobalt and manganese also catalyze the oxidation of aqueous sulfur dioxide. Coughanowr and Krause (1965) used manganous sulfate (0-6.6 x 10^{-4} M $\mathrm{Mn^{2+}}$) as a catalyst and determined a reaction rate proportional to the square of the catalyst concentration. Their $\mathrm{SO_2}$ concentration was approximately 1.7 x 10^{-3} M in distilled water saturated with oxygen. Cobaltous sulfate (10^{-7} -3 x 10^{-6} M $\mathrm{Co^{2+}}$) as a catalyst was shown by Chen and Barron (1972) and Bengtsson and Bjeiles (1975) to affect the reaction rate (of 9.4 x 10^{-3} M $\mathrm{SO_2}$ in distilled water) by the square root of the catalyst concentration.

The previous results were obtained under solution pH greater than 6.0. At low pH (0-3) the EPA (1981) found cobalt (2.5 x 10^{-5} M) to be an ineffective catalyst; the catalyzed reaction was second order in manganese (2 x 10^{-5} -2.5 x 10^{-4} M).

Tiwari et al. (1979), in studying the oxidation of ferrous sulfate under acidic conditions found that SO_2 would catalyze the reaction. This indicates that iron is another metal capable of increasing the rate of oxidation of sulfur dioxide. The EPA (1981) reported that iron (2.0 x 10^{-5} M Fe³⁺) did catalyze the reaction under acidic conditions and that the reaction was first order in iron.

Brimblecombe and Spedding (1974) found in their work that the reaction order of the oxidation of sulfite was dependent on the pH of the solution. A 0.1 M ammonium sulfate solution containing 10⁻⁵ M of S+IV in the presence of 10⁻⁶ M Fe(III) was used to simulate aqueous atmospheric aerosols. They were able to show, using steady-state principles, that at low sulfite ion concentrations (low pH conditions) the reaction is first order with respect to sulfite ion concentrations. At higher sulfite ion concentrations (higher pH conditions) the reaction appears to be second order. Thus it can be concluded from this work that the rate of oxidation of sulfite in the presence of a metal catalyst is pH dependent.

Activated Carbon

The oxidation of S+IV species is catalyzed by activated carbon. Air pollution research has provided a great deal of information in this area.

Siedlewski (1965) and Novakov and Chang (1975) determined that sulfur dioxide in air would chemisorb to the surface of the activated carbon at points where free carbon radicals exist. The quantity of sulfur dioxide oxidized is a function of the number of these active sites on the carbon, and not the quantity of sulfur dioxide or oxygen present.

The adsorptive capacity and catalytic activity of activated carbon appear to be a function of the number of free radical sites on the carbon. Seaburn and Engel (1973) bubbled SO₂ gas through slurries of activated carbon (using several different commercial brands of activated carbon) and determined that the number of these free radical sites was dependent on the source material for the carbon.

Komiyama and Smith (1975) found that the rate of oxidation of sulfur dioxide in slurries of activated carbon was first order with respect to oxygen concentration and zero order with respect to sulfur dioxide. They concluded that the controlling step of the oxidation mechanism is the adsorption of oxygen on the active sites of the carbon.

It is fairly well established that surface carbon-oxygen complexes are responsible for activated carbon's catalytic ability.

The reaction mechanism between sulfite and activated carbon is more than a simple reaction with surface adsorbed oxygen, however (Eatough et al. 1979). Free radical carbon sites are probably involved in the complexation of sulfite and carbon, resulting in the formation of sulfate. Eatough et al. concluded that oxidative regeneration of these active sites is the rate limiting step in the oxidation of sulfite on activated carbon.

The rate of the oxidation reaction has been found to be independent of the pH at values less than 7.6. Above a pH of 7.6 the rate of reaction drops to zero thus, indicating a poisoning of the carbon (Chang et al. 1976-77; Brodzinsky et al. 1980). Eatough et al. (1979) proposed that bisulfite was the reacting species. However, Brodzinsky et al. concluded that it is the carbon's active site, affected by pH, that causes the change in rate of oxidation.

Although some confusion exists as to the mechanism, it is generally agreed that activated carbon is an effective catalyst in the oxidation of sulfur dioxide.

EXPERIMENTAL APPARATUS AND PROCEDURES

A review of the pertinent literature concerning catalytic oxidation of sulfur dioxide showed that the primary experimental procedure used involved jar tests to obtain kinetic data (Komiyama and Smith 1975; Chang et al. 1976-77; Brodzinsky et al. 1980). To obtain data necessary to meet the objectives of this study, upflow and downward contactors, in addition to jar tests, were utilized.

Catalysts

Filtrasorb 400, manufactured by Calgon Corporation, was the activated carbon used in the jar tests. Filtrasorb 300 was used in all column experiments. Specifications given by the manufacturer have been included in Appendix A.

The wide range of particle sizes provided in the Filtrasorb 300 was found to be unacceptable for use in the column experiments because the finer particles would quickly flush out of the column and thus be unavailable as a catalyst. It was determined that the carbon retained on a 24 mesh sieve would function the best in the column experiments. The carbon was placed in the 24 mesh sieve and washed with chlorine free tap water to remove the fines. If used in conjunction with a metal catalyst, the carbon was then dried for 24 hours at 103°C. If used alone, the carbon was air dried overnight for use the following day.

Metal catalysts were used in conjunction with the activated carbon by adsorbing the desired metal onto the carbon. A metallic ion solution (FeCl3 or MnCl2, for example) was made based on adsorbing

2 or 6 mg metal ion per g carbon. The carbon was added to the solution and shaken for one hour. The liquid was separated from the carbon and tested for metal ion content to determine the actual amount of metal ion adsorbed. The carbon was rinsed with tap water to remove excess metal ion solution and then considered ready for use in the column.

Also, metal catalysts alone were used in the downflow contactors. They took the form of 3.2 mm inert pellets covered with metal oxides. Catalysts used were manganese oxide (19 percent) on alumina, ferric oxide (20 percent) on alumina, nickel-cobalt-iron oxide (3 percent each) on alumina, and vanadium oxide (10 percent) on alumina-silica (all manufactured by Alfa Products). The catalysts were rinsed with tap water prior to being placed in the column to remove excess powder created during shipping.

Plain, 3/8-inch iron nuts were used as a catalyst in jar tests.

The nuts were soaked in 6N HCl for several hours then rinsed with tap water prior to immediate use.

Sulfur Dioxide and Sewage Source

The source of sulfur dioxide for all experiments was reagent grade sulfurous acid produced by J. T. Baker Chemical Co. or Fisher Scientific Co. Sufficient sulfurous acid was added to the sewage to maintain a concentration of 500 mg/l as SO₂. This is referred to as the "feed solution."

Sewage used for all experiments was secondary clarifier effluent obtained from the City of Hyrum's oxidation ditch wastewater treatment plant. Typical characteristics are shown in Table 1.

Table 1. City of Hyrum secondary clarifier effluent characteristics.

Parameter	Value
BOD ₅	15-20 mg/l
DO	5.5-6.0
pH	7.5-8.0
Alkalinity	270 mg/l as $CaCO_3$

Analytical Procedures

Sulfite concentrations were measured using the oxidation-reduction titration procedure described on pp. 451-452 of Standard Methods (APHA 1980). Sulfate concentrations were measured using the turbidimetric methods described on pp. 439-440 of Standard Methods (APHA 1980). A Bausch-Lomb Spec 70 set at 420 nm with a 5 cm light path was used to measure light absorbance.

Dissolved oxygen was measured using a YSI meter #54A and a YSI probe #5740. As effects of long term (i.e., hours) exposure to S=IV are unknown, the electrode membrane was changed daily (Reynolds and Adams 1979). The meter was calibrated by aerating tap water for 30 minutes to achieve saturation; a chart was used to calculate the saturation of oxygen based on temperature and altitude. The pH was measured using a Beckman Zeromatic II meter and a combination electrode.

Metal analysis was by atomic absorption using a Varian Model AA-6. Cobalt, iron, manganese, and nickel concentrations were determined using the direct aspiration method and vanadium was determined by the graphite furnace technique (EPA 1979; APHA 1980).

Experimental Procedures

Jar tests

Initial experimentation involved the determination of the ability of granular activated carbon to either adsorb or oxidize sulfite in wastewater. Carbon adsorption isotherms were developed for this purpose. Carbon amounts from 0 to 15 g were added to six 500 ml Erlenmeyer flasks; 250 ml secondary sewage from the Hyrum treatment plant containing 500 mg/l sulfur dioxide (SO₂) was then added to each flask. The flasks were stoppered with aluminum foil covered rubber stoppers and mixed for 2 hours at 150 rpm (see Figure 1). The samples were then filtered using a Millipore filter and analyzed for sulfite (SO₃⁼), sulfate (SO₄⁼), pH, and dissolved oxygen (DO). Isotherms were also developed to determine the effect of various metals adsorbed to the carbon. Metals used were iron and manganese. Adsorption of the metal to the carbon was discussed earlier.

Jar tests involving raw iron were conducted by placing iron nuts in the bottom of a 4000 ml beaker containing the sewage and SO_2 . The solution was aerated at 500 ℓ /hr to assure that dissolved oxygen was not limiting. Iron, SO_2 , dissolved oxygen, and pH were measured at one minute intervals.

Upflow contactor

The upflow contactor apparatus consisted of a 5 gallon feed tank, a variable speed centrifugal pump (Micropump, Inc.), a flowmeter (Laboratory Supplies, Inc.) calibrated for 0.6-5 gph (38-315 ml/min), and a 5 cm diameter glass column. The apparatus is shown schematically in Figure 2.

Figure 1. Jar test apparatus.

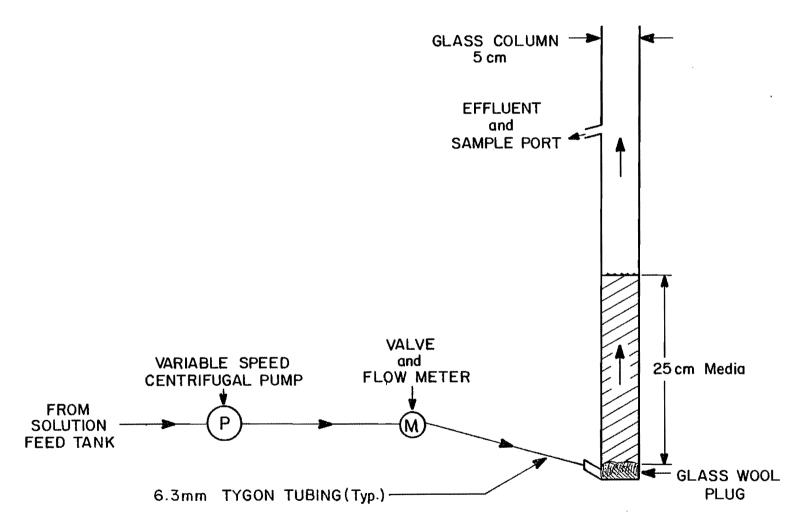


Figure 2. Bench scale upflow contactor.

Three upflow columns were run, each with a different media: activated carbon with either iron, cobalt, or manganese adsorbed to it. Columns were operated at 100 ml/min for one hour. Samples were collected at five minute intervals and analyzed for DO, pH, SO₃=, SO₄=, and the particular metal adsorbed to the carbon.

Downflow contactor

Initial downflow contactor runs utilized the same equipment as the upflow contactor. The only exception was insertion of a glass fritted gas dispersion tube in the side of the column to allow for aeration (see Figures 3, 4, and 5). Equipment changes made during the course of these experiments include replacement of the Micropump with a variable speed peristaltic pump (Masterflex Model 7016) and replacement of the flowmeter (Gilmont Compact Flowmeter #13, 2-300 ml/min). These changes were made to improve equipment performance.

Column runs using the metal oxides as the medium lasted 3 hours. A liquid flow rate of 50 ml/min and an air flow rate of 500 l/hr were used. Medium depth was 25 cm.

Column runs using activated carbon or activated carbon plus metals initially lasted 6 hours, but were later extended to 24 hours. Liquid flow for all runs was 50 ml/min; air flow varied, 0 or 500 l/hr. Medium depth was 25 cm.

Evidence of short circuiting along the glass wall of the column prompted replacement of the 5 cm column with an 8.5 cm diameter column (see Figure 6). The interior surface of the column was coated with activated carbon to further eliminate short circuiting. The adhesive used was silicon (GE SCS1000).

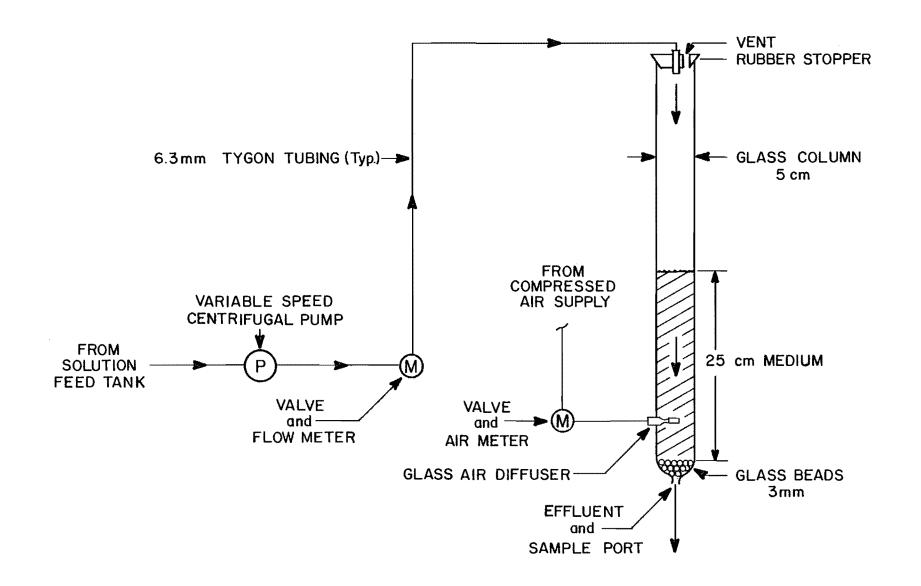


Figure 3. Bench scale downflow contactor.

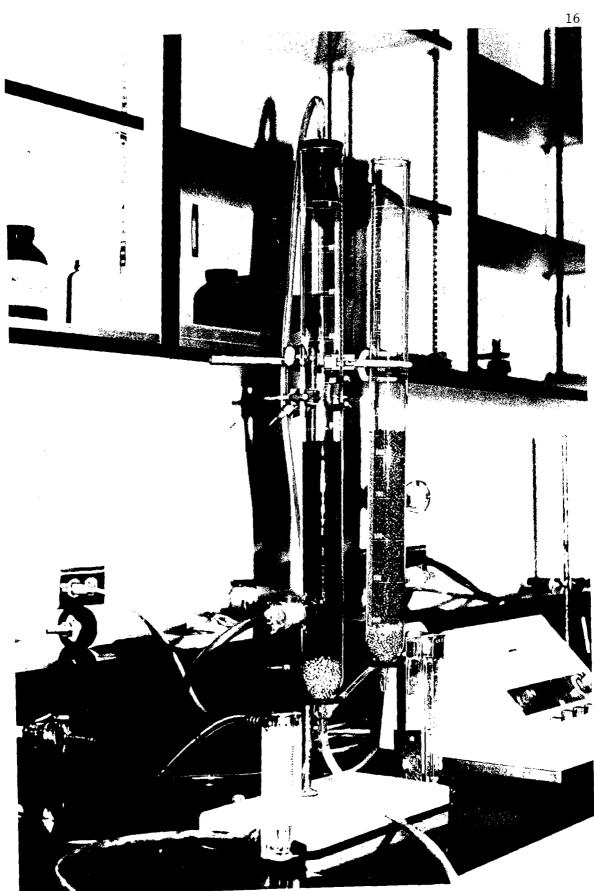
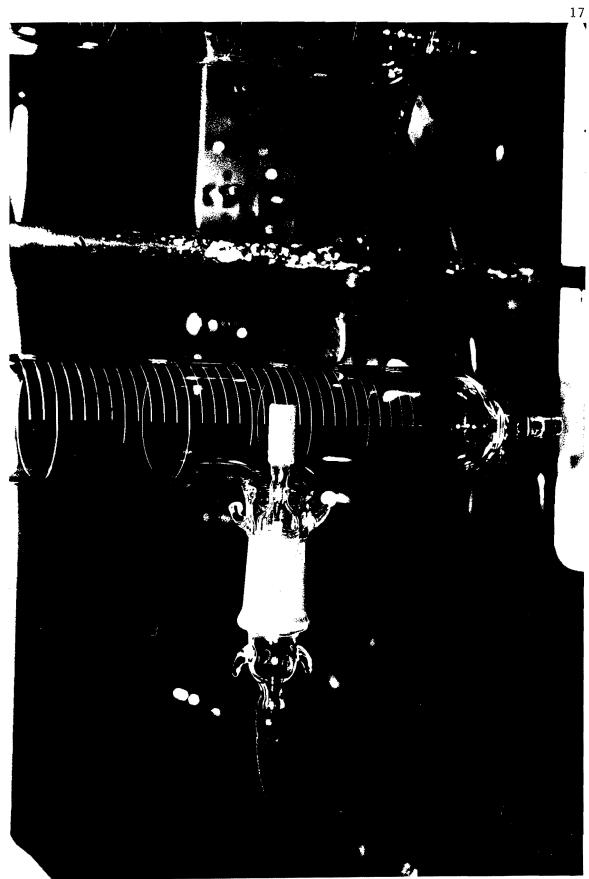



Figure 4. 5 cm downflow contactor.

Air diffuser arrangement in $5\ \mathrm{cm}\ \mathrm{column}$. Figure 5.

Figure 6. 8.5 cm downflow contactor.

All column runs using the larger column utilized activated carbon as a catalyst. Other column parameters varied as shown in Table 2. Prior to all column runs, chlorine free tap water was poured down the column to saturate the carbon.

Table 2. Variation of experimental design parameters.

Parameter	Range	Units
Air Supply	0, 70, 140, 210	l/hr
Liquid Flow Rate	50, 75, 100, 150, 175	m1/min
Medium Depth	25, 35, 50	cm

RESULTS AND DISCUSSION

Sulfur dioxide has been shown to be an effective wastewater disinfectant (Reynolds and Adams 1979). Disinfection was found to be a function of three parameters, SO₂ concentration, time, and pH value. It was shown that 160 mg/1 SO₂ and a pH of 2.5 is the optimal combination of these two parameters at a 30 minute detention time. Using these values, the total coliform count can be reduced to less than 200 organisms/100 ml and fecal coliform counts to less than 20 organisms/100 ml. To obtain a pH value of 2.5 in high alkalinity wastewater (250-300 mg/l as CaCO₃) a mineral acid must be added in addition to the 160 mg/l SO₂, or 500 mg/l SO₂ must be added to the wastewater. This research has been based on the latter case.

Sulfur dioxide dissolved in water will form either sulfite (SO₃=), bisulfite (HSO₃) or sulfurous acid (H₂SO₃) depending on the pH of the solution. This is depicted graphically in Figure 7 (EPA 1979). It should be noted that Figure 7 is not quantitative in that all activity coefficients are assumed to be unity. It does show a qualitative relationship between aqueous SO₂ species.

As noted, with a SO_2 concentration of 500 mg/l, the pH of the secondary sewage used in these experiments is approximately 2.6 (depending on the alkalinity of the sewage). Thus the dominant species in solution will be HSO_3^- . Oxidation of HSO_3^- leads to the formation of sulfate plus a proton:

$$HSO_3^- + 1/2 O_2 \rightarrow H^+ + SO_4^=$$
 (1)

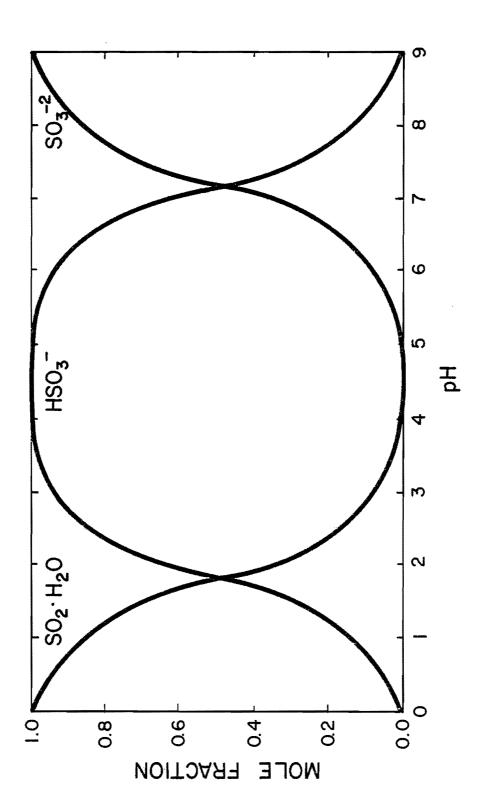
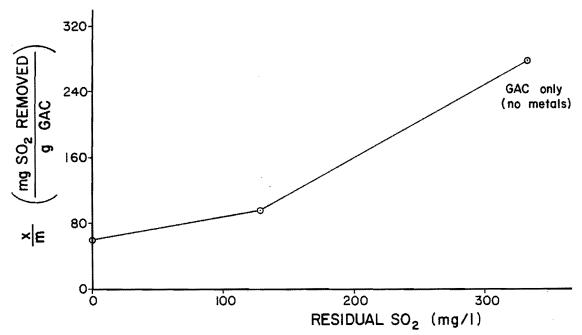


Figure 7. pH versus \mathbf{SO}_2 species.

Schmidt (1972) noted that the formation of dithionate is increased at low pH:

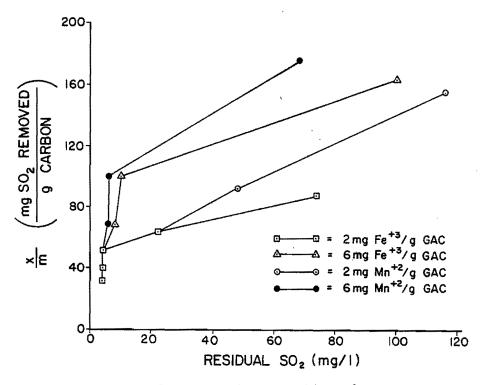
$$2HSO_3 - S_2O_5 + H_2O$$
 (2)

$$S_2O_5^{=} + H_2O \rightarrow S_2O_6^{=} + 2H^{+} + 2e^{-}$$
 (3)


Dithionate is a very stable ion and will not undergo oxidation or reduction very easily. The oxidation state of dithionate (S+V) is not the same as sulfite (S+IV) or sulfate (S+VI). Thus dithionate is not detected by the analytical procedures used to measure sulfite or sulfate. Later discussion of the sulfur mass balance will return to this point.

All sulfur specie concentrations in the following discussion are reported in mg/1 as SO_2 .

Jar Tests


The jar tests clearly indicate the catalytic abilities of activated carbon. The results were plotted as carbon adsorption isotherms. A favorable isotherm is one with an initial steep use at the low carbon masses. The carbon isotherm shown in Figure 8 would be considered unfavorable. The concentration of carbon necessary to completely remove the SO₂ was found to be 40 g/l. The pH increased from an initial 2.6 to 3.6. At higher carbon concentrations, the pH continued to increase, indicating that the activated carbon was removing the products of bisulfite oxidation from solution.

The jar tests involving activated carbon with adsorbed metals produced more favorable isotherms (Figure 9). The metals reduced the carbon concentration necessary for complete removal of SO₂ by

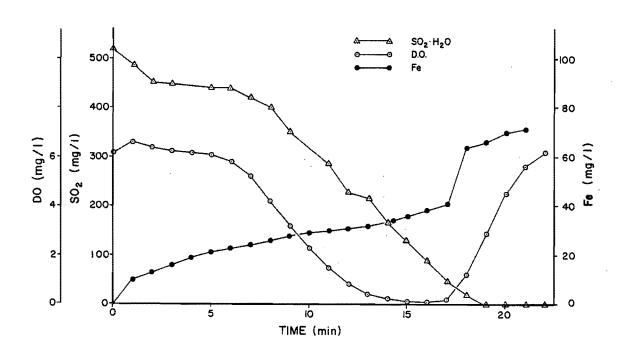
Note: GAC = Granular Activated Carbon

Figure 8. SO_2 removal-jar test results.

Note: Data from Appendix B, Table B-2.

Figure 9. SO_2 removal-jar test results.

half, to 20 g/l. However, the gain in reduced carbon concentration was offset by desorption of the metals from the carbon. For example, the solution containing 50 g/l of carbon with 6 mg/g of iron adsorbed measured 51 mg/l iron at the end of the test. The reason for desorption of the metals is assumed to be the low pH (2.8) of the solution.


Removal of the bisulfite oxidation products by the carbon was again observed in these experiments. This assumption is proven by considering the mass balance of sulfur species. As shown in Table 3, the effluent sulfur species decrease with increasing carbon concentrations. With no carbon, the data show a loss of $107 \text{ mg/1 } SO_2$ after two hours of shaking. Approximately one-third of this loss is due to oxidation to $SO_4^=$; the remainder is assumed to have gone off as gaseous SO_2 . As discussed earlier, dithionate may have been formed and would account for some of the missing sulfur.

The results of the carbon jar tests indicate that activated carbon is not very efficient (requiring 40 g/1) at removing SO_2 from wastewater. However, insufficient dissolved oxygen appeared to limit the oxidation of the SO_2 and therefore biased the results. Thus the impetus for column experiments was to further define the catalytic capabilities of carbon.

Jar tests involving raw iron as a catalyst also showed the adverse effects of the acidic solution. As shown in Figure 10, at an iron concentration of 20 mg/l the rate of $\rm SO_2$ and DO reduction is rapid and constant. Further increases in the iron concentration do not affect the rate of reaction. As the reaction rate did not increase until 20 mg/l of iron was present it can be concluded that iron, as a catalyst, must be dissolved in solution. The catalytic effect is probably not a sur-

Table 3. Typical sulfur mass balance.

Final SO ₂ mg/l	Final SO4 ⁼ as SO ₂	Total SO ₂ mg/1
500	39	539
364	68	432
32	448	480
6	382	388
0	371	371
0	278	278
0	240	240
	SO ₂ mg/1 500 364 32 6 0	SO ₂ SO ₄ = mg/1 as SO ₂ 500 39 364 68 32 448 6 382 0 371 0 278

Note: Data from Appendix B, Table B-7.

Figure 10. Oxidation of SO_2 using raw iron.

face phenomenon on the iron. Although a good catalyst, the use of raw iron does not appear feasible due to the high concentration (20 mg/l) of iron in the effluent.

Upflow Contactors

Three upflow columns were operated using either iron, manganese, or cobalt adsorbed to activated carbon. The results of the carbon and manganese column are shown in Table 4. The results are very similar to the jar tests, and show activated carbon with metals to be a very efficient catalyst as long as a sufficient stoichiometric amount of oxygen is present to complete the oxidation. The data also show that the acidic nature of the feed solution causes the metal to desorb from the carbon. As with the jar tests, insufficient oxygen did not allow for long term analysis of the catalytic capabilities of activated carbon.

Table 4. Typical upflow column data using activated carbon + Mn++ medium.

Time (min)	DO	pН	SO ₂ mg/1	504 ⁼ as 50 ₂	Mn++ mg/l
[nitial	6.8	2.4	548	49	<4
5	2.2	5.0	0	388	178
10	2.2	4.1	0	403	182
15	1.7	3.2	0	388	156
20	0.2	2.5	0	352	105
25	0	2.4	32	395	91
30	0	2.4	48	395	89
35	0	2.4	136	344	55
40	0	2.4	168	358	49

Downflow Contactors

Downflow columns using eight different media were operated for 3-6 hour periods. The purpose of these runs was to make a preliminary assessment of the oxidative capacity of the various media. The results are summarized in Table 5 (raw data are included in Appendix B, Table B-2 through B-5).

None of the alumina base metallic media completely oxidized the SO₂ for any length of time. As excess air (500 l/hr) was being pumped into the column, the extremely large effluent SO₂ concentration should not have been caused by depleted oxygen levels. Insufficient detention time could have caused the breakthrough however. Increasing detention time was not attempted due to the primary reason for dismissing use of these media as catalysts: high metal concentrations in the effluent. Figure 11 shows the manganese catalyst before and after the column run. The removal of the manganese from the base alumina is clearly evident, again, due to the acidic nature of the feed solution.

Study of activated carbon and activated carbon plus metals continued with 24 hour runs. The purpose was to determine the maximum 50_2 breakthrough (if one existed) and the extent of metal desorption from the carbon. Metals used were cobalt, iron and manganese. Excessive air $(500 \ \text{L/hr})$ was again used to prevent depleted oxygen levels from affecting catalyst evaluation.

SO₂ breakthrough occurred within 2 hours in all columns except the carbon-manganese column which lasted 5 hours (see Appendix B, Tables B-8 through B-16). On the basis of a single run, the carbon-manganese column had a maximum breakthrough of 28 mg/1; 68 mg/1 for the

Table 5. Preliminary assessment of oxidation catalysts.

Column Conditions:

Feed Rate = 50 m1/min.

Medium Depth = 25 cm

Feed Soln. pH = 2.5-2.9

Air Flow = $7.2-9.5 \ell/\min$.

Run Time = 3 hrs.

Medium		Crite	ria*		Additional
	Oxidative Capacity	Effluent DO	Effluent pH	Effluent Metals	Study
Activated Carbon	Fair	Good	Poor	N/A	Yes
Fe ³⁺ on GAC	Good	Good	Poor	Poor	Yes
Mn ²⁺ on GAC	Good	Good	Poor	Poor	Yes
Co ²⁺ on GAC	Good	Good	Poor	Poor	Yes
Fe ₂ O ₃ on Alumina	Poor	Good	Poor	Good	No
MnO ₂ on Alumina	Fair	Poor	Poor	Poor	No
V ₂ O ₅ on Alumina	Poor	Good	Poor	Poor	No
NiCoFe on Alumina	Poor	Good	Poor	Poor	No

*Oxidative Capacity (Effluent SO $_2$ Concentration): Good < 50 mg SO $_2$ /1; Fair < 100 mg SO $_2$ /1; SO $_2$ /1; Poor > 100 mg SO $_2$ /1SO $_2$ /1

Effluent DO: Good \geq 2 mg/1; Poor \leq 2 mg/1 Effluent pH: Good \geq 6.5; Poor \leq 6.5

Effluent Metals: $Good \leq 1 \text{ mg/1}$; $Fair \leq 5 \text{ mg/1}$; Poor > 5 mg/1

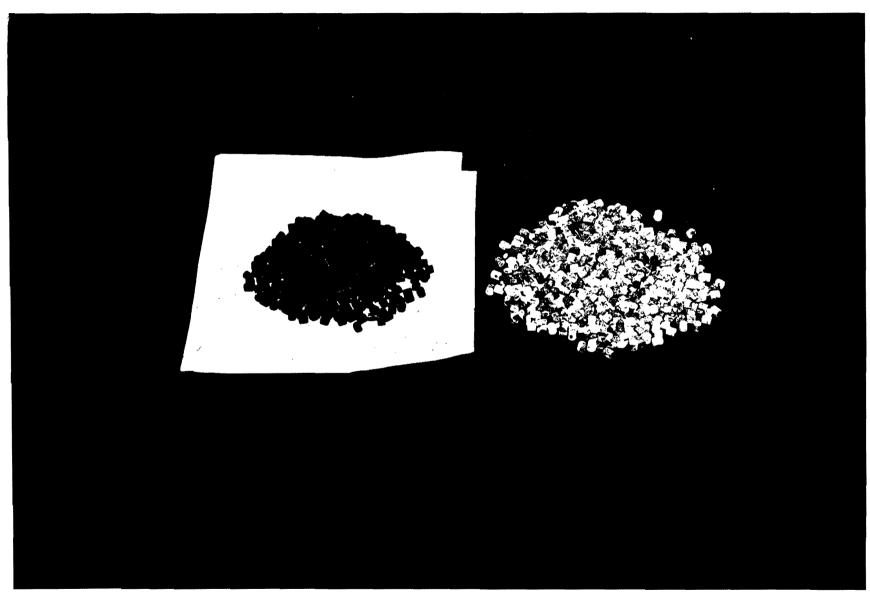


Figure 11. Manganese oxide on alumina before and after column run.

carbon-cobalt column (see Figure 12). Both columns did reasonably well based on metal desorption. The maximum cobalt concentration in the effluent was 5.8 mg/l; the values dropped to less than 1 mg/l after 3 hours. The manganese effluent concentration peaked at 6.1 mg/l and dropped to less than 1 mg/l after 3 hours.

Of three runs using carbon-iron medium two had similar peak SO_2 effluent values of 16 and 38 mg/l. The third run exhibited a much higher breakthrough however (see Figure 13). Iron desorption was higher than the other metals. Concentrations of 60 mg/l were measured at the beginning of the runs. Values decreased to approximately 1 mg/l after 24 hours.

The results of three runs using activated carbon medium are shown in Figure 14. As shown, the results were extremely variable. Five additional runs were completed, with zero air flow, in an attempt to replicate results (Figure 15 and Appendix B, Tables B-18 through B-22). Again, results were variable. As all column parameters were equal for these runs, it was determined that the cause of the variable results was short-circuiting down the glass column walls. Increasing the column diameter from 5 cm to 8.5 cm increased the carbon volume to glass wall area ratio by 70 percent. It also produced much more consistent results (Figure 16 and Appendix B, Tables B-22 through B-26).

At this point it was decided to eliminate the carbon plus metal catalyst from further study and concentrate on activated carbon. This decision was based on the desorption of the metals into the influent. The acidic nature of the feed solution would not allow the activated carbon to retain the metal ions.

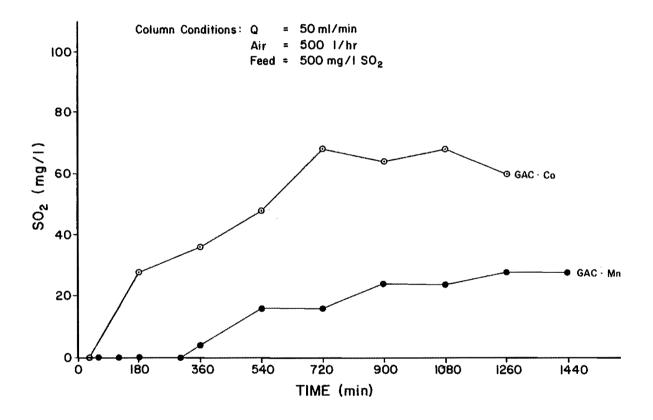
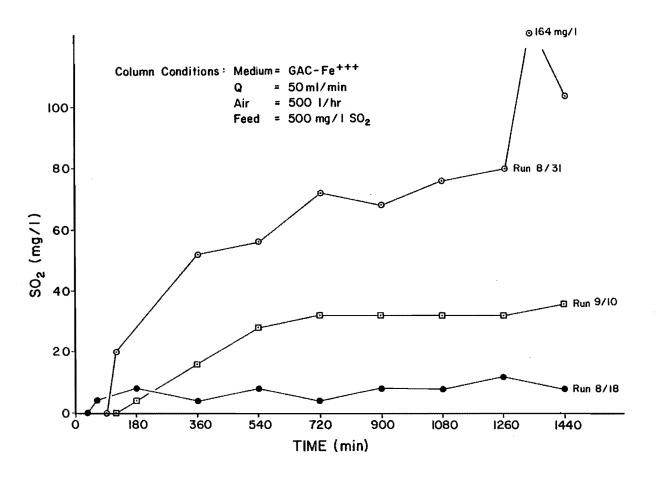



Figure 12. SO_2 breakthrough using activated carbon and metals medium.

Note: 8/31 (i.e.) refers to date of experiment

Figure 13. SO_2 breakthrough using activated carbon + iron medium.

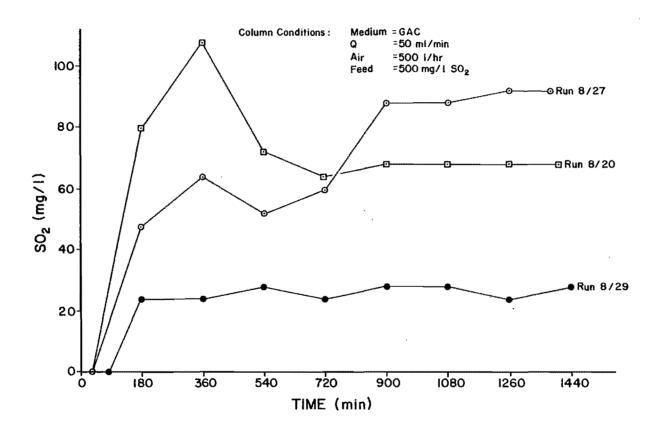


Figure 14. SO_2 breakthrough using activated carbon medium.

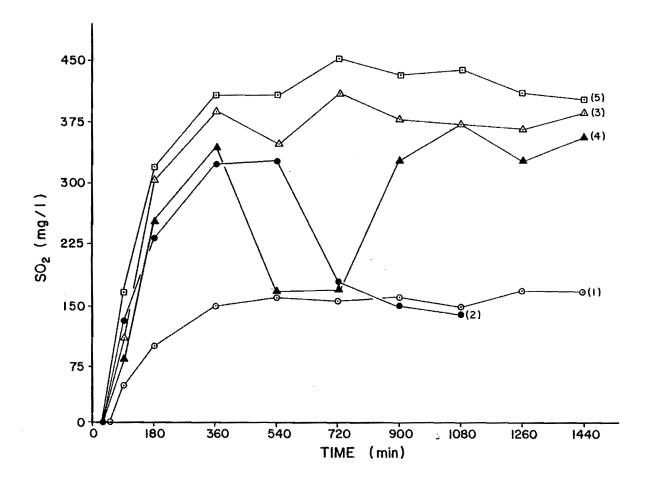


Figure 15. Variation in SO_2 breakthrough for 5-24 hour runs (5 cm column).

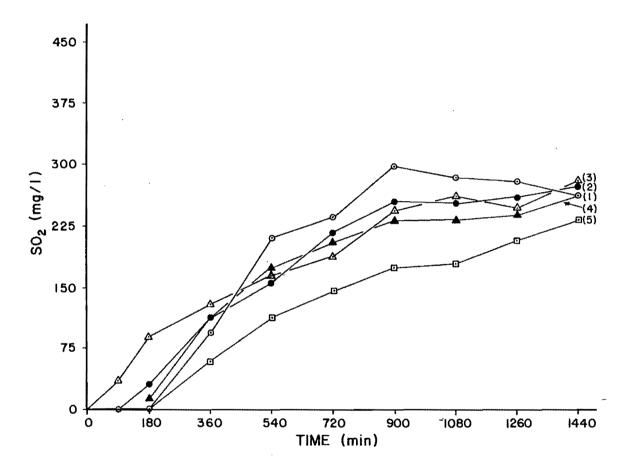


Figure 16. Variation in SO_2 breakthrough for 5-24 hour runs (8.5 cm column).

Starting with the 8.5 cm column, other column parameters were varied while the medium was held constant as shown in Table 2. Figure 17 (Table B-24) shows the effects of zero air flow in the column. As before, insufficient oxygen caused column failure indicated by zero dissolved oxygen measurements. The increasing oxygen levels along with increasing SO₂ is indicative of catalyst poisoning. As the activated carbon becomes saturated with sulfuric acid (product of sulfite oxidation) the rate of reaction is decreased. Hence there is insufficient time in the column to utilize all the oxygen available.

Adding a second column in series, identical to the first, produces an effluent with 16 mg/1 SO_2 (data in Appendix B, Tables B-27 through B-32). Thus it appears, with minor modifications, two filters in series with 25 cm activated carbon at a liquid loading of 8.8 ml/min per M^2 (50 ml/min) would oxidize the SO_2 .

A summary of the various combinations of design parameters used and the ability to remove the influent SO₂ are shown in Table 6 (see Appendix B, Tables B-33 through B-44). As shown, when aerating the column at 140 %/hr a relationship develops, at zero SO₂ breakthrough, between carbon depth and liquid flow (see Appendix B, Tables B-34, B-36, B-38, B-40, B-43, B-46). This proves to be a linear relationship as shown in Figure 18. Using the column with 50 cm of carbon and a flow rate of 150 ml/min for 24 hours, a carbon weight to liquid volume ratio of 5.5 g/1 may be computed. Thus with sufficient oxygen available, activated carbon is a far better catalyst than indicated by the 40 g/1 ratio determined by the jar tests.

Assuming an 8 percent transfer efficiency between air and water, 63 ℓ /hr of air should be required to oxidize 500 mg/l SO₂ at a flow

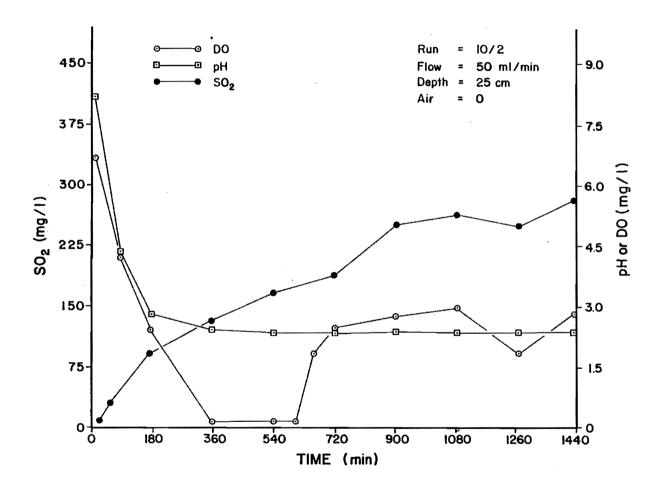


Figure 17. SO_2 oxidation column observations.

Table 6.	Summary de	esign paramete	r variations	and	S02	breakthrough.
----------	------------	----------------	--------------	-----	-----	---------------

Medium Depth (cm)	Air Flow (l/hr)	Liquid Flow (ml/min)	Max. Effluent SO ₂ (mg/1)
25	0	50	280
25	140	50	0
25	140	75	0
25	140	100	72
35	140	100	0
35	140	150	128
35	210	150	52
50	0	50	192
50	140	150	0
50	140	175	84
50	70	150	48

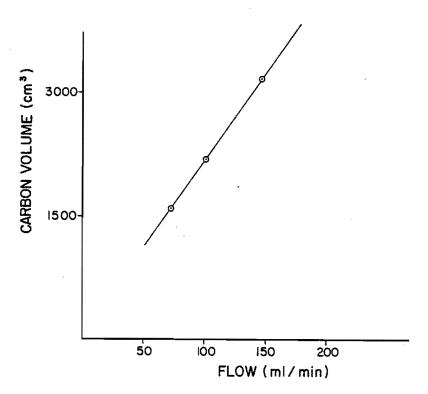


Figure 18. Flow vs. carbon volume for zero SO_2 breakthrough (24 hr runs).

rate of 150 ml/min. Thus it was unexpected to see the column operated at 70 l/hr of air fail. There appears to be several possible reasons. One reason is insufficient detention time in the column. In light of improved performance with increased air flow this explanation does not appear likely. Another reason is that the assumed 8 percent transfer efficiency is too high. This is tied to the air diffuser bubble size and air distribution in the column. Figures 19 and 20 shows the air distribution in a 9.0 cm diameter beaker. At 70 l/hr the air bubbles rise straight up the center of the beaker whereas at 140 l/hr the air bubbles spread out through the entire column. Thus it would appear that the assumed 8 percent transfer efficiency at 70 l/hr is incorrect. More efficient air distribution in a larger system may reduce the required air flow to theoretical values.

Throughout these experiments a milky colored precipitate would form in columns that failed. There is no apparent cause for the formation of this precipitate. The precipitate would form in samples taken from 60 to 720 minutes; dissolved oxygen levels were generally less than 4 mg/1; pH varied from 2.4 to 5.5; and SO₂ concentrations were greater than 4 mg/1. An electron microscopy scan of the precipitate showed the primary elements to be phosphorus and iron. This again gave no clue as to the cause of the precipitation formation. Because the precipitate did not form in samples from successful columns (i.e. no SO₂ breakthrough), investigation of this phenomenon was not pursued.

The column consisting of 50 cm activated carbon, an air flow of 140 ℓ /hr, and a liquid flow of 150 ml/min was run for a period of 96 hours to determine long term catalytic abilities of the carbon (see Figure 21 and Appendix B, Table B-47). Breakthrough of SO_2 began after

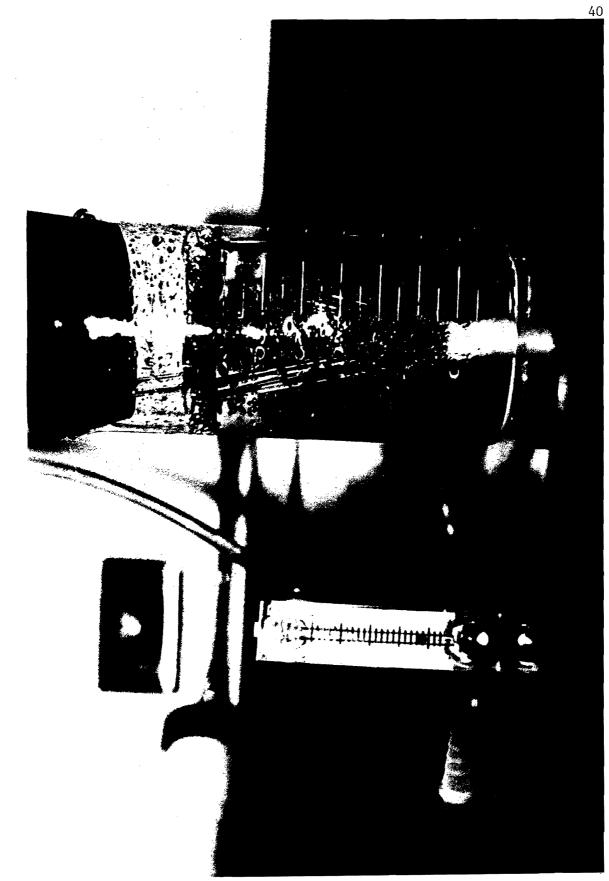


Figure 19. Air distribution at 70 $\mbox{\&le hr}$.

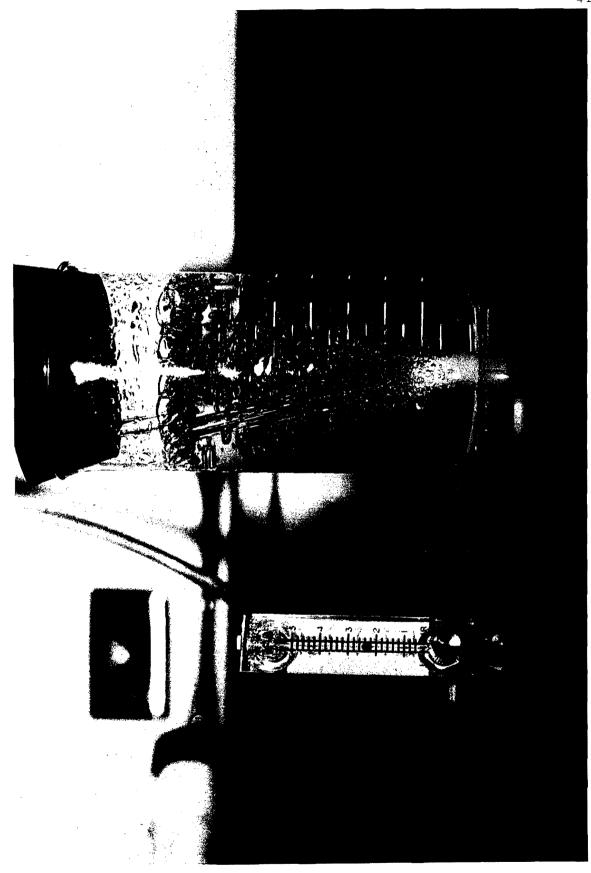


Figure 20. Air distribution at 140 $\ensuremath{\mbox{2}}\xspace/\mbox{hr}.$

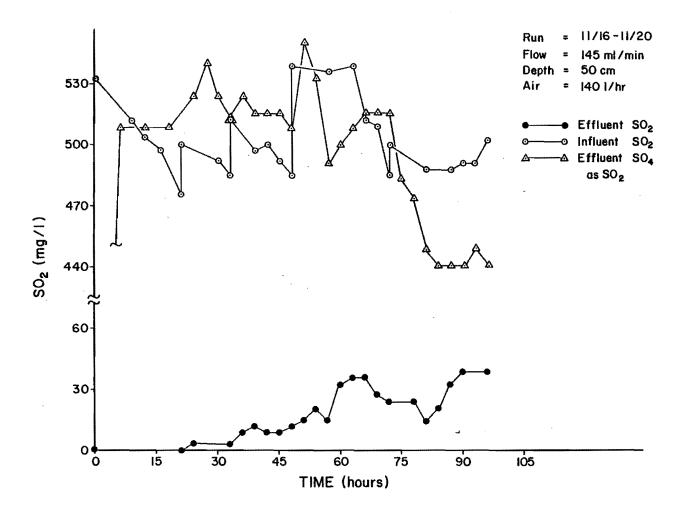


Figure 21. 96 hour column run.

24 hours and increased (in a fluctuating manner) to 40 mg/l after 96 hours, the highest concentration recorded. The cause of the gradual failure is the self-poisoning of the carbon via saturation with sulfuric acid. The removal of the sulfuric acid is necessary for continued oxidation of SO₂. This may be accomplished by flushing the carbon with water (Komiyama and Smith 1975). To test this assumption, a column was run to failure (defined by effluent SO₂ values greater than 20 mg/l), then backwashed with water and the column restarted (see Figure 22 and Appendix B, Table B-48). Backwashing was accomplished by running tap water up through the column, expanding the carbon bed by 20 percent. Forty liters of water were used over a 20 minute period. Initial pH of the backwash water was 2.2; after 4 minutes the pH rose to 6.0. The final backwash pH was 6.8. This increase in pH indicates the flushing out of the acid.

Following backwashing, the carbon bed resettled to 110 percent of its original height. This is due to the strong inter-particle attraction exhibited by wet carbon. The first run failed after 10 hours. The second run, after backwashing, ran for 40 hours without failing (as defined earlier). The most probable cause for the improved performance after backwashing is the increased exposed surface area created by the bridging between carbon particles. Thus it may be concluded that backwashing removes the sulfuric acid and regenerates the catalytic properties of the activated carbon.

The fate of the sulfur species was examined during all 24 hour runs. The results during the 96 hour run are shown in Figure 21.

Through the course of the run, 91 percent of the influent sulfur

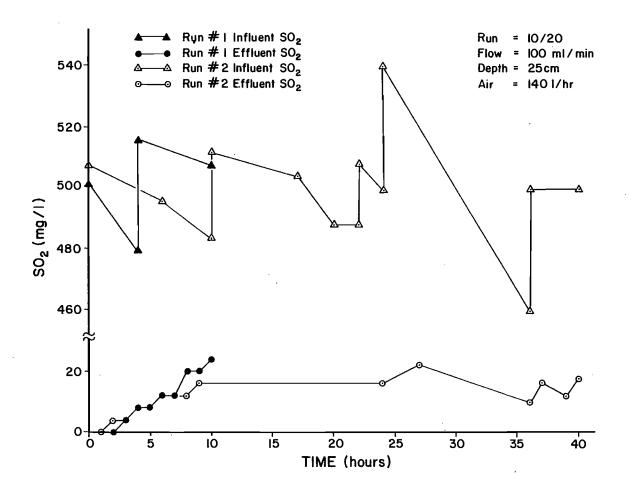


Figure 22. Backwashed column results.

species (+IV and +VI) were accounted for in the effluent. Causes of the missing sulfur may be the formation of dithionate, loss of SO_2 gas in the column, and inaccuracies in the sulfate data due to the analytical procedure used.

COST ANALYSIS

Costs for the sulfur dioxide oxidation system were developed based on reasonable limits in design criteria as shown in Table 7. The worst case design criteria is that developed by the bench scale column. The low surface loading in this case results in a very large filter surface area. By increasing the surface loading and increasing the carbon bed depth (maintaining the carbon volume), the filter surface area and cost may be greatly decreased. For a given carbon volume and flow rate, pilot plant testing must be conducted to optimize surface loading and carbon bed depth.

The worst case also assumes an air requirement equivalent to that used in the bench testing. The best case assumes an air requirement equal to theoretical values.

A capital cost summary for both cases is shown in Table 8. A generalized flow sheet for the SO² oxidation system is shown in Figure 23. The filter costs are based on a typical dual media filtration unit (see Appendix D). Included in the filter costs are the feed system, tankage, underdrain system, backwash pump and storage tank, building, and appurtenances necessary for complete operation. The large surface area required for the downflow contactor mode of operation, along with the need for enclosing the filters, makes this system extremely capital intensive.

Annual costs for the SO_2 oxidation system are shown in Table 9. The power costs include feed and backwash pumping, and blowers for aeration. Total power represents only 6-15 percent of the total annual costs indicating a very low-energy use system.

Table 7. Summary of design criteria.

	Item	Best	Case	Worst Case		
		3785 m ³ /d		3785 m ³ /d		
Α.	Carbon Filters	,				
	l. No. of units	2	4	2	4	
	2. Surface area, total, m ²	32	320	100	1000	
	3. Bed depth, m	1.6	1.6	0.5	0.5	
	4. Surface loading, m ³ /m ² ·d	117.2	117.2	37.5	37.5	
3.	Blowers					
	1. No. of units	2	2	2	2	
	2. Capacity, total, m ³ /h	1275	12750	2550 2	25500	
	3. kw	7.5	75	7.5	75	

Note: $m^3/d \times 2.6417 \times 10^{-4} = mga1/day$ $m^2 \times 10.7639 = ft^2$ $m \times 3.2808 = ft$ $m^3/m^2 \cdot d \times 24.5424 = ga1/ft^2 \cdot d$ $m^3/h \times 0.5886 = ft^3/min$ $kw \times 1.3410 = HP$

Table 8. SO_2 oxidation system capital cost estimate.

	Item	Вез	st Case	Worst Case			
		3785 37850		3785			
		m^3/d	m^3/d	m^3/d	m^3/d		
		\$	\$	\$	\$		
1.	Filter, Complete						
	Except Medium	612,000	2,720,000	952,000	4,216,000		
2.	Activated Carbon	50,000	500,000	50,000	500,000		
3.	Blowers	10,000	48,600	20,000	97,200		
4.	Corrosion Liner	15,100	84,000	43,200	580,000		
Sub	total	\$687,100	\$3,352,600	\$1,065,200	\$5,393,200		
5.	Electrical & Piping	137,400	670,500	266,300	1,348,300		
Tot	al Capital ^a	\$824,500	\$4,023,100	\$1,331,500	\$6,741,500		

aConstruction costs only.

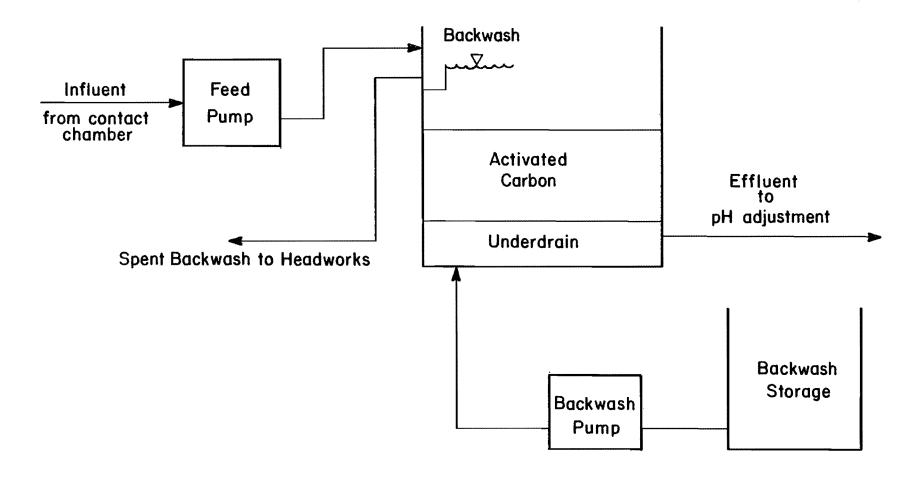


Figure 23. Flow sheet for SO_2 oxidation system.

Table 9. SO₂ oxidation system summary of annual costs.

Item	Best	Case	Worst Case		
	3785	37850	3785	37850	
	m ³ /d	m ³ /d	m ³ /d	m^3/d	
	\$	\$	\$	\$	
Capital Cost	\$824,500	\$4,023,100	\$1,331,500	\$6,741,500	
Capital Recoverya	77,800	379,700	125,700	636,300	
Power @ 6.5¢/kwh	10,700	97,600	10,700	97,600	
Labor @ 13.20/Man hr	5,500	16,000	5,500	16,000	
Materials	8,300	40,200	13,300	67,400	
Total Annual Cost	\$102,300	\$533,500	\$155,200	\$817,300	

a7 percent for 20 years, cost recovery factor = 0.09439.

Labor and material costs were an average of values taken from EPA (1980) cost curves for dual media filtration and trickling filter operations. Labor costs were adjusted to a current rate of \$13.20 per man hour; material costs represent from 1.5-2.5 percent of the capital costs.

Table 10 compares the complete SO₂ disinfection process with other disinfection systems. The costs for the SO₂ disinfection process excluding the oxidation system, along with the other alternative disinfection processes were developed by Nielsen, Maxwell and Wangsgard-Montgomery Inc. (see Appendix D). As shown, when compared to other processes, the SO₂ disinfection process is capital intensive. Total operation and maintenance costs are also significantly higher than for other disinfection processes.

Table 10. Comparison of capital and operation and maintenance costs for various wastewater disinfection processes based on Total Coliform (TC) or Fecal Coliform (FC) standards.

Disinfection Process	Standard = 1	1000 TC/1000 m1	Standard =	2.2 FC/1000 ml
	3785 m ³ /d	37850 m ³ /d	3785 m ³ /d	37850 m ³ /d
. Chlorination-dechlorinationa (without post aeration)				
A. Capital, \$	83,000	216,000	124,000	855,000
B. Operation & Maintenance, \$/yr	12,600	44,900	15,460	64,060
I. Chlorine Dioxide with SO ₂ Reduction ^a				
A. Capital, \$	112,000	309,000	160,700	979,400
B. Operation & Maintenance, \$/yr	46,430	361,220	80,780	680,600
II. Ultraviolet Lighta				
A. Capital, \$	140,000	1,100,000	3,200,000	26,000,000
B. Operation & Maintenance, \$/yr	18,800	187,000	583,300	5,809,000
V. Ozonation ^a				
A. Capital, \$	212,500	914,700	799,500	3,724,700
B. Operation & Maintenance, \$/yr	21,025	109,850	96,010	801,200
. SO ₂ Worst Case ^b				
A. Capital, \$	1,608,000	7,870,000	1,608,000	7,870,000
B. Operation & Maintenance, \$/yr	114,000	955,000	114,000	955,000
I. SO ₂ Best Case ^b				
A. Capital, \$	997,000	4,665,000	997,000	4,665,000
B. Operation & Maintenance, \$/yr	54,000	408,000	54,000	408,000

aCosts developed by Nielsen, Maxwell and Wangsgard-Montgomery, Inc.

bTotal SO₂ disinfection process, including SO₂ oxidation system.

Costs were also developed for two different coliform discharge standards. The costs for the alternative disinfection systems increase significantly with a more stringent fecal coliform standard. This is due to much greater chemical costs required to meet the higher discharge standards. Larger chemical doses are not necessary with the SO₂ disinfection system, thus costs are not affected by the more stringent standards.

The costs for sulfur dioxide disinfection range from \$0.23 to \$0.73/1000 gallons treated (Table 11). Only for the most stringent coliform standard does the best case $\$0_2$ system prove to be less costly than ozonation or ultraviolet radiation. When compared with other disinfection processes and coliform standards the $\$0_2$ system is more expensive.

Table 11. Summary cost (¢/1000 gallons treated) comparison between sulfur dioxide disinfection and other alternative disinfection systems.

Process		dard = /100 ml	Standard = 1000 TC/100 ml		
	3785 m ³ /d	37850 m ³ /d	3785 m3/d	37850 m ³ /d	
Chlorination-Dechlorination (without post aeration)	7.9	4.6	6.0	1.9	
Chlorination-Dechlorination (with post aeration)	9.2	5.5	7.3	2.6	
Chlorine Dioxide/SO ₂ Reduction	27.2	21.9	16.2	10.9	
Ozonation	51.7	34.6	12.9	6.1	
Ultraviolet Light	261.6	250.7	9.7	8.7	
Best SO ₂ Case	40.5	23.2	40.5	23.2	
Worst SO ₂ Case	72.9	46.5	72.9	46.5	

Note: $c/1000 \text{ gal } x 0.264 = c/M^3$.

SUMMARY AND CONCLUSIONS

This research dealt with the removal of the oxygen demand created in wastewater disinfected with sulfur dioxide at a concentration of 500 mg/l. The removal mechanism studied was catalyzed oxidation. Catalysts studied included transition metals (Fe++, Mn++, Co++), activated carbon (Calgon Filtrasorb 300), and a combination of the two. It was found that the metals, and activated carbon plus metals were very good catalysts for the oxidation of sulfur dioxide, to sulfate. However, the acidic nature of the disinfected wastewater (pH 2.6) dissolved the metals or caused them to desorb from the carbon. Activated carbon was also shown to be a good catalyst as long as sufficient oxygen levels were maintained. Results showed that the catalytic properties of activated carbon may be maintained over an extended period of time by backwashing the carbon to remove the sulfuric acid produced by the oxidation of sulfur dioxide.

The costs of sulfur dioxide disinfection range from \$0.23-\$0.73/
1000 gallons treated. In general, this is much more costly than other disinfection processes.

Specific conclusions drawn from this research include:

- 1) The acidic nature of the disinfected wastewater (pH 2.6) will not allow use of transition metals as an oxidation catalyst due to excessive metal transport into solution.
- 2) Activated carbon does catalyze the oxidation of SO_2 in wastewater.

- 3) In a downflow contactor with sufficient oxygen, it was found that 5.5 g carbon/1 was necessary for complete SO_2 removal over a 24 hour period.
- 4) Twice the theoretical air flow was found necessary to provide sufficient oxygen for complete SO_2 oxidation, probably caused by poor air distribution in the column.
- 5) Self-poisoning of the carbon by sulfuric acid (the product of SO₂ oxidation) and/or reduced oxygen solubility in the sulfuric acid saturated column slowly reduced the catalytic effects of the activated carbon.
- 6) Backwashing the column removed the sulfuric acid and restored the catalytic properties of the activated carbon.
- 7) Without significant capital cost reductions, SO₂ disinfection cannot compete with other disinfection processes.

ENGINEERING SIGNIFICANCE

The data collected in this study suggest a possible method for the oxidation of sulfur dioxide in wastewater. The development of wastewater disinfection processes, to replace chlorination, is needed in light of increasing evidence of adverse health affects created by chlorination. Sulfur dioxide has been shown to be an effective disinfectant; however, the oxygen demand created by aqueous sulfur dioxide must be eliminated prior to discharge. Oxidation is one means of accomplishing this task.

Activated carbon was shown to be an effective catalyst in the oxidation of sulfur dioxide, with sulfuric acid as a byproduct. The ease of operation of a trickling filter type reactor (downflow contactor) and the sample regeneration of the carbon via backwashing make the system worth further consideration. However a great deal of additional research is necessary to optimize the type of activated carbon used and the process design parameters. Hopefully this research will lead to significant reductions in the preliminary capital costs generated during this study.

RECOMMENDATIONS

- Conduct pilot plant testing to refine the design parameters developed at bench scale including surface loading, backwashing, and air flows.
- 2. Further study the role of activated carbon as a catalyst.
- Further study the fate of other wastewater constituents in the system.
- 4. Study different system configurations to help reduce costs (e.g., recycle filter effluent to reduce sulfur dioxide requirements).
- 5. Study several different commercial brands of activated carbon to determine how raw materials affect catalytic properties.
- 6. Other reactor types, such as a fluidized carbon bed, should be investigated in order to reduce the high costs associated with the downflow contactor arrangement.

LITERATURE CITED

- APHA. 1980. Standard methods for the examination of water and wastewater. 15th Ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C. 1134 p.
- Brimblecombe, P., and D. J. Spedding. 1974. The reaction order of the metal ion catalyzed oxidation of sulfur dioxide in aqueous solution. Chemosphere 1:29-32.
- Bengtsson, S., and I. Bjeiles. 1975. Catalytic oxidation of sulphite in diluted aqueous solutions. Chemical Engineering Science 30: 1429-1435.
- Brodzinsky, R., S. G. Chang, S. S. Markowitz, and T. Novakov. 1980. Kinetics and mechanism for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions. J. Phys. Chem. 84: 3354-3358.
- Chang, S. G., R. Brodzinsky, S. S. Markowitz, and T. Novakov. 1976-77. Catalytic oxidation of SO₂ on carbon in aqueous suspension. Atmospheric Aerosol Research, Annual Report, LBL 6819.
- Chen, T-I., and C. H. Barron. 1972. Some aspects of the homogeneous kinetics of sulfite oxidation. Ind. Engng. Chem. Fund1. 11(4): 466-469.
- Coughanowr, D. R., and F. E. Krause. 1965. The reaction of SO₂ and O₂ in aqueous solutions of MnSO₄. Ind. Engng. Chem. Fundl. 4(1):61-66.
- Eatough, D. J., W. P. Green, and L. D. Hansen. 1979. Oxidation of sulfite by activated charcoal. Lawrence Berkeley Lab J. 79(LBL-9037):131-132.
- EPA. 1979. Kinetics of sulfur dioxide in aqueous solution. EPA-600/7-79-030. 73 p.
- EPA. 1980. Innovative and alternative technology assessment manual. EPA-430/9-78-009.
- EPA. 1981. Sulfur dioxide oxidation reactions in aqueous solutions. PB81-196834. 31 p.
- Fuller, E. C., and R. H. Crist. 1941. The rate of oxidation of sulfite ions by oxygen. J. Am. Chem. Soc. 63:1644-1650.
- Hesketh, H. E., and R. W. Potokar. 1977. Reduce SO₂ emissions using fly ash slurries. Proc. Environ. Eng. Sci. Conf., 6th Annual, Univ. of Louisville, Louisville, KY.

- Komiyama, H., and J. M. Smith. 1975. Sulfur dioxide oxidation in slurries of activated carbon. AlChE J. 21(4):664-670.
- Novakov, T., and S. G. Chang. 1975. Catalytic oxidation of SO₂ on carbon particles. AlChE Symposium Series 72(156):255-262.
- Penkett, S. A., B. M. R. Jones, K. A. Brice, and A. E. J. Eggleton. 1979. The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in cloud and rainwater. Atmospheric Env. 13:123-137.
- Reynolds, J. H., and V. D. Adams. 1979. Evaluation of sulfur dioxide disinfection. Report to International Environmental, Inc., Salt Lake City, UT.
- Schmidt, M. 1972. Fundamental chemistry of sulfur dioxide removal and subsequent recovery via aqueous scrubbing. Int. J. Sulfur Chem., Part B. 7(1):11-19.
- Seaburn, J. T., and A. J. Engel. 1973. Sorption of sulfur dioxide by suspension of activated carbon in water. AlChE Symposium Series 69(134):71-75.
- Siedlewski, J. 1965. The mechanism of catalytic oxidation on activated carbon. The role of free carbon radicals in the oxidation of SO₂ to SO₃. Int. Chem. Engng. 5(4):608-612.
- Tiwari, B. L., J. Kolbe, and H. W. Hayden, Jr. 1979. Oxidation of ferrous sulfate in acid solution by a mixture of sulfur dioxide and oxygen. Metallurgical Trans. 10B:607-612.
- Watkins, J. P. 1977. Controlling sulfur compounds in wastewaters. Chem. Engng. 84(22):61-65.

APPENDICES

Appendix A

Manufacturer Information

Activated carbon characteristics

Description.* Filtrasorb activated carbons are manufactured from select grades of bituminous coal to produce a high density, high surface area, durable granular product. They are capable of withstanding the abrasion and dynamics associated with repeated reactivation, hydraulic transport, backwashing, and mechanical handling. Filtrasorb carbons wet readily and do not float, thus minimizing loss during backwash operations.

Physical properties.

					Filtrasorb 300	Filtrasorb 400
Total Surface Area (N2, BET Metho	od)				950	1050
Bed Density, Backwashed and Drain	ned	(11	os/	cf)	26	26
Specifications.						
					Filtrasorb 300	Filtrasorb 400
Iodine Number (min.)		•	•	•	900 75 2.0% 1.5-1.7 0.8-0.9 0.5% 15% 4%	1000 75 2.0% 0.9-1.1 0.55-0.65 0.5% - - 5% 4%

^{*}Calgon Corporation, Product Bulletin 27-33a.

Manufacturers addresses

- 1) Calgon Corp.
 Activated Carbon Division
 P.O. Box 1346
 Pittsburgh, PA 15230
- 2) Alfa Products
 Thiokol/Ventron Division
 152 Andover St.
 Danvers, MA 01923

Appendix B

Raw Data

Note:

- 1. The following tables and graphs may show air flow in units of cubic feet per hour. The conversion to liters per hour is: CFH x $28.32 = \ell/hr$.
- 2. All sulfur specie concentrations are reported as $\ensuremath{\mathrm{mg}/\mathrm{1}}$ as $\ensuremath{\mathrm{SO}}_2$.

Table B-1. SO_2 oxidation jar test--4/22.

Initi	DO = 2 pH = 1 SO ₂ = 5 SO ₄ = - Alk = 2	.8 .9 10 mg/1			Final Feed Soln. DO = - pH = - SO2 = - SO4 = -
Jar T	est Data	:			
GAC g/l	DO	pН		SO ₄ = as SO ₂	Jar Test Media
0 10 20 30 40 50	0.7 0.3 0.3 0.4 0.9	- 2.3 2.5 2.6 2.8 3.1 3.5	420 172 74 22 4 4	34 368 456 440 390 349 328	2 mg Fe ³⁺ /g GAC
0 10 20 30 40 50	6.9 0.5 0.3 0.6 1.5 1.5	2.6 2.4 2.3 2.5 2.7 3.1 3.5	460 100 10 8 4 4	35 534 480 436 380 329 291	6 mg Fe ³⁺ /g GAC
0 10 20 30 40 50	0.3 0.2 0.1	2.6 2.3 2.4 2.6 2.75 3.1 3.1	500 118 48 22 4 4	37 511 545 490 456 413 373	2 mg Mn2+/g GAC
0 10 20 30 40 50	5.6 0.3 0.2 0.4 1.4 1.5	2.5 2.3 2.3 2.6 2.9 3.2 4.4	412 68 6 6 4 4 4	34 533 523 512 458 440 425	6 mg Mn ²⁺ /g GAC

Table B-2. SO_2 oxidation column observations--7/18.

Column Media = Fe·Alumina Initial Metal = N/A

Final Metal =

Initial Feed Soln.

DO = 6.8

pH = 2.8

SO₂ = 528 mg/1

SO₄ = 98 mg/1

Fe = 175 µg/1

Final Feed Soln.

DO = 6.7

pH = 2.6

SO₂ = 496 mg/1

SO₄ = 54 mg/1

Time Min.	DO	рН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Metal μg/l	
0	0.2	6.3	84	197	55	745	
10	0.1	5.6	212	168	44	207	
20	0.1	4.3	260	155	50	240	
30	0.8	3.6	284	184	56	131	
40	1.1	3.5	288	371	57	104	
50	3.1	3.6	300	151	50	98	
60	3.7	3.7	320	177	48	118	
90	4.7	3.7	328	186	54	164	
120	6.0	3.6	348	175	53	154	
150	5.9	3.6	344	212	48	165	
180	6.4	3.5	348	169	53	566	

Table B-3. SO_2 oxidation column observations--7/19.

Column	Med:	ia	=	Mn·	Α	lumina
II	nitia	al	Met	al	=	N/A
F:	inal	Me	tal	L	=	

Initial Feed Soln.	Final Feed Soln.
DO = 6.2	DO = 5.7
pH = 2.7	pH = 2.5
$SO_2 = 532 \text{ mg/1}$	$SO_2 = 496 \text{ mg/l}$
$SO_4^{-} = 69 \text{ mg/1}$	$SO_4^{=} = 161 \text{ mg/1}$
$Mn = \langle 4 \text{ mg}/1 \rangle$,

Column	Data:	Air	Flow	=	15-20	CFH
--------	-------	-----	------	---	-------	-----

Time Min.	DO	рН	SO ₂ mg/1	SO4 [™] as SO ₂	Flow ml/min	Metal mg/l	
0	0.2	3.6	108	176	55	39	
10	0.4	3.3	108	241	55	76	
20	0.2	3.2	108	267	54	91	
30	0.6	3.1	108	257	52	96	
40	0.5	3.1	104	233	52	99	
50	0.1	3.1	100	257	51	105	
60	0.1	3.1	100	242	53	100	
90	0.1	3.1	104	303	51	105	
120	0.1	3.0	100	312	51	105	
150	0.1	2.9	80	295	43	110	

Table B-4. SO₂ oxidation column observations--7/23.

Column Media = Co, Ni, Fe · Alumina

Initial Metal = N/A

Final Metal

Initial Feed Soln.

DO = 5.0

pH = 2.6

 $SO_2 = 540 \text{ mg/1}$ $SO_4 = 46 \text{ mg/1 as } SO_2$ Co = 3 mg/1 $Ni = 16 \mu g/1$ $Fe = 49 \mu g/1$

Final Feed Soln.

DO = 5.2

pH = 2.4

 $SO_2 = 488 \text{ mg/1}$

 $SO_4^{=} = 37 \text{ mg/1 as } SO_2$

Time Min.	DO	рĦ	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Co mg/1	Metal Ni µg/l	Fe µg/l
0	3.6	3.2	16	30	55	93	1107	395
10	3.6	3.2	52	72	49	45	535	381
20	4.3	3.3	80	53	49	34	371	361
30	4.7	3.3	120	38	54	26	261	357
60	5.5	3.4	172	45	51	17	137	419
90	4.5	3.3	188	50	51	16	94	430
120	4.3	3.3	216	70	51	13	71	479
150	4.3	3.4	208	74	41	15	72	492
180	4.6	3.3	244	66	49	10	52	601
210	4.5	3.2	260	75	52	9	43	596
240	4.8	3.2	268	69	51	7	36	884
270	5.0	3.2	268	71	51	7	36	691

Table B-5. SO_2 oxidation column observations--7/23.

Column Media = V·Alumina and Silica Initial Metal = N/A Final Metal =

Initial Feed Soln.	Final Feed Soln.
DO = 5.8	DO = -
pH = 2.6	pH = -
$SO_2 = 552 \text{ mg/1}$	so ₂ = -
$SO_4^{=} = 59 \text{ mg/1 as } SO_2$	SO4 = -
$v = \langle 7 \mu g / 1 \rangle$	

Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Metal μg/1	
0	4.5	4.2	280	141	58	85,000	
10	5.9	4.1	356	109	45	85,000	
20	5.7	3.8	372	109	49	70,200	
30	5.8	3.8	388	94	52	64,600	
60	6.3	3.7	372	85	52	50,400	
90	6.1	3.7	388	79	53	36,600	

Table B-6. Preliminary assessment of oxidation catalysts--7/30.

Column Conditions:

Feed Rate = 50 ml/min.

Medium Depth = 25 cm

Feed Soln. pH = 2.5-2.9

= 7.2-9.5 $\ell/min.$ Air Flow

Run Time = 3 hrs.

Medium		Criteria*							
	Oxidative Capacity	Effluent DO	Effluent pH	Effluent Metals	Study				
Activated Carbon	Fair	Good	Poor	N/A	Yes				
Fe ³⁺ on GAC	Good	Good	Poor	Poor	Yes				
Mn ²⁺ on GAC	Good	Good	Poor	Poor	Yes				
Co ²⁺ on GAC	Good	Good	Poor	Poor	Yes				
Fe ₂ O ₃ on Alumina	Poor	Good	Poor	Good	No				
MnO ₂ on Alumina	Fair	Poor	Poor	Poor	No				
V ₂ O ₅ on Alumina	Poor	Good	Poor	Poor	No				
NiCoFe on Alumina	Poor	Good	Poor	Poor	No				

^{*}Oxidative Capacity (Effluent SO_2 Concentration): $Good < 50 \text{ mg } SO_2/1$; Fair $< 100 \text{ mg } SO_2/1$; $SO_2/1$; Poor $> 100 \text{ mg } SO_2/1SO_2/1$

Effluent DO: Good \geq 2 mg/1; Poor \leq 2 mg/1 Effluent pH: Good \geq 6.5; Poor \leq 6.5 Effluent Metals: Good \leq 1 mg/1; Fair \leq 5 mg/1; Poor \geq 5 mg/1

Table B-7. SO₂ oxidation jar test--8/7.

Raw iron (1/4" nuts) was placed in bottom of 4000 ml beaker. 1700 ml sewage with 500 mg/l SO_2 added to beaker and aerated at 15-20 CFH. pH and DO monitored continuously. Samples taken at 1 min. intervals.

Time Min.	DO	рН	SO ₂ mg/1	Metal mg/l	Comments	
0	6.2	2.7	516	_		
1	6.6	2.7	492	8		
2	6.4	2.7	456	10		
2 3	6.3	2.7	456	13		
4	6.2	2.7	408	16		
5	6.1	2.7	440	19		
6	5.8	2.75	440	21		
6 7	5.2	2.8	424	23		
8	4.2	2.7	400	24		
9	3.2	2.7	352	26		
10	2.3	2.6	_	28		
11	1.5	2.6	292	29		
12	0.8	2.6	232	31		
13	0.4	2.5	224	32		
14	0.2	2.45	172	34	Cloudy	
15	0.1	2.4	132	36	Cloudy	
16	0.1	2.3	92	39	Cloudy	
17	0.2	2.3	48	41	Cloudy	
18	1.2	2.3	20	64	Cloudy	
19	2.9	2.3	0	66	Cloudy	
20	4.5	2.2	0	70	Cloudy	
21	5.6	2.2	0	71	Cloudy	
22	6.2	2.2	0	105	Cloudy	

Table B-8. SO2 oxidation column observations--8/10

$$\frac{\text{Column Media}}{\text{Initial Fe}} = \frac{\text{Fe}^{3+} + \text{GAC}}{\text{500 mg/1}}$$

$$= \frac{3.1 \text{ mg/1}}{497 \text{ mg}} = \frac{3.1 \text{ mg/1}}{\text{Fe}}$$
Initial Feed Soln.

Final Feed

Initial Feed Soln.	Final Feed Soln.
DO = 6.8	DO = 6.2
pH = 2.75	pH = 2.7
$SO_2 = 472 \text{ mg/1}$	$SO_2 = 416 \text{ mg/1}$
SO ₄ = = -	$SO_4^{=} = 51 \text{ mg/1 as } SO_2$
Fe = <0.8 mg/1	

Column	Data:	Air	Flow	***	15-20	CFH

Time Min.	DO	pН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Fe mg/1	
10	7.7	3.9	4	97	47	17	
20	7.4	3.5	Ö	167	49	35	
30	7.2	3.0	Ö	222	49	38	
60	7.2	2.5	Ö	296	52	30	
90	7.2	2.3	0	322	54	26	
120	7.0	2.3	Ō	344	47	23	
150	7.0	2.2	0	361	51	22	
180	6.9	2.2	0	370	49	23	
240	6.6	2.25	0	349	50	17	
300	6.5	2.2	0	345	50	14	
360	6.4	2.2	4	333	53	10.5	
420	6.3	2.2	12	335	49	11	
540	6.3	2.2	16	328	50	6	
600	6.3	2.2	24	322	50	5	
660	6.7	2.2	20	327	49	4	
720	6.5	2.2	16	316	51	3	
1200	7.4	2.5	0	330	56	1.5	
1260	7.0	2.2	4	349	52	1.2	
1320	6.7	2.2	6	291	50	1.1	
1380 1440	6.5	2.2	16	296	49	1.1	

Initial Feed Soln.

DO = 7.1

pH = 2.8

SO₂ = 488 mg/1

SO₄ =
Mn = $\langle 39 \mu g/1 \rangle$ Final Feed Soln.

DO = 5.9

pH = 2.7

SO₂ = 344 mg/1

SO₄ = 63 mg/1 as SO₂

Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Mn μg/l	
10	6.6	6.2	0	154	49	58000	
20	7.3	6.3	0	210	52	61000	
30	7.3	4.3	0	243	52	61000	
60	6.8	3.0	0	305	48	53000	
90	6.7	2.5	0	326	49	48000	
120	6.8	2.3	0	350	49	44000	
180	6.7	2.3	0	343	49	7260	
240	6.5	2.2	0	350	50	3619	
300	6.5	2.2	0	342	50	2090	
360	6.25	2.2	4	330	49	1166	
460	6.3	2.2	8	326	50	665	
540	6.2	2.2	16	316	50	279	
600	6.2	2.2	16	311	50	211	
660	6.2	2.2	16	301	49	145	
720	6.3	2.2	16	301	50	125	
780	6.4	2.2	16	314	48	103	
840	6.5	2.2	16	314	49	78	
900	6.4	2.2	24	310	50	82	
960	6.4	2.2	24	308	50	69	
1020	6.3	2.2	24	318	48	64	
1080	6.4	2.2	24	310	50	54	
1140	6.4	2.2	28	310	50	58	
1200	6.3	2,2	24	301	49	52	
1260	6.5	2.2	28	301	52	45	
1320	6.4	2.2	24	310	48	45	
1380	6.4	2.2	20	297	48	42	
1440	6.1	2.2	28	301	52	42	

Comments

Table B-10. SO₂ oxidation column observations--8/14.

Column Media = GAC·Co
Initial Co = 732 mg/1
Final Co = 326 mg/1
406 mg = Co Adsorbed/295 g GAC

Column Data: Air Flow = 15-20 CFH

Time DO pH SO_2 $SO_4^{=}$ Flow Co Min. mg/1 as SO_2 m1/min $\mu g/1$

				_		. 0		
1.0	7 0	/ -		106		50000		
10	7.8	6.5	0	186	50	52000		
20	7.4	3.6	0	270	50	58000		
30	7.2	3.0	4	324	50	34000	Cloudy	
60	6.7	2.6	20	377	50	18000	Cloudy	
90	6.6	2.4	24	402	50	14000	Cloudy	
120	6.1	2.35	24	427	49	10000	Cloudy	
180	6.3	2.3	28	435	50	5000	${\tt Cloudy}$	
240	5.5	2.2	36	451	51	3000		
300	5.8	2.2	36	451	49	1000		
360	5.5	2.2	36	427	52	1518		
420	5.4	2.2	48	427	52	814		
480	5.7	2.2	48	402	50	374		
600	6.3	2.2	48	410	47	172		
660	6.3	2.2	56	385	52	133		
720	6.2	2.2	68	402	52	132		
780	6.4	2.2	60	377	51	87		
840	6.4	2.2	64	369	52	43		
900	6.5	2.2	64	369	51	31		
960	6.5	2.2	68	385	50	31		
1020	6.6	2.2	68	361	51	17		
1080	6.6	2.2	68	357	50	17		
1140	6.7	2.2	60	369	50	25		
1200	6.7	2.2	60	348	50	24		
1260	6.6	2.2	60	336	50	28		
1320	6.7	2.2	44	316	50	17		
1350	7.0	2.2	36	303	50	38		

Table B-11. SO_2 oxidation column observations--8/18.

`							
I	Media nitial inal Fe	= _	50 mg/1 10 mg/1	e Adsorbed,	/295 g GAC		
DO pl SO SO	1 Feed 0 = 6 H = 2 0 ₂ = 4 0 ₄ = - e = <	.6 .6		Final Feed Soln. DO = 5.9 pH = 2.7 SO ₂ = 292 mg/1 SO ₄ = -			
Column	Data:	Air Flo	$\mathbf{w} = 15-2$	0 CFH			
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Fe mg/l	
780 840 900 960 1020 1080 1140 1200 1260 1320	6.7 6.8 6.8 6.8 6.8 6.6 6.4 6.4 6.5 6.5 6.5 6.5 6.6 6.5 6.5 6.5 6.6 6.5 6.5	3.8 3.0 2.5 2.35 2.3 2.25 2.3 2.15 2.2 2.2 2.2 2.2 2.1 2.1 2.1 2.1	0 0 0 4 8 8 8 12 4 4 4 4 4 8 4 4 4 4 8 8 4 4 4 4 4 8 8 4 4 4 4 4 4 8 8 8 8 4 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	No Data	53 49 51 51 53 54 29* 28 44 45 48 47 53 49 49 51 50 49 53 53 50	6 38 40 39 35 32 25 11 6 6 7 7 8 8 8 8 6 4 3 3 3 2 2 2 2 1 0 70	
1320 1380 1440	6.5 6.6 6.5	2.2 2.2 2.2	12 12 8		53 50 49	1 0.70 <0.3	

 $[\]star 0\,\mathrm{ne}$ of the round clear pellets or crystals passed through and must have clogged the flow momentarily.

Table B-12. SO₂ oxidation column observations--8/20.

I F Initia	inal Me 1 Feed	Metal = tal = Soln.	N/A			eed Soln.	•
P S S	$H = 2$ $O_2 = 4$ $O_4 = -$.3 .7 .60 mg/1	w = 15-2	20 CFH	pH SO:	= 5.3 = 2.8 2 = 320 mg/1 = -	
Time Min.	DO	pН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Comments	
10 20 30 60 90 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1320 1380 1440	7.2 7.0 6.8 5.7 5.5 5.4 8.5 6.8 4.8 4.8 6.6 8.2 5.3 5.4 5.5 5.4 5.6 5.7 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	7.2 6.5 3.4 2.7 2.6 2.5 2.5 2.4 2.25 2.35 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	0 0 36 56 68 80 84 88 108 68 68 72 72 64 72 72 68 68 68 68 68 68 68 68 68 68 68 68 68	No Data	48 51 51 49 51 51 51 51 53 54 55 52 52 52 51 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	Cloudy Cloudy Cloudy	

Table B-13. SO_2 oxidation column observations--8/27.

I	Media nitial inal Me	Metal =	N/A			
Initia	l Feed	Soln.			Final F	eed Soln.
D	0 = 6	0.0			DO	= 4.8
_		6			pH	
		08 mg/l 1 mg/l	ac 50a			$_2 = 380 \text{ mg/1}$ $_4 = 67 \text{ mg/1 as } SO_2$
5	,04 ,	т шв/ г	as boy		502	4 0/ mg/1 d3 502
Column	Data:	Air Fl	ow = 15-2	20 CFH		
Time Min.	DO	pН	SO ₂ mg/1	504 ⁼ as 50 ₂	Flow ml/min	Comments
10	5.5	6.7	0	206	54	
20	6.6	5.9	0	268	54	
30	6.4	3.4	0	284	52	Cloudy
60	5.8	2.6	24	342	50	Cloudy
90	4.2	2.5	32	362	49	Cloudy
120	5.2	2.5	44	362	51	Cloudy
180	5.6	2.4	48	366	47	Cloudy
240 300	4.8 5.4	2.3 2.3	56 56	387 362	49 50	
360	5.2	2.2	64	362	52	
420	5.1	2.2	60	354	50	
480	4.9	2.2	56	354	50	
540	4.8	2.2	52	366	49	
600	5.0	2.2	52	354	51	
660	5.1	2.2	52	346	57	
720	4.8	2.2	60	387	53	Feed $SO_2 = 368 \text{ mg/}1$
780	5.2	2.2	72	380	50	
840	4.9	2.2	76	395	50	
900	4.9	2.2	88	366	55	
960	5.6	2.2	88	370	52	
1020	5.8	2.2	88	362	51 51	
1080 1140	5.9 6.0	2.2	88 84	354 350	51 52	
1200	6.0	2.2	92	350 350	52	
1260	6.0	2.2	92	333	52	
1320	6.0	2.3	100	317	53	
1380	6.1	2.3	92	284	51	
1440	6.1	2.3	68	264		

Note: At 720, add 100 ml H_2SO_3 , Feed SO_2 = 488 mg/1

Table B-14. SO_2 oxidation column observations--8/29.

	n Media Initial Final Me	Metal =	N/A					
]	pH = 2 SO ₂ = 5 SO ₄ = 7	.1 .7 .08 mg/1 .5 mg/1	_		Final Feed Soln. DO = 6.0 pH = 2.7 $SO_2 = 432 \text{ mg/1}$ $SO_4^{=} = 60 \text{ mg/1 as } SO_2$			
Column	n Data:	Air Fl	ow = 15-2	20 CFH				
Time Min.	DO	рН	SO ₂ mg/1	S04 [∓] as S0 ₂	Flow ml/min	Comments		
10	7.3	7.6	0	151	51			
20	7.2	7.5	0	215	52			
30	7.1	6.5	0	267	49	Cloudy		
60	6.5	3.0	16	319	52	Cloudy		
90	6.0	2.7	24	355	51	Cloudy		
120	6.0	2.4	24	375	52	Cloudy		
180	6.1	2.3	24	407	50	Cloudy		
240	6.0	2.2	28		51	Cloudy		
300	5.8	2.2	28	387	50			
360	5.8	2.1	24		51			
420	5.9	2.1	20	390	49			
480	5.6	2.1	28		54			
540	5.9	2.1	28	467	52			
600	6.0	2.1	24		53			
660	5.9	2.1	28	351	54	Feed $SO_2 = 440 \text{ mg/1}$		
720	6.2	2.1	24	379	52			
780	6.1	2.1	32		53			
840	6.1	2.1	28		52			
900	5.9	2.1	28	363	54	Feed $SO_2 = 436 \text{ mg/}1$		
960	6.3	2.1	36		53			
1020	6.4	2.1	32	359	50			
1080	6.5	2.1	28		50	Feed $SO_2 = 484 \text{ mg/}1$		
1140	6.6	2.1	36	375	49			
1200	6.7	2.1	36		51			
1260	7.0	2.1	24	311	50	Feed $SO_2 = 436 \text{ mg/}1$		
1320	7.0	2.1	32	 -	50			
1380	6.9	2.1	28	319	51			
1440	7.1	2.1	28		51			

Note: At 660, add 48 ml $\rm H_2SO_3$, Feed $\rm SO_2 = 512~mg/1$ At 900, add 41 ml $\rm H_2SO_3$, Feed $\rm SO_2 = 512~mg/1$ At 1260, add 26 ml $\rm H_2SO_3$, Feed $\rm SO_2 = 520~mg/1$

Column Media = GAC·Fe

Initial Metal = 570 mg/1

Final Metal = <0.24 mg/1

570 mg = Adsorbed/295 g GAC

Column Data: Air Flow = 15-20 CFH

Time Min.	DO	рН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Metal mg/l	Comments
10	8.1	7.4	0	86	50	<0.24	
20	8.0	4.3	0	159	48	26	
30	7.9	3.5	0	228	51	44	
60	7.7	2.6	0	348	49	55	
90	7.4	2.4	0	386	51	60	
120	6.5	2.4	20	399	51	44	Cloudy
180							
240	5.9	2.3	48	391	50	19	
300	5.5	2.2	44	391	52	16	
360	5.6	2.3	52	374	48	13	
420	5.8	2.2	48	378	50	9	
480	5.8	2.2	60	382	51	7	
540	6.1	2.2	56	356	52	5	
600	6.3	2.2	64	344	51	4	Feed $SO_2 = 424 \text{ mg/l}$
660							
720	6.3	2.2	72	361	53	4	
780	6.4	2.2	64	274	50	3 2	
840	6.5	2.2	72	378	50	2	
900	6.7	2.2	68	382	50	2	Feed $S0_2 = 468 \text{ mg/1}$
960	7.0	2.2	68		50	2	
1020	7.1	2.2	68	365	50	1	
1080	7.0	2.2	76		51	1	Feed SO ₂ = 484 mg/l
1140	7.1	2.2	84	356	51	0.9	-
1200	7.3	2.2	84		49	0.8	
1260	7.2	2.2	80	339	51	0.66	Feed $SO_2 = 432 \text{ mg/1}$
1320	6.1	2.2	164		48	4.0	- 0
1380	6.8	2.3	116	305	53	0.50	
1440	6.9	2.2	104		50	<0.25	

Note: At 600, Add 65 ml $\rm H_2SO_3$, Feed $\rm SO_2$ = 492 mg/l At 1260 Add 22 ml $\rm H_2SO_3$, Feed $\rm SO_2$ = 488 mg/l

Table B-16. SO_2 oxidation column observations--9/10.

I			e No Data			
D P S S	Initial Feed Soln. DO = 6.15 pH = 2.5 SO ₂ = 544 mg/1 SO ₄ = 64 mg/1 as SO ₂					eed Soln. = 5.0 = 2.6 2 = 446 mg/1 4 = 64 mg/1 as SO ₂
Column Time Min.	Data:	Air Flo	SO_2		Flow	Comments
ritii.			mg/ I	as 302	mr/mrn	
10		4.0	0	130	47	
20		3.3	0	222	52	
		2.8	0	297	51	
		2.4	0	355	50	
90	7.2	2.3	0	359	49	
120	7.1	2.3	0	392	48	
180 240	6.8 6.7	2.3 2.3	4 12	380 359	49 47	
300	6.2	2.25	20	371	47 49	
360	6.3	2.25	16	355	49	
420	6.5	2.25	20	346	48	
480	6.5	2.25	24	342	50	
540	6.5	2.25	28	334	49	Feed $SO_2 = 504 \text{ mg/}1$
600	6.5	2.25	28	322	50	2 3 7 7 3 7 7
660	6.5	2.25	28	322	50	
720	6.5	2.25	32	346	49	Feed $SO_2 = 492 \text{ mg}/1$
780	6.6	2.25	16	330	45	
840	6.6	2.25	24	317	50	
	6.6	2.25	32	297	50	Feed $SO_2 = 496 \text{ mg/1}$
960	6.6	2.25	16	313	50	
1020	6.6	2.25	32	305	50	
1080	6.6	2.25	32	322	49	Feed $SO_2 = 492 \text{ mg}/1$
1140	6.6	2.25	28	313	48	
1200	6.8	2.25	28	305	50	- 1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
1260	6.7	2.3	32	288	50 50	Feed $SO_2 = 468 \text{ mg/}1$
1320	6.7	2.3	32	267	50 51	
1380	6.7	2.3	36 36	280	51 50	
1440	6.7	2.3	36	255	50	

Table B-17. SO_2 oxidation column observations--9/14.

Column Media	=	GA	С,	25	СШ
Initial	Me	tal	=	N/	/A
Final Me	eta	1	=		

Initial Feed	d Soln.	Final Feed	Soln.
DO =	6.5	DO =	5.6
pH =	2.6	= Hq	2.6
so ₂ =	504 mg/1	so ₂ =	432 mg/1
SO ₄ = =	46 mg/l as SO ₂	so ₄ = =	$71 \text{ mg/}1 \text{ as } SO_2$
A1k =	277 mg/1	·	_

Time Min.	DO	pН	SO ₂ mg/1	SO4 [≖] as SO ₂	Flow ml/min	Comments
10	7.5	7.5	0	202	49	
20	6.6	6.6	0	264	52	
30	5.6	4.7	0	313	49	Cloudy
60	4.4	2.6	32	391	50	Cloudy
90	3.6	2.4	56	440	50	Cloudy
120	3.8	2.2	68	481	49	Cloudy
180	3.5	2.1	100	473	51	•
240	4.2	2.1	124	477	48	
300	3.7	2.1	152	452	50	
360	3.6	2.1	152	477	51	
420	3.8	2.0	144	469	50	Feed $SO_2 = 512 \text{ mg/l}$
480	3.8	2.0	156	444	50	-
540	4.3	2.0	160	461	50	
600	4.5	2.0	168	456	47	
660	4.4	2.0	160	440	51	
720	4.4	2.0	156	428	50	Feed $SO_2 = 472 \text{ mg/1}$
780	4.4	2.0	160.	436	49	-
840	4.0	2.0	148	420	47	
900	3.9	2.05	160	399	50	Feed $SO_2 = 488 \text{ mg/}1$
960	4.1	2.0	152	395	47	_
1020	4.1	2.0	156	428	49	
1080	4.2	2.0	148	346	50	Feed $SO_2 = 460 \text{ mg/}1$
1140	4.0	2.05	164	354	52	
1200	4.3	2.05	160	309	50	
1260	4.0	2.05	172	313	54	Feed $SO_2 = 468 \text{ mg/1}$
1320	4.2	2.0	152	272	50	
1380	4.2	2.1	172	321	60	
1440	4.3	2.05	136		48	

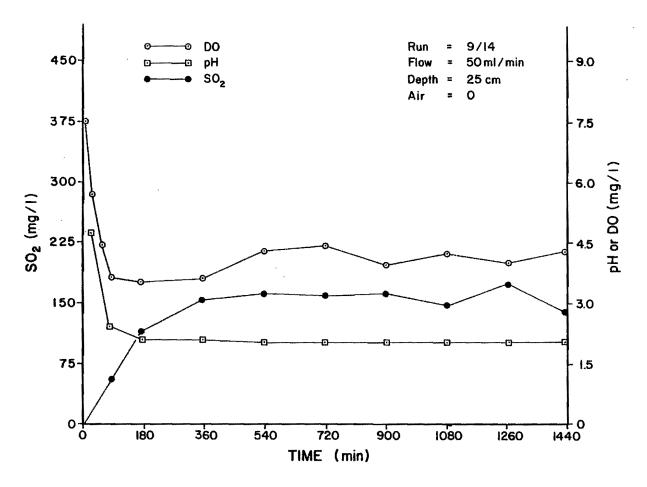


Figure B-1. SO_2 oxidation column observations.

Table B-18. SO_2 oxidation column observations--9/16.

Column Media	===	GAC	,	25	cm
Initial	Мe	tal :	=	N	/A
Final Me	eta	1	=		

Initial Fee	ed Soln.	Final Feed	Soln.
DO =	5.6	DO =	4.9
pH =	2.5	pH =	2.5
so ₂ =	492 mg/l	SO ₂ =	420 mg/1
so ₄ = =	$42 \text{ mg/}1 \text{ as } SO_2$	SO4= =	$65 \text{ mg/1 as } SO_2$
	277 mg/1	•	-

Time Min.	DO	pН	SO ₂ mg/1	504 [≠] as 50 ₂	Flow ml/min	Comments
10	6.7	7.1	0	172	49	
20	5.0	5.7	12	261	51	Cloudy
30	3.6	3.2	36	319	50	Cloudy
60	2.2	2.6	100	354	52	Cloudy
90	1.9	2.45	132	381	50	Cloudy
120	1.5	2.4	172	368	49	Cloudy
180	0.1	2.4	236	341	50	Cloudy
240	0.1	2.3	268	314	49	Cloudy
300	0.1	2.35	300	283	50	Cloudy
360	0.1	2.35	324	274	50	Cloudy
420	0.1	2.3	340	252	52	
480	0.1	2.3	348	234	50	Feed $SO_2 = 492 \text{ mg/}1$
540	0.1	2.3	328	230	50	-
600	1.8	2.3	332	198	50	
660	3.1	2.2	208	341	52	Feed $SO_2 = 468 \text{ mg}/1$
720	3.6	2.1	180	377	50	_
780	3.9	2.05	172	359	51	
840	4.1	2.1	156	341	50	Feed $SO_2 = 460 \text{ mg/l}$
900	4.1	2.1	148	350	48	-
960	4.3	2.1	144	328	50	
1020	3.9	2.1	144	310	50	

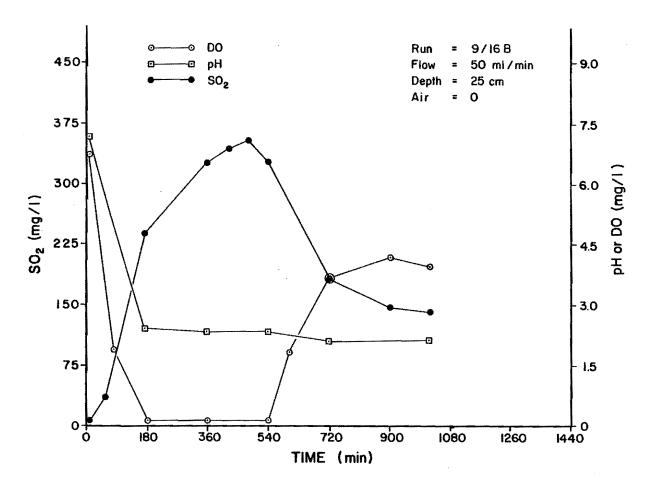


Figure B-2. SO_2 oxidation column observations.

Table B-19. SO_2 oxidation column observations--9/18.

I		= GAC, Metal = tal =					
D P S S	$H = 2$ $O_2 = 5$.5 .7 08 mg/1 6 mg/1 a	is SO ₂	Final Feed Soln. DO = 4.8 pH = 3.0 SO ₂ = 448 mg/1 SO ₄ = 66 mg/1 as SO ₂			
Column	Data:	Air Flo	ow = 0 C				
Time Min.	DO	рН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Comments	
10	6.2	8.4	4	182	51		
20	5.5	7.7	0	248	49		
30	4.8	4.1	0	298	51	Cloudy	
60	3.0	2.6	44	389	50	Cloudy	
90	2.6	2.5	112	381	48	Cloudy	
120	0.1	2.5	192	369	50	Cloudy	
180	0.1	2.6	304	298	51		
240	0.1	2.6	336	286	50		
300	0.1	2.7	376	257	51		
360	0.1	2.7	388	240	53		
420	0.1	2.7	396	257	50		
480	2.3	2.8	392	257	51	Feed $SO_2 = 484 \text{ mg/}1$	
540	0.1	2.8	348	232	50		
600	0.1	2.9	360	228	50		
660	0.1	2.9	400	207	49		
720	0.1	2.8	412	198	52	Feed $SO_2 = 460 \text{ mg}/1$	
780	2.5	2.9	384	186	50		
840		2.9	356	194	49		
900		2.9	380	174	47	Feed $SO_2 = 464 \text{ mg/1}$	
960	3.1	3.0	392	157	50		
1020	3.3	3.0	396	149	50		
1080	3.4	3.1	376	140	50	Feed $SO_2 = 452 \text{ mg/1}$	
1140	3.2	3.1	372	140	49		
1200	2.5	3.1	368	124	50		
1260	2.7	3.1	348	120	53	Feed $SO_2 = 408 \text{ mg/}1$	
1320	2.8	3.0	368	107	48	Add 29 ml H ₂ SO ₃	
1380	2.5	2.9	376	95	53	Feed $SO_2 = 500 \text{ mg/l}$	
1440	2.6	2.8	392	107	52		

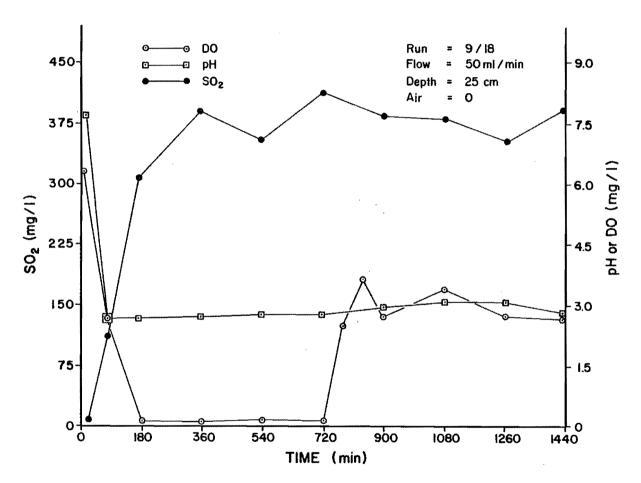


Figure B-3. SO_2 oxidation column observations.

Table B-20. SO_2 oxidation column observations--9/21.

					·····		
nitial	Metal =						
O = 6 H = 2 O ₂ = 4	.4 .75 96 mg/1	.s SO2	Final Feed Soln. DO = 6.0 pH = 2.7 SO ₂ = 448 mg/1 SO ₄ = 55 mg/1 as SO ₂				
Data:	Air Flo	w = 0 C	FH.				
DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments		
6.7	7.7	0	191	48			
6.0	6.8	0	263	47			
4.8	5.9	0	297	51	Cloudy		
3.6	2.8	20	344	47	Cloudy		
2.9	2.7	84	344	49	Cloudy		
2.4	2.5	144	319	50	Cloudy		
			221		Cloudy		
0.2	2.6	304	174	50	Cloudy		
	2.6		157				
					Feed $SO_2 = 468 \text{ mg/}1$		
					- 1.00		
					Feed $SO_2 = 468 \text{ mg/l}$		
					T 1 50 /50 /5		
					Feed $SO_2 = 452 \text{ mg/1}$		
					Food 60 - 760 - 71		
					Feed $SO_2 = 460 \text{ mg/1}$		
					Food 50 /26 /1		
2.8				40 47	Feed $SO_2 = 436 \text{ mg/1}$		
	2.6	372	97	41	Add 21 m1 H ₂ SO ₃		
3.8	2.5	368	106	51	Feed $SO_2 = 476 \text{ mg}/1$		
) : ((((((((((((((((((Data: DO 6.7 6.0 4.8 3.6 2.9 2.4 0.2 0.1 0.1 3.2 3.8 3.3 4.1 4.9 4.5 4.7 3.7	nitial Metal = inal Metal = inal Metal = inal Metal = 1 Feed Soln. O = 6.4 H = 2.75 O2 = 496 mg/l O4 = 46 mg/l a Data: Air Flo DO pH 6.7 7.7 6.0 6.8 4.8 5.9 3.6 2.8 2.9 2.7 2.4 2.5 O.2 2.6 O.1 2.6 O.1 2.6 O.1 2.55 3.2 2.5 3.8 2.4 3.3 2.2 4.1 2.3 4.9 2.2 4.5 2.2 4.7 2.3 3.7 2.4 3.3 2.45 3.8 2.5 3.7 2.5 3.8 2.6 3.3 2.6 3.4 2.55	1 Feed Soln. 0 = 6.4 H = 2.75 O2 = 496 mg/1 O4 = 46 mg/1 as SO2 Data: Air Flow = 0 C1 DO pH SO2 mg/1 6.7 7.7 0 6.0 6.8 0 4.8 5.9 0 3.6 2.8 20 2.9 2.7 84 2.4 2.5 144 0.2 2.6 256 0.2 2.6 304 0.1 2.6 336 0.1 2.55 344 3.2 2.5 208 3.8 2.4 188 3.3 2.2 156 4.1 2.3 180 4.9 2.2 188 4.5 2.2 172 4.7 2.3 252 3.7 2.4 308 3.8 2.45 328 3.8 2.5 356 3.7 2.5 360 3.8 2.6 376 3.8 2.6 376 3.3 2.6 356 3.4 2.55 352	nitial Metal = N/A inal Metal = 1 Feed Soln. 0 = 6.4 H = 2.75 02 = 496 mg/l 04 = 46 mg/l as SO2 Data: Air Flow = 0 CFH DO pH SO2 mg/l as SO2 6.7 7.7 0 191 6.0 6.8 0 263 4.8 5.9 0 297 3.6 2.8 20 344 2.9 2.7 84 344 2.4 2.5 144 319 0.2 2.6 256 221 0.2 2.6 304 174 0.1 2.6 336 157 0.1 2.55 344 148 3.2 2.5 208 250 3.8 2.4 188 276 3.3 2.2 156 319 4.1 2.3 180 293 4.9 2.2 188 293 4.9 2.2 188 293 4.9 2.2 188 293 4.9 2.2 188 293 4.9 2.2 188 293 4.9 2.2 188 293 4.5 2.2 172 297 4.7 2.3 252 199 3.7 2.4 308 148 3.3 2.45 328 131 3.8 2.5 356 131 3.7 2.5 360 110 3.8 2.6 376 113 3.3 2.6 356 119 3.4 2.55 352 106	nitial Metal = N/A inal Metal = N/A I Feed Soln. Final F. 0 = 6.4 DO H = 2.75 pH 02 = 496 mg/l SO 04 = 46 mg/l as SO2 SO4 DO pH SO2 mg/l SO4 ml/min 6.7 7.7 0 0 191 48 48 6.0 6.8 0 263 47 47 4.8 5.9 0 297 51 3.6 2.8 20 344 47 2.9 2.7 84 344 49 49 2.4 2.5 144 319 50 50 0.2 2.6 256 221 51 51 0.2 2.6 304 174 50 50 0.1 2.6 336 157 50 50 0.1 2.55 344 148 51 3.2 2.5 208 250 50 3.8 2.4 188 276 49 3.3 2.2 156 319 50 4.1 2.3 180 293 52 4.9 2.2 188 293 50 4.9 2.2 188 293 50 50 3.3 2.45 328 131 48 3.8 2.5 356 131 49 3.7 2.4 308 148 50 3.3 2.45 328 131 48 3.8 2.5 356 131 49 3.7 2.5 360 110 50 3.8 2.6 376 113 49 3.3 2.6 356 119 50 3.4 2.55 352 106 50		

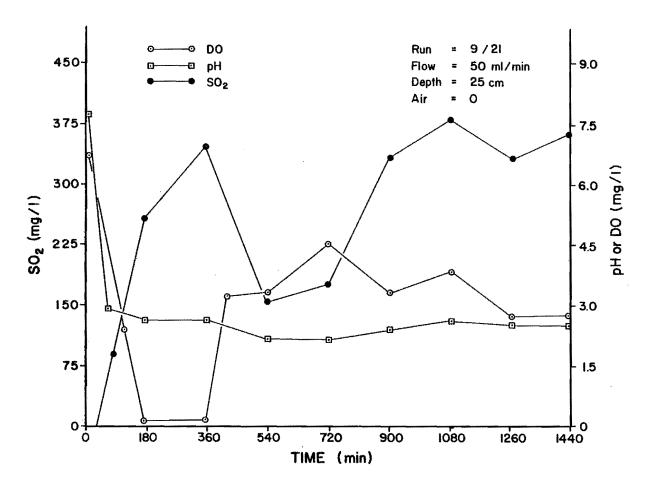


Figure B-4. SO_2 oxidation column observations.

Table B-21. SO_2 oxidation column observations--9/23.

-		= GAC, Metal = etal =						
	a1 Feed DO = 6 pH = 2 SO ₂ = 5 SO ₄ = 4	.55	as SO ₂	Final Feed Soln. DO = 5.3 pH = 2.7 SO ₂ = 436 mg/l SO ₄ = 68 mg/l as SO ₂				
Co1um	n Data:	Air Flo	$\mathbf{w} = 0 \text{ C}$	FH				
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments		
15	6.7	6.9	0	320	48			
30	5.2	4.3	24	410	52			
60	3.5	2.7	96	447	49			
90	3.0	2.5	168	402	48			
120	2.5	2.5	256	349	49			
180	0.1	2.45	320	272	50			
240	0.1	2.5	356	235	50			
300	0.1	2.45	384	202	50			
360	0.1	2.4	408	186	51			
420	3.0	2.45	432	157	49			
480	2.4	2.4	424	153	49			
540	2.0	2.4	408	143	49			
600	2.3	2.4	432	133	50			
660	3.1	2.4	456	123	48			
720	4.1	2.4	452	121	50	Feed $SO_2 = 500 \text{ mg/}1$		
780	2.1	2.4	416	137	48			
840	2.4	2.4	412	110	50			
900	2.3		432	108	49	Feed $SO_2 = 504 \text{ mg/}1$		
960	3.1	2.45	424	92	49			
1020	3.3	2.4	436	90	50			
1080	3.2	2.45	440	88	50	Feed $SO_2 = 500 \text{ mg/l}$		
1140	3.0	2.45	436	94	50			
1200	2.6	2.45	436	106	50			
1260	2.9	2.5	412	108	48	Feed $SO_2 = 476 \text{ mg/}1$		
1320	3.1	2.5	400	88	48			
1380	2.8	2.5	400	84	48			
1440	2.7	2.5	396	96	51			

Note: Inlet change, extend tube directly to surface of carbon

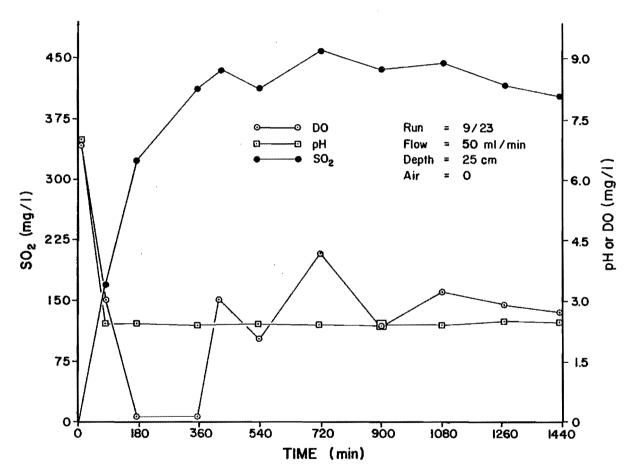


Figure B-5. SO₂ oxidation column observations.

Table B-22. SO_2 oxidation column observations--9/28.

Column Media = GAC, 25 cm , start 85 mm column
Initial Metal = N/A
Final Metal =

Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15	7.3	8.3	0	92	48	
30	6.9	8.2	0	144	49	
60	5.9	7.4	0	229	59	
90	4.0	6.5	0	299	41	Discharged plugged
120	4.1	4.3	0	314	49	0 1 00
180	3.5	2.5	0	388	50	
240	3.1	2.3	8	433	52	
300	4.2	2.2	52	433	47	
360	2.8	2.2	96	403	50	
420	2.4	2.3	152	348	50	
480	2.8	2.3	180	322	50	
540	0.1	2.2	212	355	50	
600	0.1	2.2	232	281	49	
660	0.1	2.2	232	299	47	
720	2.7	2.2	236	299	50	Feed $SO_2 = 520 \text{ mg/}1$
780	3.2	2.2	264	250	50	_
840	3.3	2.2	268	218	51	
900	3.6	2.2	300	214	52	Feed $SO_2 = 468 \text{ mg}/1$
960	3.3	2.2	276	218	50	-
1020	2.8	2.2	284	222	50	
1080	3.4	2.2	288	203	49	Feed $SO_2 = 476 \text{ mg/}1$
1140	3.0	2.25	280	214	50	-
1200	3.4	2.25	276	196	50	
1260	3.3	2.3	280	188	49	Feed $SO_2 = 484 \text{ mg/}1$
1320	3.5	2.3	272	181	46	2 0,
1380	3.6	2.4	268	181	51	
1440	3.4	2.3	260	177	51	

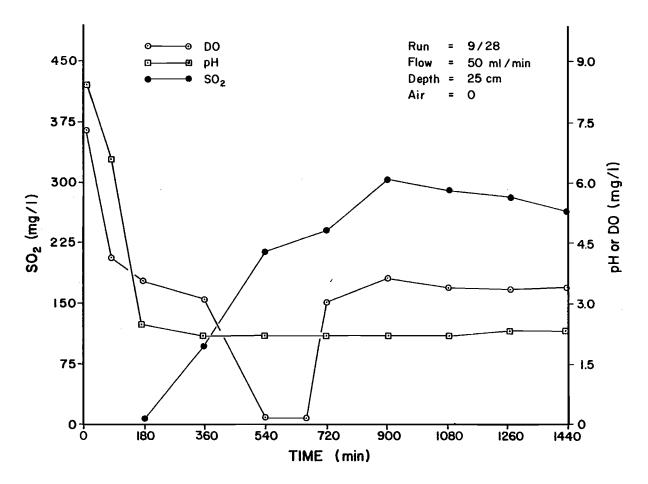


Figure B-6. SO_2 oxidation column observations.

Table B-23. SO_2 oxidation column observations--9/30.

Initia D P S	Column Media = GAC, 25 cm											
Column Time	Data:	Air Flo	so ₂ = 0	SO₄ [≖]	Flow	Comments						
Min.			mg/l		ml/min							
15	7.7	8.2	0	83	48	THE STATE OF THE S						
30	7.2	8.1	0	141	48							
60	5.9	7.1	0	217	49							
90	J.7	/ • ±	U	217	43							
120	3.8	2.9	8	317	49	Cloudy						
180	3.1	2.7	32	333	49	Cloudy						
240	3.2	2.6	60	361	48	Cloudy						
300	3.0	2.6	88	365	50	Cloudy						
360	2.6	2.5	116	341	52	Cloudy						
420	2.8	2.5	136	317	49	,						
480	4.1	2.4	140	333	49							
540	2.6	2.5	152	301	49							
600	0.1	2.4	168	285	50							
660	0.1	2.45	192	289	50							
720	0.1	2.45	216	265	48	Feed $SO_2 = 464 \text{ mg/1}$						
780	0.1	2.45	236	253	50	-						
840	2.8	2.4	240	241	50							
900	3.1	2.4	252	213	50	Feed $SO_2 = 464 \text{ mg/}1$						
960	3.4	2.4	256	221	48	_						
1020	3.3	2.4	260	201	51							
1080	3.4	2.4	252	197	51	Feed $SO_2 = 460 \text{ mg/l}$						
1140	3.5	2.4	256	197	49							
1200	3.4	2.45	264	189	50							
1260	2.6	2.4	260	189	50	Feed $SO_2 = 456 \text{ mg/l}$						
1320	3.1	2.4	264	189	48	Add 16 ml H ₂ SO ₃						
1380	2.8	2.4	272	189	48	Feed $SO_2 = 500 \text{ mg/}1$						
1440	2.7	2.4	272	173	50	-						

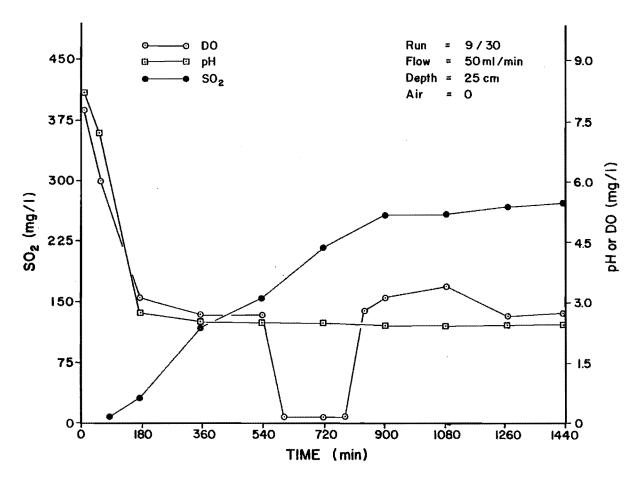


Figure B-7. SO₂ oxidation column observations.

Table B-24. SO_2 oxidation column observations--10/2.

Column Media = GAC, 25 cm	·										
Final Metal = Initial Feed Soln. D0 = 6.6 pH = 2.6 SO2 = 520 mg/l SO4 = 62 mg/l as SO2 SO2 = 436 mg/l as SO2 Column Data: Air Flow = 0 CFH SO2											
Initial Feed Soln.				N/A							
DO	F	'inal Me	tal =								
DO											
pH = 2.6 SO ₂ = 520 mg/1 SO ₄ = 62 mg/1 as SO ₂ Column Data: Air Flow = 0 CFH Time DO pH SO ₂ mg/1 as SO ₂ 15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.5 112 350 48 Cloudy 360 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 168 275 51 780 2.2 2.3 240 257 48 900 2.7 2.3 248 231 50 660 1.8 2.3 168 275 51 780 2.2 2.3 240 257 48 900 2.7 2.3 248 231 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 840 2.9 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 476 mg/1 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 448 mg/1											
SO ₂ = 520 mg/1 sO ₂ = 62 mg/1 as SO ₂ Column Data: Air Flow = 0 CFH Time DO pH SO ₂ mg/1 as SO ₂ ml/min 15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 120 4.0 3.4 68 287 50 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.4 128 339 50 Cloudy 300 0.1 2.4 128 339 50 Cloudy 360 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 260 257 48 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 840 2.9 2.3 240 257 850 Feed SO ₂ = 476 mg/1 860 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 448 mg/1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Column Data: Air Flow = 0 CFH Time Min. DO pH SO ₂ mg/1 SO ₄ ml/min Flow ml/min Comments 15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 166 310 50 </td <td></td> <td></td> <td></td> <td>- CO-</td> <td></td> <td></td> <td></td>				- CO-							
Time Min.	٥	04 - 0	ız mg/ı a	.8 302		302	4 - 67 mg/1 as 502				
Min. mg/l as SO ₂ ml/min 15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 90 4.2 4.3 44 287 48 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.5 112 350 48 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 480 mg/l 960 2.6 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/l 960 2.6 2.3 240 257 48 900 2.7 2.3 248 231 49 1020 2.6 2.3 250 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/l 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 4444 mg/l 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/l	Column	Data:	Air Flo	w = 0 C	fh						
Min. mg/l as SO ₂ ml/min 15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 90 4.2 4.3 44 287 48 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.5 112 350 48 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 480 mg/l 960 2.6 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/l 960 2.6 2.3 240 257 48 900 2.7 2.3 248 231 49 1020 2.6 2.3 250 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/l 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 4444 mg/l 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/l	Time	DO	рН	SO ₂	SO⁄₁ =	Flow	Comments				
15 6.6 8.1 0 98 47 30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 90 4.2 4.3 44 287 48 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 164 298 50 600 0.1 2.35 166 283 50 660 1.8 2.3 188 283 50 720 2.4 2.3 188 283 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 444 mg/1 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 252 208 49 1200 3.4 2.35 254 48 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 250 48 mg/1			•								
30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 90 4.2 4.3 44 287 48 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 300 0.1 2.5 112 350 48 Cloudy 300 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 480 mg/1 960 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 476 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 256 201 49 1200 3.4 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1											
30 5.6 7.4 0 171 51 60 4.2 6.1 20 264 47 Cloudy 90 4.2 4.3 44 287 48 Cloudy 120 4.0 3.4 68 287 50 Cloudy 180 2.4 2.8 92 302 49 Cloudy 240 1.6 2.6 136 302 80 Cloudy 300 0.1 2.5 112 350 48 Cloudy 360 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 480 mg/1 960 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 476 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 256 201 49 1200 3.4 2.35 256 201 49 1200 3.4 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 m1 H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	15	6.6	8.1	0	98	47					
60	30				171	51					
120	60		6.1	20	264	47	Cloudy				
180	90	4.2	4.3	44	287	48	Cloudy				
240	120	4.0	3.4	68	287	50	Cloudy				
300	180	2.4	2.8	92	302	49	Cloudy				
360 0.1 2.4 128 339 50 Cloudy 420 2.6 2.4 140 328 50 480 2.6 2.35 156 310 50 540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 Feed SO ₂ = 480 mg/1 780 2.2 2.3 216 261 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 4444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	240	1.6	2.6	136	302	80	Cloudy				
420	300	0.1	2.5	112	350	48	Cloudy				
480	360	0.1	2.4	128	339	50	Cloudy				
540 0.1 2.35 164 298 50 600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 Feed SO ₂ = 480 mg/1 780 2.2 2.3 216 261 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	420	2.6	2.4	140	328	50					
600 0.1 2.35 160 283 50 660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 Feed SO ₂ = 480 mg/1 780 2.2 2.3 216 261 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	480	2.6	2.35	156	310	50	•				
660 1.8 2.3 168 275 51 720 2.4 2.3 188 283 50 Feed SO ₂ = 480 mg/1 780 2.2 2.3 216 261 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	540	0.1	2.35	164	298	50					
720	600	0.1	2.35	160	283	50					
780 2.2 2.3 216 261 50 840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	660	1.8	2.3	168	275	51					
840 2.9 2.3 240 257 48 900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	720	2.4	2.3	188	283	50	Feed $SO_2 = 480 \text{ mg/1}$				
900 2.7 2.3 248 231 50 Feed SO ₂ = 476 mg/1 960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	780	2.2	2.3	216	261	50					
960 2.6 2.3 240 231 49 1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	840	2.9	2.3	240	257	48					
1020 2.6 2.3 252 208 52 1080 2.9 2.3 260 205 50 Feed SO ₂ = 452 mg/1 1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	900	2.7	2.3	248	231	50	Feed $SO_2 = 476 \text{ mg/}1$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	960	2.6	2.3	240	231	49					
1140 3.3 2.35 256 201 49 1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	1020	2.6	2.3	252	208	52					
1200 3.4 2.35 252 208 49 1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	1080			260	205	50	Feed $SO_2 = 452 \text{ mg}/1$				
1260 2.1 2.35 248 197 47 Feed SO ₂ = 444 mg/1 1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	1140	3.3	2.35	256	201	49					
1320 2.9 2.3 260 194 50 Add 19 ml H ₂ SO ₃ 1380 2.6 2.3 260 190 51 Feed SO ₂ = 488 mg/1	1200	3.4				49					
1380 2.6 2.3 260 190 51 Feed $SO_2 = 488 \text{ mg/}1$											
		2.9	2.3		194						
1440 2.8 2.3 280 179 47							Feed $SO_2 = 488 \text{ mg}/1$				
	1440	2.8	2.3	280	179	47					

Table B-25. SO_2 oxidation column observations--10/5.

Ī		= GAC, Metal =					
E F S S	6H = 2 6O ₂ = 5 6O ₄ = -	0.6 2.7 20 mg/1		Final Feed Soln. DO = 5.7 pH = 2.6 SO ₂ = 480 mg/1 SO ₄ = 52 mg/1 as SO ₂			
Column	Data:	Air Flo	$\mathbf{w} = 0 \text{ CI}$	TH.			
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments	
15	8.4	9.1	0	98	46		
30	7.9	9.0	0	146	47		
60	6.2	8.8	0	220	48		
90	5.1	7.6	0	253	49		
120	4.1	6.4	0	277	49	Cloudy	
180	3.6	3.2	12	318	50	Cloudy	
240	3.2	2.7	24	351	51	Cloudy	
300	4.1	2.5	64	368	51	Cloudy	
360	3.3	2.5	100	355	49	Cloudy	
420	2.9	2.5	132	335	49		
480	2.9	2.5	156	310	49		
540	2.4	2.45	172	302	50		
600	2.3	2.4	184	294	50		
660	2.4	2.4	200	286	51		
720	2.6	2.4	208	286	50	Feed $SO_2 = 496 \text{ mg/1}$	
780	2.6	2.4	204	294	51		
840	2.7	2.45	228	269	50	•	
900	2.6	2.4	232	261	51	Feed $SO_2 = 476 \text{ mg/l}$	
960	4.3	2.35	228	253	51		
1020	1.9	2.6	224	236	50		
1080	3.8	2.4	236	232	50	Feed $SO_2 = 484 \text{ mg/1}$	
1140	2.8	2.4	244	236	50		
1200	3.7	2.4	240		51		
1260	3.5	2.4	240	212	52	Feed $SO_2 = 452 \text{ mg/l}$	
1320	3.6	2.4	240	212	52	Add 23 ml H ₂ SO ₃	
1380	3.3	2.35	244	203	53	Feed $SO_2 = 508 \text{ mg/1}$	
1440	3.2	2.3	260	199	51		

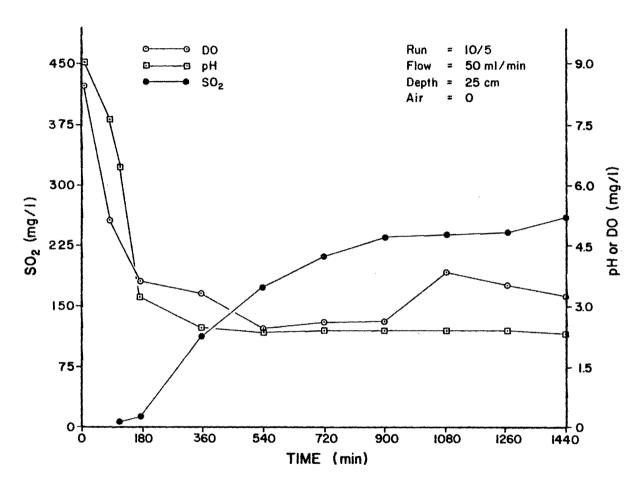


Figure B-8. SO_2 oxidation column observations.

Table B-26. SO_2 oxidation column observations--10/7.

	n Media Initial Final Me		25 cm N/A			
]	pH = 2 $60_2 = 4$ $60_4 = -$.9 .8 76 mg/1			DO pH SO	= *=
Column	n Data:	Air Flo	w = 0 CI	FH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15 30 60 90 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080	7.8 7.5 6.3 5.3 4.1 2.85 3.15 2.85 3.2 3.3 3.3 3.1 3.8 2.4 2.1 3.1 2.8 3.0 2.8 3.1	8.7 8.7 8.45 7.4 6.0 2.85 2.6 2.5 2.45 2.4 2.4 2.4 2.6 2.7 2.5 2.45 2.35 2.35 2.35	0 0 0 0 0 16 34 56 80 96 112 120 136 148 148 168 172 188 184	66 120 170 201 224 261 295 291 301 308 308 275 261 275 268 234 221 218 207 207	51 53 50 50 50 51 51 52 50 50 50 50 50 50 50 50	Cloudy Feed SO ₂ = 460 mg/1 Feed SO ₂ = 452 mg/1
1140 1200 1260 1320 1380 1440	3.3 3.9 3.7 3.2 3.9 3.3	2.4 2.4 2.35 2.3 2.3	192 196 208 224 236 236	201 201 207 187 184 181	50 50 50 50 50 50	Add 35 ml H_2SO_3 Feed $SO_2 = 500$ mg/l Feed $SO_2 = 504$ mg/l

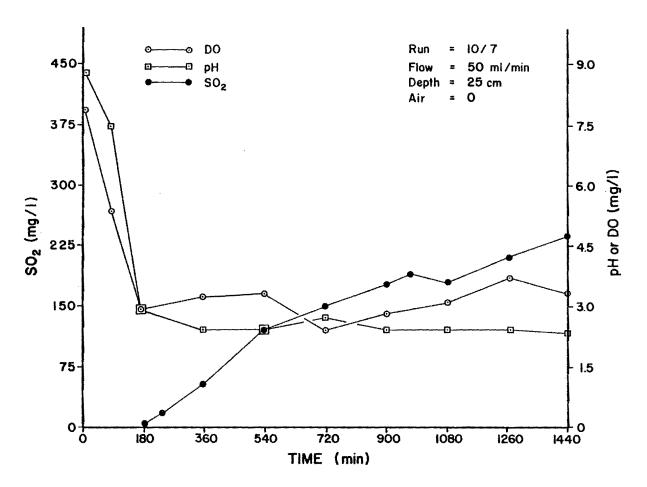


Figure B-9. SO_2 oxidation column observations.

Table B-27. SO_2 oxidation column observations--10/9.

Column Media = GAC, 25 cm, primary column
Initial Metal = N/A
Final Metal =

Initial Feed Soln.

Column Data: Air Flow = 0 CFH

Time Min.	DO	pН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Comments
15	7.4	8.9	0	98	52	
30	7.2	8.8	0	147	50	
60	5.7	8.5	0	244	45	Pump fail
90	4.8	7.4	0	265	49	•
120	4.0	5.6	0	306	49	Cloudy
180	3.8	2.9	0	366	50	Cloudy
240	3.6	2.6	20	383	52	Cloudy
300	3.3	2.5	40	391	50	Cloudy
360	1.0	2.4	56	399	46	Cloudy
480	3.1	2.4	140	350	50	Cloudy
600	2.9	2.4	168	318	48	Cloudy
720	3.1	2.3	176	289	52	Feed $SO_2 = 460 \text{ mg/}1$
840	2.9	2.3	220	261	53	2
960	3.5	2.3	220	285	51	Feed $SO_2 = 452 \text{ mg}/1$
1080	3.4	2.3	236	257	49	2 3
1200	3.4	2.1	208	253	51	Feed $SO_2 = 424 \text{ mg}/1$
						Add 29 ml H ₂ SO ₃
1320	3.8	2.2	224	244	- 52	Feed $SO_2 = 486 \text{ mg/1}$
1440	3.9	2.2	248	220	54	2

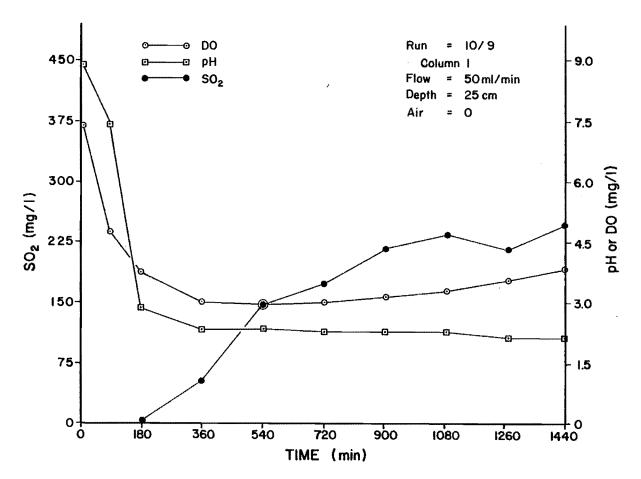


Figure B-10. ${\rm SO}_2$ oxidation column observations.

Table B-28. SO_2 oxidation column observations--10/9.

Column Media = GAC, 25 cm, secondary column
Initial Metal = N/A
Final Metal =

Initial Feed Soln.	Final Feed Soln.
DO = -	DO = -
pH = →	PH = −
so ₂ = -	so ₂ = -
SO ₄ = -	so ₄ = -
Column Data: Air Flow = 0 CFH	

Column Data: Air Flow = 0 CFH

Time Min.	DO	pН	SO ₂ mg/l	SO4 ⁼ as SO ₂	Flow ml/min	Comments*
90	7.1	9.2	0	82	49	0
120	6.9	9.1	0	131	49	0
180	6.8	8.9	0	196	46	0
240	6.6	8.6	0	253	46	8
300	5.9	8.0	0	253	52	12
360	5.0	6.7	0	253	47	28
420	4.0	5.0	0	285	48	60
540	4.1	3.0	0	326	49	120
660	4.1	2.55	0	374	50	144
780	4.1	2.2	0	391	50	156
900	4.1	2.1	0	440	50	196
1020	4.1	2.1	0	432	50	188
1140	4.2	2.1	0	432	50	184
1260	2.9	2.1	0	423	50	196
1380	3.9	2.1	0	440	50	204
1500	3.7	2.1	0	476	50	220

^{*}Secondary feed SO_2 , mg/1



Figure B-11. SO₂ oxidation column observations.

Table B-29. SO_2 oxidation column observations--10/12.

Column Media = GAC, 25 cm, primary column
Initial Metal = N/A
Final Metal =

F	inal Me	tal =				
D p S		.1	ıs SO2	Final Feed Soln. DO = 4.2 pH = 2.6 $SO_2 = 488 \text{ mg/l}$ $SO_4^{=} = 62 \text{ mg/l as } SO_2$		
Column	Data:	Air Flo	w = 0 CI	fh		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15	4.7	9.3	0		50 5 /	
60 90 180	1.0 0.6 2.0	6.8 6.5 5.9	40 72 188	208	54 48 52	Cloudy
240 300	3.2 3.1	5.3 3.7	216 196	293	50 50	Cloudy
360 420	0.1	3.0 2.8	184 188	293	53 51	Cloudy
480 540 600	0.1 0.1 0.1	2.6 2.6 2.5	208 216 204	285	54 50 49	Cloudy $Feed SO_2 = 508 mg/1$
660 720	0.1	2.5 2.5 2.5	228 240	277 269	49 49 54	Feed SO ₂ = 508 mg/1
780 840	0.1	2.4	208 216	285	49 50	2 200 -8, -
900 960	0.1	2.4	240 236	301	50 50	Feed $SO_2 = 480 \text{ mg/1}$
1020 1080 1140	0.1 0.1 0.7	2.3 2.3 2.4	224 232 224	281	45 50 52	Feed $SO_2 = 476 \text{ mg/1}$
1200 1260	2.4	2.4	248 256	269	51 53	Feed SO ₂ = 456 mg/1
1320	3.3	2.3 2.3	248 248	244	55 54	Add 18 ml H ₂ SO ₃ Feed SO ₂ = 496 mg/1
1440	3.3	2.3	248	228	54	_

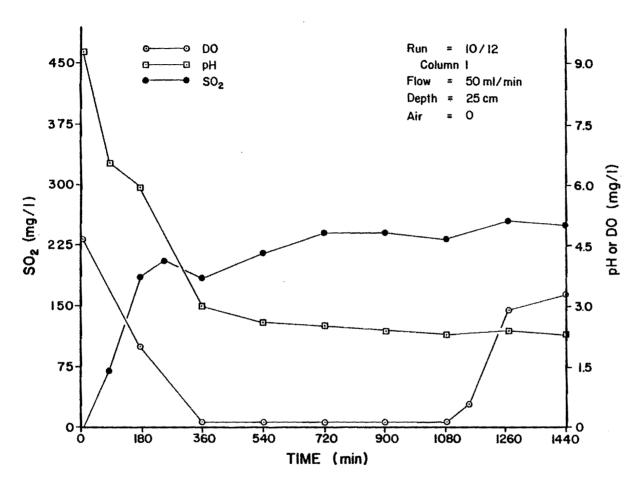


Figure B-12. SO₂ oxidation column observations.

Table B-30. SO_2 oxidation column observations--10/12.

Column Media = GAC,	25 cm,	seconday	column	
Initial Metal =	N/A			
Final Metal =				

D p S	1 Feed 0 = - H = - 0 ₂ = - 0 ₄ = -	Soln.		DO pH SO	eed Soln. = - = - 2 = -		
Column	Data:	Air Flo	w = 0 C	FH			
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments*	
15 120 180 240	4.5 4.3 3.5 4.2	9.1 9.3 9.0 7.8	0 0 0	196 204	52 52 48 52	0 124 176	
300 360 420	4.4 4.5 4.3	6.5 5.1 3.9	3.2 6.4 12	277 326	51 45 52	172 176 188	
480 540 600 660	4.3 4.4 4.3 4.5	3.3 2.9 2.75 2.6	12 12 16 16	374 399	51 51 50 51	200 188 172 200	
720 780 840	4.4 4.4 4.3	2.5 2.4 2.35	20 20 20	415	52 49 49	196 196 204	
900 960 1020 1080	4.2 4.4 4.3 4.3	2.35 2.3 2.3 2.3	16 16 16 16	456 448	50 47 50 50	200 208 192 196	
1140 1200 1260	4.7 4.2 4.1	2.25 2.25 2.2	20 16 8	423 456	50 52 53	188 188 220	
1320 1380 1440	4.7 4.1 4.2	2.2 2.2 2.1	12 12 12	448	53 53 52	220 232 224	

^{*}Secondary feed SO_2 , mg/1

Note: Samples 300-780 were cloudy

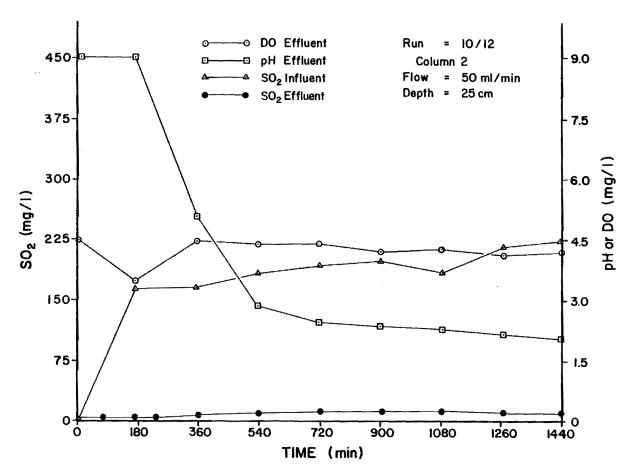


Figure B-13. SO_2 oxidation column observations.

Table B-31. SO_2 oxidation column observations--10/14.

 $\frac{\text{Column Media}}{\text{Initial Metal}} = \text{GAC, 25 cm, primary column}$ $\frac{\text{Column Media}}{\text{Initial Metal}} = \frac{\text{GAC, 25 cm, primary column}}{\text{N/A}}$

F	Final Me	tal =				
E F S	$_{0H} = 2$ $_{3O_2} = 5$.6 .6	s SO ₂		DO pH SO ₂	eed Soln. = 4.9 = 2.6 2 = 460 mg/1 = 53 mg/1 as SO ₂
Column	Data:	Air Flo	w = 0 CI	TH.		
Time Min.	DO	рҢ	SO ₂ mg/1	S0 ₄ = as S0 ₂	Flow ml/min	Comments
15 60 90	7.0 5.1 4.2	9.0 7.5 5.2	0 0 8	310	52 50 50	Cloudy
180 240 300	3.8 3.1 0.1	2.7 2.6 2.5	32 52 88	371	52 48 51	Cloudy
360 420 480 540	0.1 0.1 0.1 2.4	2.4 2.4 2.4 2.3	104 108 132 148	391 346	45 51 54 48	Cloudy Cloudy Feed SO ₂ = 488 mg/l
600 660 720	3.5 3.5 3.7	2.3 2.3 2.3	156 164 172	346 326	50 50 49	Feed $SO_2 = 468 \text{ mg/1}$
780 840 900	3.5 3.5 3.7	2.3 2.3 2.3	176 172 188	326	47 48 50	Add 26 ml H ₂ SO ₃ Feed SO ₂ = 496 mg/1 Feed SO ₂ = 500 mg/1
960 1020 1080	2.9 3.2 2.9	2.25 2.25 2.25	200 224 232	293 285	50 50 50	Feed $SO_2 = 480 \text{ mg/l}$
1140 1200 1260	3.0 3.1	2.25 2.25	228 232 228	273	51 51 50	
1320 1380	3.0 3.3 3.3	2.3 2.3 2.3	220 228	232	57 50	Feed $SO_2 = 484 \text{ mg/l}$ Feed $SO_2 = 452 \text{ mg/l}$ Add 17 ml H_2SO_3
1440	3.3	2.3	220	257	43	Feed $SO_2 = 492 \text{ mg}/1$

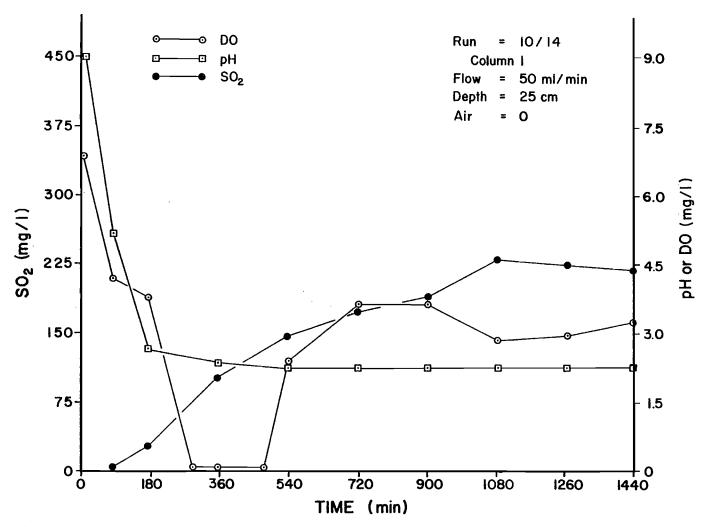


Figure B-14. SO₂ oxidation column observations.

Table B-32. SO_2 oxidation column observations--10/14.

Column Media = GAC, 25 cm, secondary column
Initial Metal = N/A
Final Metal =

F	inal Me	tal =					
D P S	0.0 = -0.00	Soln.			Final Feed Soln. DO = - pH = - SO ₂ = - SO ₄ = -		
Column	Data:	Air Flo	w = 0 CH	TH			
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments*	
15	6.5	9.5	0		48	0	
60	6.3	9.35	0	155	52 52	4	
90 180	6.25 5.75	9.2 8.5	0 0	248	52 52	10 24	
240	4.8	6.5	0	240	50	56	
300	7.0	0.5	Ū		50	30	
360	5.5	6.6	0		48	100	
420	4.9	3.2	Ō	318	51	116	
480	4.9	2.9	0		50	116	
540	4.8	2.6	0	358	50	120	
600	4.9	2.5	0		50	124	
660	5.0	2.4	0	403	50	132	
720	4.9	2.35	8		51	144	
780	4.8	2.35	12	415	48	148	
840	4.9	2.35	12		47	168	
900	4.5	2.2	12	464	52	184	
960	4.7	2.2	12		49	188	
1020	4.5	2.2	8	464	49	208	
1080	4.5	2.15	4		52	200	
1140	4.6	2.15	4	472	51	204	
1200	4.6	2.15	8		50	212	
1260	4.5	2.1	4	448	50	188	
1320	4.5	2.1	6		50	204	
1380	4.5	2.1	4	440	50	188	
1440	4.5	2.1	4		50	220	

^{*}Secondary feed SO_2 , mg/1

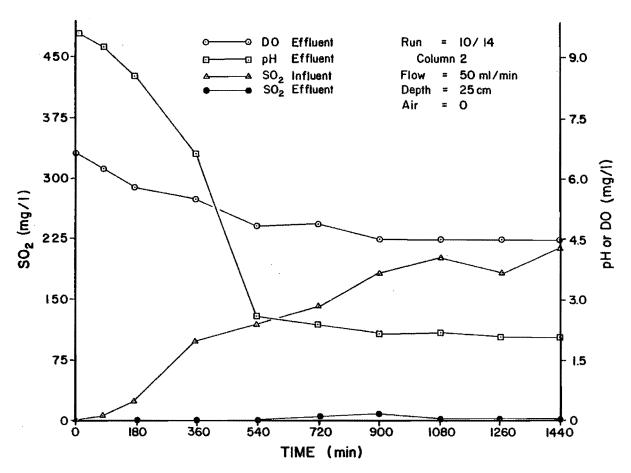


Figure B-15. SO_2 oxidation column observations.

3.4 2.6 460 mg/1

 $53 \text{ mg/1} \text{ as } SO_2$

Column Media = GAC, 50 cm Initial Metal = N/A Final Metal =

Initial Fee	d Soln.	Final Feed	Soln.
DO =	4.3	DO =	3.4
pH =	2.6	pH =	2.6
so ₂ =	532 mg/l	so ₂ =	460 m
so ₄ = =	49 mg/1 as SO_2	SO4 ⁼ =	53 mg

Column Data: Air Flow = 0 CFH

Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15	6.8	9.0	0		51	
60	6.1	9.0	0	81	54	
90	5.7	8.9	0		49	
120	4.9	8.8	0	158	50	
180	3.7	6.7	0		50	
240	3.7	5.5	0	266	50	Cloudy
300	3.5	3.0	12		50	
360	3.2	2.8	16	330	50	Cloudy
420	2.7	2.7	40		50	•
480	1.6	2.6	56	338	50	Cloudy
540	1.6	2.6	68		50	Feed $SO_2 = 512 \text{ mg/}1$
600	0.1	2.5	76	361	50	Cloudy
660	0.1	2.5	84		51	•
720	0.1	2.45	88	361	50	Cloudy
780	0.1	2.4	96		50	•
840	0.1	2.35	100	330	51	
900	0.1	2.4	108		50	Feed $SO_2 = 480 \text{ mg/}1$
960	0.1	2.4	104	330	49	_
1020	0.1	2.3	112		50	
1080	0.1	2.3	116	338	50	Feed $SO_2 = 464 \text{ mg}/1$
1140	0.1	2.3	120		50	Add 18 ml H ₂ SO ₃
1200						Feed $SO_2 = 492 \text{ mg/1}$
1260						
1320	2.0	2.3	156	286	50	
1380	3.0	2.3	188		49	
1440	3.1	2.3	192	258	51	

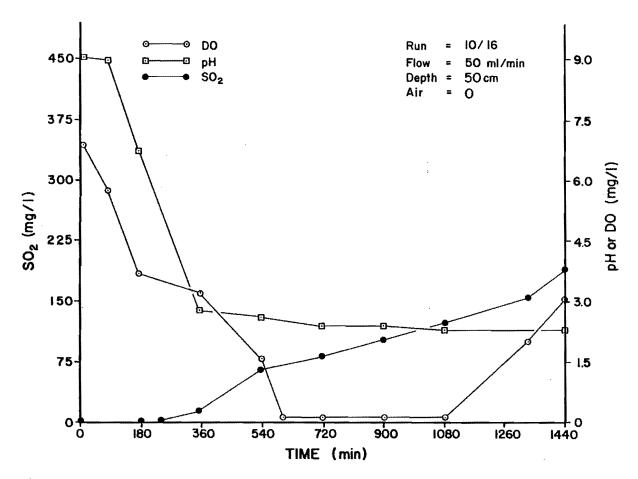


Figure B-16. SO_2 oxidation column observations.

Table B-34. SO_2 oxidation column observations--10/19.

Final Metal = Initial Feed Soln. DO = 4.2 pH = 2.7 SO2 = 492 mg/l SO4 = 49 mg/l as SO2 SO4 = 59 mg/l as SO2 SO4 = 50 mg/min SO4 = 59 mg/l as SO2 SO4 = 50 mg/min SO4 = 50 mg/min	I	nitial	= GAC, Metal =				
Time Min. DO pH SO ₂ SO ₄ = Flow Comments SO ₂ SO ₂	Initia D P S	1 Feed 0 = 4 H = 2 O ₂ = 4	Soln. .2 .7 92 mg/1	s SO ₂		DO pH SO	= 3.5 = 2.75 ₂ = 460 mg/1
Min. mg/1 as SO ₂ ml/min 15 6.4 8.7 0 49 60 6.4 8.6 0 173 52 90 5.6 7.1 0 50 120 5.5 4.7 0 254 50 180 5.15 2.9 0 50 240 5.0 2.7 0 343 51 360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.4 2.3 0 50 50 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 600 5.5 2.25 0 465 50 Feed SO ₂ = 464 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 465 50 Feed SO ₂ = 488 mg/ 900 5.8 2.1 0 50 1020 5.8 2.1 0 50 1080 5.9 2.1 0 50 129 50 1390 50 Feed SO ₂ = 499 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52	Column	Data:	Air Flo	$\mathbf{w} = 5 \text{ C}$	FH		
60 6.4 8.6 0 173 52 90 5.6 7.1 0 50 120 5.5 4.7 0 254 50 180 5.15 2.9 0 50 240 5.0 2.7 0 343 51 300 5.1 2.55 0 51 360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 465 50 Feed SO ₂ = 468 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 465 50 Feed SO ₂ = 464 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1020 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 502 48		DO	рН				Comments
60 6.4 8.6 0 173 52 90 5.6 7.1 0 50 120 5.5 4.7 0 254 50 180 5.15 2.9 0 50 240 5.0 2.7 0 343 51 300 5.1 2.55 0 51 360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 465 50 Feed SO ₂ = 468 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 465 50 Feed SO ₂ = 464 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1020 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 502 48	15	6.4	8.7	0		49	
90					173	-	
120 5.5 4.7 0 254 50 180 5.15 2.9 0 50 240 5.0 2.7 0 343 51 300 5.1 2.55 0 51 360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.4 2.3 0 50 Feed SO ₂ = 468 mg/ 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 552							
180					254		
240 5.0 2.7 0 343 51 300 5.1 2.55 0 51 360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 468 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 502 48							
300 5.1 2.55 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Add 32 ml H ₂ SO ₃ 660 5.7 2.15 0 498 50 Feed SO ₂ = 468 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1080 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 502 48					343		
360 5.1 2.4 0 392 50 420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.4 2.3 0 50 Feed SO ₂ = 468 mg/ 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 52							
420 5.2 2.4 0 51 480 5.4 2.3 0 408 51 540 5.4 2.3 0 50 Feed SO ₂ = 468 mg/ 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 1020 5.8 2.1 0 506 1020 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 552					392		
480 5.4 2.3 0 408 51 540 5.4 2.3 0 50 Feed SO ₂ = 468 mg/ 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 Feed SO ₂ = 488 mg/ 960 5.8 2.1 0 506 50 1020 5.8 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 498 52 1380 6.0 2.1 0 552							
540 5.4 2.3 0 50 Feed SO ₂ = 468 mg/ 600 5.5 2.25 0 449 51 Add 34 ml H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 50 Feed SO ₂ = 488 mg/ 960 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1020 5.8 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 49 1200 5.9 2.1 0 49 1200 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 52					408		
600 5.5 2.25 0 449 51 Add 34 m1 H ₂ SO ₃ 660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 m1 H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 52							Feed $SO_2 = 468 \text{ mg/l}$
660 5.6 2.2 0 51 Feed SO ₂ = 524 mg/ 720 5.5 2.2 0 465 50 Feed SO ₂ = 464 mg/ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed SO ₂ = 520 mg/ 900 5.8 2.1 0 506 50 1020 5.8 2.1 0 506 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 49 1200 5.9 2.1 0 49 1200 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 52					449		
720 5.5 2.2 0 465 50 Feed $SO_2 = 464 \text{ mg/}$ 780 5.7 2.2 0 51 Add 32 ml H ₂ SO ₃ 840 5.7 2.15 0 498 50 Feed $SO_2 = 520 \text{ mg/}$ 900 5.8 2.1 0 50 Feed $SO_2 = 488 \text{ mg/}$ 960 5.8 2.1 0 506 50 1020 5.8 2.1 0 50 Feed $SO_2 = 488 \text{ mg/}$ 1080 5.9 2.1 0 510 50 Feed $SO_2 = 492 \text{ mg/}$ 1200 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 498 52 1380 6.0 2.1 0 52							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					465		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
900 5.8 2.1 0 50 Feed SO ₂ = 488 mg/ 960 5.8 2.1 0 506 1020 5.8 2.1 0 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 49 1200 5.9 2.1 0 49 1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52					498		
960 5.8 2.1 0 506 50 1020 5.8 2.1 0 50 1080 5.9 2.1 0 510 50 1140 5.9 2.1 0 49 1200 5.9 2.1 0 49 1260 5.9 2.1 0 49 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52	900			0			
1020 5.8 2.1 0 50 1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52				0	506		2
1080 5.9 2.1 0 510 50 Feed SO ₂ = 492 mg/ 1140 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52							
1140 5.9 2.1 0 49 1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52					510		Feed $SO_2 = 492 \text{ mg/l}$
1200 5.9 2.1 0 502 48 1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52							2
1260 5.9 2.1 0 49 Feed SO ₂ = 488 mg/ 1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52					502		
1320 6.1 2.1 0 498 52 1380 6.0 2.1 0 52							Feed $SO_2 = 488 \text{ mg/}1$
1380 6.0 2.1 0 52				0	498		2
		6.0					
				_	461		

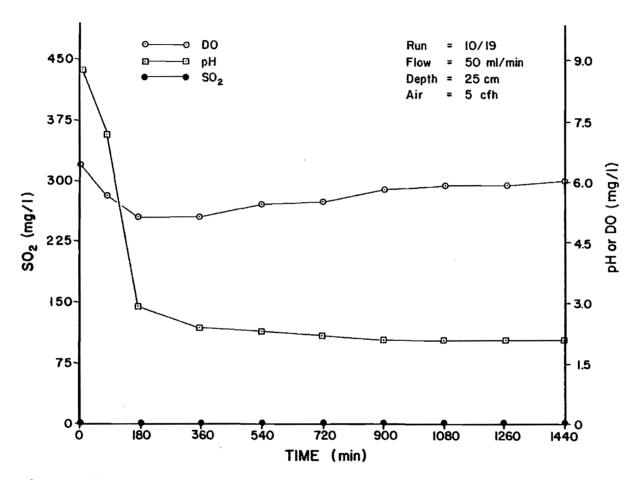


Figure B-17. SO_2 oxidation column observations.

Table B-35. SO_2 oxidation column observations--10/21.

			·····							
I	Column Media = GAC, 25 cm Initial Metal = N/A Final Metal =									
D P S	11 Feed $100 = 5$ $100 = 5$ $1000 = 5$ $1000 = 5$	5.5	as SNo	Final Feed Soln. DO = 3.2 pH = 2.5 SO ₂ = 488 mg/l SO ₄ = 57 mg/l as SO ₂						
			$\mathbf{c} = \mathbf{c} = \mathbf{c}$	FH	50,	4 37 mg, 1 d3 502				
Time Min.	DO	pН	SO ₂ mg/1	SO4 [≃] as SO ₂	Flow ml/min	Comments				
15 30 60		8.8 8.4	0 0		91 100					
	4.1 3.8	2.9 2.3	0 8	382 456	100 100					
180 240			•	.53						
300	3.5		24	529	100					
360	3.6	2.1	32	537	100					
420	3.1	2.1	44	E20	100					
480 540	3.2 3.2	$\frac{2.1}{2.1}$	40 48	529	100 100	Feed $SO_2 = 540 \text{ mg/}1$				
600	3.6	2.1	64	496	100	reed 502 - 540 mg/1				
660	3.8	2.1	68	.,,	100					
720	3.7	2.1	64	492	100	Feed $SO_2 = 548 \text{ mg/1}$				
780	3.5	2.1	72		100	2 3				
840	3.6	2.1	68	480	100					
		2.1	64		100	Feed $SO_2 = 540 \text{ mg/1}$				
		2.1	72	476	100	_				
		2.1	68		100					
1080	2.9	2.1	64	472	100	Feed $SO_2 = 544 \text{ mg/l}$				
1140	3.1	2.1	64		100					
1200	3.5	2.1	64	484	100	T-1.00 700 /5				
1260	3.3	2.1	60 53	1.60	100	Feed $SO_2 = 508 \text{ mg/1}$				
1320	3.5	2.0	52 52	468	100					
1380 1440	3.5 3.5	2.0 2.0	52 50	456	100 100					
1440	ر. ر	2.0	50	470	100					

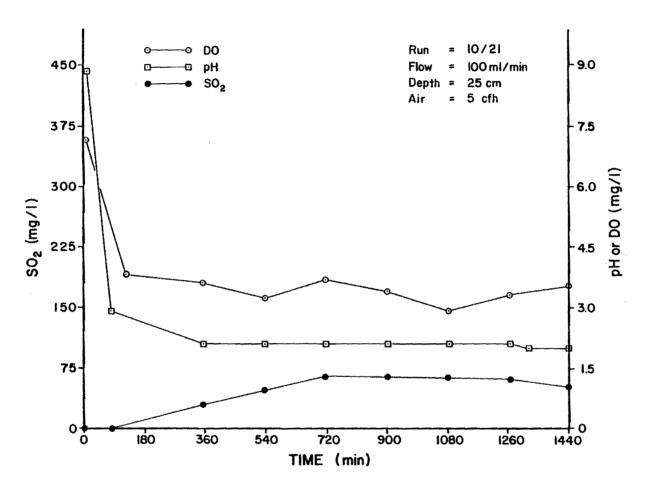


Figure B-18. SO_2 oxidation column observations.

Table B-36. SO_2 oxidation column observations--10/23.

I	Column Media = GAC, 35 cm Initial Metal = N/A Final Metal =									
D P S	$0_2 = 4$		as SO ₂	Final Feed Soln. DO = 4.5 pH = 2.5 SO ₂ = 460 mg/1 SO ₄ = 62 mg/1 as SO ₂						
Column	Data:	Air Flo	ow = 5 C	FH						
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments				
15	7.2	9.0	0		102					
30	7.2	8.9	0		100					
60	6.9	8.6	0	204	102					
90		6.9	0		100					
120	5.2	3.6	0	277	100					
180	5.1	2.6	0		98					
240	5.4	2.4	0	391	100					
300	5.5	2.3	0		100					
360	5.6	2.2	0	440	100					
420	5.7	2.2	0	150	100					
480	5.8	2.1	0	456	100					
540	5.8	2.1	0	/ 00	100					
600	5.9	2.1	0	488	100					
660	6.0	2.1	0	5.01	100	Food SO: - 450 41				
720 780	6.0 6.0	2.05	0	501	100 100	Feed $SO_2 = 452 \text{ mg/1}$				
840	5.8	2.05 2.0	0 0	521	100	Add 69 ml H_2SO_3 Feed $SO_2 = 512$ mg/1				
900	5.7	2.0	0	721	100	Feed $SO_2 = 512 \text{ mg/l}$				
960	5.6	2.0	0	533	100	reed 502 - 524 mg/1				
1020	5.7	2.0	ő	J J J J	100					
1080	5.7	2.0	Ö	533	100	Feed $SO_2 = 540 \text{ mg/}1$				
1140	5.8	2.0	Ö	333	100	1002 002 010 -8, -				
1200	5.7	1.95	ő	529	100					
1260	5.7	1.95	Ö		100	Feed $SO_2 = 518 \text{ mg/l}$				
1320	5.7	2.0	ő	537	100					
1380	5.8	2.0	ŏ	 •	100					
1440	5.8	2.0	Ö	501	100					

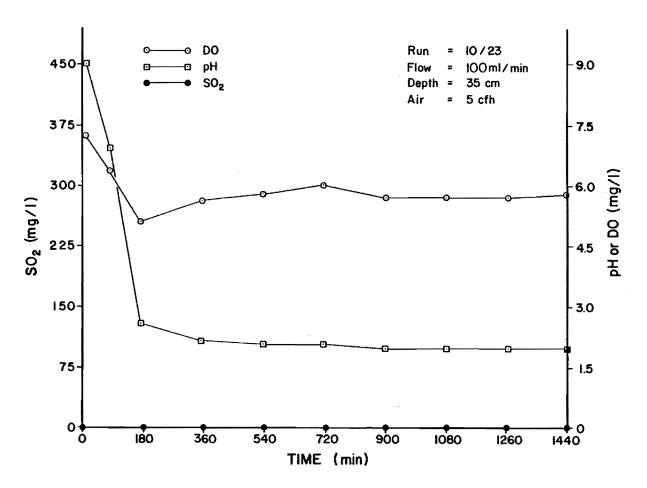


Figure B-19. SO_2 oxidation column observations.

Table B-37. SO₂ oxidation column observations--10/26.

Column Media = GAC, 35 cm Initial Metal = N/A Final Metal =								
D p S S	O ₂ = 4 O ₄ = 4	6.6 1.7 96 mg/1 5 mg/1 a	_	Final Feed Soln. DO = 4.1 pH = 2.7 SO ₂ = 456 mg/1 SO ₄ = 60 mg/1 as SO ₂				
Column	Data:	Air Flo	w = 5 C	?H				
Time Min.	DO	pН	SO ₂ mg/l	SO4 ⁼ as SO ₂	Flow ml/min	Comments		
15	6.6	8.7	0	139	150			
30	6.0	7.7	0		154			
60	4.3	3.3	8	326	150	Cloudy		
90	3.8	2.7	20		150			
120	3.8	2.5	30	407	150	Cloudy		
180	3.3	2.35	56		150			
240	3.2	2.3	64	448	150			
300	2.9	2.2	78		150			
360	3.1	2.2	82	448	150			
420	3.1	2.2	88	1.60	150			
480	3.2	2.2	80	460	150			
540 600	3.3	2.2	84	448	150 147			
660	3.5 3.7	2.2	104 108	440	150			
720	3.6	2.15	112	440	150	Feed $SO_2 = 492 \text{ mg/}1$		
780	3.6	2.15	108	770	150	reed 502 - 432 mg/1		
840	3.6	2.15	112	423	150			
900	3.3	2.15	120		150	Feed $SO_2 = 508 \text{ mg}/1$		
960	3.1	2.15	128	411	150	Joo mg, 1		
1020	3.1	2.15	120		150			
1080	3.1	2.15	116	411	150	Feed $SO_2 = 504 \text{ mg/1}$		
1140	3.0	2.15	116		150	2		
1200	3.0	2.15	112	383	150			
1260	3.0	2.15	112		150	Feed $SO_2 = 488 \text{ mg/l}$		
1320	3.2	2.15	108	383	150	4		
1380	3.3	2.1	104		150			
1440	3.6	2.1	108	350	150			

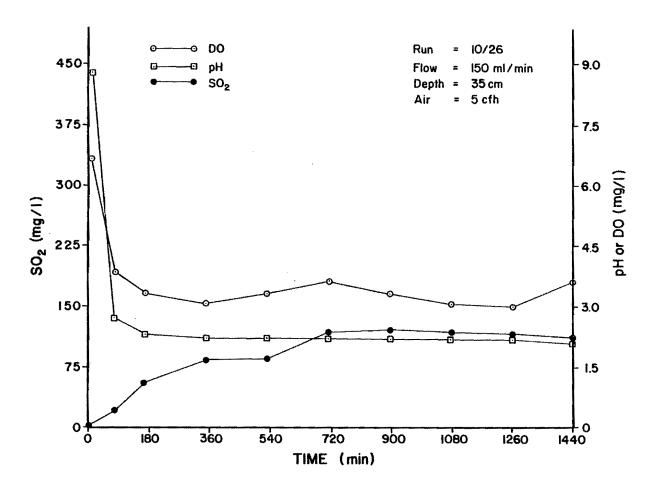


Figure B-20. SO₂ oxidation column observations.

Table B-38. SO_2 oxidation column observations--10/28.

Column Media = GAC, 50 cm Initial Metal = N/A Final Metal =								
<u>Initia</u> D	1 Feed 0 = 4	Soln.			Final Feed Soln. DO = 4.1			
		.65			DO			
		20 mg/1			PH CO	= 2.6 ₂ = 468		
		20 mg/1 2 mg/1 a	is SOo			$4^{2} = 60 \text{ mg/1 as } SO_{2}$		
U	04 5	2 116/1 2	10 007		50,	4 00 mg/1 23 boz		
Column	Data:	Air Flo	ow = 5 C	fh				
Time	DO	pН	so_2	SO4 ⁼	Flow	Comments		
Min.		•	mg/1	as SO ₂	ml/min			
			_	~	•			
15	7.4	9.0	0	52	150			
30	7.2	8.9	0		152			
60	6.9	8.4	0	197	150			
90	5.3	6.5	0		150			
120	4.5	3.4	0	292	150			
180	4.6	2.6	0		150			
240	5.0	2.3	0	400	150			
300	4.8	2.2	0		150			
360	4.8	2.2	0	458	150			
420	4.8	2.2	0		150			
480	4.8	2.1	0	451	150			
540	4.8	2.1	0		150	Feed $SO_2 = 512 \text{ mg/1}$		
600	4.8	2.05	0	473	150			
660	4.6	2.05	0		150			
720	4.7	2.05	0	458	150	Feed $SO_2 = 496 \text{ mg/}1$		
780	4.6	2.0	0		150	_		
840	4.5	2.0	0	451	150			
900	4.3	2.0	0		150			
960	4.4	2.0	0	451	150			
1020	4.4	2.0	0		150			
1080	4.5	2.0	0	465	150			
1140	4.5	2.0	0		150			
1200	4.5	2.0	0	465	150	Feed $SO_2 = 460 \text{ mg/}1$		
1260′	4.4	2.0	0		150	Add 41 ml H ₂ SO ₃		
1320	4.7	2.0	4	480	154	Feed $SO_2 = 520 \text{ mg/}1$		
1380	4.8	2.0	4		154			
1440	4.6	2.0	4	465	154			

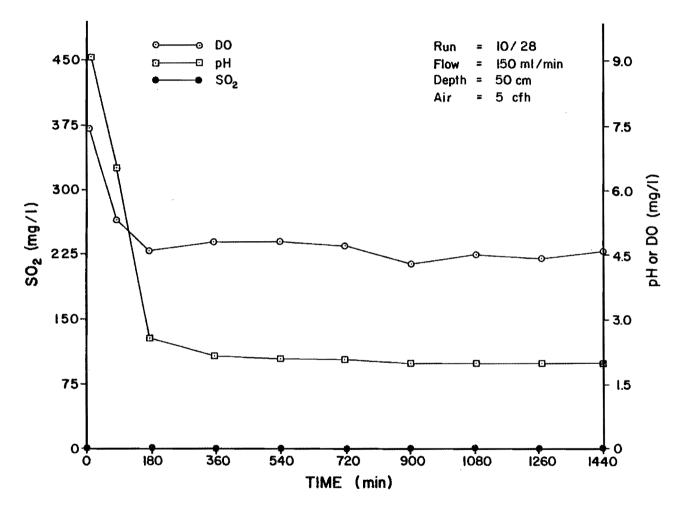


Figure B-21. SO_2 oxidation column observations.

Table B-39. SO_2 oxidation column observations--10/30.

I		= GAC, 5 Metal = tal =				
Initia	1 Feed	Soln.			Final Fe	eed Soln.
	0 = 6.				DO	
	H = 2.					= 2.6
-	$0_2 = 53$				-	2 = 448
		mg/1 as	S02			== 65 mg/1 as SO ₂
		_	~ w = 5 CF	4		
					_	
Time	DO	pН	so_{2}	so ₄ =	Flow	Comments
Min.			mg/1	as SO ₂	m1/min	
15	7.6	8.8	0	110	171	
30	7.2	8.4	0		176	
60	5.1	5.9	0	285	176	Cloudy
90	4.4	2.85	0		176	•
120	4.1	2.5	4	383	176	Cloudy
180	4.0	2.2	22		174	,
240	3.8	2.2	34	456	174	
300	3.8	2.1	44		174	
360	4.3	2.1	50	456	174	
420	4.1	2.1	54		171	
480	3.8	2.1	64	456	171	
540	3.2	2.1	68		176	Feed $SO_2 = 512 \text{ mg}/1$
600	3.1	2.1	76	460	176	-
660	3.6	2.1	76		176	
720	3.4	2.05	80	436	176	Feed $SO_2 = 512 \text{ mg/}1$
780	3.3	2.05	80		175	
840	3.2	2.05	80	436	175	
900	3.5	2.05	84		175	
960	3.4	2.05	84	415	175	
1020	3.7	2.05	80		176	
1080	3.1	2.05	80	407	174	
1140	3.6	2.05	76		172	
1200	3.7	2.05	76	407	172	Feed $SO_2 = 496 \text{ mg/}1$
1260	3.8	2.05	72		175	
1320	3.6	2.05	68	415	175	
1380	4.1	2.05	66	001	172	
1440	3.2	2.05	62	391	169	

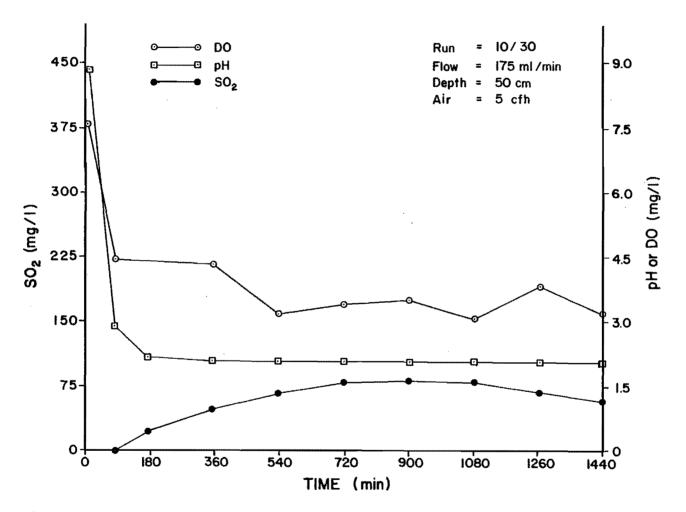


Figure B-22. SO₂ oxidation column observations.

Table B-40. SO_2 oxidation column observations--11/2.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal =									
D p S		5.1	ıs SO ₂	Final Feed Soln. D0 = 3.6 pH = 2.6 S0 ₂ = 428 mg/1 S0 ₄ = 65 mg/1 as S0 ₂					
Column	Data:	Air Flo	$\mathbf{w} = 5 \text{ C}$	FH					
Time Min.	DO	pН	SO ₂ mg/1	SO4 [≕] as SO ₂	Flow ml/min	Comments			
15	7.6	8.6	0	86	76				
30	7.4	8.4	0		78				
60	7.0	6.3	0	231	79	Cloudy			
90	5.6	3.9	0		77	•			
120	4.9	3.0	0	342	75	^			
180	5.1	2.5	0		76				
240	5.7	2.3	0	453	76				
300	5.3	2.2	0		76				
360	5.2	2.15	0	488	76				
420	5.1	2.1	0		76				
480	5.3	2.1	4	496	76				
540	5.0	2.1	4		76				
600	4.9	2.1	4	479	76				
660	4.8	2.1	4		76				
720	4.9	2.1	4	462	76	Feed $SO_2 = 504 \text{ mg/1}$			
780	4.9	2.1	4		76				
840	4.8	2.05	4	505	76				
900	4.9	2.05	4		76				
960	4.7	2.05	4	513	76				
1020	4.8	2.05	8		76				
1080	4.7	2.05	8	488	76				
1140	4.8	2.05	8		76				
1200	4.8	2.05	8	492	76	Feed $SO_2 = 472 \text{ mg/}1$			
1260	4.7	2.05	8		76	Add 17 ml H ₂ SO ₃			
1320	4.9	2.0	8	505	76	Feed $SO_2 = 504 \text{ mg/1}$			
1380	5.1	2.0	8		76				
1440	5.0	2.0	8	470	76				

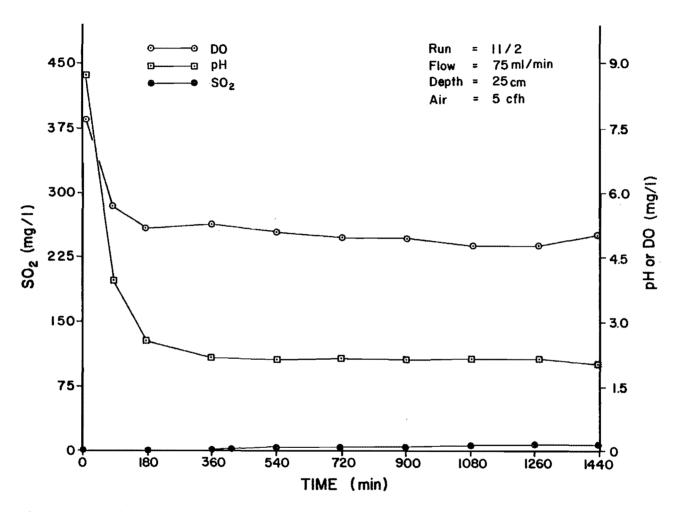


Figure B-23. SO_2 oxidation column observations.

Table B-41. ${\rm SO}_2$ oxidation column observations--11/4.

	<u> </u>	<u> </u>											
Column Media = GAC, 50 cm Initial Metal = N/A Final Metal =													
Initia	1 Feed	Soln			Final F	eed Soln.							
-		.1			DO	· · ·							
		. 7			_	= 2.6							
		92 mg/1			SO:	$_2 = 486 \text{ mg}/1$							
S	$0_4^{=} = 4$.5 mg/1 a	s SO ₂		SO,	$\frac{1}{4}$ = 66 mg/l as SO ₂							
Column	Data:	Air Flo	w = 2.5	CFH									
Time	DΩ	-n	90-	co./≕	17.1	Commont							
	DO	pН	SO ₂	SO4	Flow	Comments							
Min.			mg/1	as SO_2	ml/min								
		0.7		115	15/								
15	7.2	8.7	0	115	154								
30	6.8	8.0	0		150								
60	5.9	6.5	4	251	150	Cloudy							
90	5.0	3.35	20		150								
120	4.8	2.9	24	329	150	Cloudy							
180	4.5	2.6	34		148	-							
240	4.5	2.4	36	387	148	Cloudy							
300	4.1	2.4	36		150	Feed $SO_2 = 464 \text{ mg/l}$							
360	4.1	2.3	40	436	150	Add 36 ml H ₂ SO ₃							
420	4.1	2.2	48		150	Feed $SO_2 = 484 \text{ mg}/1$							
480	4.0	2.2	50	448	150	2							
540	3.9	2.2	56		150	Feed $SO_2 = 520 \text{ mg/}1$							
600	3.8	2.1	60	477	150								
660	3.5	2.1	64		150								
720	3.6	2.1	72	485	150	Feed $SO_2 = 504 \text{ mg/}1$							
780	3.7	2.1	80		150	1000 00Z 304 mg/ 1							
840	3.6	2.05	80	510	150								
900	3.7	2.05	80		150								
960	3.9	2.05	84	543	150	Feed $SO_2 = 512 \text{ mg/}1$							
1020	3.9	2.05	84	3 (3	150	1000 00½ 312 mg/1							
1080	3.8	2.05	80	485	150								
1140	3.8	2.05	84	403	150								
1200	3.9	2.05	84	457	150	Feed $SO_2 = 496 \text{ mg/}1$							
1260	3.8	2.05	76	771	150	1000 00% - 430 mg/1							
	4.0	2.03		1.1.1.	150								
1320			68 74	444									
1380	4.1	2.1	74 76	1.20	150								
1440	3.9	2.1	76	436	150								

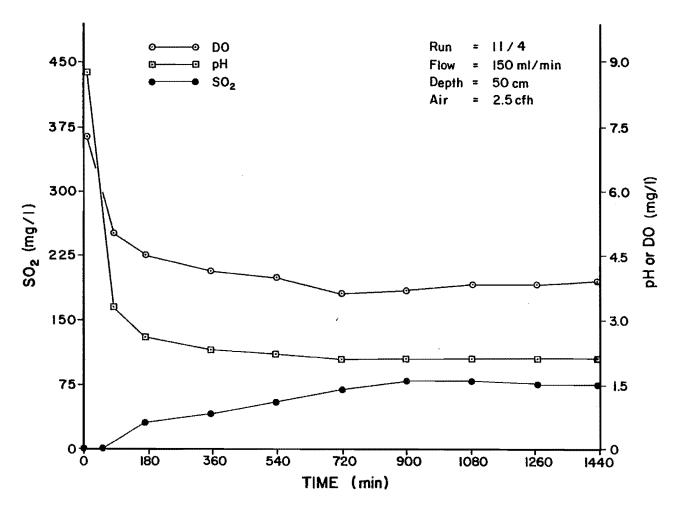


Figure B-24. SO₂ oxidation column observations.

Table B-42. SO₂ oxidation column observations--11/6.

Column Media = Anthracite, 50 cm Initial Metal = N/A Final Metal =									
I F		.2	as SO2	Final Feed Soln. DO = 5.7 pH = 2.75 SO ₂ = 484 mg/1 SO ₄ = 62 mg/1 as SO ₂					
Column	Data:	Air Flo	ow = 5 CI	TH.					
Time Min.	DO	pН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Comments			
30 60 90 120 180	0.8 3.0 4.2 6.6	2.5 2.6 2.7 2.7	360 384 392 400		150 150 154 146 146 146 146	Yellow Effluent Clear			

Note: Run ended at 240 due to high breakthrough

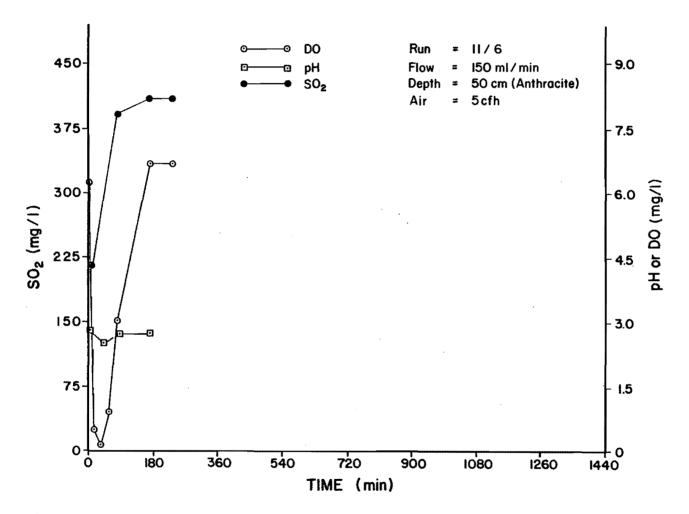


Figure B-25. SO_2 oxidation column observations.

Table B-43. SO_2 oxidation column observations--11/9.

Column Media = GAC, 50 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln.									
p S S	0H = 2 $0O_2 = 4$ $0O_4 = 1$.5 .7 96 mg/1 30 mg/1 58 mg/1	as SO ₂ as CaCO ₃		DO = 2.5 pH = 2.6 $SO_2 = 480 \text{ mg/1}$ $SO_4^{\text{me}} = 146 \text{ mg/1 as } SO_2$				
<u>Column</u>	Data:	Air Flo	ow = 5 C	FH					
Time Min.	DO	рН	so ₂ mg/1	SO4 ⁼ as SO2	Flow ml/min	Comments			
15	7.6	8.7	0	170	145				
	7.4	8.6	0		150				
60	6.8	7.4	0	331	148				
90	6.1	5.8	0		148				
	5.9	3.5	0	428	145	Cloudy			
180	5.8	2.6	0		145				
240	5.6	2.4	0	529	145				
300	5.4	2.35	4		144				
360	5.6	2.3	0	565	145				
420	5.4	2.25	6	# 0.0	145				
480	5.3	2.2	4	590	145				
540	5.5	2.2	6	600	146				
600	5.4	2.15	6	638	146				
660	5.0	2.1	8	646	145	Food 50 - 500/1			
720 780	5.3 5.4	2.1 2.1	12 16	040	146 145	Feed $SO_2 = 500 \text{ mg/}1$			
	5.1	2.1	16 16	630	145				
	5.5	2.1	16	050	146				
		2.1	12	650	145	Feed $SO_2 = 492 \text{ mg/l}$			
1020	5.2	2.1	16	030	146	1000 002 472 mg/1			
1080	5.3	2.1	16	646	146				
1140	5.0	2.1	16		145				
1200	5.4	2.1	16	646	145	Feed $SO_2 = 472 \text{ mg/}1$			
1260	5.4	2.1	16		145	Add 27 ml H ₂ SO ₃			
1320	5.3	2.1	20	662	145	Feed $SO_2 = 496 \text{ mg/1}$			
1380	5.2	2.1	16		145				
1440	5.1	2.1	20	646	145				

Note: Sewage from Salt Lake City

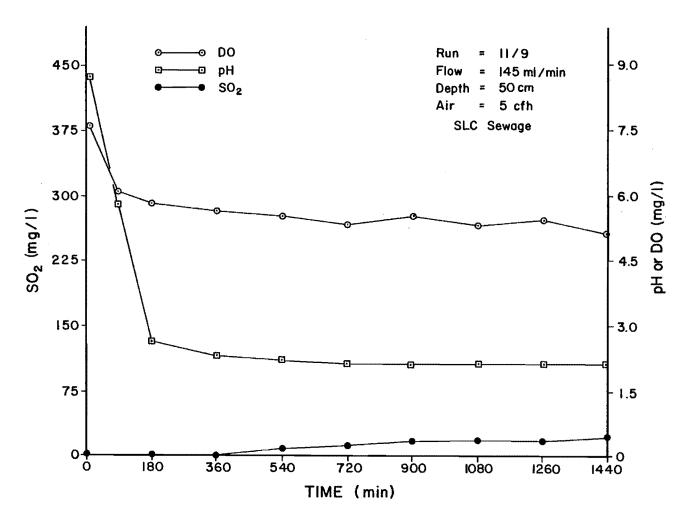


Figure B-26. SO_2 oxidation column observations.

Table B-44. SO_2 oxidation column observations--11/11.

					·		
I		= GAC, Metal = tal =					
F S S	al Feed 00 = 6 00 = 6 00 = 6 00 = 5 00 = 5 00 = 4 00 = 4	.6	as SO ₂	Final Feed Soln. DO = 4.8 pH = 2.7 SO ₂ = 456 mg/1 SO ₄ = 55 mg/1 as SO ₂			
Column	Data:	Air Flo	w = 7.5	CFH			
Time Min.	DO	pН	SO ₂ mg/1	SO ₄ = as SO ₂	Flow ml/min	Comments	
15	7.4	8.6	0	172	150		
30	6.9	7.6	0		152		
60	5.2	5.0	0	284	150	Cloudy	
90	4.5	3.1	4		152		
120	4.8	2.7	0	372	146	Cloudy	
180	5.4	2.3	8		154		
240	4.2	2.2	18	480	154		
300	4.8	2.2	22		146		
360	3.7	2.15	30	505	148		
420	3.7	2.15	36		146		
480	3.7	2.1	44	489	148	T1 00 500 /1	
540	4.1	2.1	40	400	152	Feed $SO_2 = 532 \text{ mg/1}$	
600	4.5	2.1	48	480	150		
660 720	4.2 3.9	2.1 2.1	44 44	465	150 150	Food SO = 500 /1	
780	3.7	2.1	48	405	150	Feed $SO_2 = 508 \text{ mg/1}$	
	3.6	2.1	48	457	150		
	3.8	2.1	48	457	150		
960	3.8	2.1	52	457	150	Feed $SO_2 = 516 \text{ mg/1}$	
1020	3.7	2.1	52		150	1 1 1 1 mg/ 1	
1080	3.5	2.1	48	441	150		
1140	3.8	2.1	52		150		
1200	3.6	2.1	52	457	150	Feed $SO_2 = 508 \text{ mg/1}$	
1260		2.1	48		150	2 0.	
1320	4.1	2.1	44	441	150		
1380	4.2	2.1	40		150		
1 / / 0							

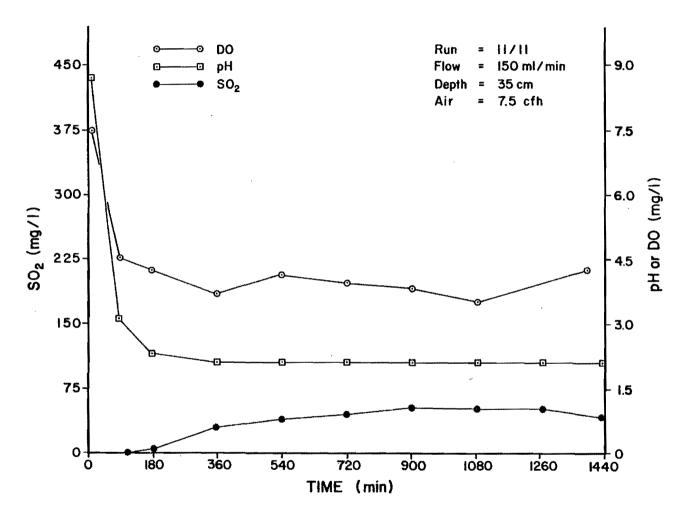


Figure B-27. SO_2 oxidation column observations.

Table B-45. SO_2 oxidation column observations--11/13.

Colum	nn Media Initial Final Me	Metal =				
	$ \begin{array}{rcl} \text{ial Feed} \\ \text{DO} &=& 4 \\ \text{pH} &=& 2 \\ \text{SO}_2 &=& 5 \\ \text{SO}_4 &=& 4 \end{array} $.4 .7 20 mg/1 5 mg/1 a			DO pH	eed Soln. = 4.2 = 2.6 2 = 464 mg/l = 53 mg/l as SO ₂
Corum	in Data:	AIT FIG	ow = 5 C	r n		
Time Min.	DO	р Н	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15	7.6	8.8	0	110	143	
30	7.4	8.6	0		145	
60	5.5	4.9	0	262	146	Cloudy
90	5.3	3.0	6		146	•
120	47	27	16	358	146	Cloudy
180	5.1	2.5	26		146	-
240	4.8	2.4	34	400	146	
300	/. 5	2 2	36		144	
360	4.6	2.3	40	434	144	
420	4.5	2.2	40		144	
480	4.5	2.2	42	461	145	
540	4.7	2.2	40		145	Feed $SO_2 = 528 \text{ mg/l}$
600	5.2	2.2	44	483	145	
660	4.8 4.6	2.2 2.15	44		146	
720	4.6	2.15	48	499	146	Feed $SO_2 = 496 \text{ mg/}1$
780	4.5	2.1	48		146	
840	4.5	2.1	48	480	146	
900	4.0	Z.I	48		146	
960		2.1	48	491	146	Feed $SO_2 = 512 \text{ mg/1}$
1020	4.4	2.1	48		146	
1080	4.7	2.1	52	483	146	
1140		2.1	44		144	
1200	4.6	2.1	48	499	146	Feed $SO_2 = 504 \text{ mg/1}$
1260	4.7	2.1	48		146	
1320		2.1	44	461	146	•
1380		2.1	44		146	
1440	4.9	2.1	40	444	146	

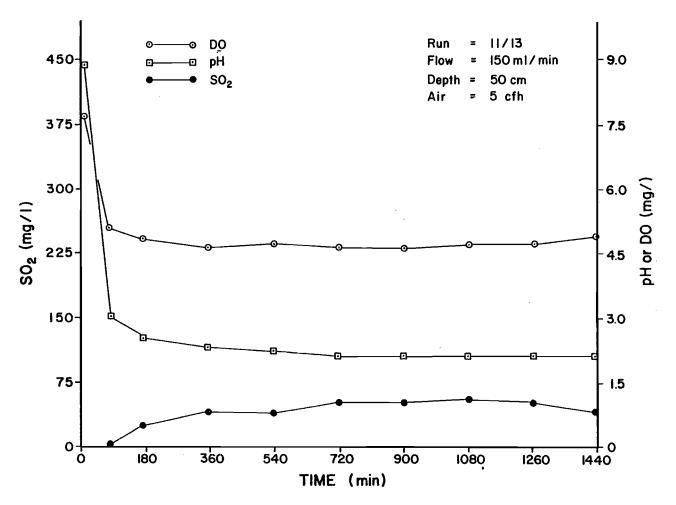


Figure B-28. SO₂ oxidation column observations.

Table B-46. SO_2 oxidation column observations--11/16.

I		= GAC, Metal = tal =				
Initia	1 Feed	Soln			Final F	eed Soln.
		.0			DO	
		.6			рH	
		32 mg/1				2 = 508 mg/1
c	02 - 5	2 mg/1 a			50	$4^{2} = 62 \text{ mg/1}$ as SO ₂
٥	04)	2 mg/1 a	18 302		302	1 - 02 mg/1 as 302
Column	Data:	Air Flo	ow = 5 C	fh		
Time	DO	pН	50_2	SO4=	Flow	Comments
Min.		•	mg/l	as SO ₂	m1/min	
					,	
15	7.2	8.7	0	75	146	
30	7.2	8.6	Ŏ		145	
60	7.1	8.0	ŏ	194	146	
90	5.8	6.6	Ö		145	
120	4.3	3.5	ŏ	271	145	
180	4.7	2.7	ő	271	146	
240	5.4	2.4	Ö	370	144	
300	5.4	2.25	ŏ	5.0	145	
360	5.6	2.2	ŏ	417	145	
420	5.5	2.2	Ö	127	145	
480	5.9	2.2	ő	423 `	145	
540	6.1	2.2	ŏ	423	145	Feed $SO_2 = 512 \text{ mg/1}$
600	6.0	2.1	Ö	430	145	
660	5.9	2.1	0		145	
720	5.9	2.1	ŏ	417	145	Feed $SO_2 = 504 \text{ mg/1}$
780	5.8	2.1	0	,	145	2 30 ,
840	5.8	2.1	0	430	145	
900	5.7	2.1	Ö	,,,,,	145	
960	5.8	2.05	0	423	145	Feed $SO_2 = 496 \text{ mg/1}$
1020	5.7	2.05	0		145	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1080	5.9	2.05	Ö	417	145	
1140	5.8	2.05	0		143	
1200	5.9	2.05	Ö	397	145	Feed $SO_2 = 476 \text{ mg/}1$
1260	5.8	2.05	Ö	- - '	145	Add 23 ml H ₂ SO ₃
1320	5.7	2.05	4	423	146	Feed $SO_2 = 500 \text{ mg/1}$
1380	6.0	2.05	0	- 	146	7 200
1440	5.4	2.0	4	430	146	
•	- • •		-			

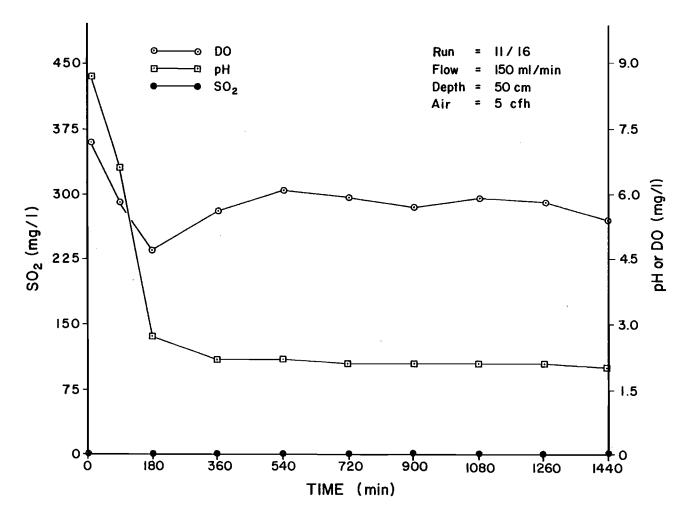


Figure B-29. SO_2 oxidation column observations.

Table B-47. SO_2 oxidation column observations--11/17.

F	nitial Final Me	Metal =	Cont. 11, N/A	/16		
I F	1 Feed $00 = 00 = 00 = 00 = 00 = -$	Soln.			DO pH SO	eed Soln. = 6.4 = 2.6 2 = 502 mg/1
	504 = -	Air Flo	ow = 5 C	FH.	SOZ	== 65 mg/1 as SO ₂
Time Hrs.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
27	5.4		4	541	146	
30	4.9	2.0	4	525	146	Feed $SO_2 = 492 \text{ mg/}1$
33	5.1	2.05	4	512	144	Feed $SO_2 = 484 \text{ mg/}1$
36	4.8	2.05	8	525	144	*512 mg/1
39	4.4	2.05	12	516	145	$Feed SO_2 = 496 mg/1$
42	4.9	2.0	8	516	145	Feed $SO_2 = 500 \text{ mg/1}$
45	4.4	2.0	8	516	144	Feed $SO_2 = 492 \text{ mg/}1$
48	4.8	2.0	10	508	145	Feed $SO_2 = 484 \text{ mg/1}$
51	4.8	2.0	16	550	145	*540 mg/1
54	4.3	2.0	20	533	145	
57	4.7	2.1	16	491	145	Feed $SO_2 = 536 \text{ mg/1}$
60	4.6	2.0	32	499	145	
63	4.0	2.05	36	508	145	Feed $SO_2 = 540 \text{ mg/1}$
66	3.9	2.0	36	516	144	Feed $SO_2 = 512 \text{ mg/1}$
69	3.8	2.05	28	516	144	Feed $SO_2 = 508 \text{ mg/1}$
72	3.9	2.0	24	516	144	Feed $SO_2 = 484 \text{ mg}/1$
75 70	3.9	2.05	24	483	144	*500 mg/1
78	3.9	2.1	24	474	144	7 1 70 100 11
81	4.7	2.1	16	449	145	Feed $SO_2 = 488 \text{ mg}/1$
84	4.1	2.1	20	441	145	7 1 70 (00 (7
87	4.4	2.05	32	441	145	Feed $SO_2 = 488 \text{ mg/1}$
90	3.8	2.05	40	441	145	Feed $SO_2 = 492 \text{ mg/1}$
93	3.5	2.05	40	449	145	Feed $SO_2 = 492 \text{ mg}/1$
96	3.6	2.1	40	441	146	

^{*}Start new feed tank

Table B-48. SO_2 oxidation column observations--11/20.

Column	Column Media = GAC, 25 cm							
Initial Metal = N/A Final Metal =								
D P S		.4	s SO2	·	DO pH SO ₂	eed Soln. = 5.1 = 2.5 2 = 500 mg/1 = 105 mg/1 as SO2		
Column	Data:	Air Flo	w = 5 CI	7H				
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments		
15 30	7.2 7.1	8.4 7.9	0	190	103 98			
	5.1 5.1	4.7 3.0 2.7	0 0 0	261 345	100 100 100			
240 300	4.9 4.6 4.5	2.4 2.2 2.1	4 8 8	424	100 100 100	Feed $SO_2 = 480 \text{ mg/1}$ Add 27 ml H_2SO_3		
420 480		2.1 2.1 2.1	12 12 20	466 483	100 100 100	Feed $SO_2 = 500 \text{ mg/1}$ Feed $SO_2 = 516 \text{ mg/1}$		
540 600 BW	4.4	2.1	20 24	449	100 100	See Note		
15 30 60	6.2 5.6 5.2	4.9 2.7 2.35	0 0 0	249 374	102 100 100			
90 120 180	5.3 5.1 5.1	2.25 2.2 2.2	4 4 4	441	100 100 100			
240 300 360	5.2 5.7 5.3	2.15 2.15 2.15	8 8 12	449 466	100 100 100	Feed SO ₂ = 496 mg/1		
420 480	5.1 5.3	2.25 2.15	12 12	449	100 100 100	1000 002 430 mg/1		
540 600 660	5.6 5.3 5.1	2.1 2.1 2.1	16 16 16	437	100 100	Feed $SO_2 = 484 \text{ mg/1}$ Add 30 ml H_2SO_3		
720 780 840	5.4 5.2 5.1	2.1 2.1 2.1	16 16 16	458 453	100 100 100	Feed $SO_2 = 512 \text{ mg/1}$		
900	5.2	2.1	16	· -	100			

Table B-48. Continued.

Column Media = GAC, 25 cm
Initial Metal = N/A
Final Metal =

Fi	.nal Met	al =				
pH SO	$0 = 6.$ $0 = 2.$ $0_2 = 50$	6	so ₂		so ₂	ed Soln. = 5.1 = 2.5 = 500 mg/1 = 105 mg/1 as SO ₂
Column	Data:	Air Flow	= 5 CFH			
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
	5.1 5.2 5.1		16 16 16	458 479	100 100 100	Feed SO ₂ = 504 mg/1
1260	5.0 5.1	2.1 2.1	16 16 16	472	100 100 100	Feed $SO_2 = 488 \text{ mg/1}$
1320 1380 1440	5.3 5.3	2.1	16 16 16	472 464	100 100 100	Start New Feed Tank Feed $SO_2 = 508 \text{ mg/1}$ Add 50 ml H_2SO_3
27 hrs 36 hrs 37 hrs 39 hrs	5.1	2.05	22 10 16 12	472 472 479 488	100 95 100 95	Feed SO ₂ = 540 mg/1 Feed SO ₂ = 460 mg/1 Add 20 ml H ₂ SO ₃ Feed SO ₂ = 500 mg/1
40 hrs	5.1	2.0	18	488	100	-

Note: Backwashing:

Run tap water up through column, 120 ℓ/hr for 20 min., monitor pH and time.

рН	Time (min.)
5.0	3.5
6.0	4.0
6.8	20.0

Column expanded 20% (5 cm)

Bed resettled only 2.5 cm, new bed depth = 27.5 cm

Table B-49. SO_2 oxidation column observations--11/23.

I		= GAC, Metal =				
D P		.6			DO	eed Soln. = 6.6 = 2.6
		08 mg/1				2 = 504 mg/1
S	04= 5	2 mg/1 a	ıs SO ₂		SO,	$4^{=}$ = 73 mg/1 as SO ₂
Column	Data:	Air Flo	ow = 2.5	CFH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments
15	7.4	8.4	0	105	143	
30	7.2	8.2	0		146	
60		6.3	0	244	146	Cloudy
90	5.1	3.3	6		145	
120	5.3	2.7	14	336	145	Cloudy
	4.7	2.5	24		145	
240	4.6	2.4	30	400	145	
	4.4	2.3	36		145	
	4.5	2.2	36	448	145	
	4.7	2.2	32		145	
	4.7	2.2	40	448	145	Feed $SO_2 = 520 \text{ mg/l}$
540	4.6	2.2	36		145	Start New Feed Tank
600	4.2	2.2	44	448	145	Feed $SO_2 = 536 \text{ mg/l}$
660	4.1	2.15	48		145	
720	4.3	2.1	48	479	145	Feed $SO_2 = 520 \text{ mg/1}$
780	4.0	2.1	48	F.0.1	145	
840	4.1	2.1	48	504	145	
900	4.1	2.1	44	400	145	
960	4.0	2.1	44	488	145	Feed $SO_2 = 508 \text{ mg/1}$
1020	4.0	2.1	44		145	
1080	4.2	2.05	44	504	145	
1140	4.2	2.05	44	400	145	7 1 70 704 /7
1200	4.0	2.05	40	488	145	Feed $SO_2 = 504 \text{ mg/l}$
1260	, -	0.05	40	100	145	
1320	4.2	2.05	36	488	145	
1380	, ,	0.05	27	170	1/5	
1440	4.4	2,05	36	479	145	

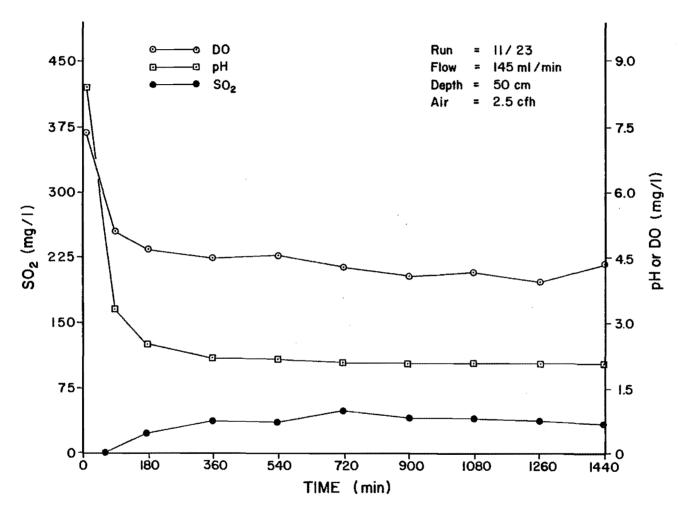


Figure B-30. SO₂ oxidation column observations.

Appendix C

Oxygen Requirements

$$M. W. SO_2 = 64$$

$$M. W. HSO_3^- = 81$$

$$M. W. O_2 = 32$$

$$500 \text{ mg/1 } \text{SO}_2 \left(\frac{81}{64} \right) = 633 \text{ mg/1 } \text{HSO}_3^-$$

At pH 2.5, all aqueous SO_2 is in HSO_3^- form

$$HSO_3^- + \frac{1}{2}O_2 \rightarrow SO_4^=$$

$$0_2 \text{ required} = 633 \left(\frac{16}{81} \right) = 125 \text{ mg/}1$$

Air flow for 150 ml/min.:

Assume: Air =
$$21\%$$
 O_2

8% air to water oxygen transfer efficiency

125 mg/1 x 0.00015 x
$$10^6$$
 ml/min. x 1 g/ml = 0.01875 g 0_2 /min.

0.01875 g $0_2/\text{min.} \times 1/0.21 \times 1 \, \text{l/1.06}$ g air x $1/0.08 \times 60 \, \text{min./h} = 63 \, \text{l/hr}$

Appendix D

Cost Data

Assumptions for estimating costs of filters

- Use EPA cost curves for dual media filters.
 (EPA 1980, Innovative and Alternative Technology Assessment Manual)
- 2) Use ENR cost index 3357 (November 1980).
- 3) To enter EPA construction cost curves, multiply flows by 4 for worst case and by 2 for best case to account for different filter loading rates.
- 4) Add cost of activated carbon media; ignore cost of sand and anthracite (used to make up cost of influent feed modifications).
- 5) Carbon cost equal for best and worst case.
- 6) Add cost to epoxy line concrete structures.
- 7) Add cost of forced draft blowers.

Activated carbon requirements

- Assume: 0.046 lbs/gal (5.5 g/l)
- Mass Required per MGD = 46,000 lbs
- A.C. Cost = \$0.83/1b, FOB Kentucky
 Use \$1.085/1b Installed

FILTRATION, DUAL MEDIA

FACT SHEET 3.1.7

Description - Dual media filtration-gravity is one of the most economical forms of granular media filtration. Granular media filtration involves the passage of water through a bed of filter media with resulting deposition of solids. Eventually, the pressure drop across the bed becomes excessive or the ability of the bed to remove suspended solids is impaired. Cleaning is then necessary to restore operating head and effluent quality. The time in service between cleanings is termed the run length. The head loss at which filtration is interrupted for cleaning is called the terminal head loss, and this head loss is maximized by the judicious choice of media

Dual media filtration involves the use of both sand and anthracite as filter media, with anthracite being placed on top of the sand. Gravity filters operate by either using the available head from the previous treatment unit, or by pumping to a flow split box after which the wastewater flows by gravity to the filter cells. Pressure filters utilize pumping to increase the available head.

Normally filter systems include multiple filter compartments. This allows for the filtration system to continue to operate while one compartment is being backwashed.

A filter unit generally consists of a containing vessel, the filter media, structures to support the media, distribution and collection devices for influent, effluent and backwash water flows, supplemental cleaning devices (see "Common Modifications"), and necessary controls for flows, water levels and backwash sequencing.

Common Modifications - Filtration systems can be constructed out of concrete or steel, with single or multiple compartment units. Steel units can be either horizontal or vertical and are generally used for pressure filters. Systems can be manually or automatically operated.

Backwash sequences can include air scour or surface wash steps. Backwash water can be stored separately or in chambers that are integral parts of the filter unit. Backwash water can be pumped through the unit or can be supplied through gravity head tanks.

Technology Status - Has been used for many years in the potable water industry, and has been used in the wastewater treatment field for 10 to 15 years.

Typical Equipment/No. of Mfrs. (23) - Dual media filters/20; blowers/7; controls/29.

Applications - Removal of residual biological floc in settled effluents from secondary treatment and removal of residual chemical-biological floc after alum, iron, or lime precipitation in tertiary or independent physicalchemical waste treatment.

In these applications filtration may serve both as an intermediate process to prepare wastewater for further treatment (such as carbon adsorption, clinoptilolite ammonia exchange columns, or reverse osmosis) or as a final polishing step following other processes.

Limitations - Economics are highly dependent on consistent pretreatment quality and flow modulations. Increasing suspended solids loading will reduce run lengths, and large flow variations will deleteriously effect effluent quality in chemical treatment sequences.

Performance -

ŧ,

Filter Influent	Filter	Eff]	uent	mg/
High Rate Trickling Filter	10	to	20	
2-Stage Trickling Filter	6	to	15	
Contact Stabilization	6	to	15	
Conventional Activated Sludge	3	to	10	
Extended Aeration	1	to	5	

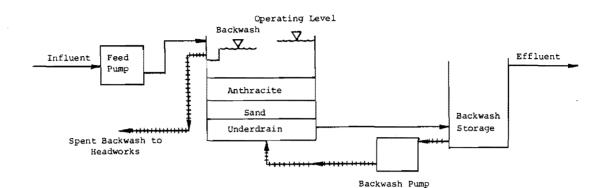
Chemicals Required - Alum and iron salts, and polymers can be added as coagulant aids directly ahead of filtration units. This, however, will generally reduce run lengths.

Residuals Generated - Backwash water, which generally approximates two to ten percent of the throughput. Backwash water can be returned to the head of the plant.

Design Criteria (99) -

Filtration rate 2 to 8 gal/min/ft²; bed depth 24 to 48 inches (depth ratios of 1:1-4:1 sand to anthracite); backwash rate 15 to 25 gal/min/ft²; air scour rate 3 to 5 stdft³/min/ft²; filter run length 8 to 48 hours; terminal head loss 6 to 15 ft.

Unit Process Reliability- Dual media filtration systems are very reliable from both a process and unit stand-

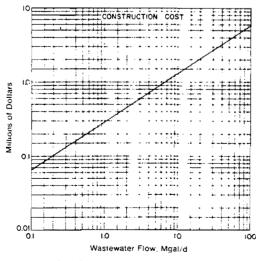

Environmental Impact - Requires relatively little use of land. Backwash water will need further treatment, with an ultimate production of solids which will need disposal. Air scour blowers usually need silencers to control noise. No air pollution generated.

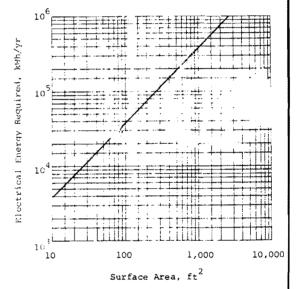
References - 23 26, 39, 44, 99

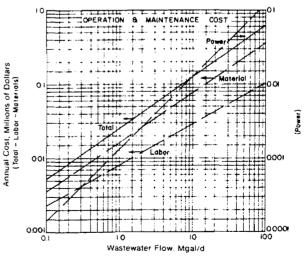
FILTRATION, DUAL MEDIA

FACT SHEET 3.1.7

FLOW DIAGRAM -




ENERGY NOTES - If sufficient head available, no
influent pumping required. However, usually a feed
pump is employed to provide necessary head.
Assumptions:


- Gravity filters @ 4 gal/min/ft²
 - a. TDH for backwash and feed pumps 14 ft
 - b. Run length= 12 h; 15 min backwash 3 15 gal/min/ft²
- c. Pump efficiency 70%; motor efficiency, 93%
- 2. Centrifugal pumps

COSTS* - Assumptions: ENR Index = 2475

- Same as above, with air scour assist for backwash
- Backwash holding tank = capacity of two backwash cycles.
- Construction cost includes facilities for backwash storage, all feed and backwash pumps, piping, and building.
- 4. Power at \$.02/kWh.
- 5. Labor at \$7.50/h, including fringe benefits.

REFERENCES - 3, 4, 39

*To convert construction cost to capital cost see Table A-2.

Corrosion lining costs, worst case

For 1 MGD,

Assume two filters, 23' sq x 6' deep, ea

Total wall area = $(23 \times 6) \times 8 = 1104 \text{ ft}^2$

Total floor area = $(23 \times 23) \times 2 = \frac{1058}{2162} \text{ ft}^2$

For 10 MGD,

Assume four filters, 74' sq x 6' deep, ea

Total wall area = $(74 \times 6) \times 16 = 7104$

Total floor area = $(74 \times 74) \times 4 = \frac{21904}{29000}$ sq ft

Lining costs, use \$10/SF

Double costs to account for lining backwash storage tank

Corrosion lining costs, best case

For 1 MGD,

Assume two filters, 14' sq x 10' deep, ea

Total wall area = $(14 \times 10) \times 8 = 1120 \text{ ft}^2$

Total floor area = $(14 \times 14) \times 2 = \frac{392}{1512} \text{ ft}^2$

For 10 MGD,

Assume four filters, 30' sq x 10' deep, ea

Total wall area = $(30 \times 10) \times 16 = 4800$

Total floor area = $(30 \times 30) \times 4 = \frac{3600}{8400} \text{ ft}^2$

Lining costs, use \$5/SF

Double costs to include backwash storage tank

1) Horsepower requirements for blowers

Headloss through activated carbon by air

Superficial Velocity fpm	Headloss in. of water per foot of bed
10	2
20	4.2
50	11.5
100	28

Air Flow	Media	Velocity	H _L ,	H _{T.}	HP		
cfm	Area ft ²	fpm	Media	Water Flow	Total*	psi	
750 7500 1500 15000	347 3470 1080 10800	2.2 2.2 1.4 1.4	2 2 0.5 0.5	60 60 20 20	64 64 21 21	2.4 2.4 0.8 0.8	10 100 10 100

^{*}Assume underdrain headloss = 2 x media H_I

2) Annual power cost for blowers

kw*	kwh/yr**	\$
10	87600	5700
100	876000	57000

*Assume: 90% motor eff.

85% power factor

.. 1 HP ≅ 1 kw

^{**24} hrs/day, 365 days/yr

Table D-1. Summary of capital costs for sulfur dioxide disinfection systems. $\!\!\!\!\!\!^{\star}$

		Rect	t Case	Worst Case	
	Unit	1 MGD (\$)	10 MGD (\$)	1 MGD (\$)	10 MGD (\$)
1.	SO ₂ Equipment including installation	20,000	20,000	20,000	20,000
2.	Absorption Tower complete w/fan a. Equipment b. Installation	22,983 4,596	190,561 38,112	28,728 11,491	
3.	Contact Basin (30 min) a. Materials including lining b. Installation, miscellaneous	16,169 4,850	150,080 45,024	30,518 15,259	
4.	Pumps a. Absorption tower pump	3,000	3,000	3,000	3,000
5.	Oxidation Process, complete	687,100	3,352,600	1,065,200	5,393,200
6.	Lime Process a. Equipment b. Installation	46,250 9,250	1	75,050 37,525	
SUBTOTAL		\$814,198	\$3,887,637	\$1,286,771	\$6,296,386
7.	Electrical & Piping	162,840	777,527	312,693	1,574,096
TOTAL CAPITAL**		\$997,000	\$4,665,000	\$1,608,000	\$7,870,000

^{*}Nielsen, Maxwell & Wangsgard-Montgomery. 1981. Preliminary report for sulfur dioxide disinfection pilot plant. ** Values rounded to nearest \$1,000.

Table D-2. Summary of 0&M costs for sulfur dioxide disinfection systems excluding SO_2 oxidation.

Item	Best Case		Worst Case		
	1 MGD (\$)	10 MGD (\$)	I MGD (\$)	10 MGD (\$)	
Chemicals	15,464	154,640	57,904	579,040	
Power	7,457	81,936	12,752	134,857	
Maintenance	3,049	12,841	8,309	33,869	
Labor	3,300	4,620	5,665	25,800	
Σ Ο&Μ	\$29,270	\$254,037	\$84,630	\$773,566	