

BUILDING THE HST/WFC3 FLUX CALIBRATION LADDER

Susana Deustua & Ralph Bohlin Space Telescope Science Institute Baltimore, MD

CALCON 2013 Logan, UT

Building the HST/WFC3 Flux Calibration Ladder

In 2009, the Wide Field Camera 3 (WFC3) was installed in the Hubble Space Telescope during SM4. WFC3 is a panchromatic instrument, covering the wavelength range between 0.2 to 1.7 microns with a UVIS and an IR channel. Observing modes available are direct imaging and slitless spectroscopy, with options to 'stare' and 'scan' during exposures. We have established the photometric stability to be $\sim 0.5\%$, and the relative photometry to approximately 1 –5% depending on wavelength. However, the absolute flux calibration has larger, unknown uncertainties. Thus, the goal of the Photometric Flux Calibration Ladder is to provide increased accuracy of the zeropoint measurements, improve characterization of photometric uncertainties, provide high accuracy color corrections as well as monitor sensitivity trends in both the UVIS and NIR channels. Our aim is to develop a calibration ladder from the brightest standard star(s), e.g Vega, to the faintest to improve the absolute photometric calibration and cross-calibration of the observing modes now available for grism spectroscopy and direct imaging. The source list consists of stars observed with STIS, ACS, NICMOS, SPITZER/IRAC, and some of the proposed JWST calibration standards. Brightness spans the range from V = 0 -17 mag, and J=0-15 mag. Stellar spectral types include white dwarfs, A, G, as well as K and M stars.

I will discuss our efforts to provide an absolute, above the atmosphere, calibration of Vega, including the challenges to achieving a 1% absolute calibration of the HST/WFC3.

Hubble Space Telescope

- 3
- 200 miles above Earth
- 90 minute orbit
- 5 active instruments: COS, STIS, ACS, WFC3, FGS
- □ MAMAs, CCDs, HgCdTe.
- imaging, grism and long slit spectroscopy
- total wavelength
 coverage: 0.1 to 1.7
 microns
- 8700+ research papers

Wide Field Camera 3

Science Cases

5

for relative photometry:

- detection of transiting planets
- stability of solar flux
- effective temperature of stars

for absolute flux:

- supernova cosmology
- fundamental stellar

parameters – mass,

distance, size

 cross-calibration of bandpasses, instruments

Flux Dynamic Range

Challenge: managing uncertainties

from 'NIST' to Source

 $E(\lambda)_{celestial-source} = \frac{S(\lambda)_{celestial-source}}{S(\lambda)_{SI-source}} \times E(\lambda)_{SI-source}$ $\sigma_{celestial-source}^{2} = \sigma_{SI-source}^{2} + \sigma_{measurement}^{2}$

But in reality we get this:

$$\sigma_{celestial-source}^{2} = \sigma_{nist}^{2} + \sigma_{primary}^{2} + ... \sigma_{etc}^{2}$$

Sources of Uncertainty

- flatfields
- persistence (IR)
- wavelength calibration
- color (spectral energy distribution)
- stability
- linearity

11 Vega and the WFC3 Flux Calibration Ladder

SI-traceable photometric calibration i.e. absolute flux in W-m⁻² Improve photometric uncertainties Absolute flux uncertainites < 5% Relative flux uncertainties < 1% Identify and characterize photometric

uncertainties Flat field effects

Position dependence of response functions

Flux Calibration Ladder

STARE MODE

SCAN MODE

Object	Ca	libration Method	Error	References			
Mars	Direct	Blackbody		Sinton & Strong (1960) Rieke, Lebofsky & Low (1985			
planet	Direct	Transfer standard		Neugebauer et al. (1971) Wieland et al. (2011)			
Sirius	Direct	Blackbody, Emissive Spheres	<1%	Price et al. (2004)			
A1 V star	Indirect	Stellar Atmosphere Model		Cohen et al. (1992)			
Sun G2 V star	Direct	Radiometers, Pyrometers, Lamps		Thuillier et al. (2003)			
Vega	Direct Blackbodies, Lamps		$\sim 10/100/$	Megessier (1995)			
A0 V star	Indirect	Infrared Flux Method	- 6%	Leggett 1985			
G191B2B DA WD	Indirect	Stellar Atmosphere Model	~1-2%				
GD 71 DA WD	Indirect	Stellar Atmosphere Model	~1-2%	Bohlin et al. (1995)			
GD 153 DA WD	Indirect	Stellar Atmosphere Model	~1-2%				

Standard Stars

Name	Status	HST		SPITZ	ZER	OTHER
Vega (α Lyr)		STIS				MSX, ACCESS, NISTStars
HD18069			IRAC	prima	У	JWST
G191B2B	primary	STIS & NICMOS	IRAC			JWST
HD37725			IRAC	secon	dary	JWST, ACCESS
GD71	primary	STIS & NICMOS				JWST
HD 93521		STIS				ACCESS
GD153	primary	STIS & NICMOS				JWST
P177D (GSC 03493-00432)		STIS & NICMOS				
SNAP2 (2MASS J16194609+5534178)	secondary	STIS & NICMOS				2MASS, SDSS, JWST
P330E (GSC-02581-02323)	secondary	STIS & NICMOS	IRAC,	MIPS		
VB8 (GJ 644 C)	secondary	STIS & NICMOS				
WD1657+343	secondary	STIS & NICMOS				SDSS
LTT 15209	secondary	STIS & NICMOS				
KF06T2 (2MASS J17583798+6646522)		NICMOS	IRAC	prima	У	
180227 (2MASS J18022716+6043356)	secondary	NICMOS	IRAC,	IRSB	secondary	2MASS, JWST
HR 7018			IRS s	econda	ary	
LDS749B (EGGR 145)	secondary	STIS & NICMOS	IRAC			JWST
[HMT98] AS-36-4						ARNICA
2MASSJ23122061+1046340						2MASS

Standard Stars

Namo	Sn	PA(12000)		D	V	1 ²	ц ²	K ²
Nanc	Type	(+/-0 1")	(+/-0 1 [°])		v	J		
Vega	A0V	1:3:56.3364	38:47:1.28	0.03	0.03	-0.18	0.03	0.13
(a Lyr)								
HD18069	A3 IV	02:53:46.9820	-16:03:22.90	10.21	9.89	9.602	9.539	9.534
G191B2B	DA	05:05:30.6128	+52:49:51.96	11.44	11.69	12.543	12.669	12.764
HD37725	A3	05:41:54.3707	+29:17:50.93	8.51	8.35	7.953	7.915	7.902
GD71	DAw	05:52:27.6100	+15:53:13.80	12.783	13.032	13.728	13.901	14.115
HD 93521	09V	10:48:23.5114	+3:34:13.09	6.79	7.03	7.499	7.647	7.696
GD153	DA1.5	12:57:2.3370	+22:01:52.68	13.17	13.40	14.012	14.209	14.308
P177D	Gν	15:59:13.5700	+47:36:41.90	13.963	13.356	14.495	14.81	14.884
(GSC 03493-00432)	.			17.00	10.00	44.07	44.50	
SNAP2 (2MASS 116104600, 5524178)	Gν	16:19:46.1110	+55:34:17.82	17.09	16.23	14.97	14.59	14.49
(2MASS J10194009+5554176) P330E	G2 V	16-31-33 8200	+30.08.46.50	12 972	12 917	11 760	11 / 5/	11 370
(GSC-02581-02323)	02 V	10.51.55.0200	100.00.40.00	12.572	12.017	11.705	11.454	11.575
VB8	M7 V	16:55:35.2900	-08:23:40.10	18.7	16.70	9.776	9.201	8.816
(GJ 644 C)								
WD1657+343	DA	16:58:51.1200	+34:18:53.30	16.12	16.15			
LTT 15209	G1V	17:32:0.9925	+3:16:16.13	7.21	6.56	5.342	5.076	4.998
KF06T2	K1.5 III	17:58:37.9900	+66:46:52.20	15.1	14.2	11.899	11.273	11.149
(2MASS J17583798+6646522)								
180227	A2V	18:02:27.1700	+60:43:35.70	12.0	11.985	11.872	11.850	11.832
(2MASS J18022716+6043356)	401/	40.07.00.5004		5 000	5 7 10	5 705	5 770	5 750
HR 7018	AUV	18:37:33.5001	+6:31:35.72	5.690	5.740	5.725	5.773	5.753
LDS/49B (ECCB 145)	DB	21:32:16.2400	+00:15:14.40	14.634	14.674	14.894	15.050	15.217
(EGGR 143) [HMT08] AS 36.4		21-52-25 5000	+02-23-35.00			45.04	44 700	44 544
2MASS 123122061+1046240		23:12:20 6200	+02.23.33.00	10.5		15.31	14.769	14.514
2101A33323122001+1040340	00	23.12.20.0200	+10.40.34.00	19.5		15.064	14.403	14.225

Strategy

- Obtain spectra from UV to IR
 - STIS between 0.2 -1.0 microns
 - WFC3/IR between 0.8 -1.65 microns
 - Scan mode for brightest stars in WFC3/IR
- Photometry:
 - WFC3/UVIS and WFC3/IR
- Cross check photometry with spectroscopy
- Stars are observed in more than mode
- Select stars for
 - SI traceability— Vega
 - Cross-calibration with space and ground
 - Spectral type range: Improve color corrections
 - Brightness range: Minimize non-linearity effect

Spectral Scan Positions on the Detector

18

Grism orders from right to left are +2nd, +1st, 0th, -1st and -2nd. Left: 0th, -1st, -2nd. Slivers of the +1st on the right edge, and -3rd on the left edge are visible. Center: +1st, 0th, -1st and -2nd orders. Right: +2nd, +1st, 0th and -1st orders are visible. The 0th, +1st and +2nd orders are saturated

Planetary Nebula Vy 2-2

F₃(erg cm⁻² s⁻¹ Å⁻¹)

Wavelength calibration

Adopted updated wavelength identification of IC 5117 by Rick Rudy (private communication).

Figure from Rudy et al, 2001, AJ 121, 362

Planetary Nebula IC 5117

22

23

-1st orders of the G141 and G102 WFC3 IR grisms. G141: Paschen β is the dip at -1.28 microns, and the series of features between 1.6 and 1.7 microns are Br 13,12, 11. G102: Pa γ is just visible at 1.09 microns, and Pa δ at 1.05 microns.

-1st order spectra in G141 coadded at each scan position, after dark subtraction, flatfielding, dispersion correction and rectification.

Sensitivity Function

1.7

1.7

Operated for NASA by AURA

Current and Planned Experimenters of for NASA by AUR

- NISTstars , ground based, SI traceable (PI C. Cramer)
 - $\square =>$ high precision & accuracy, visible
- ALTAIR suborbital payload, SI traceable, laser (PI J. Albert)
 - (Yorke Brown's talk on Monday)
- ACCESS rocket, SI based (PI M.E. Kaiser)
 - high precision, calibration accuracy of 1%, 0.35-1.7µm bandpass.

Lidar and GPS systems to measure atmospheric properties

AESOP (UNM) & gps systems TAMU

=> improved atmosphere models e.g. MODTRAN

Summary

- Vega can be observed with HST in the NIR
- Provides 'above the atmosphere' spectral data

To do:

- improve sensitivity function
- resolve SED differences
- determine error budget