
Utah State University
DigitalCommons@USU

Undergraduate Honors Theses Honors Program

5-2010

Diffusion Monte Carlo Studies of Quantum
Solvation: Finding Nodal Functions of
Wavefunctions Using a Genetic Algorithm
Christina Hansen Howell
Utah State University

Follow this and additional works at: http://digitalcommons.usu.edu/honors

Part of the Chemistry Commons

This Thesis is brought to you for free and open access by the Honors
Program at DigitalCommons@USU. It has been accepted for inclusion in
Undergraduate Honors Theses by an authorized administrator of
DigitalCommons@USU. For more information, please contact
becky.thoms@usu.edu.

Recommended Citation
Howell, Christina Hansen, "Diffusion Monte Carlo Studies of Quantum Solvation: Finding Nodal Functions of Wavefunctions Using a
Genetic Algorithm" (2010). Undergraduate Honors Theses. Paper 52.

http://digitalcommons.usu.edu?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/honorsp?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/honors/52?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:becky.thoms@usu.edu
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fhonors%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages


Diffusion Monte Carlo Studies of Quantum Solvation: Finding 
Nodal Functions of Wavefunctions Using a Genetic Algorithm 

 
 

by 
 
 

Christina Hansen Howell 
 

 
 

Thesis submitted in partial fulfillment  
of the requirements for the degree 

 
of 
 
 

HONORS IN UNIVERSITY STUDIES  
WITH DEPARTMENTAL HONORS  

 
in 
 

Chemistry with a Professional Emphasis 
in the Department of Chemistry and Biochemistry 

 
 
 

Approved: 
 
 
              
Thesis/Project Advisor     Departmental Honors Advisor 
Dr. David Farrelly                 Dr. Alvan Hengge 
  
 
 

 
Project Advisor      Director of Honors Program 
Dr. Vernon Parker     Dr. Christie Fox 

 
 
 

UTAH STATE UNIVERSITY 
Logan, UT 

 
Spring Semester, 2010 



ABSTRACT 
 

 Solvation is important in many chemical reactions since most reactions occur in solution. 

Recently, progress has been made using helium-4 nanodroplets as the solvent at temperatures 

close to absolute zero. Because helium-4 is a superfluid it solvates dissolved molecules much 

differently that does a conventional solvent. This opens up the possibility of performing new 

types of chemistry in the superfluid environment. However, the nature of the interaction of the 

dissolved species with the solvent remains poorly understood. The basic question to be answered 

in this project is: how does the quantum solvent perturb the rotational dynamics of the solute 

particles? In this project the dissolved molecule will initially be taken to be an HCN molecule. 

Its behavior as a function of the number of solvent He atoms will be studied. The approach taken 

is computational and employs the fixed-node quantum diffusion Monte Carlo method. A novel 

feature is the use of a genetic algorithm to determine the nodal structure of the rotational states of 

the solute molecule. 
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DEFINITIONS: 
     
Diffusion Monte Carlo (DMC):  A numerical method that is used to solve the Schrödinger 

equation. The  DMC is a quantum Monte Carlo method that implements a random walk 

algorithm to solve the Schrödinger equation and provides a way to obtain the ground state 

energy and ground state wave function. 

 
FORTRAN (Formula Translation): It is a high-level language meaning it uses English-like 

commands and instructions. It uses a complier to translate the FORTRAN program into a 

binary code that the computer understands. 

 
Microsolvation: The addition of solvent molecules one at a time to the reaction.  

 
Potential Energy Surface (PES):  Describes the energy of a molecule in terms of its structure. 

 
Schrödinger Equation:  Incorporates both wavelike behavior and particle-like behavior to 

describe the electron. Solving this equation yields wave functions known as mathematical 

functions that  describe the behavior of the electron. 

 
Solvation: Clustering of solvent particles around solute particles; interaction between the solvent  

 and the solute. 

 
Superfluid:  means a fluid with zero viscosity. Superfluids have all their atoms in the same 

 quantum state which allows all the atoms to have the same momentum, thus allowing 

 them to move without friction. 

 
Wavefunction:  probability patterns used to describe the motion of the electron; describes the  

 behavior of the electrons. 
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Section 1 – Background on Solvation 

 
 The mechanism how solvation affects the progress of a chemical reaction is an important 

research topic. This area in chemistry requires understanding for several reasons: 1) most 

chemical reactions take place in solution (i.e., liquid phase is used more frequently in organic 

chemistry and in living systems), 2) there are many solvent effects in chemistry systems, and 3) 

relatively little is known about the detailed dynamical mechanisms of solution phase reactions 

compared to gas-phase reactions.  

 Recently, solution phase reactions are becoming open to computational study and 

simulation in order to study solvent effects. Thus, the role of the solvent can be revealed by 

learning about the behavior of the reaction in the gas-phase [1]. Solvation can be found in 

organic systems such as the SN2 reaction all the way up to quantum systems. However, solvation 

in a quantum system behaves differently than in a classical system. 

 In a classical system, solvent particles cluster around the solute particles to separate the 

solute particles from each other. This process allows the solute particles to dissolve in the 

solvent. Solvation can have a large effect on the enthalpy, �H°, and the entropy, �S°, of a 

reaction. This can be  illustrated when a polar solvent solvates a polar reactant and the freedom 

of movement of the solvent molecules is reduced. Solvents also affect the rate of a reaction 

depending on its polarity and if one of the rate-determining reactants is charged [2]. An example 

of solvation affecting a classical system can be seen in an SN2 reaction.  

 The effect of solvation on SN2 reactions can be seen in the potential energy surfaces [3] 

and the dynamical mechanisms by microsolvation [4] (Figure 1). The generic chemical reaction, 

X- + RY  RX + Y-, represents an SN2 reaction. In figure 1, the R group in the generic SN2 

reaction is a methyl group. 
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The reaction barrier in the gas 

phase has a lower reaction barrier 

than the barrier in the solution 

phase. This is due because the 

charge in the transition state is 

delocalized over a smaller area; 

thus, charge localized ions are 

better solvated then charge 

delocalized ions. 

 
 
  

Figure 1. Gas-phase and solution phase potential energy 
surface for theSN2 reaction [3]. 

 

  Usually, a molecule dissolved in a liquid is not expected to rotate freely as it might in the 

gas phase. However, in an ultracold droplet of helium-4 atoms, coherent molecular rotation over 

many periods is possible and normal for helium-4 [5]. Helium-4 is unique since it behaves as a 

superfluid meaning a fluid with zero viscosity. Some other superfluid characteristics of helium-4, 

better termed superfluid phenomena, are an extremely high heat conductivity, He fountain, film 

flow and creep, and quantized vortices [6]. 

 Due to the superfluid nature of helium-4, this quantum solvent is a gentle solvent and works 

well for ultraclean nanolaboratories [6]. Although this helium-droplet matrix has many benefits, 

there is one shortcoming of the matrix which is an apparent increase in the moments of inertia of 

solvated molecules compared to their gas-phase values. This shortcoming is not quite understood 

and emphasizes the importance of understanding the dynamics of how molecules become 
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solvated in a small droplet of quantum solvent [5]. 

  The quantum system being studied in this project is an HCN molecule solvated by He 

atoms.  Because helium-4 is a superfluid it solvates dissolved molecules much differently than a 

conventional solvent and, thus, little is understood about the interaction of the solvent with the 

dissolved species.  The basic question to be answered is how would solvation affect a quantum 

system, and more specifically how does the quantum solvent perturb the rotational dynamics of 

the solute particles?   

 The question will be answered computationally by using diffusion Monte Carlo Studies 

that employs a fixed-node approximation and a genetic algorithm. Thus, the main result will be a 

theoretical understanding of solvent interactions. 
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Section 2 – Diffusion Monte Carlo 

 
 In 1926, Erwin Schrödinger, an Austrian physicist, formulated an equation that used both 

the wavelike and particle-like behavior of the electron to describe the behavior and energies of 

that submicroscopic particle called the Schrödinger equation (Equation 1 and Equation 2). Thus, 

quantum mechanics or wave mechanics was born. When the equation is solved, wave functions 

or mathematical functions are obtained that describe the electron’s behavior. Wave functions can 

be thought as probability patterns used to describe the motion of the electron. 

 

   
 
 

   

  

Equation 2. This is the time-independent 
Schrödinger equation for a one-particle, 
one-dimensional system. 

Equation 1. This is the time-dependent 
Schrödinger equation for a one-particle, 
one-dimensional system. 

 The time-dependent Schrödinger equation allows one to calculate the future wave 

function at any time as long as one knows the wave function at time t0. The probability of the 

electron’s location in an allowed energy state is found by the square of the wave function, �2. 

Thus �2 is known as the probability density or the electron density. 

 In a few idealized situations, the Schrödinger equation can be solved analytically. 

However, for situations that are not idealized or trivial, there are numerical methods that are used 

to solve the Schrödinger equation such as the Diffusion Monte Carlo (DMC) method. The DMC 

is a quantum Monte Carlo method that implements a random walk algorithm to solve the 

Schrödinger equation. 

 The Diffusion Monte Carlo (DMC) describes the ground states of quantum systems and 
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provides a way of evolving time into imaginary time to obtain a solution of the Schrödinger 

equation. Thus, the ground state energy and ground state wave function of the system being 

studied can be obtained. 

 The DMC can be formulated in 3 steps which are: 1) Imaginary time Schrödinger 

equation, 2) Monte Carlo Integration, and 3) Continuous estimate of the ground state energy and 

sampling of the ground state wave function [7].  

 

1) The first step expresses the time-dependent Schrödinger equation as a series 

expansion in terms of the eigenfunctions of the Hamiltonian. This is followed by the 

transformation of real time to imaginary time by introducing t = i�. The solution of the 

imaginary time Schrödinger equation is expressed as a series of transients in which 

the longest transient relates to the ground state of the system. 

 

2) The second step uses “replicas” which are imaginary particles. The wave function is 

calculated through diffusive displacements and birth-death processes applied to the 

replicas. These replicas are distributed in the space of the system and the replicas 

converge to the probability density which represents the ground state wave function. 

These diffusive displacements are done by the computer using random number 

generators. 

 

3) The third step involves sampling the wave function after each time step. The replicas 

provide an approximate to the wave function and the ground state energy of the 

system at any given time. First, one begins with an estimate of the ground state 
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energy, and by using the replicas the estimate is improved by the diffusive 

displacements and birth-death processes. Eventually the estimate converges to the 

ground state energy and the distributed replicas converge to the wave function. 

 

 The steps used to formulate the DMC method are used to write a working code for the 

system being studied. Figure 2 represents the series of steps that are taken in the DMC algorithm. 

Briefly, the DMC algorithm will be discussed.  

 After defining the parameters that will be 

used in the computer program, one initializes the 

replicas. Upon initializing the replicas, the code 

enters a loop containing three routines: walk, 

branch, and count. A test is done after the routines 

to determine if the replica should be kept, copied, 

or killed. Once the test indicates good results, then 

the ground state energy is obtained. 

 

Figure 2. This is a representation of 
the DMC algorithm by a flow diagram 
[7]. 
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Section 2.1 Rigid Body Diffusion Monte Carlo  

 

 Due to the large disparity in the strengths of the intramolecular and intermolecular 

interactions the molecules can be treated as rigid bodies (rigid body DMC) [5,8]. In rigid body 

DMC (Equation 3) excited rotational states can be computed using the fixed-node method [9]. 

 

         

Equation 3. Rigid Body 
DMC equation. 

One of the biggest challenges all DMC methods face is how to calculate excited states since in 

the fixed-node implementation of DMC the nodal surfaces must be known in advance. 

 

  

 Treating HCN-He as a rigid rotor is depicted in 

Figure 3.  The Cartesian Coordinates are used for the 

center of mass for the rigid rotor and the solvent atom. 

The rotations are done around the principal axes of the 

rigid rotor. 

  

 
Figure 3. Diffuse rotations around 
space-fixed axes.   
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Section 2.2 Nodes 

 

 The probability density or the square of the wavefunction, �, provides information about 

the electron orbitals. Thus, the probability density ultimately gives the probability of finding an 

electron at a given point in space. When the probability density is zero, this point is called a 

node, meaning that there is zero probability of finding the electron in that space (Figure 4). 

  

  
Figure 4. Example of a node that is located at the origin of the 
coordinate system. The green and blue regions indicate regions 
where there is a probability of finding an electron there. 

 

 

 

 The node of a system must be known in order to know the wavefunction; thus, the most 

immediate problem is how to obtain estimates of the nodal surfaces of unknown excited state 

wavefunctions. In rigid body DMC excited rotational states can be computed using the fixed-

node method.  

 The fixed-node approximation in DMC is based on the knowledge that the wavefunction 

goes to zero when it approaches an infinite potential barrier or a node [9]. This approximation 

allows one to compute excited state levels by imposing a predefined nodal surface. A rejection 

step in the approximation method is used in order to reject, or kill, any walkers that cross the 

nodal surface and, thus, making those rejected walkers retain their previous position. 
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Section 2.3 Using a Genetic Algorithm to Find Nodes 

 
 Generic algorithms (GA) are a part of what is known as evolutionary computing meaning 

that a solution to a problem solved by genetic algorithms is evolved. It was inspired by Darwin’s 

theory about evolution which is why GA mimics the biological processes of natural selection and 

reproduction [10]. Natural selection refers to how certain members of a population, with traits 

that make them more likely to survive, are able to successfully reproduce yielding a new 

population with members of that common trait.  

 Before a GA is used, the parameters of the system being studied are encoded into a string 

of binary digits that is referred to as the population. Once this step is done, the GA is applied to 

the population (see Figure 5). 

 

 

Figure 5. This is a visual 
representation of the GA. The 
GA has five basic steps: 1) 
initial populations are designed, 
2) the fitness of each population 
is evaluated, 3) a new population 
referred to as the offspring is 
created from two parent 
populations, 4) the new 
population is replaced into the 
existing population, and 5) the 
offspring populations are tested 
[11]. 

  

 

Page 15 of 26 
 



A genetic algorithm follows this basic outline [12]: 

1) Initial design populations are generated or created. These need to be suitable 

solutions for the problem being studied. 

2) Evaluate the fitness of each population. 

a) The fitness is determined by the specifications of the problem and 

measures the success of the population in life. In nature, organisms that 

have a low chance of reproducing have a low fitness while organisms with 

a high chance of reproducing have a high fitness. Thus, in GA the fitness 

of each population or string refers to how well each population will be at 

reproducing a new population.  

3) Create a new population by repeating the following steps: 

a) Select 2 parent populations according to their fitness 

i. Only high fitness populations will be selected since they have the 

greatest probability of producing offspring that will be more 

successful than the previous generation. Two high fitness strings 

create a new population or offspring by exchanging parts of their 

binary digits that make up their strings. 

b) Crossover  

A crossover is a basic operator of GA. Below is an example of single-

point crossover.  

 

 

 

Parent B Parent A Offspring 

+ 
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This means that one point on the binary string is selected and is where the 

beginning of the string up to the point from parent A is kept and the 

remaining part from the point to the end is supplied by parent B for the 

offspring. 

c) Mutation   

A mutation refers to when one of the bits, either the 0 or the 1, is inverted 

to the other digit. This idea is represent below where the last red segment 

is mutated to a blue segment. 

 

 

 

 

Offspring Parent A 

d) Accepting  

Accepting refers to how the offspring is placed into the new population. 

4) Use the newly generated population for a further run in the algorithm 

5) Test the new populations and if the end condition is satisfied then stop. 

a) If not, repeat again starting at step 2. 

i. New populations will be continued to be pursued until the success 

of the next population does not significantly improve from the 

previous population. 

 
 GA works by fitting a cubic spline through the guessed points to map where the node is 

located. Eventually, the energies on each side of the node should be the same [9]. This is 

represented by a fitness function: E1 – E2 = 0. 
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Section 3 – Quantum Solvation of He-HCN 

 

 Understanding how solvation affects the dynamics of a chemical environment is an 

important research topic because relatively little is known about the solution phase dynamics 

compared to gas-phase dynamics. A molecule dissolved in a liquid is not normally expected to 

rotate freely as it might in the gas phase. However, in ultracold 0.37 K droplet of helium-4 

coherent molecular rotation over many periods is not only possible, it appears to be the norm. 

 Helium is a unique substance since it exists as a liquid at absolute zero. Below 2.17 K 

helium-4 behaves as a superfluid, meaning a fluid with zero viscosity. Because superfluids have 

all their atoms in the same quantum state, the atoms all have the same momentum allowing them 

to move without friction. 

 Nanodroplets of helium-4 contain anywhere from a few to thousands of atoms (Figure 6). 

These nanodroplets can easily pick up atoms or molecules and form complexes with them on the 

surface or in the interior [13]. Helium-4 nanodroplets are considered to be the ultimate 

spectroscopic matrix since they exhibit little matrix broadening [14]. 

 

  

Figure 6.  Helium nanodroplets can 
contain up to several thousand atoms. 
Shown here is a NO molecule 
surrounded by helium atoms [15].  
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 Due to the superfluid properties, helium-4 nanodroplets offer the potential to be ultracold, 

ultraclean nanoreactors or microscopic cryogenic chambers where new chemical species can be 

synthesized and characterized, high-resolution spectroscopy of van der Waals complexes can be 

performed, complexes of biomolecules can be created, reaction intermediates or precursors can 

be isolated, chemical reactions can be monitored, and the nature of superfluidity in finite-sized 

systems can be studied [5].  

          Using helium-4 as a solvent allows the possibility to perform new types of chemistry in a 

superfluid environment since it solvates dissolved molecules differently [16].  The solute 

molecule in this project is an HCN molecule and its behavior will be studied as the number of 

solvent He atoms are added. The interaction of the solute and solvent will be investigated using 

computational methods such as the DMC method and a genetic algorithm. 
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Section 3.1 – DMC versus Exact Results 

  

 Obtaining He-HCN energy (cm-1) for the ground state level by DMC produces fairly 

reasonable results. However, DMC is not a good approximation to the level (1,0,1) (Table 1). 

This is because the rigid rotor nodal surface is a poor approximation to the true node (figure 7). 

Thus, using DMC along with the genetic algorithm is a better approximation to the true node. 

 

 

 

 

 

 

 

Figure 7. Density maps of |�(a),(b)(r)|2 for the HCN–He 
binary complex. Panels (a)–(d) are obtained from 
matrix diagonalization and panels. In (a) and (b), � =0. 
The densities have all been scaled to have a maximum 
value of unity. In color: the color bar shows the range of 
density values and applies to all four frames [5]. 
 
 

Level (j,l,J) Close Coupling DMC 

(0,0,0) -8.867 -8.87 ± 0.20 

(1,0,1) -5.554 -6.38  ± 0.22 

 

Table 1. He-HCN Energies (cm-1 ).  
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 The genetic algorithm finds a family of nodes. It can be seen that the He-HCN energy 

from the DMC-GA node is in better agreement with exact results than the DMC node (Figure 8, 

Table 2). Future work will concentrate on improving the fitness function to get better global 

agreement with the true node. 

 

 

Level (j,l,J) Close 
Coupling 

DMC-GA 
Node 

(1,0,1) -5.554 -5.55 ± 0.25 

Table 2. Comparison of exact and GA 
energies. 
 

Figure 8. GA node. Preliminary 
results indicate that the genetic 
algorithm node is fairly close in 
agreement with the true node.
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Section 3.2 – Summary and Conclusions  

 

 One of the main goals of this project was to develop a method of finding nodal functions 

of wavefunctions using a genetic algorithm with the DMC method. Finding nodal functions can 

be time consuming so having a new method that finds them quicker is extremely important. The 

system He-HCN is just an example that was used to determine the accuracy of this developed 

method.   

 In order to solve the Schrödinger equation for the He-HCN system, a numerical method 

called the Diffusion Monte Carlo (DMC) is employed. DMC solves the Schrödinger equation by 

implementing a random walk algorithm to obtain the ground state energies and ground state 

wavefunction of the system. To understand more about the system, the excited state energies and 

wavefunction are investigated.  

 In rigid body DMC excited rotational states can be computed using the fixed-node 

method. However, the node of the system must be known in order to know the wavefunction; 

thus, the most immediate problem is how to obtain estimates of the nodal surfaces of unknown 

excited state wave functions. The fixed-node approximation allows one to compute excited state 

levels by imposing a predefined nodal surface.  

 In the previous section, it was shown that using just the DMC method to calculate the 

ground state energy of He-HCN is quite accurate. On the other hand, using the DMC method to 

calculate the excited state energy of He-HCN is not a good approximation (Table 3). To improve 

this approximation, the genetic algorithm was used to determine the nodal structure of the 

rotational states of the solute molecule and to help understand the nodal topology better. The 

DMC-GA method proved to be quite effective considering how accurate it came to the actual 

excited state energy of He-HCN system (Table 3). 

Page 22 of 26 
 



 
Level (j,l,J) Close Coupling DMC DMC-GA 

(0,0,0) -8.867 -8.87 ± 0.20 N/A 

(1,0,1) -5.554 -6.38  ± 0.22 -5.55 ± 0.25 

 

 

 

  

Table 3.  Summary of 
the He-HCN energies 
using the DMC and 
DMC-GA method. 

  

 The idea behind the DMC-GA method is fitting a cubic spline through guessed points by 

the genetic algorithm to map where the node is located. It is proposed that the energies on each 

of side of the node should be same since the number of walkers initialized on one side of the 

node should equal the same number of walkers initialized on the other side of the node. To see if 

this method works, it was used on the system He-HCN where the excited state energies were 

already known. From the results presented in Table 3, it can be seen that the DMC-GA method 

does provide a reasonable nodal function for the system. This method will be applied to other 

systems already studied to see how accurate it can obtain the nodal function before it is applied 

to systems with unknown excited state energies and wavefunctions. 
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