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ABSTRACT 

Decision Analysis Considering Welfare Impacts in Water  

Resources Using Benefit Transfer Approach 

 
by 

 
Ashraf A. Shaqadan, Doctor of Philosophy 

Utah State University, 2008 

 
Major Professor: Dr. Jagath Kaluarachchi 
Department: Civil and Environmental Engineering 
 
 

Decision making in environmental management is faced with uncertainties 

associated with related environmental variables and processes. Decision makers are 

inclined to use resources to acquire better information in one or more uncertain 

variable(s). Typically, with limited resources available, characterizing the feasibility of 

such investment is desirable yet complicated.  

In the context of reducing inherent uncertainty, decision makers need to tackle 

two difficult questions, first, the optimal selection of variable(s) and second, the optimal 

level of information collection which produces maximum gain in benefits.  

We develop a new framework to assess the socioeconomic value of potential 

decisions of collecting additional information for given variable(s) to reduce inherent 

uncertainty. The suggested framework employs advanced social welfare concepts to 

facilitate eliciting the social acceptability of decisions to collect better information. The 
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framework produces estimates of changes in utility levels and willingness to pay for 

target population using the benefit transfer method.     

The practicality of the framework is established using the following common 

problems in the field of water resources: 1) the uncertainty in exposure to health risk due 

to drinking a groundwater source contaminated with a carcinogen, 2) the uncertainty in 

non point source pollution loadings due to unknown hydrologic processes variability, and 

3) the equity level in allocating mitigation responsibilities among polluters. For the three 

applications, the social acceptability of potential decisions is expressed in monetary terms 

which represent an extension on typical cost benefit analysis by including the 

socioeconomic value of a decision. The specific contribution of this research is a 

theoretical framework for a detailed preliminary analysis to transform and represent the 

given problem in useable terms for the social welfare analysis. The practical framework 

is attractive because it avoids the need to employ prohibitively expensive survey-based 

contingent valuation methods.  Instead, the framework utilizes benefit transfer method,  

which imposes a theoretical behavioral structure on population characteristics such as age 

and income and to produce empirical estimates for a new problem setting.  

 (178 pages) 
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CHAPTER I 

INTRODUCTION 

General Introduction 

In general the decision making process in water resources problems aims to 

achieve the following goals: (1) reduce the uncertainty level in inputs of a given problem 

to characterize the damages more accurately and ultimately help reducing the impact on 

the recipient,  and (2) to reach mitigation goals with the least possible cost to the 

polluters.   

In all cases, decisions in water resources management have economic and welfare 

implications at the community and the individual levels. The typical benefit-cost analysis 

approach fails to evaluate such impacts which are critical factors to determine 

sustainability and success of any regulation or policy that affects individuals’ welfare.   

Uncertainty in environmental system management stems from data scarcity, often 

manifested as risk to the environment and population (Yokato and Thompson, 2004). The 

decision-making process must include an assessment of uncertainty. In environmental 

management problems, reducing uncertainty provides the basis for decision-making 

under risk, which is translated ultimately to measurable outcomes such as public health 

and economic consequences. Typically, health or environmental risk due to inputs 

uncertainty may be large enough to impact the decision-making process. Because 

resources are scarce and the society has to make choices and spending on additional 

information should be viewed as a tradeoff problem with other competing needs. 
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Therefore, the evaluation of welfare benefits of reducing uncertainty through acquiring 

additional information is a key component of decision-making.   

In the context of uncertainty reduction, the value of information analysis (VOI) 

arises as suitable approach to estimate welfare impact of a considered decision 

(Mowshowitz, 1991).  

The VOI approach estimates the change in expected “utility” as a result of a 

decision of acquiring additional information in a given uncertain environmental property 

(Hirshleifer, 1971). In this context, if the social value of information exceeds the costs of 

its acquisition, it is worth seeking. The VOI analysis approach provides guidance in risk 

management since it allows reducing uncertainty and therefore the risk by directing 

information gathering efforts to the most profitable and socially acceptable manner 

(Yokato and Thompson, 2004).  

Protection of groundwater resources from contamination is a major environmental 

concern due to its impact on public health (Maxwell et al., 1998). Water problems affect 

many functions of the society including environmental and economic functions. 

Therefore, a broad view of water quality problems with different types of information 

needs should be considered. Remediation of polluted groundwater resources requires 

Long Term Monitoring (LTM) to characterize and track plume migration. Plume 

characterization involves the use of spatially dispersed measurements of contaminant 

concentrations at critical locations of the domain where no prior measurements are 

available. The typical goal of LTM is to provide sufficient number of samples to 

characterize the plume at all times with acceptable confidence. Besides the high costs of 

well installation, sampling and maintenance, the non-traditional benefits of LTM such as 
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as protecting groundwater resources and individuals’ health requires an approach that 

extends beyond typical benefit-cost analysis to elicit societal value for this kind of 

benefits.  

An additional challenge to water resources management is the Non-Point Source 

pollution (NPS) of water bodies. Water quality problems remain a challenge in many 

regions of the nation (US EPA, 2002). Nutrient rich runoff is the most widespread 

pollution source; it affects about half of the impaired lake areas and about 60% of the 

impaired river reaches (Carpenter et al., 1998). The increased loading of nutrients causes 

eutrophication of water bodies which degrades the health of fish habitats, and even 

increases water treatment costs (US EPA, 2003; Poor et al., 2001). In NPS pollution 

management; decisions are based on water quality sampling programs with various 

spatial and temporal resolutions. Typically, decision-makers observe random signals of 

nutrient loading to a water body at discrete points in time at a given sampling interval. 

The discrete data points are used to estimate the annual NPS pollutant loadings which 

provide the basis for policy evaluation. In the context of data collection; an assumption of 

constancy is implied where stability in pollutant releases between samplings is assumed 

to validate the annual loading estimates. This assumption overlooks the impact of 

hydrologic variability and introduces uncertainty in pollutant loading estimations. This 

uncertainty imposes negative effects on mitigation efforts. Decision-makers tend to relate 

observed pollution to land use practices which translates to additional restrictions on the 

economic productivity of stakeholders due to misidentification of pollution sources. In 

this sense, the benefit of reducing uncertainty in NPS loading is two-fold: 1) it protects 

producers from additional economic losses due to imposing of costly overprotective 
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measures and 2) it protects against unexpected shock loads which cause unwanted 

consequences on related recreational activities such as fishing.  

Another persisting challenge to NPS pollution management is the issue of justice 

and social acceptability of NPS pollution reduction regulations such as TMDL. The 

TMDL application produces economic costs to polluters, therefore, the economically 

efficient allocation scheme is typically sought to minimize the overall cost of pollution 

control. The allocation of pollution control responsibilities among suspected parties is 

challenging due to the uncertainty associated with identifying the contribution of each 

source to the total load. For a pollution control policy to be successful, it has to be 

socially acceptable by polluters. The social attitude towards the TMDL process has 

received researchers’ attention and several social acceptability measures are now 

investigated to alleviate some of these adverse effects (Chavas, 1994). As the TMDL 

application is becoming common across the US; its undesired social impacts such as 

inequitable allocation of mitigation responsibilities become more visible. 

The uncertainty in TMDL application is attributed to the difficulty of 

characterizing causal relationships between sources and observed pollution levels at the 

downstream due to the extensive information required to describe key processes such as 

the fate and transport, and hydrologic factors.  

The assessment of the socioeconomic impacts in water resources management 

decisions require using Contingent Valuation Methods (CVM) that are suitable for 

valuation of social non-market commodities. Today, most used CVMs are survey based 

and applied in a local and non-transferable manner to new setting. Assessment of social 

impacts using survey based CVMs is inherently difficult and often not feasible.   
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Research Objectives 

The goal of this dissertation is to enhance the typical benefit-cost analysis 

framework to assess societal value of decisions in water resources management.  A 

framework is developed to enhance the decision-making process by incorporating value 

of information, utility, and willingness-to-pay (WTP) such that a socioeconomic cost-

benefit analysis can be used for policy evaluation.  

The research objectives are:  

1. To develop a theoretical framework to estimate societal value of related input 

variables of a given problem. To develop the framework we will review the welfare 

assessment literature to elicit appropriate welfare concepts and measures and will select 

suitable econometric methods to link the state of the environment with social welfare 

measures such as utility and willingness-to-pay (WTP). 

2. To demonstrate the methodology applicability to common water resources 

applications. The selected applications involve assessment of related non-market 

commodities such as uncertainty in contaminated groundwater assessment, health risk, 

and pollutants loading to surface water bodies, and social acceptability of cost sharing 

policies.  For each application, a detailed practical framework is constructed and 

illustrated using example calculations.     

Research Motivations 

Stakeholders and decision makers in water resources are often faced with the need 

to perform benefit- cost analysis of alternative decisions to achieve an optimal outcome.  
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Decisions in the field of water resources management have significant welfare 

implications on affected population which is often ignored in typical cost benefit analysis 

due to the lack of feasible and practical assessment methods.    

This dissertation develops an extended benefit cost analysis framework that 

integrates welfare impacts in typical problems in water resources management.   

Research Contributions 

In general, this work addresses the problem of lack of feasible approach to 

estimate welfare impacts of decisions in water resources management.  

The specific technical contributions of this work are to expand benefit cost 

analysis by developing multi-disciplinary framework to quantify the welfare impacts in 

the following applications:  

First, reducing uncertainty in groundwater pollution management.  

Second, reducing risk of NPS pollution loadings due to uncertainty in hydrologic 

variability.   

Finally, estimating social acceptability of cost-sharing pollution reduction 

regulations.  

The integration of welfare impacts in benefit cost analysis is complicated. 

Therefore, the contribution of this dissertation is to develop the practical framework for 

selected applications in water resources. The selected applications are thoroughly 

discussed in terms of constructing the practical analysis framework and populating its 

components. During this process, several fields of research such as health risk and social 

welfare assessment are investigated and utilized.    
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Dissertation Organization  

This work is organized to represent the framework development process, 

consideration, virtues and limitations, and the practical implementation for each of the 

three applications in water resources management. Chapters I introduces the research and 

provide justification, and background about the research area.  

Chapter II provides a review of the related literature and describes the general 

concepts of value of information and non-market valuation methods. 

Chapter III presents the general framework that is considered to develop specific 

analysis framework for each application.  

Chapter IV details the specific framework development and application for 

reducing uncertainty in groundwater contamination due to unknown subsurface 

heterogeneity.    

Chapter V details the specific framework development and application to 

reducing error in NPS pollution loading due to hydrologic variability.  

Chapter VI details the extended framework development and application to 

integrate social acceptability in watershed level NPS pollution reduction regulation. 

Chapter VII summarizes the findings of the research, describes the limitations and 

presents conclusions and recommendations. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter reviews the basic concepts of the tools used to develop the research 

components of this dissertation. The Value Of Information (VOI) is the underlying 

principle to assess benefits of improved information collection to reduce health risk and 

error in pollution loading estimation in the first and the second applications. A major 

component of this work is selecting appropriate economic valuation method to quantify 

welfare impact of alternative decisions in the three applications. Therefore economic 

valuation methods are reviewed in this chapter.  

Value of Information 

The general framework of VOI is utilized in the context of uncertainty reduction 

in environmental parameters such as soil hydraulic conductivity and the amount of 

pollution generation from watersheds by considering alternative decisions for better 

information collection scenarios. Individuals may be willing to pay for information 

depending on the uncertain, and on what is at stake. They may be willing to pay for 

additional data or improved information as long as the expected gain exceeds the cost of 

information. In an expected utility maximization framework, VOI represents the 

difference between the expected utility of the optimal action given information available 

prior to collecting additional information assuming a linear or exponential utility function 
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and a risk-neutral decision-maker. A VOI analysis identifies the best information 

collection strategy as the one that yields the greatest net benefit.  

The general framework to assess VOI is described in several studies in the 

literature (Ward, Loftis, and McBride, 1986; Yokota and Thompson, 2004). In the 

context of uncertainty, we adopted the general framework described by Yokota and 

Thompson (2004). The expected value of information depends on the set of alternative 

actions, a, and on the benefit gained from adopting action a expressed using a set of 

uncertain parameter, s.  

Let u(a, s) denote the utility or welfare that results from choosing decision a. The 

expected value of perfect information (EVPI) represents the value of eliminating 

uncertainty fully (i.e., collecting information with perfect accuracy). Due to the 

impossibility of obtaining perfect information, realistic measures can be used; such as the 

expected value of sample information (EVSI). The EVSI evaluates the impact of given 

incremental information improvements which is defined as  

[ ] [ ]1 1 0 0max ( , ) max ( , )EVSI u a s u a s= −         (1) 

where u represents utility. The first term represents the maximum utility due to 

the better information decision scenario (a) which updates the parameter state to from s0 

to s1 (less uncertainty). The second term represents the expected utility associated with 

the base level of information.  

Typically, a VOI analysis involves modeling the available set of actions, prior 

beliefs about the uncertain inputs and about the accuracy of information collected, the 

consequences of actions given the true value of uncertain inputs, and the decision-
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maker’s preferences. The prior belief about the uncertain inputs and the accuracy of 

information collected must be characterized using probability distributions or empirical 

distribution functions. The analysis must quantify relevant consequences of actions from 

the perspective of the decision-maker and the monetary outcomes using a common metric 

(i.e. WTP in the context of VOI).   

A relevant issue is the marginal value of improvements in the accuracy of 

predictions. A greater accuracy generally increases the gain in welfare, but often at a 

decreasing rate.  Also, different levels of accuracy have different values to different users. 

Thus, from an economic impact perspective, there exists a set of optimal levels of 

accuracy that balances the value of a forecast with the cost of obtaining that level of 

improved accuracy. 

Concerns about the value of information or data worth are common in the 

literature (Borisova et al., 2005). Therefore, there is a need to assess the value of 

information for a given set of data before additional data are collected. A data worth 

analysis may provide guidance in risk management since it allows reducing uncertainty 

and therefore the risk by directing information gathering efforts to the most profitable and 

socially acceptable manner.  

Benefit Transfer Approach  

Economic valuation deals with the monetary estimation of non-traditional 

commodities that provide some welfare or utility for people and are not traded on 

markets. Different from normal commodities where prices indicate the demand on goods, 

non-market goods are not traded and do not have market prices. The Dupuit-Marshall 
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concept of economic value applies to such non-market commodities (Gowdy and 

Mayumi, 2001). The Dupuit-Marshall concept suggests that non-market commodities can 

be metered as the economic value of satisfaction from the item as the monetary amount 

which the person would be willing to exchange for the item if it is possible to make such 

an exchange. 

Contingent valuation methods are classified into revealed preference, where 

valuations are inferred from actual observations of choice behavior, and stated 

preference, where valuations are directly obtained from hypothetical statements of choice 

(Kolstad, 2004). The revealed preference methods include Hedonic pricing and Travel 

Cost methods. The stated preference methods entails presenting people with a 

hypothetical contingency scenario and are asked explicitly for what improved water 

quality is worth to them. The stated and revealed preference methods are acknowledged 

non-market techniques by the US federal agencies for conducting benefit/cost analysis 

and for environmental resources analysis (Loomis, 1996). Most CVM studies are costly 

which makes using CVM studies frequently unfeasible. A more efficient alternative is to 

use estimates from a study performed in a particular location to derive the benefits in a 

new location (Desvousges et al., 1992) which is referred in the economic literature as the 

Benefit Transfer Method (BTM).  

 Economic valuation using traditional CVMs is the “first-best” strategy in which 

needed information is collected. However, when primary research is not feasible, then the 

BTM emerges as a “second-best” strategy to evaluate management and policy impacts. 

The BTM is attractive compared to traditional CVMs because it does not require 

expensive and lengthy data collection (Desvouesges et al., 1992; Brouwer, 2000). The 
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benefit transfer can be conducted in two modes: (1) direct values transfer of estimates, 

and (2) the benefit function transfer (Smith et al., 2000). The first method applies the 

benefit estimate directly to the new study site. In the second method, the estimated 

benefits are estimated through a derived function that uses relevant local data sources (i.e. 

census data). Using a derived benefit function has the advantage of allowing adjustment 

of previous estimates for the new site (Loomis, 1996).   

In this work, a structural meta-analysis approach is used to apply the BTM. A 

meta analysis approach utilizes theoretically sound systematic framework and uses 

estimates reported in the related literature (Pattanayak, Smith, and Van Houtven, 2004). 

A meta-analysis utilize disparate quantitative literature of the same commodity (e.g. 

different sampling intervals), and generates a benefits transfer function or a prediction 

formula (Pattanayak, Smith, and Van Houtven, 2004). A meta analysis is attractive 

compared to the conventional survey-based data intensive contingent valuation methods. 

In addition to the significant labor and time investment, the CVMs are only valid locally 

which make it a less attractive option.  

In economic analysis, the prohibitive cost and time requirements for social 

preference studies justifies the use of benefits transfer approach in which the benefit 

estimates (e.g., willingness to pay) derived from one population are transferred to a new 

population in a different context. Benefit transfer provides a feasible approach to assess 

anticipated benefits of proposed measures; yet this approach has been criticized for 

lacking a well-defined theoretical foundation.  
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CHAPTER III 

GENERAL FRAMEWORK  

In this chapter the general methodology used to develop practical framework for 

the different applications is presented here.   

A basic assumption in this work is constructed in light of the VOI approach where 

an improved decision due to better information has a social value that can be quantified. 

For convince, the general framework is divided into three modules, illustrated in Figure 

1: (1) additional data selection and realization; (2) characterization of additional data 

impacts, and (3) welfare and socioeconomic analysis. The application of these modules 

requires a carefully planned preliminary analysis for a given problem.  

The first module involves analyzing the problem to select an appropriate 

environmental parameter with the capacity of representing a set of information levels. 

The second module involves the assessment of environmental impacts of the target 

parameter with different information levels. The environmental impact type is determined 

by the parameter and the problem settings.  

The first two modules are necessary as a preparation for the socioeconomic 

analysis listed in the third module which is the major contribution of this research to the 

field of environmental decision-making.   

The third module represents the socioeconomic and welfare analysis which is 

based on other literature applying BTM and revised here to address incremental 

improvements of selected indicator in environmental management.   
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Figure 1. Schematic of the proposed generic framework of this study. 
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CHAPTER IV 

STRUCTURAL BENEFIT TRANSFER FOR INCREMENTAL UNCERTAINTY 

REDUCTIONS IN THE MONITORING OF CONTAMINATED GROUNDWATER 

Management of contaminated groundwater resources is difficult due to limited 

resources available to monitor and remediate a large number of contaminated sites. 

Earlier research recognized the negative impacts of spatial data scarcity on the success of 

groundwater monitoring and remediation plans. Therefore, an important question is how 

to allocate limited resources to collect additional information to better estimate the risks 

and remediation priorities versus the willingness to pay by the society. This paper 

introduces one of the few applications of structural benefit transfer to quantify welfare 

impacts of improving groundwater monitoring in terms of willingness-to-pay (WTP).  

This work extends the earlier studies on health risk assessment methodology and 

introduces a practical socioeconomic framework to estimate individuals’ WTP for a 

proposed improvement in data gathering. The methodology analyzes scenarios of 

different reductions in subsurface heterogeneity by collecting additional spatial data to 

reduce hidden health risk of a target population and computes the health-economic 

impact as an estimate of the individual and aggregate WTP. The variability of 

characteristics of the target population is represented through probabilistic distributions 

of income, health state, age, and risk exposure parameters. The methodology produces 

predictions of WTP that are consistent with the patterns described in the economic theory 

and literature. 
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Introduction 

Overview  

The accurate monitoring of contaminated groundwater resources has been 

difficult because of the limited resources available, uncertainty arising from complexities 

of contaminants and media characteristics, and the presence of many large-scale polluted 

sites (Ward, Loftis, and McBride, 1986). Water quality problems affect many functions 

of society including environmental, economical, and ecological functions. Contaminated 

groundwater has effects on the population that ranges from direct health effects such as 

morbidity and mortality to indirect economic damages such as restrictions on recreational 

uses (Maxwell et al., 1998).  

Assessment of environmental and economic impacts of contaminated 

groundwater on a population is complex (Zhao and Kaluarachchi, 2002). Therefore, 

addressing water quality problems calls for a broad view that utilizes several types of data 

for various uncertain variables and processes.  

Limited resources is a constraint for most contaminated sites listed in the National 

Priority List because these sites typically need millions of dollars per site and can take 

many decades to remediate. Stakeholders need a management tool to help guide 

allocation of resources to reduce overall uncertainty in the most profitable way.  

In groundwater contamination, uncertainty translates to tangible outcomes such as 

exposure to unseen (hidden) health risks inherited due to uncertain input variables.  

Logically, a decision that reduces uncertainty in groundwater contamination has 

social benefits including reductions in exposure to hidden health risk and the associated 
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economic losses due to expected illness or mortality. In summary, there is a need to 

evaluate the socioeconomic benefits of a potential decision of improved monitoring by 

evaluating the welfare impact of uncertainty reducing decision. The quantification of 

welfare impacts of such decisions in monetary terms is complicated task especially under 

the time constraints for decision making.   

Subsurface heterogeneity observed in large aquifer systems is an important 

characteristic that needs to be properly described to predict the fate and transport of 

contaminants in groundwater. It is almost impossible to gather adequate information to 

clearly describe the spatial structure of heterogeneity. In this context, most data gathering 

and monitoring networks (MN) are designed under optimal conditions to describe 

subsurface heterogeneity with available resources while attempting to address the most 

critical site-specific questions. 

Numerous studies successfully tackled several aspects of subsurface 

heterogeneity. For instance, Tompson, Ababou and Gelhar (1989) and Tompson and 

Gelhar (1990) focused on improving the simulation techniques of aquifer heterogeneity, 

while Maxwell et al. (1998) and Maxwell and Kastenberg (1999) developed a framework 

to estimate health risk impacts for uncertainty in subsurface heterogeneity. Therefore, 

developing a practical approach to quantify the welfare impacts of changes in expected 

exposure levels to health risk is a natural improvement. Given the financial and time 

constraints for decision valuation, conventional contingent valuation methods are not 

feasible and non-traditional methods are needed.  

In essence, there is a need to develop a practical methodology to evaluate the 

welfare impact of reduction in health risk due to improved data collection and the 
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willingness-to-pay (WTP) by population at risk based on their socioeconomic conditions 

(Abdalla, Roach, and Epp, 1992). The goal of this work is to address this deficiency in 

research by using a socioeconomic analysis of monitoring groundwater contamination to 

define how the society values information in reducing public health risks. 

Welfare measures for health risk 
reduction 

Numerous studies investigated the valuation of health risk reduction in air and 

water quality applications. The essence of these studies is to adopt relevant measures of 

adverse health or environmental effects of expected exposure levels estimated using 

available information for a given contaminant. A potential decision is deemed feasible if 

it reduces risk or produces more accurate characterization of actual exposure levels which 

indicates a positive welfare impact to the target population assuming that only identified 

risks are mitigated and unidentified risks poses a threat to the population. Economic 

literature provides a range of classical methods and techniques with varying complexities 

to quantify the welfare levels expressed in several types of measures.  

Valuation methods of welfare impacts are classified into revealed preference, 

where valuations are inferred from actual observations of choice behavior, and stated 

preference, where valuations are directly obtained from hypothetical statements of choice 

(Kolstad, 2004). The revealed preference methods include Hedonic pricing and Travel 

Cost methods. The stated preference methods include survey method  in which people are 

presented with a hypothetical contingency scenario and are asked explicitly about the 

scenario, such as what improved water quality is worth to them. The described valuation 

methods are established non-market techniques used by governmental agencies for 
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conducting benefit-cost analysis and for environmental resource allocation (Loomis, 

1996); however, their wide application is limited by monetary and time constraints.   

Therefore, an alternative practical economic valuation method such as the Benefit 

Transfer Method (BTM) is needed. The premise of the BTM is to transfer an established 

welfare estimate from a study performed at a particular location to derive welfare impacts 

at a new location in different settings (Johnston et al., 2005). The BTM provides a 

systematic framework for utilizing existing welfare estimates to produce new estimates 

for a new similar case (Florax, Travisi, and NijKamp, 2005; Pattanayak, Smith, and Van 

Houtven, 2004; Smith, Van Houtven, and Pattanayak, 2006). Due to its high practicality 

and feasibility compared to a typical CVM; the BTM is increasingly used in 

environmental management studies (Rosenberger and Loomis, 2000; Florax, Travisi, and 

NijKamp, 2005).  

In health risk assessment, the Value of a Statistical Life (VSL) is a commonly 

used metric that measures the welfare impact of risk reduction assuming that the society 

accepts a certain monetary value for human life (Viscusi and Aldy, 2003). The US 

Environmental Protection Agency (US EPA) guidelines recommend a range of VSL 

values to estimate benefits of reducing health risk in a benefit-cost analysis (US EPA, 

2004). There seems to be no universally agreed estimate of the value of a statistical life 

for benefit-cost analysis in environmental regulations. For instance, while the US EPA 

guidelines suggest a VSL of about $5.5 million in 1990 dollars (Dockins et al., 2004), 

hedonic wage studies use a VSL ranging from $1 million (Cameron and DeShazo, 2004) 

to $10 million (Viscusi and Aldy, 2003).  
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A major criticism to the VSL is the lack of sensitivity to individuals’ 

characteristics that affects the person’s monetary evaluation (Cameron and De Shazo, 

2004; Aldy and Viscusi, 2007). Johansson (2002) and Aldy and Viscusi (2007) observed 

that VSL studies show an “inverted U-shape” pattern with age where the VSL peaks 

around the age of 40 years.  

To summarize, considering the VSL as a welfare measure of risk reduction is not 

appropriate for this study. To illustrate, if the WTP for risk reduction for saving 1 out of 

100,000 lives is $a, then the value of a statistical life is 100,000 x a dollars. Therefore, to 

preserve individual variability using the WTP is a better measure than the VSL.  

However, the benefit transfer approach requires using established WTP or VSL 

estimates as an input to calibrate the parameters of the benefit transfer model in order to 

produce new WTP estimates for a new risk reduction setting. 

Methodology  

Stakeholders desire to estimate a monetary value of the gain in population welfare 

due to a decision of better information compared to a base case of information collection.   

This research work is aimed at developing a methodology in which the additional 

information about uncertainty provides welfare improvement due to more accurate 

characterization of exposure to risk. In this study, we propose a modulus interdisciplinary 

framework that spans across the fields of fate and transport of contaminants, health risk 

assessment, social welfare analysis, and health economics.  

The proposed framework links potential decisions of additional data collection to 

their welfare benefit through the change in expected exposure to health risk determined 
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by improved information. The proposed methodology represents a contribution to the 

risk-based decision analysis literature due to its unique capacity to elicit a monetary value 

of welfare benefit produced by a given decision. 

The proposed framework is composed of three modules as shown in Figure 2 and 

these are (1) additional data selection and realization; (2) characterization of additional 

data impacts, and (3) economic and welfare analysis. The methodology and the 

application are for monitoring of a groundwater aquifer contaminated with a point-source 

of carcinogenic contaminant.  

The first and second modules adopt the approach of Maxwell et al. (1998) and 

Maxwell and Kastenberg (1999). The last module is the economic and welfare analysis 

which is based on the work of Pattanayak, Smith, and Van Houtven (2004) and revised 

here to address decisions of incremental risk reduction and society’s WTP in 

environmental management.   

Module 1: Additional data selection 
and realization   

In groundwater contamination, the subsurface heterogeneity is described by the 

spatial distribution of hydraulic conductivity ( K ) which is considered to be spatially 

correlated random variable in heterogeneous porous media (Dagan and Fiori, 1997; 

Maxwell et al., 1998). Also, the design of groundwater MN is based on the spatial 

structure of  K . For contaminated aquifers, the extent of spatial data collection is 

correlated to the assumed spatial K structure. 
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Figure 2. A flow chart of the proposed methodology to compute utility and WTP for a 
given health risk reduction by additional data collection using nested Monte 
Carlo method. 
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Therefore, to achieve accurate predictions of plume migration and relevant 

mitigation strategies, an accurate assessment of spatial K  structure is desired.  

The goal of this module is to simulate scenarios of different data availability in a 

related system variable which is the subsurface heterogeneity. Typically, in groundwater 

contamination a range of subsurface heterogeneity levels are simulated by varying the K  

spatial correlation length (λ ) which produces variable K  spatial structures ( K  fields). 

This simulation is performed using Monte Carlo sampling method to produce different 

series of n equally likely, two-dimensional random distributions of K  fields related to 

different correlation lengths (λ ). 

For each  λ  , the set of generated random K fields hereafter referred to as 

ensemble are utilized in the groundwater movement and contaminant fate and transport 

simulation to produce breakthrough concentration predicted at the receptor. Next, the 

maximum 30 yr-average concentration for each K  field of an ensemble is used to 

construct a probabilistic distribution of expected concentration that is unique for a given 

ensemble. 

Since ensembles are generated for different unique correlation lengths (λ ); the 

produced contaminant concentration distribution represents a unique λ . Finally, the 

concentration distributions are used to calculate the expected concentration with 95% 

confidence level which produces contaminant concentration with 95% confidence as a 

function of correlation lengths (Cλ ).  
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Module 2: Characterization of 
additional data impacts  

The purpose of this second module is to predict the distribution of health risk 

exposure due to the breakthrough concentration predicted at the receptor for each 

uncertainty level in subsurface heterogeneity. Health risk assessment is the process that 

estimates the individuals’ exposure to health risk due to the use of contaminated drinking 

and urban water. The health risk assessment follows the approach of Zhao and 

Kaluarachchi (2002) where cumulative carcinogenic health risk due to three off-site 

exposures pathway is calculated using exposure parameters linked to different age 

groups. The three exposure pathways considered here are ingestion, inhalation, and 

dermal exposure. Typically, individuals’ health risk is a function of the dose and 

individual characteristics. Therefore, heterogeneity in individuals’ characteristics 

produces different health risk exposures for one contaminant level (Bogen, Conrado, and 

Robison, 1997).  

In this study, health risk assessment integrates uncertainty in subsurface 

heterogeneity and inter-individual variability in health risk exposure parameters. The 

total health risk (TR) for individual i   is defined as the total off-site exposure to health 

risk as follows     

dhgii RRRXCfTR ++== ),( λ          (2) 

where Cλ  is the contaminant concentration at 95% confidence estimated at λ , 

gR  is health risk exposure due to ingestion, hR  is health risk exposure due to inhalation, 

and dR  is health risk exposure due to dermal contact of contaminated water source, iX  is 
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a vector of age-dependent exposure parameters such as body weight, and skin surface 

area. 

The analysis of health risk exposure using Equation 2 recognizes the inter-

individuals’ heterogeneity by integrating iX  which is generated in the variability loop as 

shown in Figure 2. Inter-individual variability is represented by sampling recommended 

probabilistic distributions instead of fixed values for population exposure parameters 

such as water intake rate and skin surface area (US EPA, 1997). In this work, appropriate 

age-dependent probabilistic distributions of exposure parameters are employed in a 

Monte Carlo sampling process to simulate the population characteristics (US Census 

Bureau, 2006). Once these parameters are known, carcinogenic health risk can be 

computed (using Equation 2) as per guidelines suggested by US EPA (Maxwell et al., 

1998; Zhao and Kaluarachchi, 2002). Also, Equation 2 integrates uncertainty in 

subsurface heterogeneity by using expected contaminant concentration calculated in 

module 2 (Cλ ) as an input to the three exposure quantities ( gR , hR , and dR ). In this 

work, expected concentration is an exogenous input since it is explicitly determined by 

the different K  spatial structures and lengths.   

A joint uncertainty and variability (JUV) analysis compute the exposure to health 

risk response in two dimensions. First, the uncertainty due to subsurface heterogeneity 

represented by the spatial distribution of K , second, the variability due to age-dependent 

population characteristics. Similar to Daniels, Bogen, and Hall (2000) and Maxwell et al. 

(1998), the JUV analysis is performed through a nested Monte Carlo method where the 

inner loop represents uncertainty and the outer loop represents variability. The output of 

JUV analysis is a three-dimensional risk surface with one axis representing uncertainty 
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due subsurface heterogeneity and the other representing variability in population 

exposure parameters.  

Module 3: Welfare and 
Socioeconomic Analysis  

The groundwater monitoring literature indicates that uncertainty in subsurface 

heterogeneity has established health risk impacts (for example, Maxwell et al., 1998; 

Maxwell and Kastenberg, 1999); however, there is lack of research addressing the 

welfare impacts of the produced expected health risks. To the best of our knowledge, no 

prior study has attempted to quantify the social welfare benefit (in monetary terms) for 

decisions of improved data collection on subsurface heterogeneity using benefit transfer 

approach. Therefore, the third module described in Figure 3 represents an original 

contribution to risk assessment under uncertainty.  

The output of the welfare analysis is estimates of individuals’ WTP to reduce 

uncertainty in subsurface heterogeneity by collecting additional spatial information to 

estimate exposure to health risk with higher accuracy. The theory relevant to social 

welfare analysis using the BTM is properly presented in other works such as Smith, Van 

Houtven, and Pattanayak (2006), Florax, Travisi, and NijKamp (2005), and others. 

Therefore, this paper discussion is limited to the considerations needed to implement the 

BTM to groundwater monitoring. 

Overview of related economic concepts. This work considers the welfare and 

WTP of the members of a working population exposed to health (mortality) risk due to 

contamination of drinking water. The population actual exposure to health risk is 

unknown due to various uncertain system variables such as subsurface heterogeneity. 
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In this work, actual exposure is viewed as a combination of identified and hidden 

health risks. We consider that suitable mitigation policies are devised to alleviate the 

identified risks only and the population remains exposed to the hidden risks. 

 Health is viewed as a human capital and individuals tend to invest assets to 

reduce health risk or to achieve more accurate estimation of actual exposure level 

(Grossman, 1972). 
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Figure 3. A flow chart describing the welfare and socioeconomic module of the 
methodology described in Figure 2. 
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In this analysis an individual with a given income is assumed to allocate 

expenditure on two pools, 1) on non-health or leisure consumption and 2) health related 

expenditures with higher priority given to health care. As the exposure to hidden health 

risk decreases with better information collection, new resources will be released from the 

health expenditure pool to the leisure consumption pool which produces more utility and 

higher overall welfare to the individual. Therefore, an additional data collection decision 

is deemed feasible if it reduces the hidden health risk and identifies higher risk as a result. 

This concept implies that individuals are risk averse which is a common behavioral 

assumption in risk assessment (Nadiminti, Mukhopadhyay, and Kriebel, 1996) and 

indicates that individuals’ enjoy higher welfare as risk is identified with higher accuracy 

and as a result more hidden risk is reduced (Sulganik and Zilcha, 1997).   

This analysis defines the household as the economic unit and household members 

as dependents and heads. In this work, individual is viewed as household head and acts to 

reduce the expected exposure to health risks among household members. The choice of 

household level as the economic unit is attractive because it utilizes significant social and 

economic data (such as consumption, income, etc.) collected over the years at the 

household level by several agencies. 

The standard economic theory suggests that WTP to reduce the expected exposure 

to health risk is positively related to the magnitude of exposure reduction (Cameron and 

De Shazo, 2004). Hall and Jones (2007) established that changes in health (mortality) risk 

(m) from the individuals’ perspective can be represented as a change in individual 

welfare.  
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Willingness-to-pay analysis. The welfare impact of additional data is determined 

by simulating a range of decisions designed to reflect increasing levels of information 

(module 1) which produce matching sets of expected mortality risk (module 2). The 

change in exposure to mortality risk along with basic population attributes are used to 

estimate the WTP of target population. In general, WTP is the monetary equivalent of the 

welfare impact of change in expected exposure to health risk such as mortality (Krupnick 

et al., 2002).  

This work uses the benefit transfer method to derive the economic values of 

potential decisions. There are several types of benefit transfer methods with varying 

sophistication levels which are described in the work of Smith, Van Houtven, and 

Pattanayak (2002, 2006). This analysis uses the Structural Benefit Transfer (SBT) 

approach which imposes a theoretical behavioral model on existing welfare estimate for a 

similar empirical study to calibrate the behavioral model and estimates its parameters for 

a new case study.  

In environmental risk literature, SBT models are often constructed in the context 

of labor markets using labor/risk models based on the compensation workers are willing 

to accept to assume increased risks of job related mortality. Recently, labor/risk models 

were introduced to air and water quality improvement problems of (Smith, Van Houtven, 

and Pattanayak, 2003).   

Models describing the labor/risk tradeoff focus on a decision process that 

envisions individuals selecting among an array of jobs with different risk levels and 

accordingly different compensations (Smith, Van Houtven, and Pattanayak, 2006). 

Likewise, we consider that individuals can select among an array of MN designs for 
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contaminated groundwater aquifer with different spatial data collection and different 

expected risk levels. Therefore, individuals are willing to accept compensation to assume 

increased hidden health risks of uncertainty in contaminated groundwater assessment. 

Given a range of MN designs at different spatial data collection levels with varying 

identified and hidden risks, individuals will seek to maximize expected utility in their 

decision making.   

Pattanayak, Smith, and Van Houtven (2004) proposed a semi-log labor supply 

model and derived formulations to assess the following three endpoints: expected utility, 

VSL, and WTP. For an individual i  with w  annual labor supply (hours worked/year), r  

hourly wage rate ($/hr), and S  annual non-wage income ($/yr), the labor supply model is 

defined for individual i  as follows   

ln( )w r Si i i i i iα β µ= + +
         (3) 

                        
where iα , iβ , and iµ  are empirical parameters describing the behavior of 

individual i .     

The assumptions of the original model described in Equation 3 are valid for the 

assessment of mortality risk due to contaminated groundwater. Pattanayak, Smith, and 

Van Houtven (2004) assume that individuals choose income represented as labor hours 

supplied and wage rate of a selected job with higher risk. In contaminated groundwater 

monitoring, we envision individuals will select income similarly but for a risk determined 

by a selected MN design.  
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Pattanayak, Smith, and Van Houtven (2004) estimated WTP based on probability 

of death (mortality risk) related to the job type as shown in Equation 4. Due to space 

constraints we refer the interested reader to the original paper of the authors for a detailed 

discussion of this model development.  

0 1
1 ln 1 .( - ).exp( )i

i i i i i i
i i

WTP p p r Sµ α β µ
µ β

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
%

      (4) 

                        
where 0p  and 1p  are the probabilities of death on the job at the baseline and with 

a new policy.    

In this work, the expected mortality risk due to a selected MN design (m) is 

identical to the job related mortality risk ( p ) in the original work of Pattanayak, Smith 

and Van Houtven (2004). Therefore, utilizing m instead of p  in Equation 4 produces 

WTP estimates to reduce risk of uncertainty in contaminated groundwater monitoring and 

seamlessly connects the work of modules 1 and 2 to the welfare analysis in module 3.   

The WTP formulation appropriate for contaminated groundwater monitoring is:   

(0,1) 0 1
1 ln 1 ( - ) exp( )i

i i i i i i
i i

WTP m m a b r S
b
µ µ

µ
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

%

     (5) 

                        
where 0m  and 1m  are expected mortality risk due to contaminated groundwater at 

two MN designs with different spatial data collection levels.   

Technically, Equation 5 estimates the compensating variation between two 

mortality risk levels determined by different spatial data collection levels. Therefore, the 

compensating variation estimate which is defined as the amount of income that makes an 



 
 
 
 

 
32

individual indifferent between two different risk levels can be defined in terms of data 

collection. The WTP estimated in Equation 5 is envisioned as the compensating variation 

between two data collection levels. Thus, estimated compensating variation represents 

WTP to collect additional spatial data.  

Stochastic simulation of WTP model. In this analysis, there exist several 

stochastic elements in the uncertainty and variability assessment. Similar to the health 

risk exposure estimation in module 2; the labor/risk model summarized in Equations 3 

and 5 is estimated for individual i of the population using Monte Carlo sampling of 

probabilistic distributions for related population variables. The nested Monte Carlo 

approach provides the computational capacity to separate the uncertainty and variability 

properly and it is utilized in similar groundwater/risk studies (Maxwell et al., 1998; 

Maxwell and Kastenberg, 1999). The nested Monte Carlo approach (depicted in Figure 2) 

is composed of two loops: 1) an outer structured uncertainty loop and 2) inner variability 

loop. The outer loop is based on subsurface heterogeneity. A range of subsurface 

heterogeneity levels is assumed and the matching field correlation lengths (λ ) are used to 

generate the ensembles of equally likely realizations of K fields. The inner loop purpose 

is to analyze resulting expected exposure to health risk using the procedure described in 

(Maxwell and Kastenberg, 1999). Each K field realization provides the breakthrough 

concentration at the receptor from which the maximum of the 30-year average is 

computed. The maximum of 30-year average for one correlation length is used to 

construct probabilistic distributions of concentrations from which the 95th probability 

(Cλ ) is used to estimate the mortality risk. The mortality risk values are used as inputs to 

the WTP equation.  
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Management Application  

Description of case study  

To show the contribution of this work; we will expand on the numerical example 

of Maxwell and Kastenberg (1999). In this example, a point source of carcinogen is 

discharging at an upstream location from a municipal water supply well affecting a 

down-gradient community. Similar to Maxwell and Kastenberg (1999), a two-dimension 

regional aquifer composed of unconfined sandy fluvial material with 4 km in length and 2 

km in width, and 100 m thick was used in the analysis. A population is assumed to be 

located down-gradient of the municipal well that provides drinking to the community as 

shown in Figure 4. A constant leaking source of trichloroethylene (TCE) is introduced 3 

km upstream of the well at an estimated concentration of 100 ppm for ten years. TCE is a 

common carcinogen used as an industrial solvent and found at many hazardous waste 

sites. TCE has a low maximum contaminant level of 5 ppb established by the US EPA. 

For demonstration purposes, a target population of 5,000 individuals in the 

community is affected by contaminated groundwater. The simulated population 

characteristics are for the random population of the State of Utah for the year 2000. The 

data include probabilistic distributions of 1) health risk exposure parameters such age and 

body weight, 2) labor/risk model variables such as wage rate and working hours, and 3) 

related population properties namely the health state.   
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Results and discussion 

Additional data scenarios simulation. A set of realizations of K  fields are 

produced based on variable spatial K  correlation lengths (λ ). The spatial variability of 

K  is a major factor in the design of a groundwater MN. In this example, we consider an 

aquifer with unknown subsurface heterogeneity with an area of 6 km2 (or 3 km x 2 km).  

If the present information indicates a field with a correlation scale of 112 m, then 

120 monitoring wells are needed. Likewise, if the present information indicates a more 

heterogeneous field with a correlation scale of 22 m, the number increases to 3,000 

monitoring wells. Therefore, reducing uncertainty in subsurface heterogeneity is 

economically expensive.  

For each K  correlation length (λ ), an ensemble of 500 equally likely random 

realizations of K  fields is generated using a mean K  of 10 m/day and a variance of ln K  

of 1. In this work, the correlation length (λ ) is changed from 2 m for the most 

heterogeneous case to 502 m to represent a fairly homogenous medium.  

We follow the recommendations of Tompson and Gelhar (1990) in selecting 

spatial discretization to simulate flow and transport. The K  fields are generated using the 

Turning Bands method (Tompson, Ababou, and Gelhar, 1989) before they are used in the 

groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) to simulate the 

flow field. Then, fate and transport of TCE is simulated using the MT3D model (Zheng 

and Wang, 1999). 

The flow domain consists of a single layer of aquifer with flow occurring in areal 

two-dimensional flow field. Fate and transport consists of advective-dispersive mass 

transport with linear sorption and first-order decay.   
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Figure 4. The areal layout of the aquifer used in the numerical experiment. The length 
and width of the aquifer are 3 and 2 km, respectively. The public water supply 
well is located 3 km downstream of the pollution source. The monitoring area 
with monitoring wells denoted here is for representation purposes only. 

 
 

The values of flow and transport properties used include longitudinal and 

transverse dispersivity values of 5 and 0.5 m, respectively, and the well discharge was 

assumed to be 1,000 m3/day. These values are similar to the values used by Maxwell et 

al. (1998) and Maxwell and Kastenberg (1999).  

Health risk assessment. For each breakthrough concentration profile produced for 

specific uncertainty level of subsurface heterogeneity ( K  correlation length);  the TCE 

concentration at 95 % probability is computed and used to estimate the population 

cumulative health risk using the guidelines of US EPA (2001) and the modifications 

suggested by Zhao and Kaluarachchi (2002).  

The exposure-related population characteristics are presented as age-dependent 

probabilistic distributions following Zhao and Kaluarachchi (2002). Then, probabilistic 
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distribution of age classes for Utah population and the corresponding characteristics are 

estimated using surveys and empirical studies conducted by various state and federal 

agencies. In this work, the published data from the Utah Department of Health (UDOH, 

2006) were used.  

Using Monte Carlo sampling approach; the representative population of the state 

of Utah is simulated. For the exposure parameters, age-dependent distributions of 

ingestion, inhalation, and dermal exposure parameters (except slope factors) were 

developed from published data (Table 1).  

The results of the JUV analysis for uncertainty in subsurface heterogeneity and 

variability in exposure parameters due to age-dependent population characteristics are 

shown next. The results of this analysis show that the receptor concentration increases as 

the subsurface becomes more heterogeneous (or small λ  values) compared to a less 

heterogeneous case (or higher λ  values) and this observation is similar to the results of 

Maxwell et al. (1998). Figure 5 indicates that at a confidence level of 95%; a 

heterogeneous subsurface structure (or smaller λ ) produces a higher contaminant 

concentration. 

The three-dimensional view of the risk profile obtained from the JUV analysis is 

shown in Figure 6 . The health risk surface indicates a robust impact of the variability of 

population parameters which attempts to conceal the impact of uncertainty due to 

subsurface heterogeneity. 
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Table 1. A summary of the sources and types of data used in the individual exposure to 
health risk    

Variable Typical Values Unit Value used in this Study 

Age Variable yrs 
US Census Bureau 

International Data  Base, 2006 
using data from year 2006 

Body weight Variable kg Age dependent distributions  
recommended in USEPA 1997a

Exposure 
duration 30 yr Constant 

Exposure 
frequency 350 day/yr Constant 

Ingestion 

Ingestion rate Variable L/day 
Uniform distribution with a 
range  of 1.4 to 2.3 L/day; 

USEPA, 1997a 

Ingestion 
slope factor 0.011 1/[mg/Kg-day] Constant 

Inhalation 

Inhalation rate Variable m3/day 
Fitted distribution to data using 
age as  the variable; USEPA, 

1997a  

Inhalation 
slope factor 0.011 1/[mg/Kg-day] Constant 

Dermal Contact 

Dermal 
contact  

slope factor 
2.67 1/[mg/Kg-day] Constant 

Exposed skin  
surface area Variable cm2 

Function of age and body 
weight using surface area/body 

weight ratio; USEPA, 1997a 

Shower 
duration Variable hr/day 

Fitted to distribution in the 
range of 

 0.016 to 2 hr/day; USEPA, 
1997a 

*EHF is the US EPA Exposure Factors Handbook (1997). 
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Figure 5. A plot of the cumulative distribution function of maximum 30-year average 
TCE concentration at the receptor for different correlation scales (502, 302, 112, 
and 12 meters). A larger correlation scale reflects a more homogeneous 
structure compared to a small value of correlation scale. 

 
The strong impact of variability of population on health risk is anticipated due to 

the use of the full range of variability of age-specific individual exposure parameters. 

Most studies used a single probabilistic distribution to describe a given population 

characteristic irrespective of the individual age. This approach has significant limitations 

because exposure and vulnerability of an individual depends largely on age and to some 

extent on gender. Zhao and Kaluarachchi (2002) showed that age does impact risk 

predictions while gender plays a minor role across all age groups. These observations are 

clearly displayed in Figure 6 for any given uncertainty value. 

Socioeconomic analysis.  The WTP assessment employs labor/risk model that 

requires calibration using various population data to calibrate Equation 3 and produce 

individual-specific constants to be used in the benefit transfer formulation. 
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The needed data for the labor/risk model are obtained from the original work of 

Pattanayak, Smith, and Van Houtven (2004) and other sources as shown in Table 2.  

The calculation approach represents variability among individuals and sets the 

calibration process at the individual level. To produce individual specific WTP estimates, 

the parameters of Equation 3 are allowed to evolve freely for each individual ( i ) using 

the vector of inputs sampled by the Monte Carlo method ( iX ). 

 

 

 

Figure 6. A 3D plot of health risk surface as a function of uncertainty percentile due to 
subsurface heterogeneity and variability percentile due to population 
characteristics for a correlation scale of 252 m. 
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The sampled inputs are individuals’ i  labor supply, ( iw ) wage rates, ( ir ) and non-

wage income, ( iS ). Once the calibrated parameters for an individual i  are obtained, the 

individual WTP for data collection improvement is computed using Equation 5.    

An elaborate description of the calibration process is provided in Pattanayak, 

Smith and Van Houtven (2004) and Smith, Van Houtven, and Pattanayak (2006). A 

benchmark VSL of $5 million is selected to calibrate the parameter ( iβ ) in Equation 5 as 

shown in Smith, Van Houtven, and Pattanayak (2006). A description of the sampled 

values for Utah population is provided in Table 3.   

Calculation example. The purpose of this application is to address the question of 

estimating how much a specific working population is willing to invest to reduce system 

uncertainty by obtaining additional information. Given the high uncertainty of subsurface 

heterogeneity and K correlation length, stakeholders are challenged by the question of 

how many spatial data points (monitoring wells) should be present in the optimal MN 

design.  

The actual number of wells to be designed is a tradeoff between the cost of 

construction and monitoring, welfare impact of additional information of subsurface 

heterogeneity allowing better prediction of health risks to the population, and the WTP of 

individuals based on their income, health state, and age. 

To illustrate the methodology application in groundwater monitoring; consider a 

representative population of Utah composed of 5000 individuals located downstream of a 

groundwater contamination source. The base case of K spatial sampling design is based 

on uncertain K correlation length of 502 m which indicates a fairly homogeneous K 

spatial structure with minimal data collection requirement. 
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Table 2. An overview of data sources used in the welfare and socioeconomic analysis 

Variable Type   Level Description 

Related variables  

Mortality 
 risk, m  

 
Fixed values  

Calculated in modules 1 and 2 at fixed levels 
of subsurface heterogeneity (based on K 

correlation length) 

Health state, ax  State 
level 

Prepared age-dependent distribution from  
stated preference survey of general health 

status using several health indicators 
(diabetes, asthma, arthritis) for Utah 

population for 20061 

Income, iy  

Probabilistic 
distributions 

State 
level 

Age-dependent, US Census Bureau (2000) in 
2006 dollars 

Labor/Risk model calibration 

Benchmark VSL Fixed value 
of $5 million

US 
National 

level 

Used to calibrate parameter  
iβ  in  transfer function (Equation 3) 

Labor supply 
(hours) 

worked/yr), iw  

US 
National 

level 

Age dependent distribution of hours 
worked.2  

Wage rate, ir  
($/hr) 

State 
level 

Prepared probabilistic distributions of 
population by occupancy types and matching 

average wage rates (2006 dollars)3   

Non-wage 
income, iS  

($/yr)  

Probabilistic 
distributions 

State 
level 

Fraction of individual income spent on 
health care (IBIS-PH, 2007) for Utah 

population  

1- Data as of October, 2006 from Utah Department of Health, Center for Health Data, Indicator-Based 
Information System for Public Health Web site: http://ibis.health.utah.gov. 

2- Source: BLS, 2007. American time use survey-2006 Results, Bureau of Labor Statistics, USDL 07-0930, 
June.  http://www.bls.gov/news.release/archives/atus_06282007.pdf. 

3- Source: BLS, 2007. May 2006 State Occupational Employment and Wage Estimates-Utah, May, 
http://stats.bls.gov/oes/current/oes_ut.htm#(1). 
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Table 3. Summary statistics for variables used in the simulation of Utah population using 
Equation 3 and 5     

Variable N Mean Standard  
Deviation Minimum  Maximum 

Daily Hours Worked, iw  5000 7.80 0.64 4.20 10.50 

Hourly Wages ($), ir  5000 14.63 12.38 2.30 164.58 

Non-Wage Income, iS  5000 13562 3945 2320 46150 

 

To assist in the decision-making process, several potential scenarios of 

incremental increase of monitoring wells (at reducing correlation lengths, λ ) to improve 

the base case of insufficient sampling (at λ = 502 m) are simulated. For each scenario; 

the corresponding ensemble of K  fields, TCE concentration, and health risk profile are 

estimated. Then, the labor /risk model is calibrated for Utah population. The empirical 

parameters of Equation 3 ( iα , iβ , and iµ ) used to calibrate the labor-risk model are 

estimated for each member before the individual WTP is estimated using Equation 5 to 

obtain the distribution of WTP of target population. The average estimates of parameters 

iα , iβ , and iµ  for Utah population are 92.56, 2.92x 10-4, and -3.24 x 10-2 respectively.  

 For each simulated scenario, the distribution of WTP of the target population was 

estimated. Figure 7 shows the WTP ($/year) with the simulated scenarios arranged in 

increasing order from low density (at λ =502 m) to high density (at λ =2 m) spatial 

sampling designs and with the variability due to age-dependent population 

characteristics.  

The trend of WTP reflects an anticipated social behavior of valuing risk higher 

when individuals are more vulnerable (with high variability). Also, at a smaller 
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correlation length (or a large number of samples), the WTP increases slightly especially 

when individuals are at high risk (or high variability). For instance, at 95% confidence 

level, household members with high vulnerability (at 80% variability) show a WTP 

starting at $274/yr for a minimum sampling level (at λ = 502 m) and increasing to 

$386/yr for maximum sampling level (at λ = 2 m). This observed trends in Figure 7 are 

illustrated better in Figure 8 which shows the variation of 95th percentile value of 

individual WTP ($/year) with correlation length for different variability values. 

Figure 8 shows clearly that the WTP responds to increases in variability in a 

stronger and a more explicit manner than to increases in the information levels. This 

observation is explained as follows; variability conveys vulnerability, so as variability 

increases, individuals’ vulnerability increases which explain the elevated WTP for any 

risk reduction. 

Figure 9 shows the variation of 95th percentile annual household WTP with K  

correlation length. Here the 95th percentile value which can be considered as the most 

likely value is obtained from Figure 7 corresponding to the 95th percentile uncertainty 

and variation values. The results of Figure 9 show that for each incremental addition of 

data; the households’ most likely WTP increases slightly as the uncertainty level is 

reduced. 

To emphasize the methodology robustness; we provide a detailed account of the 

calculation of selected scenarios from the management application described above. As 

indicated earlier, λ  is an indicator of the presumed K  spatial correlation structure and 

the optimal MN design. 
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Figure 7. A 3D plot of annual household head WTP at 95th confidence level for all 
correlation scales and variability of the target population.  

 
Therefore, in the next discussion we use scenarios of λ  to contrast the different 

MN designs and the corresponding data collection levels. 

The considered scenarios are as follows, one with λ =112 m and the other with 

λ =22 m. The data and results provided in Table 4 provide useful management relevant 

information that can lead to more realistic estimates of population preferences in 

collecting additional information to reduce hidden risks. 

Table 4 shows the results of these two scenarios for various design parameters. 

The addition of information determined by improving λ  from the base case (λ =502 m) 

to 112 m and to 22 m corresponds to moderate and to high heterogeneous subsurface 

structures, respectively.  
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Figure 8. A plot of showing the variation of annual household head WTP at 95th 
percentile uncertainty and variability with correlation length.    

   
It is seen that the estimated contaminant concentration is higher as the number of 

samples is increased and becomes more accurate (also known as “Blackwells’ effect”). 

The increase in identified concentration with more data collection indicates that actual 

concentration is higher than estimated concentration.   

In Table 4, the small rise in health risk is related to the use of a wide range of age-

dependent population characteristics than using typical fixed values or probabilistic 

distributions independent of age. However, the small change in health risk is adequate to 

induce a welfare change at individual and population levels. 
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Figure 9. Variation of household head WTP at 95th percentiles of uncertainty and 
variability with correlation length. 

 
The reduction in uncertainty increases individual utility under the assumption that 

individuals adjust their risk averting behavior to be proportional to the identified risk 

level (Abdalla, Roach, and Epp, 1992). Thus, the hidden risk levels due to lack of 

accurate information become a threat to population health and productivity.  

Therefore, an identified higher risk level with additional information produces 

higher welfare by revealing unknown risk to the population. Using a vector of properties 

such as age and income; individuals determine their WTP to acquire the additional 

information and adjust their risk behavior accordingly.  

Table 4 shows a higher individual WTP estimate for λ  of 22 m than for λ  of 112 

m by $11/year-individual or by nearly 5%. 
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Table 4. Data and results of the management example corresponding to two additional 
data scenarios with correlation scales of 22 and 112 m   

Variable Scenario 1 Scenario 2 Comments 

Additional Data Realization  

Information Level λ =112 m λ =22 m 

Number of monitoring 
locations 120 3,099 

2,979 additional locations 
needed finer resolution 
monitoring network to 

better represent subsurface 
heterogeneity 

Characterization of Additional Data Impacts 

95th percentile 
concentration at the 

receptor 
11.8 ppb 20.3 ppb 

Change in individual 
carcinogenic health risk 

from base case (λ = 502 m) 
2.9x10-4 3.1x10-4 

High resolution 
monitoring network 
produces a higher 
concentration and 

therefore 
higher health risk 

   

Socioeconomic Estimates 

Calibrated Parameters Statistics 

Benchmark VSL  $5 million (US EPA, 2004)  

Mean  α=92.56,    β=2.92x10-4,    µ=-3.24x10-2 

Standard deviation α=12.45,    β=7.03x10-5,   µ=-0.0076 

Household Heads’ WTP ($/yr) 

Median 238 249 

25th percentile 156 188 

75th  percentile 360 386 

SID* 102 99 

A higher risk detected  
produces higher WTP  

statistics for  
additional data. 

Σ Household Heads’ WTP for a 5,000 population size   

Total $1.21x106 $1.26x106 An increase in population 
WTP of $55,000 

*SID is the Semi Interquartile Deviation. SID= (75th percentile -25th percentile)/2=inter quartile range/2 and 
accounts for 50% of the data (median and 1 standard deviation around the median).  
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We observe a similar range in the WTP values for the two improvement levels 

which is supported by the close values of the spread measure statistic (i.e., SID) for the 

112 and the 22 m correlation structure.   

Also, Table 4 provides estimates for improving groundwater monitoring by 

additional data collection. From a decision-maker’s point of view, the aggregate WTP for 

a proposed improvement in MN design from λ  of 502 m to λ  of 112 m represents an 

increase in population welfare by $1.21x106 per year. Likewise, a proposed improvement 

in MN design from λ  of 502 m to λ  of 22 m increases population welfare by $1.26x106 

per year. Therefore, by comparison one can indirectly estimate the increase in population 

welfare due to reducing uncertainty in subsurface heterogeneity (from a MN design of λ  

= 112 m to λ  = 22 m) by $55,000 per year for a population of 5000 individuals in Utah 

or $11 per person per year for the improvement in data collection.  

To summarize, the suggested framework calculations shown in Table 4 enhances 

the benefit-cost analysis capacity to elicit welfare impacts of decisions using practical 

approach which is a challenge in socioeconomic problems.  

Sensitivity and validity analysis. Differences between individuals exist and may 

be associated with age, gender, or health state (Dickie and Ulery, 2001). Researchers 

noted that age determines the individuals’ health state and therefore their exposure to risk 

and welfare (Johannesson, Johansson, and Lofgren, 1997; Krupnick et al., 2002). For 

instance, Krupnick et al. (2002) investigated the impact of age on individual’s valuation 

of risk in VSL which is a less specific measure than WTP. The authors found no 

statistical difference in the VSL across ages until age 70 years and above.  
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The findings of the study of Krupnick et al. (2002) were in agreement with the 

earlier study by Jones-Lee, Hammerton, and Philips (1985) where the VSL for 

individuals with age above 70 years is lower than individuals of age 40 years.  

We investigate the interaction of WTP with important population parameters such 

as age, health state, income, and income loss due to illness represented as loss in working 

hours. The simulated population’s income-age relationship (shown in Figure 10) 

indicates a theoretically sound trend of increasing income until middle age where the 

majority of population resides. For old age groups which represent a small fraction of the 

population, we observe a large variation in income.  

The general trend between ages 50 and 75 years old indicates a decreasing trend 

in the three percentiles. This pattern reflects a loss of income due to retirement. For age 

groups after 75 years, the trend should be analyzed cautiously. The rise of median and 

90th percentile for ages older than 75 years is interpreted by the simulation process and 

data sources. The old age groups (beyond age 75 years) represent a small percentage of 

this population.  

For a less populated age group, therefore, the weight of one data point on the 

general trend can be significant. Individuals of old age groups have a wide range of 

incomes; some have a steady low retirement income while others enjoy a higher steady 

income regardless of age either because they are self-employed or own profitable 

investments.  

In essence, there is an unstable trend for old age groups (beyond 75 years) and 

due to the small fraction of population that is greater than 75 years, it is not appropriate to 

use the trends observed in this age group in further analysis.  
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The income profile was evaluated as a function of health state and shown in 

Figure 11. Two distinct trends of annual income versus health state are observed. The 

results are explained by the age correlation with health state (Figure 12) and with income 

(Figure 10). Region A represents individuals with low health states ranging from 0.1 to 

0.5. 

Region A is dominated by old age individuals (> 60 years) with poor health as 

revealed in the empirical results shown in Figure 12. Typically, old age individuals have 

steady retirement income and the income is less likely to change with time. Region B 

represents a high health state of 0.5 to 0.9 capturing the majority of the population. In 

Region B, the median income decreases in a fluctuating pattern as the health state 

increases. 
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Figure 10. Variation of individual income ($/yr) as a function of age showing the median, 
and 10th and 90th confidence intervals for the simulated population based on 
probabilistic distribution of US Census (2006) for the State of Utah. 
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The pattern in Region B indicates a wide range of incomes for a given health 

state. Individual age in Region B is dominated by young ages and the income for young 

age groups show an increasing trend as shown in Figure 10. 

Therefore, the decreasing income trend of Region B is expected because age is 

inversely related to the health state. This pattern is consistent with the economic theory 

and anticipated social behavior where income is positively related to the WTP for 

environmental improvement (Horowitz and McConnell, 2001).  

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10
x 10

4

Health State

In
co

m
e 

($
/y

r)
  

10th

90th

median

 (Region A) (Region B)

 Young to 
Old Age 

 

Figure 11. The distribution of individuals’ health state with household income of the 
target population showing the median, and 10th and 90th percent confidence 
intervals. The distribution uses age-dependent probabilistic distributions of 
income (Figure 10) and health state (Figure 12) for the population of the State 
of Utah. 
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Figure 12. The Individuals' health state profile presented by age groups. Estimates are 
extracted from health status survey of the population of the State of Utah 
(UDOH, 2006). Survey included chronic diseases (i.e. diabetes, arthritis, 
asthma). This distribution is used for evaluation of potential trends with WTP 
estimates. 

 

In Figure 13, we examine potential trends of related variables on WTP estimation. 

Age impacts on WTP are robust. At a young age of 20 to 40 years, the low median and 

high variation shown in Figure 13 (a) is attributed to the large spectrum of income and 

high health state of individuals in the young age groups. 

The increase in WTP at higher income shown in Figure 13 (b) is expected at high 

health state. The reducing tendency of middle age groups is attributed to reduced health 

state. In relation to labor/risk analysis, individuals’ health state affects individual 

productivity in terms of working hours.  
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The age-dependent distribution of annual lost working hours due to illness shown 

in Figure 13 (c) indicates a similar trend to the estimated health state. The health state 

trend shown in Figure 13 (d) suggests that individuals with better health states are willing 

to pay more to avoid risks than individuals with initial health problems.  

Summary and Conclusions 

The goal of this work is to extend the benefit-cost analysis of contaminated 

groundwater management by integrating socioeconomic measures of related decisions.  

In this study, a methodology is proposed to assess welfare benefits of decisions aimed at 

reducing uncertainty by collecting additional data. 

This work developed an interdisciplinary framework that introduces rigorous 

socioeconomic concepts that are new to the benefit-cost approach used in groundwater 

contamination monitoring and utilizing the works of Maxwell and Kastenberg (1999) and 

Pattanayak, Smith, and Van Houtven (2004). 

The three modules of the methodology consists of: (1) additional data selection 

and realization; (2) characterization of additional data impacts, and (3) the welfare and 

socioeconomic analysis. 

The initial two modules adopted the approach of Maxwell et al. (1998) and 

Maxwell and Kastenberg (1999). Our welfare-economic analysis enhances MN design 

considering appropriate welfare measures such as WTP for risk reduction. 



 
 
 
 

 
54

20 40 60 80 100
0

50

100

150

200

250

Age (years)

H
H

 W
TP

 ($
/y

r)

0 2 4 6 8 10

x 104

0

50

100

150

200

250

HH. Income ($/yr)

H
H

 W
TP

 ($
/y

r)

0 50 100 150
0

50

100

150

200

250

Illness Hours /year

H
H

 W
TP

 ($
/y

r)

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Initial Health State

H
H

 W
TP

 ($
/y

r)

90th

10th median 10th

median

90th

median median

90th

10th 10th

90th

(a) (b)

(c) (d)

 

Figure 13. Diagnostic curves of the annual household head WTP ($) as a function of (a) 
age, (b) annual household income, (c) illness hours per year, and (d) initial 
health state for 20% reduction in risk due to a proposed data gathering effort. 
The curves represent median, 10th and 90th percentile confidence intervals. 

 

The methodology evaluated the WTP using the change in expected mortality risk 

evaluated by a labor/risk model.   

The proposed methodology is applied to the theoretical case study adopted in 

Maxwell and Kastenberg (1999) where health risk impacts of carcinogenic point-source 

contaminant are evaluated. The age-dependent characteristics of the target population 

were represented through probabilistic distributions of income, age, and risk exposure 

parameters.  
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The proposed methodology produces predictions of WTP that are consistent with 

the patterns expected in the economic theory and similar benefit transfer studies. The 

JUV analysis indicates that the variability in population (largely due to age) has higher 

impact on exposure to health risk and WTP than uncertainty due to subsurface 

heterogeneity. This pattern arises due to the extended range of variability of individual 

health exposure parameters selected to achieve accurate characterization of population 

variability. The expanded range of exposure parameters is recommended in similar health 

risk studies (Maxwell et al., 1998; Zhao and Kaluarachchi, 2002). The economic analysis 

assumes that reduction in hidden health risks results in higher welfare. The WTP 

estimates showed a declining trend for old age groups (>50 years) which indicates that 

the age-dependent health state has a strong impact on welfare measures.     

The proposed methodology is limited to predictions of a single-period which in 

this case is on annual basis. However, the methodology has the advantage of allowing 

stakeholder to allocate risk-reduction expenditures based on explicit monetary estimates 

of gain in welfare due to uncertainty reducing decisions.   

The premise of the methodology is to provide an alternative to traditional 

contingent valuation methods to assess social welfare. The proposed methodology 

extends beyond putting together disparate estimates of similar cases from different 

valuation methods; instead, the method utilizes these estimates along with a “theoretically 

sound” structure to produce transferable and adaptable estimates to different scenarios. 

The approval of this methodology depends on these factors, (1) the data quality and (2) 

the lack of robust procedure to assess the validity of the new benefit estimates.   
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As for data quality, several agencies and studies provide adequate sources in 

usable format to this work. These data sources are typically available from different state 

and federal agencies.  

As for validity, comparing trends of variables and predictions of new benefit 

estimates with existing survey-based studies is the recommended practice. The proposed 

methodology is attractive because it requires data from sources that are generally 

accessible, for example, public domain socioeconomic databases on age, income, health 

statistics, etc., thus permitting its application on different environmental problems.        
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CHAPTER V 

SOCIOECONOMIC ANALYSIS TO ASSESS ADDITIONAL DATA COLLECTION 

STRATEGIES AND CORRESPONDING WILLINGNESS-TO-PAY IN WATER 

QUALITY MITIGATION  

Poorly managed data collection programs and hydrologic variability produce gaps 

in water quality data which causes significant uncertainty in water quality management.  

Decision-makers are inclined to improve data collection programs to reduce 

uncertainty; however, such improvements are hindered by limited resources and high 

costs. Therefore, an important question is how to allocate limited resources to collect 

additional information to better estimate the risks versus the willingness-to-pay (WTP) by 

the society. This work proposes an interdisciplinary methodology to estimate the social 

benefits of additional data collection to reduce uncertainty produced by hydrologic 

variability in water quality mitigation. The methodology utilizes the benefit transfer 

method that allows the transfer to a new geographic and population setting using readily 

accessible public-domain data.  

The methodology consists of determining the impacts of different information 

levels, assessment of utility at each information level, and combining utility with age-

dependent socioeconomic characteristics of the population to predict the WTP. The 

applicability of the methodology was demonstrated to Fishtrap Creek Catchment of 

Washington State due to phosphorus loading affecting water quality and hence 

recreational activities. The results showed that the proposed methodology has significant 
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potential to determine resources allocation in mitigation activities based on societal WTP 

for such work.    

Introduction  

Water quality problems remain a challenge in many regions of the nation (US 

EPA, 2002). Nutrient rich runoff is the most widespread pollution source; it affects about 

half of the impaired lake areas and about 60% of the impaired river reaches (Carpenter et 

al., 1998). The increased loading of nutrients causes eutrophication of water bodies which 

produces unwanted algal growth, depletion of oxygen levels, degradation of fish habitats, 

and even increases filtration costs (US EPA, 2003; Poor et al., 2001).  

Water quality in the US has improved significantly as a result of successful 

mitigation of point sources and the use of total maximum daily loads (TMDL) plans to 

control non point source (NPS) pollution (Ribaudo and Horan, 1999). Nonpoint source 

pollution is believed to be the major source of polluted runoff loading to water bodies, 

accounting for approximately 70% of total suspended solids and 80% of total phosphorus 

(TP) input (Kim, Choi, and Stenstrom, 2003). NPS pollution is difficult to measure and 

manage (Bennet et al., 1999; Sharpley et al., 2001). NPS pollution management faces 

practical and public policy challenges. Decision-makers are faced with technical 

challenges arising from uncertainty in remedial measures, and efficiency and policy 

challenges arising from uncertainty in determining the contributions of polluters and 

hydrologic variability.  

Significant uncertainty in NPS loadings emanates from variable hydrologic 

processes such as rainfall, erosion, and runoff (Worrall and Burt, 1999). Hydrologic 
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processes exhibit variability at temporal and spatial scales which have shown as 

uncertainty in pollution prediction and mitigation. Runoff and erosion processes which 

determine pollutant loadings are seasonal in nature, therefore, intensive sampling is 

needed to assess the pollutant loadings accurately.  

Characterization of temporal changes in surface water quality is a critical aspect 

for evaluating NPS pollution (Ouyang et al., 2006). Typically, hydrologic variability is 

assessed through its impact on nutrient export coefficients (Endreny and Wood, 2003; 

Khadam and Kaluarachchi, 2006a; Sharpley, McDowell, and Kleinman, 2001 and 

Sharpley et al., 2002). Export coefficients for nutrients such as nitrogen and phosphorus 

(P) are established based on estimates of runoff nutrient loads as a function of land use 

type (Soranno et al., 1996). By definition, export coefficients are sensitive to spatial and 

temporal changes of hydrologic processes (i.e. runoff) and changes in land use and 

management practices (Hanrahan et al., 2001). Export coefficients (EC) have been used 

by the US Environmental Protection Agency (US EPA) in numerous NPS management 

applications (Soranno et al., 1996). Moreover, all water quality models utilize some form 

of EC to estimate NPS pollutant loadings. Therefore, EC can be used as a proxy of 

uncertainty due to hydrologic variability.  

Practically, decision-makers observe random signals of nutrient loading to a water 

body at discrete points in time at a given sampling interval. The discrete data points are 

used to estimate the annual NPS pollutant loadings which provide the basis for policy 

evaluation. In the context of data collection; an assumption of constancy is implied where 

stability in pollutant releases between samplings is assumed to validate the annual 

loading estimates. This assumption overlooks the impact of hydrologic variability and 
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introduces uncertainty in pollutant loading estimations. This uncertainty imposes negative 

effects on mitigation efforts. Decision-makers tend to relate observed pollution to land 

use practices which translates to additional restrictions on the economic productivity of 

stakeholders due to misidentification of pollution sources. In this sense, the benefit of 

reducing uncertainty is two-fold: (1) it protects producers from additional economic 

losses due to imposing of costly overprotective measures and (2) it protects against 

unexpected shock loads which cause unwanted consequences on related recreational 

activities such as fishing.  

Appropriate economic valuation of water quality entails combining estimates of 

market and non-market uses of water (Chao, Whittington, and Lauria, 1996). When 

pollution of water bodies is considered; a non-market value emanates from recreational 

services such as swimming, fishing, and scenery. These uses of water would be the first 

to suffer due to pollution events. Therefore, benefits of acquiring better information to 

reduce uncertainty in NPS loading affects an array of economic activities and social 

functions (non-market values) which causes a typical benefit-cost analysis to fall short in 

cases of natural water quality protection (Navrud, 2001). In this work, this deficiency in 

benefit-cost analysis is addressed and focuses on the assessment of benefits of non-use 

values through a practical and a transferable methodology.  

Economists have devised several valuation methods for natural resources. 

Valuation methods are classified into revealed preference, where valuations are inferred 

from actual observations of choice behavior, and stated preference, where the valuations 

are directly obtained from hypothetical statements of choice (Kolstad, 2004). The 

revealed preference methods include Hedonic Pricing and Travel Cost Methods. For the 
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stated preference methods, people are presented with a hypothetical scenario and then 

asked to state explicitly what its worth to them. Economic valuation using direct 

approach (i.e. contingent valuation method) is the “first-best” strategy to collect the 

needed information. The stated preference methods are deemed to be more accurate for 

conducting benefit-cost analysis for environmental resources (Loomis, 1996). However, 

most stated preference studies are expensive and frequently unfeasible. When stated 

preference methods are not feasible; then the Benefit Transfer Method (BTM) emerges as 

a “second-best” option to evaluate management and policy impacts. Even though the 

reliability of BTM is debatable; it remains attractive compared to the stated preference 

methods because it does not require expensive and lengthy data collection (Desvousges et 

al. 1992; Brouwer, 2000). The BTM is increasingly applied in policy evaluations related 

to recreational use assessment (Bergstrom and De Civita, 1999). The benefit transfer can 

be conducted by deriving a benefit function that allows adjustment of previous estimates 

for a new site with different population characteristics (Smith et al., 2000; Loomis, 1996).  

In this work, a structural meta analysis is used to apply the BTM. The meta 

analysis approach utilizes theoretically sound behavioral model (a benefit transfer 

function) and uses established benefit estimates in the literature for the same commodity 

such as improving water quality (Pattanayak, Smith, and Van Houtven, 2004).  

In this paper, we develop an interdisciplinary socioeconomic framework to assess 

welfare impacts of decisions relevant to data collection at given sampling intervals to 

reduce uncertainty in NPS loadings. A major challenge in this analysis is to represent 

decision impacts in usable terms for welfare analysis. In this work, we propose to develop 

an indicator parameter that estimates the impacts of uncertainty in NPS loading due to 
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hydrologic variability as a function of data collection level which can be used in welfare 

analysis. This measure, hereafter referred to as uncertainty indicator, is structured to 

predict undetected NPS loading as a function of sampling interval and serves as an ex 

ante estimate of the sampling interval impact. To develop the uncertainty indicator, we 

utilize a historical time-series of precipitation, runoff, sedimentation, and pollutant (i.e. P) 

data.   

The contribution of this work is best viewed in the context of a comprehensive 

management approach when several stakeholders and catchments are involved in water 

quality protection plans. To implement and enforce management plans, extensive spatial 

and temporal data collection is needed which requires substantial financial and labor 

investments. Therefore, the proposed welfare analysis can provide decision-makers with 

information related to the stakeholder preference (or willingness-to-pay) to collect 

additional information. 

Background 

Nutrient export coefficients 

The nutrient export coefficient model suggested by Reckhow, Beaulac, and 

Simpson (1980) is designed to estimate the lumped annual loadings. Since then, several 

structural enhancements have been introduced to this basic model. These improvements 

can be grouped into two classes: (1) distributed sub-watershed level and (2) lumped 

watershed level. At the sub-watershed level, the watershed is divided to smaller units 

with tractable levels of information. For instance, Soranno et al. (1996) estimated the P 
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loading considering attenuation with traveling distance and Wickham et al. (2003) 

considered the relative location of sub-watershed units within the watershed. As for the 

lumped models, Endreny and Wood (2003) modified the lumped annual form by 

integrating terrain and land use weighing factors to the basic model. The weighted EC 

was then used to identify the critical areas of NPS loadings.  

Khadam and Kaluarachchi (2006a) suggested a modified form that includes the 

annual sediment loadings providing the capacity to assess hydrologic variability.  

Theoretically, sub-watershed models can produce better predictions; however, these 

models require intensive input data associated with significant uncertainty that will 

propagate through the model calculations and ultimately deteriorate the quality of final 

results (Jetten, Govers, and Hessel, 2003). Therefore, the benefit of using complex data 

intensive models may be diminished by data uncertainty and cause the complex models 

to perform poorer than the lumped regression models.  

P export coefficients  

P loading is an important quantity in the NPS pollution assessment process 

(Stumborg, Baerenklau, and Bishop, 2001). Therefore, in this study we focus on the TP 

loading estimations using a lumped export coefficient model. P is transported to water 

bodies mainly via surface runoff (McDowell and Sharpley, 2001).  

A detailed description of P transport and its interactions can be found in Sharpley 

et al. (2002) and McDowell et al. (2001). EC represent the average annual amount of 

nutrient loaded into a system from a defined area. EC are reported as a mass of pollutant 

per unit volume of water. The basic form of phosphorus EC estimates the annual P loads 
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to water bodies from a catchment as the sum of individual loads exported from each land 

use type and given as 

M

i i i
i=1

L= E xA xI∑
         (6) 

where L is the annual P load (kg); iE  is the export coefficient from land use i  (kg/ha-yr); 

Ai is the watershed area occupied by land use i  (ha); il   is the P input from land use i  

(kg/ha); and M  is the total number of land use classes.  

The basic P-export coefficient (Equation 6) considers the annual P loading from 

land uses to the watershed outlet without considering controlling processes (Khadam and 

Kaluarachchi, 2006a). A major limitation of this basic model is that while it is sensitive 

to changes in land use area and P application rates; it ignores processes important for 

pollutant transport, namely, runoff and soil erosion (Khadam and Kaluarachchi, 2006a).  

An alternative formulation of P-export coefficient suggested by Khadam and 

Kaluarachchi (2006a) considers these sources of uncertainty which is given as  

M

i i i
i=1

L = (R) K xA xIΦ Φ ∑
         (7) 

where R is the annual runoff (m3); Φ(R) is the annual sediment discharge as a 

function of annual runoff (kg); and the term i iK =(E /Φ(R))  represents the erosion-scaled 

P-export coefficient of land use i (kg/L).  

The sediment-adjusted EC (Equation 7) has the advantage of maintaining low 

data requirements compared to spatially distributed models while improving the 

prediction accuracy of observed loadings as illustrated by Khadam and Kaluarachchi 
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(2006a). The annual export coefficient is frequently used to compute a lumped annual 

estimate of pollutant load (NRC/NAS, 2001) which provides the basis for comparison 

with empirical estimates in the literature. Hydrologic variability is explicitly represented 

in Equation (7) with a parameter for sediment load which is a function of runoff.  

Water quality prediction 

Water quality predictive models are categorized as mechanistic or empirical 

models (Reckhow, 1994). Mechanistic models are process based and require calibration 

and verification. In contrast, empirical models are data driven and focus on examining the 

trends of observed data. Due to the nonlinear behavior of water quality parameters in this 

work, we utilized sparse bayesian regression. Bayesian regression models such as 

Support Vector Machines (SVM) and Relevance Vector Machines (RVM) view data as a 

chaotic system in which data series are assumed to provide enough information about the 

behavior of the system to perform forecasting (Khalil et al., 2005).  

Support vector machines provided good performance in several water resources 

applications (Khalil et al., 2005); however, the support vector machines predictions are 

not probabilistic (Muller et al., 2001). Unlike support vector machines; RVM are based 

on a probabilistic Bayesian learning framework (Tipping, 2001).  

RVM are distinguished among other regression models by its capacity to consider 

uncertainty in both data and parameters (Khalil et al., 2006). RVM simplifies complex 

systems by producing “structured” models; therefore parameterization process fits the 

information content. The key advantage of RVM is the generalization ability and the 

sparse formulation of the resulting model that utilizes few kernel functions (Khalil et al., 
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2006). RVM fits naturally into a regression framework and yield full probability 

distributions of the output. It is beyond the scope of this study to provide a detailed 

description of RVM and interested readers are referred to Tipping (2001) and Khalil et al. 

(2006).  

Methodology 

The conceptual approach proposed here is based on the environmental choice 

modeling suggested by Hanely, Mourato, and Wright (2001) and adapted here to estimate 

the benefit of decisions on collecting additional temporal data. A flow chart of the 

general process which can be modified for other applications is illustrated in Figure 14.  

Due to its abstract nature, the proposed conceptual framework is best illustrated in 

the context of a selected application. The general framework (Figure 14) is represented 

by the following modules: (1) information level realization; (2) information level impact 

assessment, and (3) the welfare impacts of additional information.  

We provide a practical framework as shown in Figure 15 to implement the 

general framework in the context of P loading.  

Modules 1 and 2 are designed to support the welfare analysis presented in Module 

3. It is assumed that hydrologic variability is consistent in time and space at the regional 

level. Therefore evaluation of one catchment can predict hydrologic variability at the 

regional level for a desired period. 
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Figure 14. A schematic showing the conceptual framework of the proposed methodology. 

 

To develop the ex ante estimates of information levels; we assume that the 

hydrologic variability for a given region is captured in the historical data sets which is 

valid as long as no significant changes in land uses and climatic conditions are observed. 
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Figure 15. A detailed layout of the proposed framework showing the three modules and 
the supporting analyses. 

 

The benefit of these assumptions is that unmonitored catchments under similar 

land uses and climatic conditions would have similar hydrologic variability as the 

representative catchment. 
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Module 1: Information level 
realization 

Consider that historical data of pollutant loadings for a given watershed captures 

hydrologic variability for a given region. Therefore, a historical record can provide the 

basis to estimate hydrologic variability for a given watershed and therefore for a region. 

Today, sufficient water quality data records are available through several agencies and 

data banks.  The historical data hereafter referred to as the baseline data set is composed 

of time-series of precipitation, runoff, sediments, and P loading.  

Using the assumption of a steady hydrologic variability pattern in time; we can 

predict the future loadings using the baseline data set. For this purpose, information level 

scenarios are produced by sampling the baseline data set at different sampling intervals 

(δt) ranging from the smallest to the largest interval. δt determines the sampling 

frequency and it provides an indication of uncertainty due to hydrologic variability. As 

the sampling interval is reduced (at higher sampling frequency); hydrologic variability is 

characterized with higher accuracy. The proposed sampling process produces different 

sets of time-series data (from the baseline set) at selected δt which are used as inputs to 

estimate the hydrologic variability impacts in Module 2.  

Module 2: Information level impact 
assessment 

The goal of this module is to express the impact of uncertainty of P loading due to 

hydrologic variability that was overlooked between sampling events. There is a need to 

quantify the impacts of uncertainty in a sensible measure that is useful in the welfare 

analysis. Here we develop uncertainty indicator that links the data collection level (given 
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as δt) to the expected P loadings. This proposed uncertainty indicator is consistent with 

the value of information analysis approach (Borisova et al., 2005) and provides an ex ante 

estimate of undetected pollutant loadings. The uncertainty indicator E(x(δt)) is defined as  

$( ( )) ( ))Uncertainty Indicator E x t = E(L t - Lδ δΦ=       (8) 

where E(LΦ(δt)) is the expected TP loading with hydrologic variability and $L  is the TP 

loading without hydrologic variability at a given time. The value of E(LΦ(δt)) is 

computed with the aid of each constructed data series corresponding to a sampling 

interval δt described in Module 1. For example, each data series of sampling interval δt 

constructed from baseline data is trained and tested using RVM consisting of observed 

precipitation, runoff, and sediment data. Once the RVM is developed, the sediment and 

runoff values can be computed at a future time period. Once runoff and sediment are 

known at this future period, the erosion-scaled EC can be found and then Equation (7) 

can be used to compute the corresponding TP loading. This load E(LΦ(δt)) now 

represents hydrologic variability. The value of TP loading without hydrologic variability 

$L  is computed directly using Equation (6).  

The reason for computing the value at a future time is, typically, policy decisions 

related to water quality mitigation is performed for a future period. Therefore, 

willingness-to-pay (WTP) of stakeholders for a future mitigation event can be computed.                      

An iterative algorithm was developed to optimize RVM parameter selection (kernel 

function type and width). Model performance for each constructed data set is evaluated 

for training and testing phases using bias, mean absolute error (MAE), root mean square 

error (RMSE), and index of agreement (IoA). In summary, the output used in the welfare 
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analysis is a set of uncertainty indicator estimates ΦE(L (δt))  calculated using Equation 

(8).   

A major advantage of the proposed approach is its transferability to a new setting 

(i.e. watershed). Typically, for a new watershed, a new learning process involving 

training, testing, and validation is needed for the constructed data sets. The uncertainty 

indicator (undetected pollutant loadings) provides an explicit measure of the adverse 

effects on receiving water bodies due to uncertainty arising from gaps in data collection.  

Module 3: Welfare analysis 

Module 3 estimates the socioeconomic value of collecting additional information. 

We utilize a recreational demand model to estimate individuals’ utility based on his/her 

recreational activity which depends on the state of receiving water bodies. The analysis is 

limited to recreational fishing behavior as a proxy of demand on recreational uses to 

estimate utility levels matching different risk levels posed by undetected P loadings. 

Then, we estimate the WTP to reduce this risk using a recreation benefit transfer model. 

WTP is estimated by comparing two pollution risk levels for two decisions reflecting 

different data collection levels (or δt). Thus, comparing any two risk levels produces the 

societal benefit estimate of acquiring additional information to reduce the risk of shock 

TP loadings to water bodies. Moreover, individual variability is recognized since for the 

same change in water quality, individuals indicate heterogeneous responses (Whitehead, 

1995).  

The welfare analysis benefits from related work in the literature. For the 

recreational demand model, the work of Leeworthy et al. (2005) was used to simulate the 
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frequency of recreational fishing visits. The approach suggested in Smith et al. (2000) 

and Smith, Van Houtven, and Pattanayak (2002) was modified to estimate the WTP in 

this study. For this purpose, the household was defined as the economic unit and assumed 

that at least a fraction of its income is generated from some agricultural activity which 

will be adversely affected by any NPS management measure. The selection of the 

household level as the unit for economic analysis is attractive because it utilizes 

accessible social and economic data collected at the household level by several agencies. 

The household head is the utility maximizer and acts to reduce the risk of loss in income 

in the form of more stringent NPS regulations endured because of misclassified NPS 

loadings. We consider a target population with known characteristics such as income, 

household size, age, education level, and the number of visits to recreational fishing 

areas.  

Recreational utility function. Numerous studies in the recreational economics 

literature used the Travel Cost Method to assess the environmental impacts on water 

relevant recreational values (Sandstrom, 1996; Smith, 1991; Wilson and Carpenter, 

1999). The Travel Cost Method entails observing the time and money spent to visit a 

recreation site to estimate the WTP for such visits. The essence of the Travel Cost 

Method is to determine the statistical relationship between price (travel costs) and 

quantity (the number of visits). The established link between the demands to a site and 

the quality of fishing sites can be used to estimate the changes in economic value 

associated with changes of quality of a water body. The Travel Cost Method utilizes data 

of environmental parameters (i.e. fish stocks) and social parameters such as the number 

of visits, distance traveled, or costs incurred.  
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The theoretical basis of the Travel Cost Method is the Household Production 

Function (HPF) to estimate the demand on recreational sites (Sandstrom, 1996; Smith, 

1991) where the sources of utility are activities that the household produces from other 

inputs (Randall, 1994). The HPF method uses observed behavior as the basis for 

valuation, and non-use values such as species habitat are not observed. The HPF 

approach is sufficient to assess the changes in water quality for this study because fishing 

and recreational uses are major activities of the target population. The underlying 

assumption of the HPF is that a household allocates a fraction of its income and labor 

time to an activity that is affected by environmental quality. By determining how changes 

in environmental quality influence the HPF and the welfare of the household; one can 

estimate the gain in welfare due to better information scenarios.  

In the context of recreational use evaluation, the HPF can be formulated as a 

random utility maximization model (Sandstrom, 1996). The primary reason for the 

popularity of this model is its capacity to depict individuals’ decision-making process 

(Greene, Moss, and Spreen, 1997). The goal of the utility function is to represent the 

change in individuals’ welfare in response to changes in quality of environmental 

resources. The TP loadings are linked to a preset information collection scenario, and the 

fishing visitation frequency is controlled by a vector of population attributes. Due to the 

small scale of the study area described here, we assume that a single water body is 

affected by TP pollution and the travel distance and cost are marginal due to close 

proximity. We used a random utility model similar to the one described by Train (1998) 

for recreational fishing uses.   
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The utility (U) obtained from a visit by an individual n who is also the household 

head is given in Train (1998) as follows: 

n n n nU x eβ= +           (9) 

where xn is a vector of observed explanatory variables (i.e. age and income); βn is a vector 

of unobserved weighing coefficients for each individual n that varies randomly 

representing each household taste; and en is unobserved random error term that is 

identically and independently distributed extreme value, independent of βn and xn.. Train 

(1998) suggested that coefficients βn vary with population and is defined as   

n nbβ η= + , where b is the population mean and ηn is the individual deviation which 

represents the taste of individual n relative to the average taste of population. Train 

(1988) suggested correlating a portion (ηn) to recreational site characteristics. The term ηn 

drops when considering a single recreation site. Train (1998) suggested selecting a 

distribution or a fixed value for βn that is appropriate to population anticipated behavior 

related to a given variable, xn. 

In this analysis, we propose a practical utility function based on Equation (9) that 

incorporates the undetected TP loadings as a proxy of environmental impacts, and 

recreational fishing visitation frequency as an aggregate parameter of individual 

characteristics (age, income, and education level). The premise of this utility function is 

to estimate the gain in utility if improvements in data collection is considered at a given 

baseline data collection level. When additional data collection is considered; the utility 

increases if more undetected loadings are uncovered because the benefits to water quality 

protection are high. Also, gain in utility for an individual with more visits per year is 
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higher than the case of fewer visits. The proposed utility function given in Equation (9) is 

presented as an expected value of predicted TP loading estimates from the RVM model in 

Equation 10 as follows  

1 2 ( )( ) ( ( t))n VISIT n nE U E x x eβ δ β= ⋅ + ⋅ +
      (10) 

where β1 and β2 are weighting coefficients and xVISIT(n)  is the number of visits to the site 

by individual  n. We assume that individuals respond equally to the two portions of the 

utility function. Therefore, we consider β1 and β2 to be equal with a fixed value of 0.5 for 

each. 

To sustain transferability of the methodology and to accommodate the target 

population properties; we used a calibrated socioeconomic visitation model at the US 

regional level. We utilized the calibrated visitation models in the National Survey on 

Recreation and the Environment of 2000 prepared by Leeworthy et al. (2005) for the 

regions of the US. Leeworthy et al. (2005) calibrated a negative lognormal model that 

analyzed population visitation behavior using socioeconomic variables such as age, 

income, and education level for the US at a regional scale. Leeworthy et al. (2005) 

proposed the model to estimate xVISIT (in days per year) as   

exp( )VISIT k kx xρ µ= +∑          (11) 

where ρ is a model constant; xk is a variables for socioeconomic attributes (age, income, 

and education); and µk is a coefficients for the socioeconomic variables (different for each 

activity). Equation (11) estimates average days of fishing visits per person of 16 years 

and older. The estimates of visitation frequency (from Equation 11) are used as an input 
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in Equation (10). In summery, the utility formulation (Equation 10) is simple yet it is 

sufficient because it explicitly represents the environmental change and implicitly 

integrates key household attributes that affect the recreational visitation frequency.  

Benefit transfer for WTP estimation. The next step in the welfare analysis is to 

estimate the WTP of the target population to obtain higher utility as a result of a potential 

improvement in information collection. The theoretical basis of WTP for quality 

improvement entails that the WTP is a function of pre-policy and post-policy quality 

levels (Mitchell and Carson, 1989; Smith et al., 2000). In this analysis; a preference 

calibrated BTM is employed to construct an accurate benefit transfer model for a new 

setting using reported estimates from contingent valuation studies. To estimate 

recreational fishing benefits; Smith et al. (2000) and Smith, Van Houtven, and Pattanayak 

(2002) described a procedure to apply the benefit transfer approach to estimates of WTP 

for water quality improvement for a new setting. It is beyond the scope of this study to 

reiterate the theoretical basis of the BTM which is discussed by Smith et al. (2000), and 

Smith, Van Houtven, and Pattanayak (2002). Instead, we concentrate on the derivation of 

WTP formulation, proposed modifications, and the practical aspects of WTP estimation. 

In this analysis, a WTP formulation that integrates individual perception related to water 

quality protection is developed.   

The BTM begins by developing a preference calibration structure to describe 

individual preferences related to water quality and recreational fishing. Smith, Van 

Houtven, and Pattanayak (2002) suggested a preference structure consistent with the 

assumption of Willing (1978) which implies that an indirect utility function (V ) is 
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structured so that the water quality measure reduces the effective price of using the 

recreation sites. The original V function is given as  

( )( ) ˆ b

TPV p h L m
α−⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦         (12) 

where p is the price of round-trip travel costs for a recreation visit ($/ roundtrip); m is 

household income ($/yr); α̂  and b are coefficients; and ( )TPh L  is a function that 

describes how improvements in water quality reduce the effective price of a trip 

($/roundtrip). Water quality is measured as TP pollutant loading ( TPL ) which is estimated 

earlier in Module 2 as the uncertainty indicator. Therefore, we can define TPL  as 

( ( ))TPL E x tδ≡  in kg/yr.  

In this analysis, population heterogeneity is considered in the derivation of the 

WTP formulation. Therefore, the original indirect utility function (Equation 12) which 

provides the basis to derive the WTP is re-evaluated and modified to represent population 

variability. Population variability in income can be represented by sampling incomes 

using the Monte Carlo approach from specific distributions of the target population to 

develop individual income ( nm ). The function ( )TPh L  is a major concern for this analysis 

because it determines the impact of incremental improvements of water quality. In Smith 

et al. (2000) and Smith, Van Houtven, and Pattanayak (2002), the authors imply that 

( )TPh L  is not affected by population variability which represents an oversimplifying 

assumption that is inconsistent with the scope of this work. The implication of this 

assumption is that a given improvement in water quality has an equal impact across 

individuals in terms of visitation frequency which determines the effective price using the 
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term ( ( ))TPP h L− . Also, the function ( )TPh L describes the marginal change of price of 

fishing trip (p) with water quality and ignores other non-market values such as the 

existence value. Another complication for the transferability of ( )TPh L  to a new setting is 

that it is unobservable and it is estimated implicitly. To estimate ( )TPh L , an indirect 

procedure (discussed below) is applied which assumes an appropriate ( )TPh L  structure 

and using reported estimates from relevant empirical studies which are difficult to 

replicate in a new location.  

Hence, to represent the individual variability in a theoretically sound and a 

practical manner and to sustain transferability, we propose to incorporate the expected 

recreational utility calculated in Module 2 ( ( )nE U ) as a measure of population variability 

in Equation (12). To formalize this modification; the original water quality term ( )TPh L  is 

multiplied by ( )nE U . In essence, the integration of individuals’ income ( nm ) and 

recreational utility ( ( )nE U ) with the water quality parameter represents social perception 

explicitly and produces individual–specific estimates of calibration terms ˆnα  and nb  and 

indirect utility ( nV ). The modified V formulation for individual n is provided below as  

( )( ) ˆ
( ( )

n
n

b

n TP n nV p h L E U m
α−⎡ ⎤= − ⋅ ⋅⎢ ⎥⎣ ⎦        (13) 

where subscript n defines the terms that are variable across individuals. For the remaining 

analysis, we follow the same procedure described by Smith et al. (2000) and Smith, Van 

Houtven, and Pattanayak (2002) to derive and calibrate the WTP formulation using the 

new combined term ( ( ) ( )TP nh L E U⋅ ) instead of the original ( )TPh L . Except for this new 
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term, the proposed formulation is identical to the original work of Smith et al. (2000) and 

Smith, Van Houtven, and Pattanayak (2002).  

Estimation of ( )TPh L  begins by assuming an appropriate function for ( )h ⋅  which 

is represented as a power function with a declining marginal effect of pollution on the 

price (Smith et al., 2000; Smith, Van Houtven, and Pattanayak, 2002). ( )TPh L is defined 

as [ ]( )TP TPh L L β=  and its first derivative is expressed as 1'( ) ( )TP TPh L L ββ −= . The 

Marshallian Consumer Surplus (MCS) is a common welfare measure of change in 

welfare related to the change in effective price that is determined by water quality. The 

empirical estimates of MCS can be obtained from the contingent valuation study of 

Englin, Lambert, and Shaw (1997) where the increase in MCS per fishing trip is 

equivalent to the first derivative of ( )TPh L  as shown in Equation (14).  

1
1 '( ) ( )TP TP

TP

MCS c h L L
L

ββ −∂
≡ =

∂         (14) 

The term 1c  is defined as the demand for fishing trips estimated using the 

common Roy’s identity and expressed as the number of visits/yr. The left term of 

Equation (14) is obtained empirically and it represents how MCS changes with TPL  . 

Practically, the coefficient β is recovered using known TPL from Module 2 and the 

estimated left term of Equation (14) using empirical estimates from Englin, Lambert, and 

Shaw (1997). In their study, Englin, Lambert and Shaw (1997) linked dissolved oxygen 

levels which are analogues to NPS loading, total fish catch, and travel cost demand model 

to produce estimates of MCS for known improvements in dissolved oxygen levels in 

lakes in the eastern US in 1989. 
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We assume that the reported estimate of parameter β by Smith, Van Houtven, and 

Pattanayak (2002) is sufficient for this recreational fishing study and elsewhere because β 

is based on the risk levels posed to fishing resources rather than the type or source of risk. 

Smith, Van Houtven, and Pattanayak (2002) estimated β to be $35.64 for 1995 which is 

adjusted in for this analysis to $45.50 for the year 2000. Now, we can define ( )TPh L  in 

the following analysis after β is determined.      

To estimate α̂  at the individual level n ( ˆnα ); a bench mark WTP estimate ( ˆWTP ) 

is selected from a comparable study and used with p, mn, water quality at baseline ( 0
TPL ), 

and improved data collection ( 1
TPL ) levels as given below:  

1
1

0
0

( ) ( )ˆ ln ln
( ) ( )

n TP n
n

n TP n

m WTP P h L E U
m P h L E U

α
∧⎛ ⎞ ⎛ ⎞− − ⋅⎜ ⎟= ⎜ ⎟⎜ ⎟ − ⋅⎝ ⎠⎝ ⎠       (15) 

Note that Equation (15) now produces utility-adjusted ˆnα  which is an 

enhancement over the original formulation of ˆnα . The original WTP (from the baseline 0 

to new information level 1) suggested by Smith et al. (2000) and Smith, Van Houtven, 

and Pattanayak (2002) is given below:  

ˆ1

0

( ( ))
( ( ))

n

TP
n n n

TP

P h LWTP m m
P h L

α⎡ ⎤−
= − ⎢ ⎥

−⎢ ⎥⎣ ⎦         (16) 

where WTPn is the WTP for improving data collection from baseline (level 0) to better 

information (level 1). The WTP estimation using Equation (16) does not adequately 

represent the population variability in the evaluation of change in water quality. The 

proposed WTP formulation is given below 
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ˆ1
1

(0,1) 0
0

( ( )) ( )
( ( )) ( )

n

NPS n
n n n

NPS n

P h L E UWTP m m
P h L E U

α⎡ ⎤− ⋅
= − ⎢ ⎥

− ⋅⎢ ⎥⎣ ⎦       (17) 

This formulation of Equation 17 is slightly different from Equation 16. The 

proposed formulation has the advantage of using utility-adjusted ˆnα  and ( )NPSh L  that are 

individual specific due to the proposed modification of integrating ( )nE U  in the 

derivation of ˆnα and WTPn .   

Equation (17) represents population variability in ( )NPSh L  which is assumed to be 

fixed across individuals in the original WTP formulation. Therefore, Equation (17) 

provides higher accuracy and more robust representation of population variability than 

the original WTP formulation. The proposed WTP formulation (Equation 17) is applied 

in the context of Monte Carlo sampling of specific distributions of target population 

characteristics to estimate the visitation frequency using Equation (11) which is used with 

NPSL to estimate recreational utility using Equation (10). Then the parameter ˆnα  is 

calibrated using Equation (15) and finally the WTP is estimated using Equation (17).  

Management Application  

Description of study area 

The Water Resources Inventory Area (WRIA) 1 is located in the northwest corner 

of Washington State. The Nooksack River basin is located in Whatcom County of WRIA 

1 covering an area of 825 square miles. The lowlands area is the focus of collaborative 

efforts by local, tribal and state officials to improve water quality (Hood, 2000). 
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Deteriorated water quality caused direct economic impacts such as closures of shellfish 

beds due to unsafe levels of bacterial pollution at nearby Puget Bay in 1998 (Hallock, 

2002) and the disruption of recreational uses (Embrey, 2001). Related studies indicate 

that agriculture, dairy farming, and waste lagoons contribute the most  to the observed 

elevated pollutant levels (i.e. nitrogen, phosphorus, and coliforms) in the Noocksack 

River Basin (Carey, 2002; Hallock, 2002; Kaluarachchi and Almasri, 2002; Matthews, 

Hilles, and Pelletier, 2002).   

Fishtrap Creek Catchment. Fishtrap Creek Catchment shown in Figure 16 is a 

representative watershed of the lower Nooksack River Basin. Fishtrap Creek is a small 

agricultural dominated catchment (95 km2). The Fishtrap Creek Catchment provides 

habitat for a variety of fish species and it is identified as a major source of bacterial 

loadings and regulated by a bacterial TMDL plan. A comprehensive review of the state of 

water quality management in the Fishtrap Creek is provided by Almasri and Kaluarachchi 

(2004) and Khadam and Kaluarachchi (2006a). Fishtrap Creek is characterized by 

intensive agricultural and dairy production.  

The NPS loadings in Fishtrap Creek are mainly attributed to fertilizer application 

and manure storage. The urban pollutant loadings from the cities of Abbotsford and 

Lynden are diverted to streams other than the Fishtrap Creek; therefore, the contribution 

of urban loadings is limited. In the Nooksack River Basin, protection of fish habitat and 

recreational fishing are major challenges for stakeholders (Joy, 2000). Therefore, 

reducing the risk of undetected NPS loadings have a positive effect. The observed TP 

concentration of Fishtrap Creek frequently exceeded the US EPA limit of 0.1 mg/L 



 
 
 
 

 
83

(Khadam and Kaluarachchi, 2006a); therefore, the focus on TP loadings as a proxy of 

NPS pollution is justified.  

Results and discussion    

Originally, the Fishtrap Creek outlet (Station A in Figure 16) has a short data 

record for the period from 1996 to 1998; however, Khadam and Kaluarachchi (2004) 

reconstructed water quality data for the Fishtrap Creek outlet using an interior upstream 

point with a data record covering the period from 1987 to 2001 using support vector 

machines. A period of three-year overlap in data collection between the two points (1996-

1998) was used to calibrate and verify the performance of SVM model.  

 

 

Figure 16. The layout of Fishtrap Creek Catchment showing land-use types and the 
location of the catchment outlet (Station A).   
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The reconstructed data set showed high prediction performance during calibration 

and verification with an average bias of 6%, MAE of 0.003, and a correlation coefficient 

of 0.995 (Khadam and Kaluarachchi, 2004). Therefore, the reconstructed data for 

Fishtrap can be used with confidence.  

The baseline data used here are daily records from 1987 to 1998 at the outlet of 

Fishtrap Creek Catchment (Station A in Figure 16) and includes precipitation (cm), 

runoff (cm), sediment loadings (kg), and TP loading (kg). The observed TP loading of 

Fishtrap Creek (shown in Figure 17) indicates frequent shock loading events which 

exemplify the importance of intensive sampling to capture hydrologic variability of the 

catchment. Intuitively, at a low sampling frequency; less data is collected and the 

probability of missing important loading events due to hydrologic variability is higher 

which means a higher risk of harmful undetected loadings to water bodies. 

Data collection scenarios (Module 1). Using the baseline data with daily time 

steps; a series of data sets were derived at discrete and increasing sampling intervals 

ranging from 2 days to 120 days to simulate long-term data collection scenarios. The total 

number of data time-series derived was 40. The 2-day sampling reflects the most accurate 

while the 120-day interval corresponds to the least accurate scenario. 

RVM application (Module 2). The Matlab application of RVM suggested by 

Tipping (2001) was used here to develop the RVM model. This approach was 

successfully used in several previous water resources applications (Khalil et al., 2005) 

too. 

For each data set derived from the baseline set corresponding to a given δt, 

training and testing were conducted. Upon a successful calibration and verification 
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process; the error in prediction using the RVM model can be attributed to the data 

collection scheme with a given δt. The indigenous error in prediction due to model 

related sources is neutralized by considering the difference between two simulated 

scenarios.  

The excellent RVM performance is obtained using a gaussian basis function with 

a band width of 4.0 for all secondary data sets with an average bias of 0.005, RMSE of 

0.4, MAE of 0.30, and IoA of 0.91. The details of training and testing results are given in 

the Appendix.  

Impacts of data collection levels (Module 2). The calibrated RVM models were 

used to predict the TP loading for the year 2000. The uncertainty indicator (expected 

undetected TP loading) is calculated for that year using the best estimate of TP loading 

 

0
100
200
300
400
500
600
700
800
900

M
ay

-8
8

M
ay

-8
9

M
ay

-9
0

M
ay

-9
1

M
ay

-9
2

M
ay

-9
3

M
ay

-9
4

M
ay

-9
5

M
ay

-9
6

M
ay

-9
7

M
ay

-9
8

Year

(k
g/

da
y)

 

Figure 17. Daily time-series of TP loading at Station A of Fishtrap Creek Catchment. 
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(from Equation 6) which employs standard EC and land use profile for the year 2000. 

The input variables used to estimate the P loadings for Fishtrap Creek are summarized in 

Table 5.  

The uncertainty indicator signifies the ex ante impact of a potential decision of 

using a given data collection level and it is used as input in the welfare analysis. As 

shown in Figure 18, the uncertainty indicator or undetected TP loading decreases as data 

collection is improved with shorter sampling interval. 

Visitation model (Module 3). The economic analysis was conducted for a 

representative population of the study area that was generated using Monte Carlo 

sampling of specific distributions of related variables of the target population. The 

simulated population represents 1,000 households of Lynden City.  

Probabilistic distributions of population age classes were obtained and the 

appropriate age-dependent distributions of income and education levels were prepared for 

the year 2000 (US Census Bureau, 2000). 

Table 5. Export coefficients used to estimate P loading for the Fishtrap Creek Catchment 
using Equation (6); Sources, Khadam and Kaluarachchi, (2006a) 

Land use Basic 
EC (Ei)

Area 
(ha) 

P loading rate 
(kg/ha) 

TP loading 
(kg) 

Agriculture 0.025 4896 30 151,739 

Urban 0.02 2397 1.8 4267 

Forest 0.02 836 1.6 1355 

Dairy 0.035 1381 167.8 23,1668 

Total  9510  389,029 
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The calibrated lognormal visitation model for the pacific region as described in 

Table 6 was utilized with the distributions of related social variables to estimate the 

visitation frequency using Equation (11). To evaluate the validity of estimated visitation 

frequency, we compared the simulated visitation with the best estimate reported in the 

literature for the target population. The simulated visitations indicate a median of 11 days 

which is slightly higher than the median estimate of 7.9 of Washington State.  

Expected utility estimation (Module 3). The simulated number of visits and the 

uncertainty indicator estimates of year 2000 were used to estimate the expected utility 

gain using Equation (10). The expected utility function assumes that for a given baseline 

data collection level; any improvement in data collection has the potential to detect the 

full extent of undetected P loadings at that level.  
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Figure 18. Predicted undetected annual TP loading (or uncertainty indicator) as a 
function of data collection level (sampling interval) for the Fishtrap Creek 
Catchment for year 2000. 
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For illustration, consider a baseline scenario A with low data collection level 

(large δt); the undetected loadings are high and therefore the benefit of additional 

sampling (expected utility) is expected to be high. 

Similarly, consider a baseline scenario B with a high data collection level (short 

δt); the undetected loadings are low and therefore the benefit of additional sampling 

(expected utility) is low. 

By comparing the two baseline scenarios A and B; one can estimate a gain in 

utility for a known improvement in data collection.  

To illustrate the behavior of utility function; the population response for the full 

range of baseline data collection scenarios (from 1 day to 120 days sampling intervals) 

was estimated. 

Table 6. Summary of empirical coefficients of the negative lognormal visitation model 
suggested by Leeworthy et al. (2005) for the Pacific Region including 
Washington State (US Census Bureau, 2000) 

Coefficients Population  
Variable 

(x) ρ β 

Data Type 
 

Household  
head age 

-0.22566 (35-44) yrs. 
-0.438495 (45-54) yrs. 
-0.410361(55-64) yrs. 

-0.87735(>65) yrs. 

Probabilistic distribution 

Household 
 head  

education 

0.600268 (1=high school) 
0.481914 (2=college) 

0.313825 (3=graduate) 
Age-dependent distribution 

Annual  
household  

income 

-2.7617 

0.374579 (<$50,000) 
0.311197 ($50,000-$100,000) 

0.818227 (>$100,000) 
Age-dependent distribution 
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The three-dimensional representation (Figure 19) shows the maximum expected 

utility level that an individual would gain if additional data collection is considered for a 

range of baseline data collection scenarios. In Figure 19, the x-axis represents the 

baseline sampling frequency as the sampling interval percentile (δt). The lower end of the 

x-axis (Figure 19) correspond to a short sampling interval which indicates highest 

baseline data collection scenarios, while the high end of the x-axis corresponds to long 

sampling intervals which reflects minimal data collection over time.  

This pattern reflects decreasing marginal change which is consistent with the 

findings of Smith, Van Houtven, and Pattanayak (2002) and axioms of economic theory. 

The y-axis (Figure 19) represents the population variability percentile which reflects the 

population characteristics age, income, and education level. Since income and education 

levels are a function of age; the population variability is better explained by age.  

The increase in variability percentile reflects an increase in population age. The 

lower percentiles represent young age groups and the higher percentiles represent old age 

groups. The observed trend of decreasing gain in expected utility as the age increases is 

attributed to the reduction in visitation frequency with age. This observation is in 

agreement with the trends of negative empirical coefficients reported by Leeworthy et al. 

(2005).  

The impact of baseline information levels is better illustrated in Figure 20, where 

selected slices of the utility surface are shown along the population variability axis and 

across the baseline data collection level axis. 
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Figure 19. A three-dimensional depiction of expected utility as a function of baseline data 
collection (sampling interval) and population variability. 

 

At any given population variability level; the potential utility gain decreases as the 

baseline data collection increases (lower δt percentile). At high baseline data collection 

levels (lower δt percentiles); the gain in utility diminishes for all population variability 

levels because the change in uncertainty becomes minimal which produces marginal 

effects at all ages. 

Similarly, Figure 21 illustrates the impact of population variability levels on 

expected gain in utility at selected cuts of baseline data collection levels. For any given 

baseline data collection level, the gain in utility decreases as the variability level 

increases (in age). 
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However, we notice that variation along the sampling interval axis is higher than 

the variation across the population variability axis which indicates a significant impact of 

additional information on utility.  

WTP estimation (Module 3). Several types of data and calculations are needed to 

estimate WTP using Equation (12). The individuals WTP assessment require calibration 

of parameter α̂  at the individual level using Equation (17). The cost of fishing trips (p) is 

estimated from the Economic Survey Pacific Cost of the year 1998 (RecFIN, 2001). The 

estimate for 1998 is $38 per trip and adjusted for year 2000 is $40 per fishing trip. The 

bench mark WTP value ( ˆWTP ) was obtained from Loomis (1996). 
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Figure 20. Selected cuts across various individual variability levels showing variation of 
expected utility with data collection levels. 
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Our review indicated that the WTP reported by Loomis (1996) is acceptable for 

this study because it represents recreators’ valuation of fish stock protection in the State 

of Washington. 

Loomis (1996) suggested a WTP value of $78/household-yr for 1996 which is 

adjusted for year 2000 at $94/ household-yr.   

Using the Monte Carlo sampling of income distribution; individuals’ income (mn) 

was determined and the parameter ˆnα  was estimated at the individual level using 

Equation (17). The calibrated ˆnα  has a mean and a standard deviation of 1.74 and 0.004 

respectively for the 1,000 sampled population of Lynden City. This steady value reflects 

low volatility of α̂  which provides confidence to any prediction made for water quality 

improvements.  
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Figure 21. Selected cuts across various expected utility levels showing variation of 
individual variability with data collection levels. 

 



 
 
 
 

 
93

Finally, the new WTP was estimated at the individual level using Equation (17) 

which compares two data collection levels. We estimate the individuals’ WTP using the 

expected gains in utility estimates, utility-adjusted ˆnα , simulated population income, and 

the fixed value of trip cost. To illustrate the behavior of WTP function; the population 

response for the full range of data collection scenarios (from 1 day to 120 days of 

sampling interval) with population variability is shown in Figure 22.  

The trends of WTP change is consistent with classical economic theory and 

observed patterns of the utility function behavior (Figure 19). As data collection levels 

increase (at lower δt percentile), the WTP to reduce uncertainty decreases. Also as the 

population variability (age) increases (at higher percentiles), the WTP decreases which is 

consistent with the findings of Pate and Loomis (1997).  
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Figure 22. A three-dimensional depiction of households' WTP to obtain additional 
information as a function of population variability and data collection levels. 
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To better explore the trends of WTP change, a set of selected cuts in the WTP 

surface is shown in Figure 23. According to Figure 23, the WTP decreases as population 

variability (based on age) increases for selected baseline data levels.  

Even though income and education may have opposite effects on WTP estimates; 

the structured Monte Carlo sampling of age-dependent distributions emphasize the effect 

of age which may conceal effects of other factors. However, the negative correlation 

between age and WTP is anticipated because of the negative correlation between age and 

visitation which is consistent with the findings reported by Dalton et al. (1998). 

Figure 24 shows a set of cuts of WTP surface across the baseline data collection 

levels. For any population variability level; the WTP for additional information decreases 

at high baseline data collection levels because hidden TP loadings and expected benefits 

decrease with better data collection.   
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Figure 23. Selected cuts across different expected utility values showing the variation of 
household WTP with individual variability. 
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The WTP trend is consistent with the classical economic theory axioms and the 

observed utility trends.  

Calculation example. The purpose of this calculation is to illustrate the 

significance of this WTP assessment in decision-making relevant to a management 

scenario. Two potential data collection scenarios for the Fishtrap Creek Catchment were 

considered and the details are shown in Table 7.  

Consider a baseline data collection level with a minimal data collection at a 120-

day sampling interval. The decision-maker is inclined to enhance the sampling program 

accuracy by increasing sampling frequency. 
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Figure 24. Selected cuts across different individual variability values showing the 
variation of household WTP with data collection scenarios. 
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However, the questions such as how much to invest, what is the WTP, the 

perceptions of the society, and what is the most efficient data collection strategy are not 

easily solved.  

Consider two enhancement scenarios for a sparse sampling program; Scenario 1 is 

a 60-day sampling interval, and Scenario 2 is a 10-day sampling interval. The lower data 

collection level (60 days for Scenario 1) will have undetected loadings of 2,428 kg/yr 

which is three times higher than the undetected loadings at the higher data collection 

level (10 days for Scenario 2). 

Therefore the improvement of 10 days sampling level would reduce the 

uncertainty (undetected TP loadings) by 1,761 kg/yr.  

Next, the target population is informed of undetected TP loadings corresponding 

to each data collection level as the ex ante value of information. With the visitation 

frequency (xvisit) estimated for the local population; the utility model detects a change in 

utility of 0.12 (from 0.26 to 0.14) in response to the better accuracy in TP loading 

assessment. 

The mean annual WTP estimates of the improvements from Scenario 1 (δt =60 

days) to Scenario 2 (δt =10 days) is $15 /year-individual to obtain 1,761 kg/yr reduction 

in undetected TP loadings based on the transferred estimate of Loomis (1996).   

Summary and Conclusion  

In this work, a new interdisciplinary socioeconomic methodology is proposed to 

assess the utility and WTP of a heterogeneous population to reduce uncertainty in NPS 

pollution due to hydrologic variability. The utility and WTP are assessed in terms of new 
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information collection. The proposed methodology is composed of three modules: (1) 

additional data selection and realization; (2) characterization of additional data impacts, 

and (3) the welfare and socioeconomic analysis.  

For the second module, the approach of Leeworthy et al. (2005) was used to 

estimate the population recreational visit behavior which is utilized in a modified utility 

model suggested by Train (1998). 

For the welfare analysis; this work introduced an early application of preference 

calibrated benefit transfer method based on the work of Smith et al. (2000) and Smith, 

Van Houtven, and Pattanayak (2002) to assess the WTP for improved data collection to 

reduce uncertainty.  

This interdisciplinary work contributed to the current understanding of benefit-

cost assessment relevant to water quality mitigation through the introduction of 

socioeconomic attributes. The proposed methodology is practical and use publically 

available data collected by state and federal agencies across the US. 

In Module 2, the state-of- the-art forecasting tool consisting RVM was used to 

estimate ex ante value of information. The transition from the predicted environmental 

impact (Module 2) to WTP estimation (Module 3) was achieved through developing 

visitation, utility, and benefits transfer models calibrated for the target population. 

Module 3 clearly shows the major contribution of this work to the field of water 

quality mitigation through the development of WTP analysis. In Module 3, the 

socioeconomic value of information level is estimated using visitation, recreational 

utility, and benefit transfer models applied using Monte Carlo sampling to represent 

population variability. 
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Table 7. Summary of management application with two information collection scenarios 
for the Fishtrap Creek Catchment 

Variable Scenario 1 Scenario 2 Comments 

Additional Data Realization  

Sampling Interval 
(δt), days 60 10 

Future number of 
samples/year 8 37 

 

Characterization of Additional Data Impacts 

Undetected TP 
loading, kg/year 

(Figure 18) 
2,428.8 667.7 

Frequent sampling 
corresponds  

to high detection  
of TP loading  

Socioeconomic Estimates 

Median number of 
visits/year 11 11 

Expected median 
utility  0.26 0.14 

Less base level 
information has higher 

utility with the potential  
to detect higher P 

 loadings and a gain in 
utility  of 0.12   

Households’ WTP ($/yr) at base level 

Minimum 57.7 42.2 

Mean 98.0 83.3 

Maximum 183.7 170.0 

Standard  
Deviation 26.5 26.5 

On average,  
households  

are willing to pay  
extra $15/yr or 20%  

more to reduce  
uncertainty from  

60 to 10 days  
sampling interval  
so that undetected  
 TP loadings can  

be reduced by  
1,761 kg/yr 
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The proposed methodology illustrated the capacity to derive multi-point estimates 

of WTP for a new setting using existing benefit estimates and the preference calibrated 

benefit transfer method.  

The combined application of forecasting method using RVM, econometric models 

(visitation and utility), and benefit transfer technique to predict WTP estimation is a 

novel contribution to the NPS management literature. The proposed methodology 

provides future predictions for a single-period (on annual basis) that are transferable to a 

new environmental and population setting. The required data are typically accessible 

through public sources such as public domain socioeconomic databases on age and 

income; thus permitting its application on different environmental problems.   

The methodology has the advantage of allowing stakeholders to allocate risk-

reduction expenditures based on explicit WTP estimates specific for the target 

population. The success of this methodology is contingent on the quality of data. Even 

though the theoretical framework is well established; data quality and the lack of standard 

approaches to evaluate vital parameters such as utility level and calibration of transfer 

model parameters are limitations, but also provide directions for future research.    
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CHAPTER VI 

SOCIAL WELFARE ANALYSIS OF DISTRIBUTIVE EQUITY IN NPS POLLUTION 

USING BENEFIT TRANSFER APPROACH  

Successful pollution abatement policies in watershed management require a 

collaborative and long-term commitment from several contributing sources. In this 

context, social acceptability of considered policies evolves as a major factor to determine 

the potential success of these policies and poses a challenge to decision makers due its 

strong reliance on behavioral and social factors. Distributive equity emerges as a practical 

indicator of social acceptability of abatement policies in air and water quality 

applications. A common practice in cost sharing problems is to consider efficiency (least-

cost) approach which normally ignores distributive equity.  

In the context of watershed management; a theoretical framework for evaluating 

the tradeoff between efficiency and equity is developed. The recent literature provides a 

framework to determine equitable allocations of responsibility only at the high level of 

decision making (basin and watersheds level) and lacks the structural capacity to estimate 

impacts of the considered policies on the affected population (farmers).  In this work, a 

novel theoretical framework is developed to elicit welfare measures of equity at the 

individual level (farmer). The new framework has the capacity to transform the equity 

related allocations at the watershed level to the individual (farmer) level and then 

estimate individuals’ utility and WTP measures which is the contribution of this work to 

watershed management. A practical application of the new framework is provided using 
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phosphorus loading reduction in the Fishtrap Creek Watershed in the Nooksack River 

Basin in northwestern Washington State.  

Introduction and Background 

Agricultural pollution is responsible for 60% of impaired river areas (US EPA, 

2002). While pollutants from point sources (e.g. wastewater discharges) are easy to track 

and control; Non-Point Sources (NPS) are difficult to measure and manage (i.e. runoff 

from agricultural fields) (Sharply et al., 2001). 

Today, significant controls are exerted on Point Sources through regulations such 

as clean water act; and there exists less control of NPS agricultural pollution loading 

(Johansson, 2002). The ecological risks posed by NPS are substantially more serious than 

those posed by pollution from point sources (US EPA, 2003, 2004). Nonpoint source 

pollution remains the major source of water pollution, accounting for approximately 70% 

of total suspended solids and 80% of the total phosphorus input.  

The current practice of NPS pollution mitigation utilizes a range of measures 

related to the farming practices; from practical operational measures known as Best 

Management Practices (BMPs) to more radical measures such as land or crop retirement 

(Ribaudo, Horan, and Smith, 1999). For NPS pollution management, the allocation of 

pollution mitigation responsibilities amongst suspected sources is challenging due to the 

inherited uncertainty associated with identifying contribution of each source to the total 

load.  

Environmental economics provide two major types of economic instruments to 

achieve NPS pollution loading reduction: (1) command and control instruments, and (2) 
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economic instruments, both direct and indirect (Shortle and Horan, 2001). Command and 

control instruments are technology-based programs, where regulators identify and 

mandate mitigation strategies for each type of sources, e.g., the Total Maximum Daily 

Load (TMDL) program. As for the economic instruments, they are flexible and they 

allow group of polluters to choose their appropriate mitigation levels by using economic 

incentives to reach target reduction goal. An example of direct economic incentives is the 

tradable permits and taxes on ambient pollution levels. The indirect economic 

instruments involve taxing production inputs such as fertilizers or animal feed 

consumption in order to reduce the use of that particular input, hence reducing nutrients 

loads.  

The command and control instruments are increasingly applied in the US. 

However, they are criticized for ignoring fairness and equity issues in allocating 

mitigation responsibilities among heterogeneous sources (Khadam and Kaluarachchi, 

2006b). Economists argue that for a policy to be sustainable it has to recognize both 

efficiency and equity concerns. By “efficiency” economists refer to “Kaldor-Hicks 

efficiency.” which implies that those whom it benefits compensate those whom it harms 

fully (Adler, 2006). To achieve equitable solutions; extensive data collection is needed to 

monitor producers practices and loadings which accumulates high costs to decision 

maker. Moreover, the economic instruments which are designed to produce socially 

acceptable solutions are hurdled by the requirement of continuous and extensive 

monitoring across all polluters to facilitate information flow to help pollution exchange 

decision making (Shortle and Horan, 2001).   
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Today, the NPS pollution management by command and control policies such as 

TMDL is widely adopted across the US. For instance, by the year 1996 about 13,000 

TMDL plans have been set and approved across the US (US EPA, 2004). The TMDL 

application includes explicit and implicit costs incurred by farmers and other stakeholders 

to reduce pollutants loadings. Explicit expenses include expenditures by farmers to 

control pollution (i.e., retiring crops and installing buffer strips). Implicit expenditures 

include opportunity costs which is the income forgone when pollution control practices 

are adopted. TMDL policy focuses on management practices and their water quality 

improvement without considering its welfare impacts which is a major limitation 

(Maguire, 2003).  As more agricultural watersheds are managed by the TMDL process; 

issues of efficiency, equity, and uncertainty continue to hinder TMDL implementation. 

Since equity explicitly affects TMDL policy efficiency; the two variables need to be 

addressed concurrently (Keplinger, 2003).  

Equity in NPS pollution management 

Application of the TMDL policy has important implications on public welfare. 

One major limitation of TMDL policy is the disregard of issues of justice and equity in 

responsibility allocation (Maguire, 2003; Khadam and Kaluarachchi, 2006b). A 

sustainable TMDL policy has to be economically feasible and socially acceptable by 

involved parties (Spurlock and Clifton, 1982). The allocation of abatement cost amongst 

contributing sources in a TMDL policy is a major challenge because observed pollution 

may be generated beyond the boundaries of local watershed and it tends to span across 

political boundaries. Thus, the allocation of pollution control responsibilities has to 
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address both economic efficiency and individual concerns of social justice (Bauch and 

Spahr, 1998). Typically, an efficient solution assigns different costs of pollution control 

for different sources such that the marginal abatement costs across all sources are 

equalized. To achieve equitable responsibility allocation; decision makers are challenged 

by: (1) uncertainties arising from hydrological variability and from the contribution of 

each source, (2) effect of multiple pollutants, and (3) derivation of abetment cost function 

that estimates the costs incurred by sources for given reductions (Khadam and 

Kaluarachchi, 2006b).  

Numerous literature addressed some form of equity in a range of environmental 

management and health risk applications (Adler, 2006; Chavas, 1994; Levy, 

Chemerynski, and Tuchmann, 2006). In the context of cost sharing policies; social equity 

can be measured in terms of distributive equity (Johnson, Rutstrom, and George, 2006; 

Levy, Chemerynski, and Tuchmann, 2006). Equity and justice assessment are well 

established in the air quality management literature. For instance, Bovenberg and 

Goulder (2001) analyzed the equity in allocation of green house gases emission 

allowances by estimating the financial impact on companies and the potential to improve 

general equilibrium efficiency through reducing emission taxes.  

In relation to water pollution, Spurlock and Clifton (1982) recognize the benefit 

of allocating different shares of pollution reduction burden among polluters to enhance 

abatement policy acceptance. Stephenson and Shabman (2001) recognize the need to 

represent heterogeneity in pollution reduction costs and suggested that reduction 

allocations should be determined for each watershed individually. Polluters in each 

watershed are then allowed to negotiate to reach a least cost allocation of pollution 
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control responsibilities. Stephenson and Shabman (2001) argue that this approach will 

motivate collaborative solutions in addition to achieving a least cost solution to control 

pollution. The collaboration principle is the underlying concept of the several economic 

incentive approaches such as trading permits.    

In a related work, Onal et al. (1998) represented distributive equity in their 

watershed management model. Authors maximized the aggregate economic returns at the 

watershed level through a range of agricultural practices including crop rotations and 

technology choices considering equity goals. Distributive equity is represented as a 

constraint that imposes a minimum diversification of economic losses across all farms. 

Recently, Khadam and Kaluarachchi (2006b) developed a theoretical framework for 

evaluating the tradeoff between economic efficiency and equity using several equity 

criteria. Authors developed efficiency-equity curves that quantify the cost of achieving 

known equity levels. However, the related works of Onal et al. (1998) and Khadam and 

Kaluarachchi (2006b) did not address welfare measures of equity. Also, the majority of 

the cost sharing research in watershed management has focused on the stakeholder level 

which is hardly applicable to the small scale of individual (i.e. farmer) level (Lubell, 

2004).  

Equity and benefit transfer approach  

Economic literature provides several methods to evaluate non-market amenities 

such as social equity. Valuation methods are classified into revealed preference, where 

valuations are inferred from actual observations of choice behavior, and stated 

preference, where the valuations are directly obtained from hypothetical statements of 



 
 
 
 

 
106

choice. The revealed preference methods include Hedonic Pricing and Travel Cost 

Methods. As for the stated preference methods, people are presented with a hypothetical 

scenario and then asked to state explicitly what its worth to them. Economic valuation 

using direct approach (i.e. contingent valuation method) is the “first-best” strategy to 

collect the needed information. The stated preference methods are deemed to be more 

accurate for conducting benefit-cost analysis for environmental resources (Loomis, 

1996). However, most stated preference studies are expensive and frequently unfeasible. 

When the stated preference methods are not practical; the Benefit Transfer Approach 

(BTA) emerges as a “second-best” option to evaluate equity of cost sharing policy. Even 

though the reliability of BTA is debatable; it remains attractive compared to the stated 

preference methods because it does not require expensive and lengthy data collection 

(Desvousges et al., 1992; Brouwer, 2000). The BTA for non market amenities evaluation 

is becoming increasingly popular for a wide range of environmental applications 

(Bergstrom and De Civita, 1999). The BTA requires derivation of a benefit transfer 

function that allows adjustment of previous estimates for a new setting (Loomis, 1996).  

In this work, a theoretically sound behavioral model that consists of a derived 

WTP formulation based on assumed utility structure is developed. The behavioral model 

uses benefit estimates and related parameters to populate the model using previous equity 

studies (Pattanayak, Smith, and Van Houtven, 2004). The theoretical basis of WTP for 

quality improvement entails that the WTP is a function of pre-equity and post-equity 

policies.  

The objective of this research is to enhance the present social acceptability 

assessment framework by including welfare measures of equity in cost sharing between 
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members (i.e. TMDL). In this work, a practical multi-disciplinary framework is 

developed to estimate population welfare to achieve equity in the context of NPS 

pollution reduction responsibilities. The developed framework produces estimates of 

utility and willingness-to-pay (WTP) for distributive equity using BTA to produce new 

estimates using previous related studies. The suggested framework is applied to the 

Fishtrap Creek watershed in the Nooksack River Basin in northern Washington State. 

The suggested framework addresses the tradeoff between economic efficiency 

and equity in allocation of pollution abetment responsibilities within the TMDL 

framework. For a given equity level, the suggested methodology produces several useful 

end points such as allocations of cost sharing between contributing land uses at the 

watershed level, and utility and willingness to pay estimates at the individual (farm) 

level.  

Methodology 

The analysis framework is structured of the following modules: (1) Equity level 

realization, (2) Equity level impact assessment, and (3) Equity welfare analysis.  

The premise of the equity levels realization module (Module 1) is to represent 

equity levels in the context of watershed management in sensible measure to the 

stakeholders. A key task of Module 1 is to develop a watershed economic model that 

facilitates the minimization of the cost of a given pollution reduction at the watershed 

level with explicit equity levels. The watershed economic model determines the cost 

sharing scheme that corresponds to highest efficiency (minimum cost) at a given equity 

level. The anticipated outcome of the watershed economic model is the allocation of 
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economic loss burden amongst contributing members (land use types). The premise of 

the equity impact assessment module (Module 2) is to transform the cost sharing scheme 

at the watershed level in a sensible measure at the individual (i.e. farmer) level. With 

equity policy a change in farm income (gain or loss) is expected. The anticipated 

outcome of Module 2 is the change in farmer income due to considering given equity 

level. In equity welfare module (Module 3), utility and WTP formulations that consider 

equity are derived. The economic analysis suggested in Module 3 represents the 

contribution of this work to the TMDL management literature. In this work, concepts and 

models developed in other works in the literature are utilized. For the watershed 

economic model, we use the economic model developed by Khadam and Kaluarachchi 

(2006b), which represents equity in abatement cost allocation in watershed management.  

To assess the equity utility and WTP; we adopt the procedure described in Corneo 

and Fong (2006) to derive functional forms of the utility and WTP measures. Authors 

implemented a BTA to estimate WTP for distributive equity in the context of income loss 

due to tax allocation.  

Module 1: Realization of equity levels 
scenarios 

Watershed economic model. A watershed economic model is developed to 

estimate optimal cost sharing scheme at given equity levels. The watershed economic 

model hereafter referred to as the economic model allocates pollution reduction loads 

based on land uses in a watershed. Due to data availability limitations and to maintain the 

analysis transferability, equity is considered at the level of common land uses in a 

watershed. The assumption behind grouping pollution sources as land use types implies 
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that enforcement of pollution reduction targets can be achieved through market-based 

economic incentives using collaborative approach (Khadam and Kaluarachchi, 2006b; 

Romstad, 2003).  

A pollutant transport model is needed to estimate pollution production and 

transport from watershed as a function of land uses. Pollutant transport is estimated using 

specific land use erosion-scaled export coefficient that relates land uses to pollutant 

loadings considering sedimentation. The advantage of using erosion scaled export 

coefficient model is to include hydrologic variability impacts which produce more 

accurate estimates of pollutant loadings (Khadam and Kaluarchchi, 2006b). 

For a watershed with j land uses (j=1,..,n) the generated pollution at the watershed 

outlet ( L ) is defined as  

( )
n

j j j j
j=1

L=Φ× A ×I ×K × 1-M∑
         (18) 

where Φ = annual sediment discharge as a function of annual runoff from watershed; Aj 

= area occupied by land use j (ha) in the watershed; Ij = pollutant input from land use j 

(Kg/ha) in the watershed; Kj = is erosion-scaled export coefficient for land use j in a 

watershed; Mj = level of management efforts (percent reduction in economic production); 

and n is the number of land uses.  

Also, an economic model is needed to estimate economic losses and gains 

determined by pollution abatement policy for potential sources (i.e. land uses). The 

mutual use of watershed pollution loading and economic models allow estimating the 
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allocation of pollutant reduction cost amongst sources to achieve stakeholder goals based 

on both equity and efficiency. 

The watershed economic production is determined for each land use on the basis 

of per unit area outcome. The watershed economic production (η ) is defined as follows:   

n

j j
j=1

η= w ×A∑
          (19) 

where jw  = economic production of land use j  in a watershed ($/ha). 

Pollution abatement cost function. The quantification of the economic costs of 

pollution reduction is a vital component of this analysis. The availability of economic 

data related to costs of reducing pollution from different sources represents a persistent 

challenge for pollution reduction studies. Incomplete knowledge about the efficiency and 

cost of management options produces inefficient solutions.  Previous literature show 

several approaches to obtain information related to abatement cost functions. For 

instance, Shortle et al. (1999) used direct questionnaires to elicit estimates of pollutants 

reduction cost from polluters. Another approach adopted by Elofsson, (2003) involves the 

estimation of the opportunity cost due to change in policy.  

Alternatively, a continuous cost abatement function is adopted by Johansson and 

Randall (2003), Ancev et al. (2006), and Khadam and Kaluarachchi (2006b) where a 

single continuous function is assumed to describe the relationship between management 

costs and abatement effort for each pollution source. The advantage of this approach is to 

simplify the analysis by evading the need to estimate separate cost functions for each 

management option for each source. With a continuous function, a single cost function 
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for each source (i.e. land use) is sufficient. Johansson and Randall (2003) developed 

phosphorus abatement cost function that relates reduction in phosphorus loads to the 

associated costs for each watershed in their study using quadratic abatement cost 

function. Recently, Khadam and Kaluarachchi (2006b) modified the abatement cost 

function suggested by Johansson and Randall (2003) to represent sources with variable 

function curvatures which is suitable for different sources or land uses. The cost function 

suggested by Khadam and Kaluarachchi (2006b) uses the percent reduction in economic 

production (M) instead of the absolute amount of pollution reduction and replaces 

quadratic cost function with a power function to allow representing the curvature of the 

cost function with different sources (land uses). 

In this work, we focus on the application of the cost function. However, a detailed 

description of the abatement cost function is provided in Johansson and Randall (2003) 

and Khadam and Kaluarachchi (2006b). The general abatement cost function developed 

by Khadam and Kaluarachchi (2006b) is defined as follows:  

bC(M)=a×M           (20) 

where C is the cost of pollution loading reduction as a function of management cost; M is 

the percent reduction in economic production due to management effort or hereafter 

referred to as management cost; and a and b are coefficients.  

The watershed cost of pollution management (χ) based on Equation 20 is defined 

in terms of farm land uses as follows:   

j
n

β
j j

j 1

χ C(M) α M
=

= = ×∑
        (21) 
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where jα  = coefficient ($), and jβ  = coefficient (dimensionless)  

Therefore, the watershed net economic production ( π ) after pollution loading is 

reduced is defined as  

j
n n

β
j j j j

j 1 j 1

π η χ w A α M
= =

= − = × − ×∑ ∑
      (22) 

Distributive equity consideration. Equity definition is determined by the unit of 

decision-making. In this study, equity is defined in terms of the distribution of 

management cost between land uses as a constraint for the optimization problem. Equity 

in management cost allocation (M) is considered between different land uses within the 

watershed. The consideration of equity at the watershed level represents a natural 

hydrological boundary and selecting land use is practical and convenient from an 

economic and management point of view. In this analysis, we define equity as equal 

distribution of ratio of economic losses to total economic production (Khadam and 

Kaluarachchi, 2006b).  

The Equity Measure (EM) is defined as the variation in percentage of relative 

pollution costs (χ ) to production across land uses ( η) and it is formalized as follows:    

n
j T

j 1 j T

T T

χ χ
η η

EM 1
n χ η
=

−

= −
×

∑

         (23) 

where n is the number of land uses j; and the subscript T refers to the total land uses in 

the watershed (T n=∑ ). 
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To account for stochastic nature of runoff, Chebyshev’s inequality is used similar 

to Khadam and Kaluarachchi (2006b) as follows:  

[ ] 0.5
maxvar[ ]E L L Lδ+ × ≤         (24) 

where  µ  is best estimate sediment loading (long term) defined as [ ]Eµ = Φ , δ  

is the confidence level at probability (ρ) is defined as 0.5(1/1 )δ ρ= − , and 2σ  

is the variation of observed Φ from the µ defined as [ ]2 E (Φ-µ)σ = . 

The EM considers distributive equity at the watershed level between land uses. 

Therefore, equity can be represented as a constraint in the watershed economic 

production maximization problem as shown in Equation 25.  

j
n n

β
j j j j

j 1 j 1
Max : w A α MZ

= =

⎛ ⎞
= × − ×⎜ ⎟
⎝ ⎠
∑ ∑

       (25) 

Subject to: 

n
j T

j 1 j T
min

T T

χ χ
η η

1 EM
n χ η
=

−

− ≥
×

∑

        (25a) 

 and  

0.5
n n

max j j j j s j j j j
j 1 j 1

L µ A I K (1 M ) δ σ A I K (1 M )
= =

⎡ ⎤⎛ ⎞
≥ × × × × − + × × × × × −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑

    (25b)  

where minEM  is  the minimum equity to be satisfied.  
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Practically, Equation 25 is solved at desired level of equity minEM  in order to find 

an equitable-efficient solution and it provides a simple and attractive procedure to 

characterize this equity –efficiency tradeoff which is the focus of this work.  

The described watershed economic model minimizes management cost at desired 

equity levels. Therefore, the watershed economic model produces efficient solution with 

known equity level. The anticipated outcome of the watershed economic model is the 

allocation of management costs between ( jM ) among land uses j that satisfies maximum 

efficiency at desired equity level.  

Module 2: Equity levels impact 
assessment  

The goal of Module 2 is to express equity policy at the watershed level (using 

land uses) in a suitable measure for welfare analysis which is the individual (farmer) 

level. An underlying assumption is needed to facilitate the transition from a large scale 

equity policy to the small scale of farmers’ level. The farmer income is viewed as a 

combination of the related land uses. The transition from large to small scale requires 

several economic data at various levels. At the land use level, economic production and 

management cost data are provided in the economic model developed earlier in Module 

1. At the farm level; the fraction of each land use per farm is obtained from agricultural 

census data of the considered watershed.  

To identify equity impacts, the change in income due to equitable policy 

compared to a non-equity policy is considered. For each land use, the management cost 

(M) determined by non-equitable allocation is compared with M related to equitable 

allocation with known equity. The equity policy at the watershed level categorizes land 
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uses based on their pollution loading and economic production to two types: (1) Receiver 

and (2) Giver. The Receiver land use is the one that is assigned less M with equity policy 

than with no equity policy. The Giver land use is the one that is assigned more M with 

equity policy than with no equity policy. The emerged classification of land uses 

similarly separates farmers to two classes. With equity policy, farmers enjoy increase in 

income or incur economic loss based on the contribution of Giver and Receiver land uses 

to the total farm income. To formalize the equity policy impact on income; the net 

income for farmer (i) with no equity policy ( '
efy (i) ) is defined in terms of the 

management cost determined by non-equity policy for land use j ( ef
jM ) as follows:    

n
' ef
ef j j

j=1
y (i)=y(i) - f (i) M (i)⎡ ⎤×⎣ ⎦∑

       (26) 

where y(i)  is the farm income with no management cost (zero pollution reduction), jf (i)  

is the fraction of total area of land use j in the watershed for farmer i. 

Similarly, with equity policy the farmers’ net income is defined by   

n
' eq
eq j j

j=1
y (i)=y(i) - f (i) M (i)⎡ ⎤×⎣ ⎦∑

        (27) 

Therefore the impact of equity on farmer i is defined as   

 eq eq ef∆y (i)=y (i)/y (i)′ ′         (28) 

Based on the fraction of each land use in a given farm; farmers can be classified 

to Receiver and Giver with equity policy. Formally, a Receiver farmer is the one with 

positive change in income, and a Giver farmer is the one with negative change in income 
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due to equity.  The anticipated outcome of this analysis is monetary estimates of the 

change in income related to equity for each farm. 

Module 3: Equity welfare analysis  

The goal of Module 3 is to develop welfare measures of the equity policy 

simulated in Module 1 and represented in Module 2 as change in income at the individual 

(farmer) level. The developed welfare measures represent a novel contribution to the 

social acceptability assessment framework in watershed management. The theoretical 

economic constructs derived by Corneo and Fong (2006) provide a transferable and 

practical approach to estimate utility based WTP formulation for equity in various 

policies that affect income distribution between members. It is beyond the scope of this 

study to repeat the theoretical basis of the BTA which is described in the original work of 

Corneo and Fong (2006). Instead, we concentrate on the derivation of WTP formulation, 

proposed modifications, and the practical aspects of WTP estimation. In this analysis, a 

WTP formulation that integrates individual perception related to equity in cost sharing 

policy such as TMDL is developed. 

A basic utility function is needed to derive the farmers’ WTP equation.  

The equity utility function developed by Corneo and Fong (2006) is modified for this 

work’s purpose. The original utility model considers equity and its effect on individual 

consumption (C). In this study, the consumption (C) is substituted by the change in 

income due to equity eqy (i)∆  which indirectly indicates consumption. Individuals derive 

utility from two factors: 1) the consumption of goods using the modified income by 
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equity and 2) the satisfaction knowing that certain equity is achieved in the community. 

The functional form of farmers’ equity utility function is defined as   

ie eq i eq iu =u( y ,h )=ω y +θ (1-2h )∆ ×∆ ×        (29) 

where  ih  = 0 if farmer i is a Receiver and ih = 1 if farmer i is a Giver, ω  and θ  

are weighting non-negative scalars. 

The first term of Equation 29 conveys the impact of income change and the 

second term represents the individual response to social equity. The second term of 

Equation 29 represents individual response where the coefficient θ   has a constant value 

for all individuals and the dummy variable ( ih ) has a value of 0 or 1, therefore, the 

individual response to equity is not sensitive to individual variability which is unrealistic 

for the purposes of this work.  

Corneo and Fong (2006) defined the coefficient θ as follows: 

 θ=(1+γ)ψ           (30) 

where ψ  is a constant and γ  represents individual preferences. 

To incorporate individual variability, the coefficient θ  is re-defined to represent 

equity valuation that reflects individuals’ heterogeneity. In Equation 30; we define γ  as 

the relative position of individual i  with respect to average population in terms of the 

change in income due to equity (
_____

eq eqy (i) y∆ ∆ ). The constant ψ   is defined as policy 

equity level ( e ) which ranges from 0 to 100 %. Therefore, the modified coefficient θ  

that represents farmer i variability ( iθ ) is defined as  
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____

i eq eqθ = 1+ y (i) ey⎛ ⎞∆ ∆⎜ ⎟
⎝ ⎠           (31) 

Another important feature of Equation 29 is that it represents the two states of 

farmer as a Receiver and Giver. A Receiver farmer is expected to obtain positive utility 

due to gain in income and a Giver farmer is expected to incur a negative utility due loss 

in income. The two types of farmers’ are represented in Equation 29 in the ratio eqy (i)∆  

and the dummy variable ih . The ratio eqy (i)∆ increases as the farmer is allocated 

economic gain (higher residual income with equity than with no equity). Similarly, the 

ratio eqy (i)∆ decreases as the farmer is allocated economic loss (less residual income with 

equity than with no equity). The dummy variable ( ih ) represents farmers’ vote for the 

equity policy (accept) or against equity (reject). Therefore, a receiver farmer would have 

a eqy (i)>1∆  and ih 0=  which produces utility value larger than 1. Similarly, a giver 

farmer would have eqy (i)<1∆  and ih 1= which produces negative utility values.   

The next step in the welfare analysis is to estimate the farmers’ WTP to avoid or 

to apply a given equity policy. The theoretical basis of WTP entails that the WTP is a 

function of pre-policy (i.e. no equity) and post-policy (i.e. equity) levels (Mitchell and 

Carson, 1989; Smith et al., 2000).  

WTP Formulation- In this analysis; a preference calibrated model is employed to 

construct an accurate benefit transfer model for a new setting using reported estimates 

from previous studies. The modified utility function is used to derive WTP function. A 

probit model embedded in a random utility framework (RUM) is considered to develop  
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WTP formulation for equity. The probit model based on Corneo and Fong (2006) is given 

as  

' ' '
eq i eq i eq iPr[d=1 y ,h ]=Pr ω(z-ty )+θ(2-4h )+ε > 0 y ,h⎡ ⎤⎣ ⎦      (32) 

where d is a dummy variable which equals 1 with equitable policy, t is empirical constant 

defined as marginal tax rate and ε  is error term. 

The RUM model is modified in this work to incorporates measures of farmer 

response to equity policies (accept or reject) due to farmers’ type as a Receiver or a 

Giver.  

The modified RUM model substitutes θ  defined in Equation 30 with iθ  defined 

in Equation 31. Therefore, individual variability is represented explicitly in Equation 32 

and produces Equation 33.  

eq' ' '
eq i eq i i eq i____

eq

y (i)
Pr[d=1 y ,h ]=Pr ω(z-ty )+e(2-4h )+e(2-4h )× +ε>0 y ,h

y

⎡ ⎤⎛ ⎞∆⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟∆⎢ ⎥⎝ ⎠⎣ ⎦       (33) 

 
The modified RUM model in Equation 33 can be solved as a binary probit model 

as described in Corneo and Fong (2006). The WTP for farmer (i) for additional equity 

can be estimated similar to Corneo and Fong (2006) as follows:   

iWTP(i)= t×θ 2ω          (34) 
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Management Application  

An outline of the suggested framework application procedure is shown in Figure 

25. The suggested framework is intended to provide a practical and transferable approach 

to estimate welfare value of equity in allocation of pollution control responsibilities at the 

watershed level with multiple land uses.  

A realistic case study is considered to demonstrate the applicability of the 

suggested framework in practical setting. The developed methodology is applied to 

Fishtrap Creek watershed to provide insight into considering equity in phosphorus NPS 

pollution abatement.   

Study area description 

The Water Resources Inventory Area (WRIA) 1 is located in the northwest corner 

of Washington State. The Nooksack River Basin is located in Whatcom County in WRIA 

1 covering an area of 825 square miles and encompassing a diverse geography ranging 

from the Cascade Mountains in the northwest to the lowlands and discharging to 

Bellingham Bay (Almasri and Kaluarachchi, 2004).  

The lowlands area is the focus of collaborative efforts by local and state official 

parties to improve water quality (Hood, 2000).  

Earlier studies on Nooksack River Basin indicate that agriculture, dairy farming, 

and waste lagoons contribute the most to the observed elevated pollutants levels (i.e. 

nitrogen, phosphorus, and coliforms) in the Noocksack River Basin (Carey, 2002). 

Fishtrap Creek Watershed. Fishtrap Creek Watershed shown in Figure 26 is a 

representative watershed of the lower Nooksack River Basin. Fishtrap Creek is a small 
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agricultural dominated watershed (95 km2). The Fishtrap Creek watershed provides 

habitat for a variety of fish species and it is identified as a major source of bacterial, 

nitrate, and phosphorus (P) loading. Fishtrap Creek Watershed is characterized by 

intensive agricultural and dairy production. Major sources of P in the Fishtrap Creek 

Watershed are agriculture fertilizers, animal manure, and atmospheric deposition.  
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Figure 25. Schematic of the suggested framework featuring the three modules.  
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The NPS loadings in Fishtrap Creek are mainly attributed to fertilizer application 

and manure storage. The urban pollution loadings from the cities of Abbotsford and 

Lynden are diverted to streams other than the Fishtrap Creek; therefore, the contribution 

of urban loadings is limited. 

In Table 8 we summarize the areas and P-application rates of each land use type.  

The major land use class by area is agriculture, followed by urban land use. However, the 

most influential land use to P inputs is dairies followed by agriculture.  

The observed Total Phosphorus (TP) concentration in Fishtrap Creek frequently 

exceeded the US EPA limit of 0.1 mg/L (Khadam and Kaluarachchi, 2006a). 

 

 

 

Figure 26. The layout of Fishtrap Creek Watershed showing land-use types.   
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Table 8. Summery of major economic variables and the abatement cost function 
parameters used in the optimization model estimated for Fishtrap Creek 
Watershed  

Abatement cost 
 function    Land  

use 
Area 
(ha) 

wa 
$/yr/ha 

 
Ηb 

$/yr 
Αc x 106 $ 

Agriculture 4896 6,400 31,052,800 31.05 

Dairy 1381 13,500 18,738,000 18.74 

a. Calculated Economic Production for land use  
b. Long term annual sediment loading  
c. Coefficient for abatement cost function for each land use 

 

Therefore, we focus on TP loadings as a proxy of NPS pollution loading in 

Fishtrap Creek Watershed.  

In the Nooksack River basin, protection of fish habitats and recreational fishing 

are major challenges for stakeholders (Joy, 2000). Therefore, reducing NPS pollutants 

loading have positive effect on the welfare of local population. A comprehensive review 

of the state of water quality management in the Fishtrap Creek Watershed is provided in 

Almasri and Kaluarachchi (2004) and Khadam and Kaluarachchi (2006a). 

Scenario description   

The framework practicality is shown best by application to realistic case study. 

The stakeholder wishes to implement an abatement policy to reduce phosphorus NPS 

loading from Fishtrap creek watershed in the Nooksack River Basin. The present state of 

Fishtrap creek watershed indicates an annual P application of 232,906 kg and 145,560 kg 

for dairies and agriculture respectively, which produces P loading at the watershed outlet 
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of approximately 5000 kg per year. The stakeholder whishes to reduce loadings at the 

watershed outlet by 1000 kg per year using a policy with distributive equity of 50% and 

100% compared to a no-equity TMDL policy. This scenario is simulated using the 

suggested framework and demonstrated through the next discussion.  

Module 1: Equity levels realization. The tasks of module 1 include developing 

economic and P-loading models that recognizes distributive equity in produced cost 

sharing allocations amongst sources. A main task of the economic model is to develop 

watershed specific abatement cost function.  

The economic analysis is considered at the land use level. Data requirement for 

the watershed economic model include P application rates for agriculture and dairy land 

uses, calibrated abatement cost function for each land use, crops and dairies production 

and prices data. Economic production data are obtained from Washington State’s annual 

agriculture and animal production statistics (Washington Agricultural Statistics Service, 

2003).  

The calculated estimates of related parameters needed to estimate economic 

production as a function for each land use are summarized in Table 8. 

The P loading model requires water quality data including erosion-scaled export 

coefficients (K) and sediment discharge (Φ) information for Fishtrap Creek Watershed 

which is provided in Khadam and Kaluarachchi (2006a).  

The needed parameters for estimating P loading as a function of land use are 

summarized in Table 9. The cost function for phosphorus loading reduction is developed 

for each land by calibrating Equation 21. In order to calibrate cost function for each land 

use; a minimum of three empirical data points is needed. The considered calibration 
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points and approach are similar to Khadam and Kaluarachchi (2006a). Therefore, 

calculated coefficients for the cost functions for land uses are similar to Khadam and 

Kaluarachchi (2006a) and summarized in Table 9.  

The economic model described from Equation 18 to Equation 25 is solved using 

Linear Programming optimization (LP) at desired pollution reduction increment with 

minimum equity level. Estimates of management cost M for agriculture and dairy land 

uses related to equity level are produced and equity-efficiency tradeoff analysis is 

provided in the results discussion.  

Module 2: Equity level impact assessment. For Fishtrap Creek Watershed; 

information about fractions of dairy and agricultural land uses at farm level are obtained 

from GIS databases and the Washington State’s annual agriculture and animal production 

statistics (Washington Agricultural Statistics Service, 2003). The farming community in 

Fishtrap Creek Watershed is found to have one type farming activity in general. The 

majority of the farmers practice single activity such as dairy or agricultural production 

with insignificant mixing of the two activities. 

 

Table 9. Summary of land use areas, erosion export and phosphorus application for 
Fishtrap Creek Watershed. Source: Khadam and Kaluarachchi, (2006a) 

Land use Area 
(ha) 

P loading rate
(kg/ha) K1 

(Kg-1) 

Φ2 
Kg/yr 

TP loading 
(kg) 

Agriculture 4896 30 5.64×10-9 151,739 

Dairy 1381 167.8 4.57×10-9

3,088,500 

23,1668 

1. Erosion scaled export coefficient developed in Khadam and Kaluarachchi (2006a). 
2. Long-term annual average sediment loading 
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The farming community in Fishtrap creek watershed includes 27 dairies and 22 

agriculture production farms. The known farm areas with the calculated economic 

production and management costs for land uses (provided in Module 1) are used to 

estimate the change in income due to equity using the Equations from 26 to 28.  

The maximum income with out abatement cost (y(i)) is calculated. Then using the 

sum management costs (M); the residual income is calculated using Equation 26 for non-

equity policy and using Equation 27 for equity policy. Then, equity impact which is the 

output of Module 2 is calculated using Equation 28 and used as input in Module 3.       

Module 3: Equity welfare analysis. In this work, we illustrate the application 

aspect of estimating utility and WTP for a new setting. An elaborate description of the 

related parameters estimation is provided in Corneo and Fong (2006). 

The farmer WTP for additional equity is estimated using Equation 34. In practice, 

the coefficient ω  is determined empirically using related previous studies. Similar to 

Corneo and Fong (2006), a diverse sample of US households is considered to estimate the 

coefficient ω .  Authors recovered the calibrated parameter ω  by fitting the theoretical 

model described from Equations 29 to 34 using a survey of 5000  US households and an 

estimate of  -0.066 for ω  is used. The parameter t is determined empirically from Saez 

(2004) and others and it is estimated for the US population at 25.56%. 

To estimate the coefficient iθ , the equity impact at the individual level 

(
____

eq eqy (i) y∆ ∆ ) is utilized in Equation 31 which produces individual specific values. 

Ultimately, an individual (farmer) specific estimate of WTP is estimated using Equation 

34.  
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Results and discussion 

Equity and efficiency tradeoff. A major output of the economic model is the 

tradeoff between efficiency and equity. The tradeoff between efficiency and equity is best 

illustrated graphically. The Pareto front for equity and efficiency are shown for three 

abatement levels as shown in Figure 27. The tradeoff plot in Figure 27 show important 

patterns. For instance, with higher pollution reduction increments, maximum possible 

efficiency is reduced at given equity level. Also, for a given M level (i.e. 3000 kg 

reduction); Figure 27 indicates that efficiency is negatively correlated with equity which 

is in agreement with Khadam and Kaluarachchi (2006b).  

Next, the performance of the abatement cost function is shown in Figure 28. The 

positive impact of using exponential cost function is shown in the exponential increase in 

abatement cost at increasing P-reduction increments.  
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Figure 27. Efficiency-Equity tradeoff plot at the watershed level for Fishtrap Creek 
Watershed. Source: Khadam and Kaluarachchi (2006b). 

 



 
 
 
 

 
128

Also, for a given P-reduction increment, abatement cost (M) increases with equity 

which is consistent with the observed pattern in Khadam and Kaluarachchi (2006a) and 

Ancev et al. (2006). 

Equitable allocation produces higher pollution costs than the inequitable efficient 

allocation.  For instance, with 1000 kg reduction (from 5000 to 4000 loadings), 

abatement cost rises from $20 million (point X) to $27 million (point X’) at zero and 100 

percent equity, respectively. 

Next, we analyze the efficient solution for Fishtrap Creek Watershed over a range 

of increasing equity levels.  
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Figure 28. Abatement Cost Function for a range of P loading Levels for Fishtrap Creek 
Watershed at different equity levels. Source: Khadam and Kaluarachchi 
(2006b). 
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Equity policy re-distributes economic loss allocations between land uses and 

accordingly between farmers which produces the two types of farmers the Giver and the 

Receiver. 

Equity impact on allocation between Receiver and Giver sources is presented in 

Figure 29 for the two reduction levels 1000 and 3000 (P kg /yr) in the watershed.  

The incurred costs for agriculture and dairy land uses to achieve efficient 

reduction goal are used to estimate equity policy impacts; therefore, the change in income 

due to equity is shown graphically in Figure 30. For instance; at low equity levels (0 to 

20%); the Receiver source (dairy) is assigned highest M with no equity distribution and 

as equity increases, the assigned M decreases.  
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Figure 29. Economic loss as management cost (M) for the common land uses in Fishtrap 
creek watershed at increasing equity levels. 
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On the other side, the Giver source (agriculture) is assigned low M at low equity 

levels (0 to 20%) and as equity level increases the assigned M increases accordingly. This 

pattern is anticipated due to the high difference in P loading between dairies and 

agriculture as indicated in Table 8.  

In this work, the change in farmers’ income related to equity is used as input in 

welfare analysis. The approach to calculate the change in income is best illustrated in 

Figure 30. Equity in pollution reduction allocation has a positive impact on dairies 

income ( d∆y ) due to the reduction in allocated M from point d  to point. d′   On the other 

side, equity has a negative impact on agriculture income ( a∆y ) due to the increase in 

allocated M from point a to point a′ .  
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Figure 30. Schematic of economic loss and gain estimation as a function of equity levels 
for considered land uses for the scenario of 1000 kg reduction in annual P 
loading. The plot features the Giver and Receiver land uses.   
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Equity utility and WTP. The redistribution of M allocations between land uses 

due to equity policy reflects directly on farmers. The farmers of Fishtrap Creek 

Watershed are directly affected by equity. The change in farmers’ utility due to 

considering the described scenario is presented in Figure 31. The equity policy produced 

both positive and negative utility changes for the Receiver (dairy farmers) and Giver 

(agriculture farmers) respectively. The equity utility indicates a linear relation with 

change in income and farm size. The increase in equity from 50 to 100 percent translates 

to more M re-allocation from the Giver to the Receiver which causes higher impact on 

utility change.  
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Figure 31. The change in utility as a function of the change in income change due to the 
two levels of equity 50% and 100% using efficient policy with no equity as a 
reference. The simulated scenario is 1000 kg/yr P loading reduction.  
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Next the impact of equity policy on farmers’ WTP is shown in Figure 32. The 

WTP is presented as a function of farm area which is a proxy for farm income.   

As the farm area and income increases; the intensity of income change, utility, 

and therefore the WTP becomes significant as equity increases. The positive and negative 

signs represent the farmer response to equity policy impact (accept or reject). Dairy 

farmers represent the Receiver; therefore they have a WTP to increase equity. Similarly, 

agriculture farmers represent the Giver; therefore, they indicate WTP to avoid having 

equity policy implemented.  

Calculation example. A detailed calculation of the framework application using 

the scenario of 1000 kg P loading reduction at 50% equity compared to zero equity is 

elaborated in Table 10.  
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Figure 32. Farmers' WTP as a function of Farm Size in Fishtrap Creek Watershed for the 
P-loading reduction level of 1000 kg/yr at 50% and 100% Equity levels.   
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The calculation begins with the economic model (in Module 1) which produces 

allocations of M determined by efficient solution prior equity (A) and post equity (B). 

The equity impact is explicitly shown in the change in M allocations for land uses prior 

and post equity. For instance, at efficient solution with no equity dairies farming will be 

suspended due to their high P loadings (allocated 100% reduction in income), while at 

efficient solution with 50% equity, dairies farming are allowed to operate with 82% 

reduction in income. 

Therefore, dairies are classified as Receivers because equity has positive effect on 

their economy.  On the other side, agricultural farming are assigned an income reduction 

of 40% prior to equity, while with 50% equity they have to incur higher income reduction 

at 63% which is 23% higher due to equity. Therefore, agricultural farmers are classified 

as Givers because equity has a negative effect on their economy.  

Next, the change of income ( eq∆y ) due to 50% equity is calculated per unit area 

of land use (in Module 2) as a gain of 2297 ($/ha-yr) for the Receiver and a loss of 766 

($/ha-yr) for the Giver. To transfer the analysis from the general policy level (land uses) 

to the practical level (farmers); data of the fraction of dairy and agricultural land uses for 

each farm are developed. As described earlier, farmers in Fishtrap creek watershed have 

one type activity either dairies or agriculture.  

Using known farms profile information such as area of each farm, type of land 

uses, and estimates of eq∆y  for land uses; the change in income at the farm is quantified 

for the dairy and agriculture farms. 
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Table 10. Summary of the framework application to incorporate 50% equity in TMDL 
policy to reduce 1000 kg of P loading for Fishtrap creek watershed 

Variable 
Efficient Policy with 

no equity 
(A) 

Efficient Policy with 
50% equity 

(B) 

Land Use Dairy Agriculture Dairy Agriculture 

Comments 

Module 1: Equity level Realization 

Management Cost 
(M) in $/yr 

18,738,030
(100%) 

2,038,855 
(40.34%) 

13,845,419 
(82.77%) 

7,648,251 
(62.68%) 

Allocation at 
maximum efficiency 

with given equity 
level 

Module 2: Equity impact Assessment (from A to B) 

Identify farmer type Receiver Giver 

eqy∆  for land use in $/ha-yr +2297 
 

-766 
 

eqy∆  for farms in $/yr 
Mean  & (Std. deviation) 

27 farms 
+181,208 
(205,144) 

22 farms 
-252,927 
(347,185) 

Based on income 
gain 

or loss due to equity

Module 3: Socioeconomic Estimates of Equity  

Equity Utility from 0 to 1  (from A to B) 

Mean & (standard deviation) 0.066 
(0.091) 

-0.0808 
(0.152) 

 

Farmers’ WTP ($/yr) at base level (from A to B) 

Minimum 13.571 -9625 

Maximum 10,540.46 -5 

Mean 1535.74 -1626 

Standard Deviation 2100.37 2552 

Aggregate Farmers WTP 41,465 -35,781 

At watershed level, 
farmers community 

have a positive 
WTP at $5684/yr to 
obtain 50% equity 
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The equity positive impact on dairies is calculated as an average gain in income of 

$181,208 ($/yr) for 27 farms and the negative impact on agriculture farms is calculated as 

income loss of $252,927 ($/yr) for 22 farms. The high variability in income loss and gain 

is related to the wide range of farm sizes. 

Next, the calculated scaled utility at the farm level (in Module 3) indicates a 

utility gain for dairies at a mean of 0.066 and a utility loss for agriculture at a mean of -

0.08 for the described scenario. The high variability in utility function is expected due to 

the wide range of eq∆y  due to the linear type utility function which preserves the high 

variability in the farm size and income.   

Finally, the WTP is calculated at the farm level. The dairy farmers have annual 

WTP mean and standard deviation of 1535 and 2100 ($/yr), respectively, for 50% equity. 

For agriculture farms; the mean and standard deviation are -1420 and 2552, respectively, 

for 50% equity. The large standard deviation values indicate high variability in farm size 

(area and income). 

The positive WTP estimates for dairy farmers are anticipated because they are the 

beneficiary party of the equity policy. Similarly, agriculture farmers’ indicate negative 

WTP because they are the liable party of the equity policy. The large standard deviation 

with respect to mean is an in indicative of the high variability observed in input variables 

such as eq∆y  and utility.  

The use of BTA in equity consideration of watershed management is relatively 

new. Thus, the validation of WTP estimates against comparable estimates from previous 

studies in the literature is not possible. However, if the observed trends of produced end 

points such as the equity-efficiency tradeoff, the utility, and the WTP are consistent with 
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similar studies and expected social behavior, then the confidence in the analysis output 

validity increases. Our WTP estimates fall within the reported range of Corneo and Fong 

(2006) WTP estimates for equity in income tax distribution at an average of $ 

14,350/household-yr. 

Summary and Conclusion 

This work is intended to aid the long time debate of considering social impact of 

regulatory policies where distributional equity and justice arise as central issue for 

contributing individuals and stakeholders. We investigate the social preferences of 

individuals facing a regulatory policy with negative externality (income loss). The goal of 

this work is to extend the present equity benefit-cost analysis methodology to integrate 

socioeconomic measures to achieve desired equity level in a regulatory policy.  

The suggested methodology elicits societal benefit of a decision of integrating a 

known distributive equity as a measure of social justice.  

The proposed methodology was demonstrated in the context of NPS pollution 

abatement by applying a TMDL regulatory policy in Fishtrap Creek Watershed in the 

Nooksack River Basin. We estimated the impact of distributive equity in a TMDL policy 

application. The three modules of the proposed methodology consist of: (1) Equity levels 

realization; (2) Characterization of equity levels impacts, and (3) Welfare measures of 

equity. The initial two modules adopted the watershed economic model developed by 

Khadam and Kaluarachchi (2006a). In the third module, a practical socioeconomic 

framework that introduces social equity concepts is developed.  
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The equity welfare analysis developed in Module 3 represents the contribution of 

this work to the benefit-cost approach used in TMDL management. However, the utilized 

concepts are based on the work of Corneo and Fong (2006) for estimating WTP for 

equity in the context of income tax allocation. The welfare analysis evaluated the WTP 

using the change in utility. The analysis found that the change in income due to equity 

have a considerable impact on individuals’ utility and WTP. The utility and WTP 

estimates showed a robust change (increase or decrease) for large farms which is 

consistent with expected individual behavior.   

A major practical advantage of the proposed methodology is that it provides an 

alternative to traditional data intensive WTP and welfare measures. The proposed 

methodology extends beyond putting together disparate estimates of Fairness and justice 

from different valuation methods; instead, the method utilizes these estimates along with 

a “theoretically sound” structure to produce transferable and adaptable estimates to 

different scenarios.  

The success of this methodology depends on the quality of data and the 

availability of similar studies for the purposes of populating the model parameters and 

validation of results. At this point, scarcity of similar studies prohibits such validation. 

However, validity can be evaluated by contrasting the observed trends of related 

variables with similar works in different applications. Although the theoretical 

framework is well established in social applications, the lack of a standard approach to 

evaluate vital parameters such as the utility function scalars (ω and θ) is a major 

limitation but also provide directions for future research. However, the proposed 

methodology remains attractive because it quantifies societal value of equity impacts in 
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monetary terms which is valuable to decision making. Also, it requires data from sources 

that are generally accessible such as agricultural census databases.      
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CHAPTER VII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The objective of this dissertation is to develop a watershed management 

framework that integrates societal value of related decisions. Chapters IV to VI present 

the body of the work and the main scientific results of this dissertation. The research is 

structured into three sections, dealing with contaminated groundwater, surface water 

pollution, and social acceptability of pollution reduction regulations. This chapter 

summarizes the major tasks, conclusions of the work, and recommendations for future 

research.  

Summary and Conclusions  

In this research, the general framework descried in Chapter III is used to develop 

and apply practical framework for common applications in water resources management.  

The conclusions obtained are presented for each application.  

Application 1: Decisions in 
groundwater monitoring management  

The goal of this application is to investigate the socioeconomic value of additional 

information to reduce uncertainty in the context of contaminated groundwater 

management. The general framework is applied to reducing uncertainty in risk 

assessment due to the exposure to contaminated drinking water from a point-source 

carcinogen. For the first and second modules, we adopt the approach and theoretical case 

study suggested in Maxwell et al. (1998) and Maxwell and Kastenberg (1999). The 
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general framework was modified and fitted for assessing the levels of information on 

subsurface heterogeneity represented by several hydraulic conductivity correlation scales.  

The last module is the welfare analysis which is based on the work of Pattanayak, 

Smith, and Van Houtven (2004) and it is revised here to address incremental risk 

reduction and society’s WTP in environmental management.   

The developed framework allows ex ante evaluation of additional information 

impacts, in which the health risks attributed to alternative additional information 

scenarios on subsurface heterogeneity are quantified. In this methodology, mortality risk 

is the outcome of a structured range of discrete values of health risk produced by discrete 

increments of additional data representing subsurface heterogeneity. Levels of 

heterogeneity are simulated by generating several random hydraulic conductivity fields 

correspond to preset several correlation scales using the turning bands method (Tompson, 

Ababou, and Gelhar, 1989) which is a common geostatistics tool.  

The welfare analysis produces estimates of utility gain attributed to health risk 

reduction as a result of better information collection scenarios. Then using the BTM, a 

transfer function is calibrated for the target population to elicit population WTP for 

incremental additions in information. 

The main conclusions for application 1 are summarized in the next discussion.  

The JUV analysis indicates that the variability in population (largely due to age) has a 

higher impact on WTP than uncertainty due to subsurface heterogeneity. This application 

used an expanded range of variability of individual health exposure parameters similar to 

other health risk studies (Maxwell et al., 1998; Zhao and Kaluarachchi, 2002) and 

therefore explains the considerable impact of population variability on the WTP. We 
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investigated the utility function and found that age and the change in health state due to 

mortality risk (expected illness hours) have a considerable impact on individuals’ utility. 

For WTP, we found that age and initial health state have a robust impact on the WTP. 

The utility and WTP estimates showed a robust decline for old age groups (>50years) 

which indicates that the age-dependent health state has a strong impact on welfare 

measures.     

The proposed methodology is limited to predictions of a single-period which in 

this case is on annual basis. However, the methodology has the advantage of allowing a 

manager to allocate risk-reduction expenditures based on explicit WTP estimates.  

The proposed methodology is attractive because it requires data from sources that 

are generally accessible, for example, public domain socioeconomic databases on age, 

income, health statistics, etc., thus permitting its application on different environmental 

problems.   

Application 2: Decisions in surface 
water quality protection  

   NPS pollutant loadings from a watershed are controlled by highly uncertain 

processes that need to be properly described to help decision-making. Seasonal 

(temporal) variability is a well-known challenge in surface water quality management 

(Ouyang et al., 2006). In this problem, levels of information in the temporal dimension 

are developed and simulated.   

For Module 1 of the general framework, we developed scenarios of different 

information levels represented as several secondary data sets reflecting different sampling 

frequencies. The sampling frequency levels correspond to different uncertainty levels in 
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phosphorus NPS loadings due to hydrologic variability. As the sampling frequency 

increases; the level of uncertainty decreases. The case study is the Fishtrap Creek 

Watershed in the Nooksack River Basin in Washington State. An intensive water quality 

data set from 1987 to 1995 is the primary data set used to build secondary data sets.  A 

series of secondary water quality data sets are sampled from the primary data set for the 

same period at a set of sampling intervals (ranging from 1 day to 120 days) which 

produces a set of time series data at increasing sampling interval. The produced data sets 

are used as input for the next analysis. 

For Module 2, the goal is to express the impact of information levels in usable 

measures for the welfare assessment of the target population. In this case, estimated 

undetected future annual TP loadings are used as the impact of information levels.   

To estimate the undetected future TP loadings, we utilize the RVM forecasting model 

(Tipping, 2001) to predict P loadings for a future period. The secondary data sets 

prepared earlier in Module 1 are used in the training and testing phases of the RVM. The 

model uses precipitation and runoff as inputs and will produce the TP loadings as output. 

Then, the trained model is used to predict the TP loadings for a desired period. The 

discrepancy between the actual and the predicted TP loadings provides a measure of the 

level of information. A rising pattern in the undetected loadings is observed at longer 

sampling periods or low frequency sampling programs. The increasing error in TP 

loading estimates motivates decision-makers to select a sampling program with a higher 

frequency but at a higher cost too. The estimated undetected TP loadings are used as 

input for welfare analysis.  
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For Module 3, we investigate the economic value of information for reducing 

uncertainty in TP loading forecasts. The welfare analysis concepts employed here are 

based on the work of Pattanayak, Smith, and Van Houtven (2004). The economic 

analysis considers a population with known characteristics in several aspects including 

income, household size, age, education level, and the number of visits to recreational 

areas. The population characteristics data are collected from various sources including the 

latest US Census (for year 2000) and national surveys on recreation and Environment 

(Leeworthy et al., 2005). Thereafter, age dependent probabilistic distributions are 

prepared and utilized in a Monte Carlo simulation to produce the simulated population. A 

utility function is developed to represent the improved protection of environmental 

resource due to additional information into consumer preference settings. For this 

application, the environmental resource is fish habitats and the dependent recreational 

uses for the local population (Joy, 2000). The NPS phosphorus loadings have negative 

effects on recreational activities of the local population. 

In the welfare analysis, we estimated the target population’s WTP to obtain higher 

utility due to reducing risk of undetected loadings to a given water body as a result of a 

potential decision to collect more frequent samplings. For the welfare analysis, we will 

utilize the BTM to calibrate the WTP benefit transfer function to improve water quality 

for recreational uses especially fishing. The WTP analysis utilizes a vector of household 

attributes namely income, costs of fishing trips, WTP estimates from similar studies to 

calibrate the benefit transfer model parameters for the target population.  

The main conclusions for application 2 are summarized in the next discussion.   
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Both of information collection level and population variability has a robust impact on 

utility change and WTP estimates. The individuals’ expected utility gain and WTP 

decrease as the baseline information collection level increases indicating a pattern of 

decreasing marginal benefit of additional information which is consistent with findings of 

Smith, Van Houtven, and Pattanayak (2002). Individual variability is largely dependent 

on age as the related social variables such as household income and visitation frequency 

are determined by age groups. Therefore, age have the highest impact utility and WTP 

estimates. At older age groups, the expected gain in utility and WTP decrease due to the 

reduction in visitation frequency for old age groups which is consistent with findings of 

Dalton et al. (1998). To sustain framework practicality and transferability; the considered 

pollution welfare impacts are limited to the protection of recreational fishing resources 

aspect of water bodies which excludes other important non-market values such as bequest 

value. However, the methodology has the advantage of helping stakeholder to select 

surface water quality monitoring expenditure that reduces pollution risk to acceptable 

level for a given population. The described application have high potential to be applied 

to new setting due to its manageable data requirements and due to the flexibility of using 

RVM model for forecasting loadings for any desired period. 

Application 3: Decisions to integrate 
social equity in NPS pollution 
management  

In this application, a framework to assess societal benefits of improving equity in 

economic loss distribution regulation is developed and applied to a pollution reduction 

regulation or TMDL policy in the case of watershed management. 
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The framework is applied on the farming community of Fishtrap Creek 

Watershed in the Nooksack River Basin in Washington State. In Module 1, for a given 

pollution reduction increment minimum cost solutions are calculated with different equity 

levels and the related distributions of economic loss amongst farming activity types are 

defined at the general policy level. In Module 2, produced economic loss distributions are 

used to determine farmers’ economic losses using fine scale economic data obtained from 

agricultural census databases at each equity level. Then, for a known equity increment 

determined by adopting equitable distribution of economic losses compared to a non-

equitable one; the change in income loss at the farm level is quantified. The change in 

economic loss shares causes some farmers to incur more income losses and others to 

enjoy less income loss with respect to the typical no-equity distribution. The change in 

income loss at the farmer level is used as input to equity welfare analysis.   

In Module 3, a benefit transfer model was developed based on BTM suggested by 

Corneo and Fong (2006) to assess WTP for additional equity in income tax allocation.    

In this application, we select to use distributional equity as a robust indicator of social 

acceptability in the context of change in income. However, we recognize that other equity 

criteria might be used based on the considered problem. The developed benefit transfer 

function uses coefficients calibrated for US population and considers annual time step.   

This framework helps stakeholder to quantify aggregate and individual estimates 

of social benefit and cost of integrating social acceptability (distributional equity) in 

TMDL policy to achieve sustainable policies.   
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Recommendations 

The dissertation attempts to contribute to the methodological development in 

environmental decision making by estimating decisions welfare impacts using benefit 

transfer method (BTM). Based on the concepts developed and the results demonstrated 

throughout the described applications, the following recommendations might be 

considered for future research. 

Groundwater monitoring management  

For this application, several aspects of developing the framework remain 

subjective. In light of lack of standard approach, it is recommended to compare other 

approaches cited in the literature. In this application, it is worthwhile to investigate model 

performance using different utility and WTP formulations.  

The estimated WTP in this application is based on the benefit of reducing 

mortality health risk arising from exposure to one contaminant. In reality, a groundwater 

MN provides insights into a host of contaminants. We anticipate that if more 

contaminates are considered, the social benefit of reducing uncertainty (due to additional 

information) and WTP estimates would increase accordingly raising the upper limit of 

socially acceptable investment in monitoring.      

For health risk exposure assessment, we represent individual variability by 

considering an expanded range of exposure factors as variables; however, the cancer 

slope factors were used as constants. For future work; we encourage the exploration of 

using variable slope factors linked to related social indicators such as health state.   
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Surface water quality protection   

The success of this application is contingent on using a reliable and long-term 

water quality data set at a spatially valued location (watershed outlet) and on the 

comparability of the source studies used in benefit transfer to new setting. Therefore, a 

thoughtful selection process of these components is expected from analyst to produce 

defendable results.  

Because future predictions are made using a regression model (RVM), all 

considerations to improve RVM performance apply here.   

In this application, WTP estimation is limited to one non-market commodity that 

is the protection of recreational fishing resource in a water body against phosphorus NPS 

loadings. The framework is constructed to elicit the welfare impact of pollutant loading 

reduction which directly fits the decision making theme of this dissertation. However, to 

be practical, the degradation effects of loaded pollutant(s) should be considered instead.  

Defining correlation between loadings and damages is sophisticated and often not 

feasible. Therefore, a research focusing on quantifying this correlation for common NPS 

pollutants and presenting this information to population is an asset to improve BTM 

performance. Similar to the first application; combining several NPS pollutants such as 

nitrates and coliforms increases the expected benefit and WTP to improving surface 

water sampling.   

NPS pollution management 
considering equity    

In this application, a practical framework to assess distributional equity of 

economic loss as a measure of social acceptability of TMDL policy is developed.  
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Equity definition considers only economic impacts, while in reality, social acceptability 

is a comprehensive term that involves environmental justice considerations. In the 

context of NPS pollution, environmental justice refers to the distribution of 

environmental benefit. For future work, environmental justice needs to be considered and 

compared to economic losses to achieve sustainable allocation.  

In this application, a continuous single function describing the relation between 

costs and abatement efforts for land use types are assumed. Although the cost function is 

theoretically sound, its derivation and validation requires several reliable empirical data 

on the cost of pollution control measures. Therefore, analyst is encouraged to derive cost 

function from several reliable data points.  

Benefit transfer method  

The concept of transferring benefits from previous studies arises in practical 

policy analysis when analysts do not have the luxury of implementing original CVM 

studies.  

For each of the three described applications, a benefit transfer function is 

developed to adjust WTP estimates from source studies using related social 

characteristics. The benefit transfer function is a theoretically sound approach; however, 

it requires access to reliable studies on same or similar application for calibration and 

validation purposes. Some applications such as equity have limited number of studies 

investigating their economic value which restricts the pool of qualified studies from 

which to draw information. Therefore, collecting data on CVM studies in the form of 
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accessible databases to researches is indispensable advancement towards regulating and 

encouraging further implementation of BTM in new environmental applications.  

Inescapably, BTM introduces subjectivity and uncertainty by the assumptions 

considered to develop transfer function formulation. The key question is whether the 

added subjectivity and uncertainty surrounding the transfer is acceptable.   

Therefore, there is a need to develop a standard approach to evaluate validity of benefit 

transfers. Research in this direction is a valuable investment towards improving 

confidence in BTM outcome. 

Validation of BTM. At this point, literature suggests two types of validity checks: 

internal and external (temporal) checks.    

The internal validity check refers to the quality of source study in terms of 

comparable purpose, sizable sample, and acceptable CVM approach. The external 

validity check refers to repeating a source CVM study after some time has elapsed since 

an initial and comparable study is conducted to evaluate stability of WTP estimates 

overtime.  

 For BTM application, stability suggests that the findings from older CVM studies 

can continue to be used to evaluate new applications. 

Transfer error estimation. Ready et al. (2004) suggested using an absolute transfer 

error measure to estimate the error of benefit transfer. Using a simple absolute measure of 

error is an oversimplification of highly subjective application and introduces risk of 

incorrect appraisal about BTM outcome if based only on error quantity while the other 

validity checks are ignored. Therefore, depending on such one dimensional measures is 

not recommended.  
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RVM Model Calibration 
 
RVM fitting performance for data collection scenarios represented by different sampling 
intervals. The parameters are bias, Mean Absolute Error (MAE), and Root Mean Square Error 
(RMSE), and Index of Agreement (IoA). 
Samp. Int. Percent Testing Training

(day) of data Bias RMSE MAE IoA Bias RMSE MAE IoA
1 100.0 -0.2811 0.833531 0.64885 0.86708 1.21E-05 1.21E-05 1.2E-05 1
4 25.0 -0.13075 0.746123 0.54447 0.88668 -3E-11 2.96E-05 1E-05 1
6 16.7 -0.40776 0.891961 0.7031 0.8527 1.51E-12 1.1E-06 1.8E-07 1
8 12.5 -0.15384 0.837524 0.6019 0.86183 -3.5E-11 1.28E-05 3.6E-06 1
10 10.0 -0.27213 0.73731 0.56899 0.8898 2.19E-12 9.12E-07 4E-07 1
12 8.3 -0.03483 0.792206 0.5389 0.87503 3.01E-10 4.96E-05 1.7E-05 1
14 7.2 -0.14309 0.716601 0.52184 0.88599 -7.7E-09 0.000174 8.4E-05 1
16 6.3 -0.18249 0.75681 0.57865 0.88109 2.2E-10 3.98E-05 1.4E-05 1
18 5.5 -0.05487 0.751884 0.52005 0.87814 9.06E-11 3.66E-06 8.5E-07 1
20 5.0 0.37684 0.863791 0.57514 0.79302 -6.9E-09 4.39E-05 1.6E-05 1
22 4.6 0.06207 0.938622 0.68331 0.796 2.1E-09 0.000181 7.6E-05 1
24 4.2 -0.13751 0.847087 0.61175 0.86163 -3.2E-10 1E-05 5.6E-06 1
26 3.8 -0.43392 0.757316 0.64249 0.87984 2.77E-09 0.000319 0.00013 1
28 3.6 -0.07078 0.77848 0.56604 0.88494 -1.1E-08 0.000283 0.00013 1
30 3.3 0.09135 0.791983 0.61887 0.85598 -1.6E-08 0.000189 6.3E-05 1
32 3.1 0.13843 0.797139 0.65617 0.85037 9.73E-09 0.000181 7.5E-05 1
34 3.0 -0.0621 0.890696 0.7037 0.76386 -7.3E-08 0.000379 0.00018 1
36 2.8 0.29255 0.96874 0.64337 0.7016 -2.1E-08 0.001572 0.00088 1
38 2.6 -0.23061 0.797214 0.59242 0.8763 3.91E-14 2.52E-10 1.5E-10 1
40 2.5 0.57063 1.152099 0.76335 0.5594 -9E-11 3.18E-07 1.6E-07 1
42 2.4 -0.24795 0.778143 0.65542 0.85212 3.24E-09 1.52E-05 5.2E-06 1
44 2.3 0.07812 1.11494 0.80225 0.64328 1.81E-12 2.94E-08 1.6E-08 1
46 2.2 0.22762 0.754973 0.54628 0.84539 5.65E-07 0.002221 0.00114 1
48 2.1 0.22129 0.824651 0.6191 0.80891 1.56E-11 1.89E-07 7.4E-08 1
50 2.0 0.21507 0.772326 0.56293 0.79128 -2.4E-11 7.14E-07 3.2E-07 1
52 1.9 0.02357 0.873409 0.71015 0.82021 9.88E-07 0.003632 0.00229 1
54 1.8 0.30523 0.769319 0.55541 0.79946 -2.8E-10 2.37E-06 1.2E-06 1
58 1.7 0.04904 0.919952 0.74763 0.84216 8.07E-14 1.31E-09 7.1E-10 1
64 1.6 0.234 0.954676 0.79941 0.69497 1.01E-09 3.43E-05 2.2E-05 1
66 1.5 0.03856 0.746043 0.54913 0.83903 -3.8E-11 5.41E-07 2.1E-07 1
70 1.4 0.20135 0.676463 0.41962 0.80636 -8.9E-11 4.31E-07 2.4E-07 1
78 1.3 -0.05942 0.737182 0.6657 0.86111 -1.7E-15 3.46E-10 1.2E-10 1
84 1.2 0.04352 0.786798 0.58577 0.84704 -1.9E-11 3.29E-07 1.5E-07 1
92 1.1 0.14369 0.736997 0.58584 0.87786 4.89E-10 7.27E-06 4.1E-06 1
94 1.1 0.1891 0.812218 0.49556 0.84558 2.68E-12 5.98E-09 2.3E-09 1
100 1.0 -0.06011 0.825743 0.61318 0.82933 1.85E-07 0.0009 0.00051 1
108 0.9 -0.14843 0.485419 0.45448 0.92158 6.61E-11 7.74E-07 3.3E-07 1
110 0.9 -0.26654 0.391862 0.38028 0.93015 2.27E-06 0.005055 0.00325 0.99999
114 0.9 0.3237 0.836413 0.58296 0.82228 -6.2E-10 1.28E-06 5.7E-07 1
118 0.8 -0.04034 0.659117 0.57618 0.91706 8.21E-07 0.000466 0.00022 1  
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