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ABSTRACT 

Dietary Patterns and Cognitive Decline 
  

in Aged Populations 
 

by 
 

Austin Bowles, Master of Science 
 

Utah State University, 2011 
 
 

Major Professor: Dr. Christopher Corcoran 
Department: Mathematics and Statistics 
 
 
 In this paper, we discuss distinctive features of longitudinal studies, and illustrate 

two regression-based methods for the analysis of longitudinal data.  A study of dietary 

patterns and cognitive decline (Cache County Memory Study) is used to motivate our 

discussion and analysis.  Cognitive decline is a risk factor for Alzheimer’s disease, the 

sixth leading cause of all deaths among Americans.  The study attempted to identify 

dietary patterns associated with reduced risk of age-related cognitive decline in elderly 

populations.  Higher levels of adherence to the Dietary Approaches to Stop Hypertension 

(DASH) and/or Mediterranean diets were found to be associated with increased cognitive 

function at the beginning of the study.  These differences were not strengthened or 

weakened over time, but were maintained over the 11 year duration of the study.  Diets 

characterized by high intake of whole grains and nuts were also found to be associated 

with higher baseline cognitive function, but there was no evidence that these diets are 

associated with increased or decreased rates of decline after baseline. 

(52 pages) 



iv 
 

ACKNOWLEDGMENTS 

 I would like to thank my advisor Dr. Chris Corcoran for helping me find an 

interesting project and for his patience and mentorship throughout the entire process.  I 

would also like to thank Drs. Adele Cutler and Heidi Wengreen for including me in the 

research group and for their advice and guidance as I have completed the project.  

Finally, I would like to thank my parents: my father for his sharing his advice and 

experience, and my mother for all of her love and support as I have studied here at Utah 

State. 

Austin Bowles 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

CONTENTS 

Page 

ABSTRACT ..................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................ iv 

LIST OF TABLES ............................................................................................................ vi 

LIST OF FIGURES ......................................................................................................... vii 

COGNITIVE DECLINE IN AGED POPULATIONS ...................................................... 1 

          Cache County Study on Memory, Health and Aging .............................................. 1 
          Mediterranean and DASH Diets .............................................................................. 3 
          K-Means Clustering and Archetypes ....................................................................... 5 

STATISTICAL METHODS FOR ASSESSING       
COGNITIVE DECLINE .................................................................................................... 7 

          Modeling the Mean and         
               Covariance Structure ........................................................................................... 9 
          Maximum Likelihood vs. Restricted        
               Maximum Likelihood ....................................................................................... 13 
          Analyzing Response Profiles ................................................................................. 14 
          Parametric Model for Cognitive Decline ............................................................... 17 

COMPUTATIONAL METHODS ................................................................................... 21 

RESULTS ........................................................................................................................ 23 

          DASH and Mediterranean ...................................................................................... 23 
          K-Means Clusters and Archetypes ......................................................................... 25 

DISCUSSION .................................................................................................................. 27 

REFERENCES ................................................................................................................ 29 

APPENDICES ................................................................................................................. 31 

          Appendix A. Tables ............................................................................................... 32 
          Appendix B.  Figures ............................................................................................. 40 

 



vi 
 

LIST OF TABLES 

Table                          Page 
 
A.1 Summary of Clusters Obtained from        

K-Means Algorithm ............................................................................................. 33 
 

A.2 Summary of Pseudoclusters Obtained from       
 Archetypal Analysis ............................................................................................. 34 

 
A.3 Distribution of 3MS Scores by        

Follow-up Visit .................................................................................................... 35 
 

A.4 Estimated Fixed Effects for the        
            Analysis of Response Profiles ............................................................................. 36 

 
A.5 Estimated Fixed Effects for the        
            Parametric Model ................................................................................................ 37 

 
A.6 Mean Difference in 3MS Scores at the       
 Baseline Interview ............................................................................................... 38 

 
A.7 Archetypal Analysis Results ................................................................................ 39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 

LIST OF FIGURES 

Figure                Page 
 
B.1 Dropout by Wave ................................................................................................. 41 

 
B.2 Correlation Between 3MS Scores with       

Increased Separation in Time ............................................................................... 42 
 

B.3 3MS Profiles, Stratified by DASH        
 Adherence Quintile .............................................................................................. 43 

 
B.4 3MS Trajectories, Stratified by DASH       
 Adherence Quintile .............................................................................................. 44 

 
B.5 3MS Trajectories, Stratified         
 by Archetype ........................................................................................................ 45 



COGNITIVE DECLINE IN AGING POPULATIONS 

 Our objective in this study was to examine the association between the rate of 

age-related cognitive decline and dietary patterns.  Neurodegeneration is a risk factor for 

Alzheimer’s disease, the sixth leading cause of all deaths in the United State (1).  Life 

style changes that slow or prevent cognitive decline may delay the onset of Alzheimer’s 

disease.  It has been projected that delaying the onset of Alzheimer’s disease by just five 

years could reduce its prevalence by 50 percent (2).  Hence, dietary patterns with even 

modest effects could translate into large reductions in the incidence of Alzheimer’s 

disease in the population. 

While previous studies have examined the associations between single nutrients 

and risk of age-related cognitive decline (3), we hypothesized that certain dietary patterns 

(i.e., emphasizing and discouraging the intake of multiple nutrients) may protect against 

age-related neurodegeneration.  Studies examining the effects of single nutrients have 

provided mixed results.  This may be because single nutrient analysis ignores the 

complexity of diet (4).  Nutrients act synergistically to support or disrupt multiple 

biological processes.  Thus, it is reasonable to study dietary patterns (rather than just 

single nutrients) and their association with risk of age-related cognitive decline.  

Cache County Study on Memory, Health and Aging  

The data examined in this study were obtained from the Cache County, Utah, 

Study on Memory, Health and Aging (hereafter referred to as the Cache County Memory 

Study, CCMS).  The CCMS is a large population-based prospective study of the 

prevalence and incidence of dementia among elderly residents of Cache County Utah.  In 
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1995 all residents of Cache County over 65 years of age were invited to participate in the 

study, and 90% (n = 5,092) completed the baseline interview (1995 – 1996).  Re-

assessments of the same cohort were completed in 3 years, 7 years, and 11 years after the 

initial interview.  The study was approved by the institutional review boards of Utah 

State University, the Johns Hopkins School of Public Health, and Duke University 

Medical Center.   

The baseline interview collected information on demographic characteristics, 

health history, family history of dementia, use of medications, alcohol, tobacco, and other 

life-style factors.  Most participants provided a cheek-swab DNA sample that was used 

for apoliprotein (APOE) genotyping (n = 4,962).  The Modified Mini-mental State 

Examination (3MS) (5) was used to assess cognitive function at baseline and was re-

administered at the subsequent assessments.  The 3MS is a 100-point, expanded version 

of the Mini-mental State Examination (6) that has been used in many epidemiological 

studies and found to be useful as a global measure of cognitive function and decline 

among non-institutionalized elderly men and women (7).  Participants diagnosed with 

dementia at the baseline interview or at subsequent assessments were not asked to 

complete additional 3MS examinations. 

Average daily dietary intake was assessed using a 142-item food frequency 

questionnaire (FFQ) patterned after the methods developed for use in the Nurses’ Health 

Study.  Similar questionnaires have been shown to provide reasonable estimates of usual 

dietary intake among populations of elderly women (8; 9).  The questionnaire asked 

participants to report their frequency of consumption of the listed food items or groups.  
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Nutrient composition of food items was obtained using a time-specific version of the 

Food Processor Program (ESHA Research, Portland, Oregon) nutrient composition 

database.  Daily intakes of nutrients were computed by multiplying the nutrient content of 

the food item by the reported frequency of intake and summing over all food items.  

Daily intake of nutrients and servings of food groups were adjusted for total energy 

intake (8). 

Of the 5,092 participants who completed the baseline interview, 355 were 

considered cognitively impaired (3MS ≤ 60) and were not asked to complete the FFQ.  

Of the 4,737 who were asked to complete the FFQ, 3,829 (81%) completed the 

questionnaire.  An additional 197 participants were later excluded because of implausible 

energy intake ( ≤ 500 or ≥ 5,000 kcalories per day).   

Four additional dietary variables were created from responses to the FFQ.  Two of 

these derived variables measure each subject’s adherence to two well-defined dietary 

patterns: the so-called Mediterranean and Dietary Approaches to Stop Hypertension 

(DASH) diets. The other two derived variables specify patterns identified empirically, 

using multivariate variable reduction methods such as k-means clustering and archetypal 

analysis.    

Mediterranean and DASH Diets   

 The traditional Mediterranean diet is characterized by large amounts of whole, 

minimally processed plant foods with small amounts of animal foods and regular, modest 

intake of alcohol (10; 11).  Mediterranean diet patterns have been associated with a 

reduced risk of total mortality, cardiovascular diseases, cancer and Alzheimer’s disease 
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(12; 13).  The Dietary Approaches to Stop Hypertension (DASH) diet substantially 

reduced elevated blood pressure in clinical trials (14) and is recommended in the current 

Dietary Guidelines for Americans (15).  The DASH diet is similar to the Mediterranean 

diet but places greater emphasis on low fat dairy products and carbohydrates and is lower 

in fat and cholesterol.  Due to the association of hypertension with cognitive function, it 

is plausible that the DASH diet may reduce the risk of cognitive decline. 

 The Mediterranean and DASH diet adherence scores were constructed by 

assigning scores to food components emphasized or discouraged in these dietary patterns.  

The Mediterranean diet adherence score included nine food/nutrient components: high 

intakes of fruits, vegetables, whole grains, fish, legumes, nuts, and ratio of 

monounsaturated fatty acids to saturated fatty acids; and low intake of red and processed 

meats.  

The DASH diet adherence score also included nine food/nutrient components.  

They were high intake of fruits, vegetables, low-fat dairy products, nuts and legumes, 

whole grains and fish; and low intake of sodium, sweets and sweetened beverages, and 

red and processed meat.   

 Individuals were assigned a food component score by using quintile cut-offs of 

the CCMS cohort’s distribution of intake for each food component.  Quintile rankings 

(range: 1-5) were used as component scores for fruits, vegetables, low-fat dairy foods, 

nuts and legumes, whole grains, and fish.  A reverse scoring method was used for those 

components where a lower intake was desired.  To create diet adherence scores, 
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component scores were summed and participants were then binned into quintiles of the 

respective total diet adherence scores (range of scores: 9-45). 

K-Means Clustering and Archetypes 

 In addition to measuring subjects’ adherence to the well-defined DASH and 

Mediterranean diets, we hypothesized that subjects could be categorized into several 

undefined diet groups based on their answers to the FFQ.  The multivariate methods of k-

means clustering and archetypal analysis were used to accomplish this categorization.   

 The k-means algorithm (16) selects k widely spaced subjects at random to be 

seeds.  All remaining subjects are then assigned to the seed to which they are most 

similar.  This similarity is determined by the multivariate distance between seed and 

subject, using numerical variables chosen by the researcher.  After each subject has been 

assigned, the mean for the cluster around each seed is computed.  Subjects are then 

reassigned to the cluster mean to which they are most similar.  These last two steps are 

repeated until convergence (i.e., subjects are repeatedly assigned to the same cluster).   

 To cluster subjects similar in diet, we used food group/nutrient intakes as the 

numerical variables used by the k-means algorithm.  We selected k=7 seeds as it yielded 

fairly interpretable clusters with approximately the same numbers of subjects.  For each 

of these seven clusters, mean intakes of food groups/nutrients were calculated to 

characterize the dietary pattern of each cluster.  Table A.1 (see Appendix A) summarizes 

the clusters created by the k-means algorithm. 

Archetypal analysis assumes that each individual can be represented as a mixture 

of pure types or archetypes (17).  The algorithm chooses these n archetypes by 
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minimizing the squared error in representing each subject as a mixture of archetypes.  

Liberally interpreted, this representation describes how similar each subject is to the 

different archetypes.   

As was done in k-means clustering, food group/nutrient intakes were again used 

as variables in the archetype algorithm.  We selected n=7 archetypes in order to be 

consistent with and comparable to the k-means clustering results for k=7.  In addition to 

scores describing how each subject is a mixture of each archetype, we assigned each 

subject to the archetype to which it was most similar.  Thus, pseudoclusters were created 

for each archetype.  Mean intakes of nutrients/food groups were calculated for each group 

in order to characterize each archetype.  Table A.2 summarizes the groups created by 

archetypal analysis.   
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STATISTICAL METHODS FOR ASSESSING  

COGNITIVE DECLINE 

Some key characteristics of the longitudinal 3MS measures from the Cache 

County Study influence the analytic approaches required for this project.  First, the 

follow-up visits were balanced by design, with 3MS scores collected for each subject at 

baseline (study entry) and then at 3, 7, and 11 years after baseline (also referred to as 

waves 1 – 4).  In addition, typical of many large observational studies of aging 

populations, there is significant attrition, due almost entirely to death and the clinical 

diagnosis of individuals with dementia (refer to these subjects as missing with death or 

dementia, or DD).  As results of this study are conditional by design on dementia-free 

survival, the problem of loss to follow-up is comparatively small: only 14% (n = 520) of 

the initially non-demented sample eventually dropped out for reasons other than death or 

dementia onset (refer to these subjects as missing with no death or dementia, or NDD).  

Figure B.1 (see Appendix B) shows the number of subjects missing at each wave and the 

proportions of NDD and DD missing.  Table A.3 contains summary statistics (including 

number of remaining participants) with respect to the distribution of 3MS scores by 

follow-up visit. 

We will later describe in more detail how repeated measures models help us to 

assess how patterns of cognitive change depend on fixed factors such as diet.  If attrition 

is present, the validity of these mixed models depends on the mechanism by which 

subjects leave the study.  As results of this study are conditional on dementia-free 

survival, we restrict our attention to NDD missing subjects. 
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To account for the NDD missing, we must consider the reasons for dropout, often 

referred to as the underlying dropout mechanism.  Conventionally, the dropout 

mechanism is classified as completely at random, at random, or not at random (18), 

depending on how the probability of dropout relates to the outcome of interest.  In the 

context of our study of cognitive decline, missing data would be considered missing 

completely at random (MCAR) if the probability of a given subject leaving the study at 

any occasion was independent of all previous 3MS scores and all future 3MS scores, had 

they been obtained.  If the probability of dropout was related to subjects’ previous 3MS 

scores but not their future examinations, we would consider missing data to be missing at 

random (MAR).  Lastly, if the probability of dropout depended on subjects’ previous and 

future 3MS scores, we would consider the data to be not missing at random (NMAR). 

As the likelihood-based mixed models used in the current study provide valid 

inferences about changes in mean 3MS over time when data are MCAR or MAR, the 

term ignorable is used to describe these mechanisms.  Alternatively, when data are 

NMAR, almost all standard methods of analysis are not valid.  Hence, the term 

nonignorable is used to describe data that are NMAR.          

 Referring to Table A.3, there are no major differences between NDD missing 

subjects and continuing participants with respect to 3MS scores.  There is no significant 

difference between baseline 3MS scores for those that are NDD missing at wave 2 and 

those that continue on to Wave 2 (p = 0.8232).  Similarly, the difference in wave 2 scores 

between participants that continue to wave 3 and those that are NDD missing is non-

significant (p = 0.1135).  However, subjects that are NDD missing at wave 4 have 
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significantly lower wave 3 scores than those that are present at wave 4 (p = 0.0110).  This 

last finding suggests that the dropout mechanism is not MCAR.   

The distinction between MAR and NMAR cannot be verified with available data 

since it requires knowledge of the unobserved 3MS scores.  However, further analysis 

reveals that NDD missing and continuing participants do not differ with respect to 

demographic characteristics and health status.  Furthermore, we have no reason to believe 

the probability of NDD dropout is related to subjects unobserved 3MS scores.  Thus, 

while we cannot prove that the dropout mechanism is MCAR, it is reasonable to assume 

that the mechanism is ignorable.   

Modeling the Mean and Covariance Structure 

 While our methods of analysis appropriately handle the dropout inherent in the 

study, they are still invalidated if correlation is not accounted for.  As a consequence of 

repeated measures taken on the same subjects, a distinctive feature of longitudinal data is 

that the repeated measurements obtained from a single subject are correlated.  Because 

these measurements were made on the same subjects, generally they are positively 

correlated.  For example, an individual that scores relatively high on the 3MS at baseline 

is likely to score relatively high when measured three years later.  This covariance or time 

dependence invalidates the critical assumption of independence that is fundamental in 

many standard statistical techniques.  But if accounted for and modeled correctly, the 

covariance increases the efficiency or the precision with which regression parameters are 

estimated. 
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 The models used for the analysis of the CCMS data can be expressed in terms of 

the general linear regression model 

𝐸(3𝑀𝑆𝑖) = 𝑋𝑖𝛽,                                                           (1) 

where 𝐸(3𝑀𝑆𝑖) is the mean vector of 3MS scores at baseline and follow-up for the ith 

subject, 𝑋𝑖 is the subject’s matrix of covariates (design matrix), and 𝛽 is the vector of 

fixed effects (e.g., the effect of diet on 3MS).  The response vector, 3𝑀𝑆𝑖, is assumed to 

arise from a multivariate normal distribution with variance-covariance matrix 

Cov(3𝑀𝑆𝑖).  In order to estimate 𝛽 we must model and estimate the variance-covariance 

matrix.  As the structure of the covariance matrix is conventionally determined before 

examination of fixed effects, we first consider how alternative covariance models are 

compared.              

 Our dataset features four repeated measures of 3MS for most individuals.  Thus 

the variance-covariance matrix for individual i is: 

Cov(3𝑀𝑆𝑖) =

⎣
⎢
⎢
⎢
⎡𝜎1

2 𝜎1,2

𝜎22
𝜎1,3 𝜎1,4
𝜎2,3 𝜎2,4

 𝜎32  𝜎3,4

 𝜎42 ⎦
⎥
⎥
⎥
⎤
.                                       (2) 

  In this representation, 𝜎12 is the variance of 3MS scores at baseline, 𝜎22 is the 

variance at the second examination (three years after baseline) and so on.  The parameter 

𝜎1,2 is the covariance between baseline 3MS and follow-up 3MS at the second 

examination, and the other values are interpreted similarly.  Since the matrix is 

symmetric, redundant parameters are not included in the representation above.  We also 

assume homogeneity across individuals (i.e., Cov(3𝑀𝑆𝑖) =  Cov(3𝑀𝑆) ∀ 𝑖).    
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 In order to appropriately estimate the regression parameters, each parameter in the 

variance-covariance matrix above needs to be estimated.  When the number of 

observations across time is small (four in the current study) and the data set is balanced or 

incomplete, it may be reasonable to estimate each of the variance-covariance parameters 

with no constraints on these parameters.  This is referred to as an “unstructured” 

covariance structure.  With four repeated measures, there are ten parameters to estimate 

(four variances and six pairwise covariances).  When the number of covariance 

parameters is large relative to sample size, estimation using an unstructured covariance 

structure is likely to be very unstable.  However, an unstructured covariance structure is 

very appealing when the number of parameters is small relative to sample size (e.g., 10 

vs. 9,365 in the current study). 

 The defining feature of an unstructured covariance structure is that no 

assumptions are made about the variances or covariances.  This is especially critical since 

practical experience suggests that variances are rarely constant over time (19).  

Additionally, covariance typically decreases as measurements become further separated 

by time.  For example, Figure B.2 shows how the correlation between baseline 3MS 

scores and follow-up scores decreases with increased separation in time. 

Assuming an unstructured covariance matrix provides a general approach, but in 

appropriate settings it is also possible to impose some specific structure on the covariance 

matrix.  These alternative matrix structures are referred to collectively as covariance 

pattern models.  The advantage of using a more restrictive covariance model (when 
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warranted by the data) is greater efficiency, as such models require fewer covariance 

parameters. 

 In the simplest so-called compound symmetry model, the variance is assumed to 

be constant across all occasions, and the covariance (or correlation) is also assumed to be 

constant between any pair of correlated observations.  If we were to assume compound 

symmetry for within-subject observations in the Cache Study, the variance-covariance 

matrix would be expressed as 

Cov(3𝑀𝑆𝑖) =

⎣
⎢
⎢
⎡𝜎

2  𝜌𝜎2

𝜎2
𝜌𝜎2 𝜌𝜎2

𝜌𝜎2 𝜌𝜎2

𝜎2   𝜌𝜎2

𝜎2 ⎦
⎥
⎥
⎤
.                                   (3) 

The chief advantage of this covariance pattern is that it requires estimation of only 

two parameters, the common variance 𝜎2 and pairwise correlation 𝜌.  Given the large 

sample size of the CCMS, estimating two covariance parameters rather than ten for our 

analyses may not make much of a difference, but the number of parameters that must be 

estimated in an unstructured covariance structure increases dramatically with increasing 

numbers of repeated measures.  For example, with eight repeated measures, compound 

symmetry still requires only two parameters rather than the 36 that would be required for 

the unstructured covariance structure.  For smaller sample sizes, model parsimony is 

much more critical.    

While reducing the number of model parameters can be advantageous, alternative 

covariance structures must be supported by the data.  For example, compound symmetry 

is seldom used with longitudinal measures, for which empirical observation consistently 

suggests that the pairwise correlations decrease with increased separation in time.  This 
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so-called autoregressive phenomenon is illustrated for the Cache County data in Figure 

B.2.  Two common types of autoregressive covariance structures – refer to these here as 

AR(1) and AR(2) – alternatively assume constant or non-constant variances down the 

diagonal of the covariance matrix, but in both cases there is only a single correlation 

parameter .  The pairwise correlation between two repeated measures can be expressed as 

ρt, where t represents the elapsed time between the two measures.  Hence, for the Cache 

County data AR(1) comprises two covariance parameters (a common variance and the 

correlation parameter ρ), while AR(2) requires five parameters (four distinct variances 

along with ρ).  

Maximum Likelihood vs. Restricted Maximum Likelihood 

Models for both the mean and covariance are fitted and compared using a 

likelihood based approach.  Maximum likelihood (ML) is a very general approach to 

estimation.  In large samples, under appropriate distributional assumptions, the ML 

estimates (or MLEs) of the model parameters (such as the regression coefficients 

representing fixed effects) have appealing properties.  First, the MLE 𝛽̂ is a consistent, 

unbiased estimator of the corresponding fixed effect 𝛽.  Second, the sampling distribution 

of 𝛽̂, when the covariance is estimated from the data, is approximately multivariate 

normal with mean 𝛽 and known covariance.  Lastly, ML estimation allows for the 

construction of likelihood ratio tests, making it useful for comparing nested models for 

the mean.   

 Although the ML estimates of the fixed effects and the covariance have desirable 

large sample properties, its estimate of the covariance can be shown to have significant 
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bias in small samples.  Restricted maximum likelihood (REML) estimation corrects for 

this bias, and nested models for the covariance structure are conventionally compared 

using REML-based loglikelihoods.   

Analyzing Response Profiles 

 When repeated measures are obtained at the same sequence of occasions, or 

subsets of that sequence (as with incompleteness), the data can be summarized by the 

mean response at each occasion.  In the current study, the data can be summarized by the 

mean 3MS score at baseline and at subsequent follow-up examinations, stratified by diet 

pattern.  For a given group, the sequence of means is known as the mean response 

profile.  Analyses using response profiles impose minimal structure on the mean response 

over time.  The main goal of this type of analysis is to characterize the patterns of change 

in the mean response over time in the different groups and to determine whether these 

response profiles differ among groups.  It thus allows us to study cognitive decline by 

characterizing mean 3MS scores over time and determining whether 3MS profiles differ 

among diet patterns. 

 For ease of exposition, assume we are interested in two diets, Diet 1 and Diet 2.  

Additionally, assume that 3MS scores are taken at baseline and once at follow-up five 

years later.  The expected 3MS score for individual i at the jth occasion can then be 

modeled with the following linear equation: 

𝐸�3𝑀𝑆𝑖𝑗� =  𝛽1 +  𝛽2(𝑡𝑖𝑚𝑒2) + 𝛽3(𝐷𝑖𝑒𝑡1𝑖) +  𝛽4(𝐷𝑖𝑒𝑡1𝑖)(𝑡𝑖𝑚𝑒2),           (4) 

where Diet1i equals 1 if the subject adheres to Diet 1 and zero otherwise and time2 equals 

one at follow-up and zero at baseline.   
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Three main hypotheses can be posed for the analysis of 3MS profiles (and 

similarly for other longitudinal studies).  They are: 

1. Are the mean 3MS profiles similar in the different diets, or do they differ?  In 

many longitudinal studies, this question is of main scientific interest.  It asks 

whether or not subjects’ pattern of cognitive decline is associated with their 

diet.  This question concerns the diet×time interaction effect, 𝛽4.  The null 

hypothesis is that the profiles do not differ among groups.  That is, the group 

profiles are parallel (𝛽4 = 0). 

2. Assuming that there is no diet×time effect, are different diets’ 3MS response 

profiles the same, or are they parallel but at different levels?  This question 

concerns the diet effect, 𝛽3.  It is also of interest in the current study.  If the 

different diets are not associated with different patterns of cognitive decline, 

we would like to examine if there is at least a difference in baseline 3MS 

scores (𝛽3 ≠ 0).  Since response profiles are parallel, this would indicate that 

the difference is maintained and still observed five years later. 

3. Assuming that there is no diet×time effect, are the mean 3MS scores constant 

over time, or do they change with time?  This question concerns the time 

effect, 𝛽2.  This question is not of particular interest in the current study.  It is 

well-known that 3MS scores in aged populations decline with time.  Thus, we 

expect a time effect.  Specifically, we expect the time effect to be negative 

(𝛽2 < 0).  That is, mean 3MS is lower five years later than it was at baseline. 
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To study the association of cognitive decline and DASH adherence by analyzing 

response profiles, these hypotheses can be tested in SAS using the following PROC 

MIXED syntax:   

          
 
PROC MIXED method=ML; 
CLASS time id DASH_5; 
MODEL mms = time DASH_5 time*DASH_5 / S; 
REPEATED time / TYPE=un SUBJECT=id R; 
RUN; 
          

 

where DASH_5 is the variable indicating which quintile the subjects’ DASH adherence 

score falls into (Q1 being least adherent and Q5 being the most) and mms is 3MS score.  

Notice the use of TYPE=UN to specify unstructured covariance and METHOD=ML to 

specify maximum likelihood.  It is also important to note that time is placed in the 

CLASS and REPEATED statements.  Placing it in the CLASS statement makes it a 

categorical variable with four levels: 0 years, 3 years, 7 years, and 11 years after baseline. 

 By analyzing response profiles, both time and DASH effects were found to be 

significant (p-value for both < 0.0001).  However, the time×DASH effect was highly 

non-significant (p = 0.9627) and dropped from the model.  Thus, there is evidence that 

3MS scores change with time and that different levels of adherence to the DASH diet are 

associated with different baseline 3MS scores.  However, there is no evidence that the 

pattern of decline is different among different levels of DASH adherence.  The estimates 

of the fixed effects are summarized in Table A.4. 

 According to our estimates, subjects in the fourth and fifth quintiles of DASH 

adherence score about 1.65 points higher on the 3MS than those subjects in the lowest 
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quintile.  Our parameter estimates also suggest that subjects in all quintiles score about 5 

points lower on the 3MS at the end of the study than at the beginning.  Figure B.3 

represents these findings graphically by plotting mean 3MS by time, stratified by DASH 

adherence quintile. 

While the analysis of response profiles is a fairly straightforward way of 

analyzing longitudinal data, it is not the most appropriate method for the current study.  

This is because the analysis of response profiles allows for arbitrary patterns in the mean 

response over time.  It does not impose any time trend; therefore it ignores the time 

ordering of the repeated measures.  This results in a rather broad statement about group 

differences in patterns of change over time.  The null hypothesis of no diet×time 

interaction is a global test that provides only a broad assessment of whether mean 3MS 

profiles are the same for different diets.  In the case where the null is rejected, it does not 

indicate the specific ways in which the profiles differ. 

In the Cache study, it is reasonable to assume a priori that 3MS has a linear or 

curvilinear time trend.  Treating time as a continuous variable rather than as a factor will 

have higher power to detect group differences in mean 3MS scores over time. 

Parametric Model for Cognitive Decline 

 Whereas profile analysis allows for arbitrary patterns in 3MS scores over time, we 

expect, a priori, that cognitive function will decline with time in aged populations.  It is 

reasonable to assume that 3MS will decline linearly or curvilinearly over time.  Although 

profile analysis produces a “perfect” fit to the observed mean 3MS profile, it fails to 

describe the changes in mean 3MS in terms of some pattern that can be given a 
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substantive interpretation.  Since we can reasonably assume that true cognitive function is 

monotonically decreasing for the duration of the study, a simple parametric curve can be 

used to describe how 3MS scores decline over time.   

 The following equation models mean 3MS for subject i at time j with a linear 

trend, with subjects adhering to one of two different diets:   

𝐸�3𝑀𝑆𝑖𝑗� =  𝛽1 +  𝛽2�𝑡𝑖𝑚𝑒𝑖𝑗� + 𝛽3(𝐷𝑖𝑒𝑡1𝑖) +  𝛽4(𝐷𝑖𝑒𝑡1𝑖)�𝑡𝑖𝑚𝑒𝑖𝑗�             (4) 

where timeij is a continuous variable rather than categorical as it was in the analysis of 

profiles model.  Notice that this model easily accommodates multiple measurement 

occasions, whereas the previous model would have required two additional dummy 

variables for each additional occasion.  If we instead assume that the changes in the mean 

response follow a quadratic trend, we could use the following model: 

𝐸�3𝑀𝑆𝑖𝑗� =  𝛽1 +  𝛽2�𝑡𝑖𝑚𝑒𝑖𝑗� + 𝛽3�𝑡𝑖𝑚𝑒𝑖𝑗2 � + 𝛽4(𝐷𝑖𝑒𝑡1𝑖) +  

𝛽5(𝐷𝑖𝑒𝑡1𝑖)�𝑡𝑖𝑚𝑒𝑖𝑗� +  𝛽6�𝑡𝑖𝑚𝑒𝑖𝑗2 �(𝐷𝑖𝑒𝑡1𝑖).                          (5) 

 The same three hypotheses that were tested with analysis of profiles can be tested 

with these parametric models.  To test whether the two diet groups change differently 

over time, we test the null hypothesis 𝐻0: 𝛽4 = 0 in the linear model or 𝐻0: 𝛽5 = 𝛽6 = 0 

in the quadratic.  Assuming that the two diets have the same rate of change (i.e., we fail 

to reject the previous hypotheses), we can test whether mean 3MS changes over time by 

testing the null hypothesis 𝐻0: 𝛽2 = 0 in the linear model or 𝐻0: 𝛽2 = 𝛽3 = 0 in the 

quadratic.  Finally, assuming the two diets have the same trend, we can test whether the 

two groups differ at baseline by testing 𝐻0: 𝛽3 = 0 in the linear model and 𝐻0: 𝛽4 = 0 in 

the quadratic.   
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 To test for quadratic versus linear trend (i.e., which model to use), we can use the 

model, 

𝐸�3𝑀𝑆𝑖𝑗� =  𝛽1 +  𝛽2�𝑡𝑖𝑚𝑒𝑖𝑗� + 𝛽3�𝑡𝑖𝑚𝑒𝑖𝑗2 �,                               (6) 

and test 𝐻0: 𝛽3 = 0.  If we fail to reject this null hypothesis, a linear trend is sufficient to 

describe mean 3MS change over time.  If we reject the null, the data suggest that mean 

3MS should be described with a quadratic curve.   

 The parametric models used for the hypothetical two-diet study are easily 

extended to accommodate multiple diets by including additional dummy variables and 

diet×time interaction terms.  To study the association of DASH adherence quintile and 

cognitive decline by fitting quadratic curves, the following SAS code can be used:   

 
          
 
PROC MIXED method=ML; 
CLASS t id DASH_5; 
MODEL mms = time time*time DASH_5 time*DASH_5 
time*time*DASH_5 / S; 
REPEATED t / TYPE=un SUBJECT=id R; 
RUN; 
          

 

where t is a copy of the time variable.  Including t in the CLASS and REPEATED 

statement prompts SAS to appropriately model the covariance while using the continuous 

time variable in the MODEL statement fits a parametric curve.  After fitting this model, it 

was determined that the time×DASH and time×time×DASH interactions were highly 

non-significant (likelihood ratio test yielded p-value = 0.8831) and were dropped from 

the model.  As we saw with the analysis of profiles, there is still no evidence that 
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different levels of adherence to the DASH diet pattern are associated with different rates 

of cognitive decline.  However, DASH, time, and time×time effects were significant (p < 

.0001).  Their effects are summarized in Table A.5. 

 The estimates of the baseline differences between the quintiles of DASH 

adherence are approximately the same as they were in the response profile analysis.  The 

difference now is that we have one estimate for the time effect, rather than an estimate for 

each occasion.  The model estimates that mean 3MS scores decline at a rate described by 

the function: 

∆𝐸�3𝑀𝑆𝑖𝑗� =  −0.17�𝑡𝑖𝑚𝑒𝑖𝑗� − 0.03�𝑡𝑖𝑚𝑒𝑖𝑗2 �,                            (7) 

where ∆𝐸�3𝑀𝑆𝑖𝑗� is the change in mean 3MS since baseline.  Figure B.4 represents 

these finding graphically, stratified by DASH adherence quintile.  

While the conclusions of this analysis are similar to those made by the analysis of 

response profiles, analysis using parametric curves has more power to estimate fixed 

effects and describes the decline over time in a more substantive way.  For these reasons, 

parametric curves were used to analyze the association between cognitive decline and 

dietary patterns while controlling for potential confounding variables. 

 

 
 
 
 
 
 
 
 
 

 



21 
  

COMPUTATIONAL METHODS  

 As indicated in the discussion of response profiles and parametric curves, PROC 

MIXED in the SAS statistical package was used to fit mixed effect linear regression 

models to examine associations across increasing quintiles of DASH/Mediterranean 

adherence scores and average 3MS scores at the four periods of assessment.  The same 

was applied to examine associations between different clusters/archetypes and 3MS 

scores over the duration of the study.  Finally, models were also fit to examine the 

associations between single nutrients/food groups and 3MS trajectories.   

As explained previously, both linear and quadratic terms for time were included 

in the mixed models to account for the nonlinear trajectories of 3MS performance over 

time.  Variables associated with diet patterns and 3MS scores, as well as other potential 

confounders as identified in other studies, were included in the models.  These included 

education (no more than a high school education or more than a high school education), 

age at baseline (years), gender, APOE genotype (0, 1, or 2 copies of the e4 allele), 

physical activity (frequency of moderate physical activity per week), total energy intake, 

BMI (weight in kg/height in m2), history of alcohol intake (never, former, or current), 

smoking (never, former, or current), and history of vascular disease (yes or no).  Reported 

p-values are two-sided and type I error rate for significance was 0.05. 

To complement the single food group analyses, the Least Absolute Shrinkage and 

Selection Operator (LASSO) was used (19).  All food groups and other variables were 

used in the regression model with baseline 3MS as the response.  LASSO selection was 

used to estimate the effects of these variables, “shrinking” some non-significant effects to 
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zero, and addressing the problem of multicollinearity.  LASSO is a constrained form of 

ordinary least squares regression implemented by PROC GLMSELECT in SAS.  The 

algorithm allows the user to specify a stopping criterion.  For our analyses, cross-

validation (STOP=CV) was used.  The selection was performed using the following SAS 

syntax:  

            
 
PROC GLMSELECT data=work.fgq plots=all; 

 CLASS apoe_3 smoker alcohol_; 
MODEL v1mssadj = gender educgr_rc apoe_3 smoker      
alcohol_ vasc bmi pct_fat kcal_tot q_ffdairy 
q_wholegrains q_LFDairy q_sweets_bevs q_nuts q_legumes 
q_red_proc_meat q_fish q_fruit q_vegnp q_mono_q_satfat 
q_poultry / SELECTION=LASSO STOP=CV; 

     RUN; 
            

 

where v1mssadj represents baseline 3MS score, q_ffdairy and similarly named variables 

represent the quintiles of consumption of the different food groups, and other variables 

represent potential confounders.  Note the specification of SELECTION=LASSO and 

STOP=CV.    
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RESULTS 

DASH and Mediterranean 

 Using mixed effects linear regression models that control for the covariates 

mentioned previously, higher quintiles of DASH adherence were associated with higher 

3MS scores at baseline.  Interestingly, the second highest quintile of DASH adherence 

(Q4) was associated with the highest 3MS score at baseline, followed by Q5, Q3, Q2, and 

Q1.  Those subjects in the fourth quintile had scores 0.97 points higher at baseline than 

those in the lowest quintile (p-value = 0.0003).  Those in the highest quintile (Q5) had 

scores 0.59 points higher at baseline that those in the lowest quintile (p-value = 0.0488).  

For reference, a three year increase in baseline age was associated with a 1.11 point 

decrease in 3MS score.  Thus higher quintiles of DASH adherence (Q4 and Q5) had 

roughly the same effect on 3MS score as did a 2-3 year decrease in age.   

 All interactions between DASH quintile and time were highly non-significant and 

removed from the model (likelihood ratio test yielded p-value = 0.8992).  Thus, there was 

no evidence that the association between DASH adherence and 3MS scores at baseline 

was strengthened or weakened over time.  In other words, the baseline differences in 

mean 3MS score were maintained throughout the duration of the study.   

 The DASH and Mediterranean diet scores were positively correlated (r = 0.8034).  

As was found with DASH scores, higher quintiles of adherence to the Mediterranean diet 

were also associated with higher baseline 3MS scores.  Subjects in the highest quintile 

scored on average 1.08 points higher than those in the lowest quintile (p-value = 0.0001).  

This is approximately the same as the effect associated with a 3 year decrease in age.  
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Although adherence to the Mediterranean diet was associated with higher 3MS 

scores at the baseline interview, these associations were not strengthened or weakened 

over time (interactions between Mediterranean adherence and time were all highly non-

significant).  The differences in mean 3MS score were maintained for the duration of the 

study. 

To assess whether the DASH or Mediterranean dietary patterns were associated 

with higher 3MS performance at baseline or if these associations were simply being 

driven by one or two of the food groups contributing to these dietary patterns, mixed 

effects linear regression models were fit using individual food groups rather than 

adherence scores as predictor variables.  Subjects were separated into food group 

quintiles based on their intake of each food group.  Food groups associated with mean 

3MS score at baseline were whole grains, nuts and legumes, and fish.  Whole grains, nuts 

and legumes, with the addition of low-fat dairy products and poultry, were also found to 

be significant in regression analyses using LASSO selection.   

The results for the DASH, Mediterranean, and individual food group analyses are 

summarized in Table A.6.  Using the lowest quintiles as references, the table reports the 

increase or decrease in mean 3MS associated with being in the higher quintiles of diet 

adherence or food group intake. 

 As reported in Table A.6, the effects of being in the highest quintiles of whole 

grains and nuts/legumes rather than the lowest (1.21 and 0.94 3MS points respectively) 

are comparable to the effects of being in the highest DASH and Mediterranean adherence  
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quintiles.  These two food groups are components of both dietary patterns.  Thus, these 

two food groups alone might account for the observed associations between diet 

adherence and mean 3MS at baseline.  

K-Means Clusters and Archetypes 

 Using mixed effects linear regression models similar to those used in the DASH 

and Mediterranean analyses, there was no evidence of an association between mean 3MS 

and dietary patterns defined by k-means clustering.  There were no time specific 

differences in 3MS among the different clusters (i.e., time×cluster interactions were non-

significant; p-value = 0.1822).  Furthermore, no association between k-means cluster and 

mean 3MS at baseline was observed (p-value =0.9110). 

 Unlike the k-means results, the groups formed by archetypal analysis did yield 

significant results.  There was a significant association between archetype group and 

mean 3MS at baseline interview (p-value=0.0331).  These differences in 3MS at baseline 

were neither strengthened nor weakened over time, but were maintained throughout the 

duration of the study (time×archetype interactions were non-significant; p-value = 

0.2254).  The effects associated with the different archetype groups are summarized in 

Table A.7. 

Consistent with our results in the DASH and Mediterranean analyses, the 

archetype group characterized by high consumption of whole grains and nuts (see Table 

A.2) had a mean 3MS score at baseline that was 1.20 higher than the lowest scoring 

group, which was defined by high consumption of low-fat dairy and cereal.  The whole 

grains and nuts group also scored 0.74 points higher than the group characterized by high 
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consumption of refined grains.  The estimated 3MS trajectories for each of the seven 

archetypes are summarized graphically in Figure B.5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
  

DISCUSSION 

 Higher adherence to both the DASH and Mediterranean diets was associated with 

higher cognitive function at baseline.  Individuals in the higher quintiles of DASH and 

Mediterranean adherence had higher mean 3MS scores at baseline than individuals in the 

lower quintiles.  These differences in cognitive function were maintained for the duration 

of the study.  Higher intakes of whole grains, nuts, and legumes were also associated with 

higher cognitive function at baseline.  These food groups were each components of the 

DASH and Mediterranean adherence scores.  This suggests that these food groups may be 

primarily responsible for the higher cognitive function associated with adherence to the 

two diets.   

 Furthermore, archetypal analysis provided similar evidence in support of the 

benefits to cognitive function associated with whole grains and nuts.  These findings have 

prompted further research examining the association between these foods and risk for 

dementia as well as their association with longevity.  It is also interesting that the group 

characterized by high consumption of whole grains scored significantly higher than the 

group characterized by high consumption of refined grains.   

 Although the dietary patterns of interest in this study were not associated with 

different rates of decline, it is worth noting that decline may have begun before the 

baseline interview and that different rates of decline would have been responsible for the 

differences we observe at baseline.  Furthermore, we can only make conclusions for what 

we have observed in the 11 year frame of the study.  The 3MS trajectories may take 

longer to diverge or converge, or for other differences to be observed. 



28 
  

Additionally, a potential weakness of an observational study like the Cache 

County Memory Study is that the observed effects of dietary factors may be confounded 

by associated lifestyle factors.  We attempted to control for the usual potential 

confounding factors of age, sex, education, physical activity, body mass index, history of 

medical co-morbidities, history of smoking and alcohol intake, but the potential of 

residual confounding remains. 

The CCMS study of cognitive decline was also illustrative as a case study.  Using 

it as an example, missing data mechanisms, covariance structures, and model fitting 

algorithms were all discussed.  We were also able to illustrate the differences between 

analyses using response profiles and those using parametric curves.  Finally, we 

demonstrated how to fit simple models using the SAS statistical package. 

In conclusion, higher levels of adherence to the DASH and Mediterranean dietary 

patterns were associated with higher baseline 3MS scores.  These differences were 

maintained throughout the 11 years of observation in the Cache County Memory Study.  

Dietary patterns defined by consumption of whole grains, nuts, and other foods were also 

associated with higher baseline 3MS scores, with no evidence of decreased or increased 

rates of decline following baseline.  Single food analyses found that foods common to 

both the DASH and Mediterranean diets (namely whole grains, nuts and legumes, and 

fish) might be responsible for benefits associated with the dietary patterns.  Promoting 

adherence to diets similar to the DASH and Mediterranean diets or promoting the 

consumption of food groups common to both diets may provide a means for dietary 

strategies aimed at cognitive benefits. 
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Table A.1: Summary of Clusters Obtained from K-Means Algorithm 

Cluster 
Foods for which average intake is higher than for all other 
clusters 

Desserts and Snacks (n = 249) Desserts, Snacks 

Alcohol (n = 321) Coffee, Liquor, Wine, Beer, Processed Meat, Full-fat Dairy 
Products, Eggs, Tea, Garlic, Regular Salad Dressing 

Fruit and Vegetables (n = 353) Fruit, Vegetables, Legumes, Fruit Juice, Tomatoes, Olive Oil, 
Poultry 

Refined Grains and 
Margarine/Butter (n = 499) Refined Grains, Margarin, Butter, Low Calorie Drinks 

Whole Grains (n = 582) Whole Grains, Nuts, Potatoes 

Low Fat Dairy and Cereal      
(n = 582) Low-fat Dairy Products, Cereal, Instant Breakfast 

Red Meat, French Fries, and 
Pizza (n = 1,068) 

Red Meat, High Calorie Drinks, French Fries, Fish, Pizza, Organ 
Meat, Mexican Food, Cream-based Soups 
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Table A.2: Summary of Pseudoclusters Obtained from Archetypal Analysis 

Psuedocluster 
Foods for which average intake is higher than for all other 
clusters 

Low-fat Dairy and Cereal           
(n = 213) Low-fat Dairy Products, Cereal, Instant Breakfast 

Refined Grains (n = 388) Refined Grains, Butter, Low Calorie Drinks 

Red Meat and Alcohol               
(n = 1,374) 

Red Meat, Coffee, High Calorie Drinks, Fish, Processed Meat, 
Full-fat Dairy Products, Liquor, Wine, Mexican Food, Poultry, 
Beer, Organ Meat, Garlic, Eggs, French Fries, Cream-based 
Soups, Pizza 

Fruit and Vegetables (n = 413) Fruit, Vegetables, Legumes, Fruit Juice, Tomatoes, Olive Oil 

Desserts and Snacks (n = 373) Desserts, Tea, Snacks 

Margarine, Salad, and Cereal      
(n = 896) Margarine, Regular Salad Dressing 

Whole Grains (n = 308) Whole Grains, Nuts, Potatoes 
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Table A.3: Distribution of 3MS Scores by Follow-up Visit 

    Wave 1 
3MS Scores 

Wave 2  
3MS Scores 

Wave 3  
3MS Scores 

Wave 4 
3MS Scores 

Dropout Status n mean(s.d) mean(s.d) mean(s.d) mean(s.d) 

Present at Wave 2 2,737 92.20(5.44) n/a n/a n/a 
NDD Missing at Wave 2 197 92.11(5.81) n/a n/a n/a 
DD Missing at Wave 2 670 86.91(8.44) n/a n/a n/a 
Present at Wave 3 1,832 93.17(4.59) 93.83(4.91) n/a n/a 
NDD Missing at Wave 3 189 92.16(5.57) 93.23(5.42) n/a n/a 
DD Missing at Wave 3 716 89.73(6.52) 86.93(11.49) n/a n/a 
Present at Wave 4 1,192 93.83(4.13) 94.92(3.94) 93.43(5.03) 91.86(7.27) 
NDD Missing at Wave 4 134 93.43(4.26) 94.00(4.92) 92.24(5.85) n/a 
DD Missing at Wave 4 506 91.55(5.27) 91.21(5.88) 83.65(10.65) n/a 
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Table A.4: Estimated Fixed Effects for the Analysis of 
Response Profiles 

Effect Estimate 
Standard 

Error 
p-

value 

Intercept 90.2785 0.2357 <.0001 

Time 

baseline 0(reference) . . 
3 yrs -0.2 0.1141 0.0797 
7 yrs -3.7274 0.178 <.0001 
11 yrs -5.1301 0.221 <.0001 

DASH_5 

Q1 0(reference) . . 
Q2 0.3561 0.3316 0.2829 
Q3 0.93 0.3301 0.0049 
Q4 1.6681 0.3239 <.0001 
Q5 1.6461 0.3534 <.0001 
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Table A.5: Estimated Fixed Effects for the Parametric Model 

Effect Estimate Standard 
Error p-value 

Intercept 90.2741 0.2355 <.0001 
Time -0.1687 0.03968 <.0001 
Time*Time   -0.03235 0.003482 <.0001 

DASH_5 

Q1 0(reference) . . 
Q2 0.3688 0.3313 0.2657 
Q3 0.9281 0.3297 0.0049 
Q4 1.6740 0.3235 <.0001 
Q5 1.6492 0.3528 <.0001 
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Table A.6: Mean Difference in 3MS Scores at the Baseline Interview* 

  Quintile of Diet Adherence Score or Energy Adusted Servings Per Day   
Diet/Food 
Group Q1 Q2 Q3 Q4 Q5 P-value 

DASH 0 
(reference) 0.12 ± 0.27 0.21 ± 0.27 0.97 ± 0.27 0.59 ± 0.30 0.0018 

Mediterranean 0 0.29 ± 0.28 0.88 ± 0.27 0.86 ± 0.29 1.08 ± 0.28 0.0004 

Whole Grains 0 1.28 ± 0.28 1.06 ± 0.28 0.84 ± 0.28 1.21 ± 0.28 <0.0001 

Nuts and 
Legumes 0 0.50 ± 0.28 0.76 ± 0.28 0.97 ± 0.28 0.94 ± 0.28 0.0024 

Fish 0 0.09 ± 0.28 0.62 ± 0.28 -0.24 ± 0.28 -0.13 ± 0.28 0.0193 

Vegetables 0 0.40 ± 0.28 0.81 ± 0.28 0.44 ± 0.28 0.38 ± 0.28 0.0756 

Low-fat Dairy 
Products 0 -0.18 ± 0.28 0.55 ± 0.28 0.21 ± 0.28 0.28 ± 0.28 0.0861 

MUFA:SFA† 0 0.47 ± 0.28 0.53 ± 0.28 0.75 ± 0.28 0.36 ± 0.28 0.0914 

Fruits 0 0.55 ± 0.28 0.61 ± 0.28 0.63 ± 0.28 0.28 ± 0.28 0.1098 

Red and 
Processed Meats 0 0.15 ± 0.28 0.15 ± 0.28 -0.36 ± 0.28 -0.38 ± 0.28 0.1262 

Sweetened 
Beverages 0 0.20 ± 0.28 -0.11 ± 0.28 0.33 ± 0.28 -0.19 ± 0.28 0.2954 

Poultry 0 0.27 ± 0.28 -0.08 ± 0.28 0.29 ± 0.28 0.14 ± 0.28 0.5834 

Full-fat Dairy 
Products 0 0.21 ± 0.28 0.36 ± 0.28 0.26 ± 0.28 0.20 ± 0.28 0.7634 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
* The table reports the mean difference from the reference group plus or minus the standard error 
(coefficient ± S.E.). 
† Ratio of monounsaturated fatty acids to saturated fatty acids. 
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Table A.7: Archetypal Analysis Results 

  Mean 3MS at 
baseline 

(coefficient ± SE) 

  

    

Archetype p-value 

Low-fat Dairy and Cereal 0 (reference) . 

Refined Grains 0.46 ± 0.45 0.3027 

Red Meat and Alcohol 0.51 ± 0.39 0.1879 

Fruit and Vegetables 0.56 ± 0.44 0.2092 

Desserts and Snacks 1.00 ± 0.45 0.0287 

Margarine, Salad, and Cereal 1.10 ± 0.41 0.0081 

Whole Grains 1.20 ± 0.49 0.0141 
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Appendix B.  Figures 
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Figure B.1: Dropout by Wave 
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Figure B.2: Correlation Between 
3MS Scores with Increased 
Separation in Time 
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Figure B.3: 3MS Profiles, 
Stratified by DASH Adherence 
Quintile 
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Figure B.4: 3MS Trajectories, 
Stratified by DASH Adherence 
Quintile 
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Figure B.5: 3MS Trajectories, 
Stratified by Archetype 
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