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ABSTRACT 

NCAA Division I Football Bowl Subdivision: 

The Importance of Recruiting and Its 

Relationship with 

Team Performance 

by 

Nathan S. Lloyd, Master of Science 

Utah State University, 2011 

Major Professor: Dr. Chris Fawson 
Department: Economics and Finance 
 

Talent wins college football games.  Wins bring in money.  Colleges, fans and media 

hype up the recruiting season as the key to success in the college football season.  Is it though? 

Athletic programs spend large sums of capital and resources to recruit the most talented players 

possible.  This paper explores the relationship between recruited talent and team performance 

using a simultaneous equations model.  Higher players’ talent leads to better team performance 

and a recruiting class has its biggest impact immediately following signing.  A team’s 

performance, especially of the most recent season, impacts its ability to recruit.  Talent and 

success experience bidirectional causation, meaning they concurrently cause each other.  The 

theory that top teams maintain top status is true. The theory holds true for all teams as well.  

Bidirectional causation proved here explains lack of performance mobility across all levels of the 

Division I Football Bowl Subdivision (FBS).   

(38 pages) 
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INTRODUCTION 

 Despite the amateur status of NCAA athletes, the Division I Football Bowl Subdivision 

(FBS) (formerly Division IA) is a booming commercial industry.  In 2009, the top football 

programs earned over $50 million in profits (Schwartz, 2009)!  Eighty-three of 118 reporting 

football programs were profitable, with thirty-five of them profiting over $10 million (U.S. 

Department of Education).  Attracting elite high school and junior college players to a program is 

assumed to translate into future wins, prestige and money for a program.  Robert Brown of Cal 

State University San Marcos estimates that a “premium” player - one later drafted into the NFL- 

adds $1.1 million of revenue to his university (Brown, 2011).   

Every year, college football programs spend huge amounts of time, money and effort in 

the competitive game off the field known as “recruiting”.  In 2001, the average Division IA 

program spent $526,000 on recruiting (Weiberg, 2003).  This amount jumped to over $750,000 

by the 2009 - 2010 academic year, and 29 schools in the FBS spent over $1 million in recruiting 

alone (U.S. Department of Education).  This does not even account for expenses related to 

recruiting such as scouting and phone bills which are reported to the Department of Education 

in a separate expense category.  It is also important to note that the NCAA limits recruiting 

activities.  The NCAA breaks down the calendar into different periods where varying levels of 

recruiting can occur.  Schools and coaches are limited by quotas in their official visits to 

prospective student-athletes1.  Student hosts can be paid a maximum of $30/day to cover 

entertainment for the host and prospect (NCAA bylaw 13.6.7.5).  Advertising for recruits is 

forbidden (NCAA bylaw 13.4.3.1).  These “collusive restrictions on payments” for recruiting 

                                                           
1
 For example, a football program is allowed 56 total official visits annually and the head coach is allowed 

just one day/year to visit each given prospective student-athlete (see NCAA bylaws 13.6.2.6 and 
13.1.2.6.2 for respective examples) (NCAA) 
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expenses and other factors of football production such as player compensation, are evidence to 

the NCAA’s cartel behavior (Kahn, 2007).  If not for these cartel-like behaviors of the NCAA 

which restrict recruiting, the expense would surely be much greater.   

A Sports Illustrated article entitled “A History of Recruiting” shows how important 

football programs perceive recruiting by revealing the great lengths that these programs will go 

to in order to innovate and work with NCAA bylaws.  One school recently produced comic books 

with their recruit prospects as the main character, leading the team to a national championship.  

These, along with personalized jerseys, text messaging and other creative recruiting tools have 

since been banned by the NCAA (Staples, 2008).  As of summer 2011, video chats, Facebook 

accounts and email, among other methods of recruiting, remain legal under NCAA bylaws.   

With all the cost and effort surrounding recruiting, one must ask, “Is it worth it? Do 

better recruits translate into more wins?”  Clearly a football team’s profit is a function of success 

on the field but is success a function of its players’ talent?  When do recruits begin to impact 

their team and by how much?  Does winning increase a team’s ability to attract elite recruits? 

Answering these critical questions aids athletic administrators and coaches in their jobs.  

Implications of this study may justify teams in their large expenditures related to recruiting.  

Results of this study should help teams in their planning and recruiting efforts of players.  

Knowing they operate in a cycle where recruiting leads to team performance which in turn leads 

to recruiting, and so forth, would provide insight into needed policy moves.  Athletic 

administrators could focus on breaking the cycle by hiring coaches more focused on recruiting, 

or more proven as great recruiters, expend more time and money on recruiting and less on 

stadium/facility enhancement, etc.   

 



3 
 

LITERARY REVIEW 

 Sports economics literature involving football falls into various main camps: those 

modeling production of wins as a function of performance statistics, those modeling attendance 

as a function of various determinants, literature about coaches, literature involving team 

performance and its effect on university variables, and those who study the recruiting aspect of 

the game.  An example of the first camp is the work by Keith Willoughby of Bucknell University.  

He studies winning in the Canadian Football League.  The dichotomous dependent variable 

representing win-loss is regressed on in-game statistics such as the difference in passing yards, 

rushing yards, turnovers, etc. between the observed team and its opponent.  Teams should 

control the line of scrimmage and focus on dominating these in-game statistics to win the game 

(Willoughby, 2002).  Related studies may differ in their selected explanatory performance 

statistics used, but most are attempting to model wins in this fashion in order to prescribe 

coaching policies and emphases for the game.  Some studies, such as Stephen Clarke’s, look at 

the effect of home field advantage in athletic competition (Clarke, 2005). 

 Timothy DeSchriver and Paul Jensen present an economic demand model for spectator 

attendance in NCAA Division II competitions.  Winning percentage and promotional activities 

such as homecoming positively affect attendance.  Winning’s effect on attendance grows as the 

season gets closer to the end (DeSchriver and Jensen, 2002).  Attendance has been studied in 

NCAA Division I as well.  A predictive model sets attendance as a function of game-specific, 

university-specific and team-specific determinants.  The recent on-field success of the home 

team, visiting team, tradition of the home team and being rivals are the biggest positive 

predictors of attendance demand (Price and Sen, 2003).  Conference realignment has an effect 

on attendance too.  Recently, many teams have changed conference affiliation for more 
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competitive conferences.  After controlling for the higher quality opponents, their attendance 

increases (Groza, 2010).   

Coaching is another area of football literature.  Amy Farmer and Paul Pecorino develop a 

model to show that under the NCAA’s “cartel agreement” to not provide player compensation, 

coaches’ salaries rise (Farmer and Pecorino, 2010).  Recently, Paul Holmes presents a model that 

uses logistic regression methods to estimate dismissal probability for FBS head coaches. 

Stronger recent team performance decreases the chance of dismissal but stronger historical 

performances of a team increase the chance of the current coach’s dismissal (Holmes, 2011).   

One niche in literature specific to college football involves the relationship between 

team performance and various university variables such as alumni donations, academic quality 

and state appropriations.  “Alumni giving” literature is divided and estimates of the effect a 

team’s success has on donations vary depending on what variables are used in the model, how 

“success” is defined, and whether the sample includes private or public universities (Kahn, 

2007).  A football program’s culture and tradition, more than on-field success, positively 

contribute to academic quality (Smith, 2009).  Although on-field success does not explain state-

government appropriations for universities, simply fielding a football team does (Humphreys, 

2006).  These are examples of the literature regarding football’s effects on campus activity. 

Another camp of literature involving college football focuses on the aspect of recruiting.  

Klenosky, Templin and Troutman of Purdue University present an economic model of the college 

football recruiting process (Klenosky, et. al, 2001).  They find that factors such as the coaching 

staff, playing time potential and playing on television have some significance in determining the 

recruit’s school of choice.  Dumond, Lynch and Platania model recruits as rational agents seeking 

to maximize their discounted expected utility.  They create a predictive model to determine the 
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likelihood a recruit will sign with a given school.  Factors influencing a recruit’s decisions, 

conditional on being offered the scholarship, include the distance between the school’s city and 

his hometown, whether or not the team is a “BCS” team, the team’s recent performance, 

academic reputation and media exposure (Dumond, et. al, 2008).  

This project aligns with a different aspect of recruiting literature however- exploring the 

relationship between recruiting and team performance.  George Langelett finds that teams with 

success on the field are able to attract quality recruits, which in turn increases the quality of 

future team performance.  Only the top 10 recruiting classes are observed along with the top 25 

teams for each year in his study; the data set he uses is not representative of Division I FBS 

(Langelett, 2003).  His feedback system between team performance and recruiting supports the 

phenomenon where top teams remain top teams.  My study seeks to test the generalized 

conclusions of Langelett.  I test if the immobile nature (in terms of performance) of the vast 

majority of teams across all FBS levels can be explained by the theory of bidirectional causation 

of recruiting and team performance. 

 To show the lack of mobility of teams across performance levels, consider the following 

facts: the net average change for a team’s rating from year to year is .021; for the median team 

of 2010, taking the average change would translate into the exact same ranking in 2011 (given 

the same team ratings of 2010 for the other teams).  The largest rating gain from year-to-year 

was 28.73 in my data set- even the bottom 48.7% of 2010 teams could not be ranked number 1 

next year with that kind of enormous improvement.  Also, in 13 years only 43 unique FBS teams 

have ever finished in the top 102.  Lack of performance mobility may be explained by 

bidirectional causation of team performance and recruiting. 

                                                           
2
 Author’s data calculations 
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THEORETICAL FRAMEWORK 

The buzz and hoopla surrounding National Signing Day3 and the entire recruitment 

season is based on the assumption that a talented recruiting class will convert into a high-

ranked football team over the next four years.  George Langelett showed this assumption to be 

true in his 2003 article, published in the Journal of Sports Economics.  I hypothesize this theory 

should be extended to the entire FBS.  If top talent leads to high team performance, the 

opposite should be true - low talent should produce lower ranked teams.  Theory suggests 

recruits affect team performance most their freshman year (year signed=red-shirt year, next 

year = freshman year), but the impact of a recruit is discounted over the remainder of his time 

with the program (Langelett, 2003).   

Another common perception is that teams with recent success will attract better 

recruits.  Specifically, theory states that a team’s performance best explains recruiting at its two-

year lag (Langelett, 2003).  This bidirectional theoretical framework of team performance and 

recruiting will be modeled empirically. 

 

 

 

 

 

 

 

                                                           
3
 First Wednesday in February 
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ECONOMETRIC MODELING 

I propose a simultaneous equations model to test the theoretical hypotheses, because 

of the bidirectional nature of team performance and recruiting.  I take advantage of recruiting 

class data and team rankings now available for all teams in the FBS.  Following literature, the 

first equation (Equation I) includes Team Performance (TP) which is regressed solely on 

Recruiting Class talent (RC) and its lags.  Since players are given five years of eligibility when 

using a red-shirt year, they may affect a team’s performance over five years.  The fifth-year lag 

of recruiting classes is included in the model to control for this possibility.  Equation I appears as:  

Team Performance = f (Red-shirt, Freshman, Sophomore, Junior, Senior), 

or, alternatively in lag form:  

Team Performance = f (RC,       ,      ,      ,      ). 

Team Performance is the dependent variable of Equation I.  Using Jeff Sagarin’s 

computer ratings of all FBS teams, teams’ performance is measured by their end-of-season 

rating.  Like Groza, I use Sagarin ratings to represent recent on-field success (Groza, 2010).  

Sagarin ratings are used to measure team performance because of their validity in the sports 

world, being the supplier to the USA Today’s rankings.  Also, the Bowl Championship Series 

(BCS) uses Sagarin ratings to formulate their rankings and make decisions on their prestigious 

bowl game participants.  Other popular polls such as the AP Top 25 or BCS rankings are not used 

since these only rank the top teams, and not every team in the FBS.  Team ratings are used, as 

opposed to rankings, for accuracy of measurement since the difference between pairs of 

rankings is not equidistant, and to avoid censored data. 

Recruited talent of a team is represented by the recruiting ranking each entering class 

receives upon joining a team.  Every year, scout.com rates all players who sign with NCAA FBS 
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teams on a scale of 1-5 “stars”.  Recruits of the highest talent are given 5 stars, followed by 

those with 4 stars, etc. down to 1 for the least-talented recruits.  Scout.com awards points to 

every team, taking into account both their recruits’ absolute talent and their relative talent to 

other teams4.  Rankings are assigned each FBS team as determined by their overall point total5.  

Scout.com was acquired by Fox Interactive Company in 2005 to be a supplier of information to 

Fox Sports.  Scout.com and its affiliate in production, Superprep.com, are leaders of the 

recruiting information industry.   

Equation l is represented algebraically as follows:  

                                                           

where Y is the final team rating, i indexes the team of analysis, t is the index for time, α is the 

intercept term, ε is the error term to account for the random nature of models, and β is the 

coefficient for explanatory variable X, the team’s recruiting class ranking (RC).  RC and its four 

lags are included in the model to cover the time athletes play for a team.     is the beta 

coefficient for the recruiting class of the current year, or the red-shirt freshmen.     is the beta 

coefficient for the recruiting class of last year, or the current freshman players, and so forth.   

 Because recruiting is also affected by prior performance of a team, the empirical model 

is only accurate with the inclusion of Equation II.  This tests the theory that a high school player 

uses current teams’ performance to choose where to attend school.  Dumond, Lynch and 

Platania showed that a team’s current performance is a major factor in a recruit’s decision of 

where to play in college (Dumond, et. al, 2008).  Equation II is given as: 

                                                           
4
 The formula is based on a player’s rating and ranking: 5-star=200 points, 4-star=120 points, 3-star=40 

points, 2-star=20 points, 1-star=0 points.  The number 1-ranked player (assuming 100 players in his 
position) of a position=100 points, number 2=99 points, down to number 100=1 point.  A maximum of 25 
recruits/team are evaluated towards a team’s points and ranking.  
5
 These rankings are updated regularly and slightly change from time to time. My data was last updated 

July 2011. 



9 
 

Recruiting Class = g (Senior HS, Junior HS, Sophomore HS, Freshman HS), 

which allows for the player’s four years of high school attendance and his decision period.  This 

is shown alternatively with team performance lags: 

Recruiting Class = g (     ,      ,      ,      ) 

Algebraically, this becomes: 

                                                   

where Y is the recruiting class ranking, i indexes the team of analysis, t is the index for time, α is 

the intercept term, ε is the error term to account for the random nature of models, and β is the 

coefficient for explanatory variable X, the team’s performance (TP).  Four lags are included in 

the model to cover the time recruits attend high school and scout their potential future teams.  

   is the beta coefficient for the team performance last year, or while the recruits are seniors in 

high school.     is the beta coefficient for the team’s performance two years ago, or while the 

recruits are juniors in high school, and so forth.   

All teams in the FBS are observed for the data set.  The cross section of teams is studied 

over time, using data from 1998 to the present.  The frequency of data is yearly- for each 

season.  With 120 teams under observation for 14 years, 1649 total observations will be 

included in this data set with the final year of data being incomplete6.  Explanatory variables of 

Equation I are observed for 2011, but not the dependent variable.  Recruiting rankings are 

observable from 2002 on, while team ratings are available since 1998.  With four lags needed in 

Equation I, there is enough data to begin the data series in 2006, lasting six years, ending with 

2011 inclusive.  For Equation II, there is enough data to begin the data series in 2002.  This panel 

                                                           
6
 8 schools unbalance the panel since their teams are newer than 1998.  Buffalo and Middle Tennessee 

began in 1999, UConn in 2000, South Florida and Troy in 2001, FAU and Florida International in 2004, and 
Western Kentucky in 2007.  They are not thrown out of the data in order to keep the results unbiased 
(Most these teams are from the bottom half of the team ratings). 
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study gleans data from various sources: Scout.com, Sports-reference.com, ESPN.go.com and 

USA Today7. 

To summarize, the empirical model (Model I) of simultaneous equations is given as: 

Equation I: TP = f (RC,      ,      ,      ,      ) 

Equation II: RC = g (     ,      ,      ,      ) 

All the variables used are displayed in the table below: 

List of Variables 

Variable: Represents: 

TP (Dependent) Team performance- Final Sagarin 
rating of the year 

RC (Explanatory in Equation I, 
Dependent in Equation II) 

Recruiting Class Ranking (#1 is 
best) of current red-shirt players 

RC, t-1 (Explanatory in Equation 
I, along with remaining RC lags) 

RC’s 1st lag or current freshman 
players 

RC, t-2 RC’s 2nd lag or current 
sophomore players 

RC, t-3 RC’s 3rd lag or junior players 

RC, t-4 RC’s final lag or senior players 

TP, t-1 (Explanatory in Equation 
II, as are the remaining variables) 

Team Performance’s 1st lag 

TP, t-2 Team Performance’s 2nd lag 

TP, t-3 Team Performance’s 3rd lag 

TP, t-4 Team Performance’s 4th lag 

 

 

 

 

                                                           
7
 http://www.usatoday.com/sports/sagarin-archive.htm 
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Team Performance and Recruiting Class Rankings have the following descriptive 

statistics: 

Summary Statistics8 

TP RC 

Mean 70.8236 Mean 59.1121 

Standard Error 0.3144 Standard Error 0.9860 

Median 71.23 Median 59 

Mode 65.9 Mode 107 

Standard Deviation 12.2956 Standard Deviation 33.7130 

Sample Variance 151.1806 Sample Variance 1136.5670 

Kurtosis -0.30 Kurtosis -1.1766 

Skewness -0.0930 Skewness 0.0038 

Range 76.46 Range 119 

Minimum 30.47 Minimum 1 

Maximum 106.93 Maximum 120 

Count 1529 Count 1190 

 

 

 

 

 

 

 

 

 

                                                           
8
 All output values throughout the paper are rounded to the nearest ten-thousandth 
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ESTIMATION 

Estimation of the empirical model is performed with the instrumental variable 

technique using the Three-Stage Least Squares (3SLS) and Two-Stage Least Squares (2SLS) 

regression methods.  This is accomplished using R software and its “Systemfit” package, which 

includes functions for simultaneous equations and testing data.  The 3SLS and 2SLS estimators 

are chosen as opposed to Ordinary Least Squares (OLS) because the OLS estimator is biased in 

simultaneous equations (Hamann and Henningsen, 2007).  The disturbance term of one 

equation and a regressor are correlated9, violating Assumption Three (exogeneity of the 

independent variables) of the Classical Linear Regressions Model (Greene, 2008).  Weighted 

Least Squares (WLS) and Seemingly Unrelated Regression (SUR) are not estimators of choice 

either since they rely on the assumption of exogeneity. 

Given that variable RC is an endogenous explanatory variable in Equation I, the 

instrumental variable technique is used for estimation.  A proper choice for an instrumental 

variable is one that is not correlated to the disturbance term, but is correlated with the 

endogenous regressor (Greene, 2008).  To instrument for endogenous variables in simultaneous 

equations, exogenous variables are used (Hamann and Henningsen, 2007).  For this model, RC 

and its four lags along with TP’s four lags are all proper instrument choices.  Langelett used only 

3SLS estimation, but 3SLS here tests negative for consistency using the Hausman Specification 

Test, shown in the next table (Langelett, 2003).  Under the null hypothesis of this test, all 

exogenous variables are uncorrelated with all disturbance terms (Hamann and Henningsen, 

2007).  Therefore, 3SLS is inconsistent and 2SLS is the preferred estimator for this study. 

                                                           
9
 Precisely, the Equation II disturbance term is correlated with Equation II’s RC since RC is an endogenous 

variable.  When the disturbance is high, RC is high too, which simultaneously raises RC in equation I. 
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Hausman Specification Test 

Data Model I 

Hausman Test Statistic 171.1664 

Degrees of Freedom 11 

P-value <2.2e-16 

 

Model I’s output10 is summarized below: 

Model I Output (2SLS)11 

Equation I 
Adj. R-squared:  

.4846 

Coefficient 
Estimates 

Standard Error T-Value Significance 

Intercept  85.7842 0.7190 119.3181 *** 

RC  -0.0833 0.0239 -3.4846 *** 

RC_1 -0.0475 0.0247 -1.9258 . 

RC_2 -0.0787 0.0257 -3.0596 ** 

RC_3 -0.0515 0.0253 -2.0375 * 

RC_4 0.0118 0.0239 0.4931  

Significance Code  *** .001  ** .01  *.05  .    .10  

Equation II 
Adj. R-squared:  

.5984 

Coefficient 
Estimates 

Standard Error T-Value Significance 

Intercept  240.9283 6.1835 38.9632 *** 

TP_1  -0.8621 0.1231 -7.0013 *** 

TP_2  -0.4894 0.1329 -3.6830 *** 

TP_3  -0.5306 0.1318 -4.0247 *** 

TP_4  -0.6778 0.1193 -5.6798 *** 

Significance Code  *** .001  ** .01  *.05  .    .10  

 

                                                           
10 The estimation of systems of equations with unequal numbers of observations has not been thoroughly 

tested yet, therefore lowering the n observations to 591 (Hamann and Henningsen, 2007) 

11
 See Appendix A for output results using the 3SLS estimator 
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All variables are statistically significant and their coefficient estimates have the expected 

negative sign, with the exception of RC_4.  This exception is an inaccurate result that is fixed in 

Model II.  For Equation I and II, recruiting class rankings are set up so that lower is better.  The 

top recruiting class each year is awarded the #1 ranking.  The worst recruiting class is ranked 

#12012.  Higher ratings for teams indicate better performance.  Therefore, for better recruiting 

classes to lead to higher team performance, the negative sign is expected.  For recent on-field 

success to attract more talented recruits, the negative coefficient sign is also correct.   

The model tests negative for heteroscedasticity using the Studentized Breusch-Pagan 

Test.  I fail to reject the null hypothesis of homoscedasticity as seen in the following table: 

Studentized Breusch-Pagan Test 

Data Equation I Equation II 

BP test statistic 2.32 2.3081 

Degrees of Freedom 5 4 

P-value .8031 .6793 

 

However, the model tests positive for multicollinearity.  The following tables show the 

correlation between variables which indicates the problem of collinearity: 

 

 

 

 

                                                           
12

 120 teams have existed since 2007, 119 from 2004-2006, 117 from 2001-2003, 115 in 2000, 114 in 
1999, and 112 in 1998 
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Equation I 
Correlation13 

TP RC RC_1 RC_2 RC_3 RC_4 

TP 1 -.67 -.66 -.67 -.66 -.62 

RC -.67 1 .87 .87 .86 .85 

RC_1 -.66 .87 1 .87 .86 .85 

RC_2 -.67 .87 .87 1 .88 .86 

RC_3 -.66 .86 .86 .88 1 .87 

RC_4 -.62 .85 .85 .86 .87 1 

 

Equation II 
Correlation 

RC TP_1 TP_2 TP_3 TP_4 

RC 1 -.68 -.68 -.67 -.66 

TP_1 -.68 1 .75 .66 .61 

TP_2 -.68 .75 1 .74 .66 

TP_3 -.67 .66 .74 1 .73 

TP_4 -.66 .61 .66 .73 1 

 

An absolute value of 0.8 or greater correlation between two variables is considered high 

collinearity, while .5 - .8 is the range used for moderate collinearity (Kennedy, 2008).  The high 

multicollinearity in Equation I explains the strange exception found in this equation.  To correct 

for multicollinearity, OLS regressions are run on each explanatory variable, following literary 

practice (Langelett, 2003).  These results are shown at continuation and summarized as “Model 

II”: 

 

 

                                                           
13

 Figures in correlation tables rounded to nearest one-hundredth 
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Model II Output (Separate Regressions) 

Equation I: 
Dependent 

Variable – TP 

Adj. R-
squared 

Constant14 Coefficient 
Estimates 

Standard 
Error 

T-Value Significance 

RC .4423 84.6850 -0.2305 .0080 -28.85 *** 

RC_1 .4270 84.4033 -0.2259 .0085 -26.43 *** 

RC_2 .4276 84.3528 -0.2244 .0090 -24.80 *** 

RC_3 .4354 84.5547 -0.2264 .0010 -23.37 *** 

RC_4 .3887 83.7198 -0.2133 .0110 -19.40 *** 

 

Equation II: 
Dependent 

Variable – RC 

Adj. R-
squared 

Constant Coefficient 
Estimates 

Standard 
Error 

T-Value Significance 

TP_1 .4688 197.0505 -1.9434 0.0605 -32.12 *** 

TP_2 .4636 193.9419 -1.9021 0.0598 -31.79 *** 

TP_3 .4433 189.1465 -1.8346 0.0601 -30.51 *** 

TP_4 .4394 185.2543 -1.7810 0.0588 -30.27 *** 

Significance  *** .001  ** .01  *.05  .    .10    

 

RC_4 in the Team Performance Equation now has the expected negative sign for its 

coefficient estimate and all explanatory variables in both equations are highly significant.  The 

most recent class to sign has the strongest impact on team performance.  This will include 

freshmen, but mostly red-shirt players.  This contradicts the hypothesis suggesting that the first 

lag, or mostly freshman players, has the strongest effect.  The recruiting class with the second 

highest impact (by evaluating coefficient estimates) on team performance is the third lag, or 

mostly junior players.  This result is intuitive because recruits should grow and improve in their 

coach’s system, and by their final years be playing more than the other players.   With junior 

                                                           
14

 See Appendix B for the constants’ standard error, T-Value and significance level values 
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players (and senior players who have not red-shirted) producing more minutes played, their 

talent should have a greater impact on their team’s performance than the previous two lags.    

Team Performance is found to significantly explain recruiting.  Contrary to the 

hypothesis, TP_1, or a team’s performance while a recruit is a senior in high school, has the 

strongest impact on recruiting.  This result is instinctive, since high school recruits make final 

decisions on where to play during their senior year.  High school recruits appear to base their 

decision off of the most recent on-field results. 
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CONCLUSIONS AND SHORTCOMINGS 

 These models show a “feedback” system in the college football market.  More work 

could be done to study the Team Performance Equation.  Theory states that the freshmen 

(recruiting class talent lagged one year) most impact a team’s performance, while this study 

found the first year recruiting class to most impact the team’s success.  Perhaps less athletes are 

red-shirting than when George Langelett studied this issue.  Maybe the composition of recruits 

is changing with the junior college & transfer/high school recruit ratio rising.  I believe talent’s 

role in the college football market, including coaching talent, needs to be better understood.  

Because recruiting classes experience their strongest effect on team performance right after 

signing, further study needs to determine if coaching talent is explaining team performance 

after the first year.  Other factors besides coaching talent may explain the diminished recruiting 

effect on team performance.  Perhaps the model should be expanded to include other variables.   

 Schools in the FBS expend significant amounts of resources on recruiting.  Equation I 

proves that recruiting impacts team performance.  Schools are validated in their actions by this 

evidence.  Recruits significantly impact their team years after signing, with their impact being 

largest the first year.  Team performance in turn affects recruiting.  Prospective FBS football 

players appear to base their decision of where to play mainly on the most recent college football 

results, while they are seniors in high school.  The bidirectional causation theory of recruiting 

talent and team performance extends from its application of top teams to the entire FBS and 

explains the lack of team performance mobility from year to year. 
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Appendix A – Model I Output (3SLS) 

Equation I 
Adj. R-squared:  

.4606 

Coefficient 
Estimates 

Standard Error T-Value Significance 

Intercept  87.9945 .7085 124.2045 *** 

RC  -0.1816 .0227 -8.0137 *** 

RC_1 -0.0295 .0234 -1.2617  

RC_2 -0.0624 .0244 -2.5600 * 

RC_3 -0.0340 .0240 -1.4161  

RC_4 0.0207 .0226 .9153  

Significance Code  *** .001  ** .01  *.05  .    .10  

Equation II 
Adj. R-squared:  

.5952 

Coefficient 
Estimates 

Standard Error T-Value Significance 

Intercept  247.6817 6.0701 40.8034 *** 

TP_1  -1.1067 .1169 -9.4668 *** 

TP_2  -.4454 .1260 -3.5333 *** 

TP_3  -.5090 .1251 -4.0698 *** 

TP_4  -0.5934 .1133 -5.2368 *** 

Significance Code  *** .001  ** .01  *.05  .    .10  
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Appendix B – Model II’s Output of Intercepts 

 

Equation I: 
Dependent 

Variable – TP 

Adj. R-
squared 

Constant SE T-Value Significance 

RC .4423 84.6850 .5423 156.17 *** 

RC_1 .4270 84.4033 .5810 145.28 *** 

RC_2 .4276 84.3528 .6160 136.9 *** 

RC_3 .4354 84.5547 .6620 127.72 *** 

RC_4 .3887 83.7198 .7535 111.10 *** 

Equation II: 
Dependent 

Variable – RC 

Adj. R-
squared 

Constant SE T-Value Significance 

TP_1 .4688 197.0505 4.3544 45.25 *** 

TP_2 .4636 193.9419 4.3023 45.08 *** 

TP_3 .4433 189.1465 4.3247 43.74 *** 

TP_4 .4394 185.2543 4.2318 43.78 *** 
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Appendix C – R Code 

## Counting profits, recruiting expenses... 

setwd("C:\\Users\\Nate\\Desktop") 

dat <- read.csv("thesis.csv", header=T) 

head(dat) 

n<-nrow(dat) 

dat$profit <- rep("", n) 

head(dat) 

for (i in 1:n) { 

  if (dat$Revenues[i] > dat$Expenses[i])  

  dat$profit[i]<-1 

  else dat$profit[i]<-0 

} 

head(dat) 

table(dat$profit) 

dat$prof.amount<-dat$Revenues - dat$Expenses 

head(dat) 

dat 

dat$profit.10m <- rep("",n) 

head(dat) 

for (i in 1:n) { 

  if (dat$prof.amount[i] > 9999999)  

  dat$profit.10m[i]<-1 

  else dat$profit.10m[i]<-0 

} 
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head(dat,20) 

table(dat$profit.10m) 

max(dat$prof.amount) 

outfile <- "C:\\Users\\Nate\\Desktop\\footballprofit.csv" 

write.table(dat, file=outfile, quote=FALSE, sep=",", row.names=FALSE, col.names=TRUE) 

 

## For recruiting expenses 

dat <- read.csv("ADprofit.csv", header=T) 

head(dat) 

n<-nrow(dat) 

dat$RE.1m <- rep("", n) 

head(dat) 

for (i in 1:n) { 

  if (dat$Total[i] > 999999)  

  dat$RE.1m[i]<-1 

  else dat$RE.1m[i]<-0 

} 

head(dat) 

table(dat$RE.1m) 

## Save together 

dat$prof.amount<-dat$Revenues - dat$Expenses 

head(dat) 

dat$profit.10m <- rep("",n) 

head(dat) 

for (i in 1:n) { 
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  if (dat$prof.amount[i] > 9999999)  

  dat$profit.10m[i]<-1 

  else dat$profit.10m[i]<-0 

} 

head(dat,20) 

table(dat$profit.10m) 

max(dat$prof.amount) 

outfile <- "C:\\Users\\Nate\\Desktop\\ADprofit.csv" 

write.table(dat, file=outfile, quote=FALSE, sep=",", row.names=FALSE, col.names=TRUE) 

## Repeated for csv with 2003 figures 

 

## Code for getting variable absolute difference: 

setwd("C:\\Users\\Nate\\Desktop") 

dat<-read.csv("Sagarin.csv", header=T) 

head(dat) 

dat<-dat[1:9] 

head(dat) 

dat$Difference <- abs(dat$Difference) 

head(dat) 

outfile <- "C:\\Users\\Nate\\Desktop\\Sagarin.csv" 

write.table(dat, file=outfile, quote=FALSE, sep=",", row.names=FALSE, col.names=TRUE) 

 

## Code for obtaining range variable: 

 

rang<-list() 
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for (i in 1:120) { 

  rang[[i]] <- range(tmpdat[[i]]$Rating) 

} 

rang 

 

## Equation I code of Simultaneous System 

# Creating lags for RC ranking 

setwd("C:\\Users\\Nate\\Desktop") 

dat <- read.csv("sagarin.csv", header=T) 

head(dat) 

dat<-dat[1:11] 

head(dat) 

teams <- as.character(unique(dat$Team)) 

teams 

length(teams) 

tmp <- list() 

dat$Team <- as.character(dat$Team) 

dat$Conf.11<- as.character(dat$Conf.11) 

tmpdat <- list() 

for(i in 1:120) { tmpdat[[i]] <- dat[dat$Team == teams[i], ]; } 

tmpdat[[1]] 

newdat <- list() 

tmp <- tmpdat[[1]] 

lags <- 4 
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for(i in 1:120) { tmp <- tmpdat[[i]]; n <- nrow(tmp); newdat[[i]] <- cbind(tmp$Rating[(lags+1):n], 

tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n],embed(tmp$RC, lags+1)); } 

newdat 

newdat <- do.call("rbind", newdat) 

newdat <- list() 

for(i in 1:120) { tmp <- tmpdat[[i]]; n <- nrow(tmp); newdat[[i]] <- cbind(tmp$Rating[(lags+1):n], 

tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n], embed(tmp$RC, lags+1)); } 

names(newdat) <- teams 

for(i in 1:120) { n <- nrow(newdat[[i]]); newdat[[i]] <- cbind(rep(names(newdat[[i]]), n), newdat[[i]]) }  

newdat 

data.class(names(newdat)) 

tmp 

n <- nrow(tmp) 

new <- cbind(tmp$Rating[(lags+1):n], tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n],embed(tmp$RC, 

lags+1)) 

nm <- unique(as.character(tmp$Team)) 

n <- nrow(new) 

nate <- data.frame(cbind(rep(nm, n), new)) 

newdat <- list() 

names(tmpdat) <- teams 

tmpdat 

 

for(i in 1:120) { n <- nrow(tmpdat[[i]]); newdat[[i]] <- data.frame(Team=rep(teams[i], n-lags), 

Rating=tmpdat[[i]]$Rating[(lags+1):n], Year=tmpdat[[i]]$Year[(lags+1):n], 

Conf.11=tmpdat[[i]]$Conf.11[(lags+1):n],embed(tmpdat[[i]]$RC, lags+1)); } 
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newdat <- do.call("rbind", newdat) 

newdat 

names(newdat) <- c("Team", "Rating", "Year", "Conf.11", "RC", "RC_1", "RC_2", "RC_3", "RC_4") 

head(newdat,25) 

outfile <- "C:\\Users\\Nate\\Desktop\\Model4.csv" 

write.table(newdat, file=outfile, quote=FALSE, sep=",", row.names=FALSE, col.names=TRUE) 

 

#####  Equation II of Simultaneous Eq system 

# Creating lags for Team Performance (Rating) 

setwd("C:\\Users\\Nate\\Desktop") 

dat <- read.csv("sagarin.csv", header=T) 

dat<-dat[1:11] 

head(dat) 

teams <- as.character(unique(dat$Team)) 

teams 

length(teams) 

tmp <- list() 

dat$Team <- as.character(dat$Team) 

dat$Conf.11<- as.character(dat$Conf.11) 

tmpdat <- list() 

for(i in 1:120) { tmpdat[[i]] <- dat[dat$Team == teams[i], ]; } 

tmpdat[[1]] 

newdat <- list() 

tmp <- tmpdat[[1]] 

lags <- 4 
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for(i in 1:120) { tmp <- tmpdat[[i]]; n <- nrow(tmp); newdat[[i]] <- cbind(tmp$RC[(lags+1):n], 

tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n],embed(tmp$Rating, lags+1)); } 

newdat 

newdat <- do.call("rbind", newdat) 

newdat <- list() 

for(i in 1:120) { tmp <- tmpdat[[i]]; n <- nrow(tmp); newdat[[i]] <- cbind(tmp$RC[(lags+1):n], 

tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n], embed(tmp$Rating, lags+1)); } 

names(newdat) <- teams 

for(i in 1:120) { n <- nrow(newdat[[i]]); newdat[[i]] <- cbind(rep(names(newdat[[i]]), n), newdat[[i]]) }  

newdat 

data.class(names(newdat)) 

tmp 

n <- nrow(tmp) 

new <- cbind(tmp$RC[(lags+1):n], tmp$Year[(lags+1):n], tmp$Conf.11[(lags+1):n],embed(tmp$Rating, 

lags+1)) 

nm <- unique(as.character(tmp$Team)) 

n <- nrow(new) 

nate <- data.frame(cbind(rep(nm, n), new)) 

newdat <- list() 

names(tmpdat) <- teams 

tmpdat 

 

for(i in 1:120) { n <- nrow(tmpdat[[i]]); newdat[[i]] <- data.frame(Team=rep(teams[i], n-lags), 

RC=tmpdat[[i]]$RC[(lags+1):n], Year=tmpdat[[i]]$Year[(lags+1):n], 

Conf.11=tmpdat[[i]]$Conf.11[(lags+1):n],embed(tmpdat[[i]]$Rating, lags+1)); } 
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newdat <- do.call("rbind", newdat) 

newdat 

names(newdat) <- c("Team", "RC", "Year", "Conf.11", "Rating", "Rating_1", "Rating_2", "Rating_3", 

"Rating_4") 

head(newdat,25) 

outfile <- "C:\\Users\\Nate\\Desktop\\Model5.csv" 

write.table(newdat, file=outfile, quote=FALSE, sep=",", row.names=FALSE, col.names=TRUE) 

 

## Model II contains everything to now run Simultaneous EQ Code: 3SLS 

setwd("C:\\Users\\Nate\\Desktop") 

dat <- read.csv("Model2.csv", header=TRUE) 

library(systemfit) 

data.frame(dat) 

dat1 <- na.omit(dat) 

library(plm) 

dat2 <- pdata.frame(dat1, index=c("Team"), drop.index=TRUE, row.names=TRUE) 

head(dat2) 

 

I <- Rating ~ RC + RC_1 + RC_2 + RC_3 + RC_4 

II <- RC ~ Rating_1 + Rating_2 + Rating_3 + Rating_4  

inst <- ~RC + RC_1 + RC_2 + RC_3 + RC_4 + Rating_1 + Rating_2 + Rating_3 + Rating_4  

system <- list(I=I, II=II) 

fit3sls <- systemfit(system, method = "3SLS", inst = inst, data = dat2) 

summary(fit3sls) 

fit2sls <- systemfit(system, method = "2SLS", inst = inst, data=dat2) 
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summary(fit2sls) 

## NB: Pooled by default = false. Same results as if pooled=TRUE in system fit function 

 

## Hausman Specification test: 

h<-hausman.systemfit(fit2sls, fit3sls) 

print(h) 

## Reject the Null hypothesis - 3SLS is inconsistent 

 

## Test for Heteroskedasticity 

bptest(I, data=dat) 

bptest(II, data=dat) 

## Homoskedasticity assumption holds 

 

## Test for multicollinearity: EQ I 

T<-(cbind(dat$Rating, dat$RC, dat$RC_1, dat$RC_2, dat$RC_3, dat$RC_4)) 

T<-as.matrix(T) 

T<-na.omit(T) 

cor(T) 

## Very Large collinearity (>.8) 

## Multicollinearity: EQ II 

T<-(cbind(dat$RC, dat$Rating_1, dat$Rating_2, dat$Rating_3, dat$Rating_4)) 

T<-as.matrix(T) 

T<-na.omit(T) 

cor(T) 

## Moderate Collinearity (<.8) 
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## Model III: separate regression for each variable: 

dat <- read.csv("Model2.csv", header=TRUE) 

mod1.RC <- lm(Rating ~ RC, data=dat) 

summary(mod1.RC) 

mod1.RC_1 <- lm(Rating ~ RC_1, data=dat) 

summary(mod1.RC_1) 

mod1.RC_2 <- lm(Rating ~ RC_2, data=dat) 

summary(mod1.RC_2) 

mod1.RC_3 <- lm(Rating ~ RC_3, data=dat) 

summary(mod1.RC_3) 

mod1.RC_4 <- lm(Rating ~ RC_4, data=dat) 

summary(mod1.RC_4) 

 

## Equation II: 

Rating1 <- lm(RC ~ Rating_1, data=dat) 

summary(Rating1) 

Rating2 <- lm(RC ~ Rating_2, data=dat) 

summary(Rating2) 

Rating3 <- lm(RC ~ Rating_3, data=dat) 

summary(Rating3) 

Rating4 <- lm(RC ~ Rating_4, data=dat) 

summary(Rating4) 
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