Stray Light Calibration of Orbiting Sensors using Solar or Lunar Observations

Larry Gordley Tom Marshall <u>Marty McHugh</u>

Global Atmospheric Technologies and Sciences

CALCON

August 11, 2014

Space Dynamics Lab/USU

Background

On-orbit calibration using celestial bodies has a long heritage. Examples include:

- SeaWiFS
- MODIS
- NOZOMI XUV Scanner
- CERES
- SABER

SABER on TIMED

DWTS is a new mission concept that will require precise stray light calibration

• For DWTS, we will extend the on-orbit procedure used on SABER to characterize the off-axis stray light

DWTS Overview

The Doppler Wind and Temperature Sounder

Will measure vector winds and temperature from cloud-top to 300 km

Mission Motivations

- 1. Weather Forecasting
- 2. Severe Storm Impact
- 3. Space Weather

Courtesy Space Dynamics Lab

Weather Forecasting

- Medium- and long-range weather is well-known to be significantly affected by stratospheric dynamics
 - Baldwin and Dunkerton (2001): Stratospheric harbingers can be used as a predictor of tropospheric weather regimes
 - Thompson et al. (2001): Dynamic coupling of stratosphere and troposphere yields statistically significant predictability on monthly and yearly timescales
 - Charron et al. (2010): Discuss stratospheric extensions to improve tropospheric forecasts
 - Sigmond et al. (2013): Showed enhanced predictability by using a good representation of the stratosphere.
- Forecast improvements await the first global stratospheric wind and temperature observation system

From Sigmond et al., 2013

Severe Storm Intensity

Predicting tropical cyclone <u>intensity</u> has been limited by lack of global stratospheric wind measurements

Space Weather

Recent White House report - calls out the critical gap in space weather observations

Has critical effects on communication, commerce, civilian and military space assets.

- Electric Power Grid: Large scale blackouts and damage to transformers
- Global Satellite Communications: Widespread service disruptions
- GPS Positioning and Timing: Degradations of military weapons accuracy, air traffic management, transportation, navigation, commerce, wireless comm., and more
- Satellites & Spacecraft: Loss of satellites/space situational awareness, increased risk of satellite loss and to astronaut health

DWTS Measurement Concept

- Technique: Doppler Spectroscopy. Images the limb to the side of the spacecraft through an onboard gas cell
- Leading-edge pixels see blue-shifted emission; trailing pixels see redshifted emission.
- Each row collects a full
 Doppler scan for each air
 parcel at that altitude

Doppler Spectroscopy

frequency

Doppler Spectroscopy

Top: Gas-cell transmittance vs. wavenumber showing a CO_2 absorption line.

Middle 7 panels: Atmospheric emission from this CO_2 line reaching 7 different columns of detector

Bottom: Doppler integrated signal is formed by combining measurements across a row.

Width of the measured signal indicates the air temperature.

Cross-track winds appear as a shift along horizontal axis. Along track winds scale the horizontal axis. Total area of the signal (normalized by the maximum) provides a direct calibration of cell pressure.

Nitric oxide spectrum at 5.4 microns

Lambda-doubling in NO spectrum

NO doublets produce multi-peak signal

Cross-track winds *shift* the signal

Along-track winds scale the spectrum

Signal <u>width</u> indicates temperature

Comparison with Other Instruments

Calibration Needs for DWTS

Challenge: precisely measure the extremely large vertical gradients in the limb without extensive baffling
 Photon limited continuous FOV sampling
 Far off-axis stray light calibration can be solved with celestial observations.

The SABER approach

Lunar calibration of Off-Axis Response

SABER Lunar Calibration Results

Stray Light Calibration for DWTS

- Unlike SABER, DWTS is an imager that continuously observes the whole range of altitudes.
- Calibration Procedure:
 - Near axis FOV response will be calibrated with standard methods in the lab
 - On-orbit solar scans will provide far off-axis response. Each non-illuminated pixel receives a fraction of the light incident on every illuminated pixel. Scanning the sun across the whole array provides complete calibration information.

Summary

Modern FPAs are enabling new sensing strategies like DWTS

Courtesy Space Dynamics Lab

Far off-axis stray light challenges must be faced

Extending historical celestial calibration procedures like those used on SABER will meet this challenge, and enable these powerful new sensor concepts

Thank You!

Backup slides

Compact 3-channel design

Courtesy Space Dynamics Lab

DWTS Desig	n Specs
mass	7.0 kg
power	7.4 Watts
volume	14 x 20 x 30 cm
data rate	20 kbps average
spectral bandpasses	NO 1851 ± 22 cm ⁻¹ 5.4 μm N ₂ O 2165 ± 10 cm ⁻¹ 4.6 μm $^{13}CO_2$ 2270 ± 12 cm ⁻¹ 4.4 μm
FOV	20 deg x 20 deg
aperture	5 cm diameter
focal length	10 cm