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A Spatially Distributed Energy Balance Snowmelt Model

DAVID G. TARBOTON, TANVEER G. CHOWDHURY 

Utah Water Research Laboratory, Utah State University, Logan, Utah 84322-8200, USA

THOMAS H. JACKSON

Turner Collie & Braden, Houston, Texas, USA

Abstract  This paper describes an energy balance snowmelt model developed for the prediction of

rapid snowmelt rates responsible for soil erosion and water input to a distributed water balance

model.  The model uses a lumped representation of the snowpack with two primary state

variables, namely, water equivalence and energy content relative to a reference state of water in the

ice phase at 0oC.  This energy content is used to determine snowpack average temperature or

liquid fraction.  This representation of the snowpack is used in a distributed version of the model

with each of these state variables modeled at each point on a rectangular grid corresponding to a

digital elevation model.  Inputs are air temperature, precipitation, wind speed, humidity and

radiation at hourly time steps.  The model uses physically-based calculations of radiative, sensible,

latent and advective heat exchanges.  An equilibrium parameterization of snow surface temperature

accounts for differences between snow surface temperature and average snowpack temperature

without having to introduce additional state variables.  Melt outflow is a function of the liquid

fraction, using Darcy's law.  This allows the model to account for continued outflow even when

the energy balance is negative.  A detailed description of the model is given together with results of

tests against data collected at the Central Sierra Snow Laboratory, California;  Reynolds Creek

Experimental Watershed, Boise Idaho;  and at the Utah State University drainage and

evapotranspiration research farm, Logan Utah.  The testing includes comparisons against melt

outflow collected in melt lysimeters, surface snow temperatures collected using infrared

temperature sensors and depth and water equivalence measured using snow core samplers.  

INTRODUCTION

Snowmelt is a significant surface water input of importance to many aspects of hydrology

including water supply, erosion and flood control.  Snowmelt is driven primarily by energy
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exchanges at the snow-air interface.  The model described here was developed initially to predict

the rapid melt rates responsible for erosion.  It has also been used to provide the spatially

distributed surface water input in a water balance study.  In developing a new snowmelt model our

goal was to incorporate ideas from the many existing models and parameterize the processes

involved in as simple, yet physically correct a manner as possible.  We hoped to develop a

parsimonious, physically-based model that could be driven by readily available inputs and applied

anywhere with no (or minimal) calibration.  The striving for simplicity led us to parameterize a

snowpack in terms of lumped (depth averaged) state variables so as to avoid having to model the

complex processes that occur within a snowpack.  We have still, however, attempted to capture

important physical differences between bulk (depth averaged) properties and the surface properties

that are important for surface energy exchanges.  We have relied heavily on an understanding of

snowmelt processes gleaned from Gray and Male (1981) and the descriptions of existing models

(Anderson, 1973; 1976; Morris, 1982; Leavesley et al., 1983; Kondo and Yamazaki, 1990).  We

first give a detailed description of the model.  We then describe the data sets we used to test the

model and show results comparing model calculations to observations. 

MODEL DESCRIPTION

The snowpack is characterized by state variables, water equivalence W [m], energy content U,

[kJ/m2] and the age of the snow surface which is only used for albedo calculations.  These are, we

believe, sufficient to characterize the snowpack for the surface water inputs of interest.  The state

variable, energy content U, is defined relative to a reference state of water at 0°C in the ice (solid)

phase.  U greater than zero means the snowpack (if any) is isothermal with some liquid content

and U less then zero can be used to calculate the snowpack average temperature T [°C].  Energy

content is defined as the energy content of the snowpack plus a top layer of soil with depth De [m].

We discuss below the choice of De and the role it plays in the model.

The model is designed to be driven by inputs of air temperature Ta [°C], wind speed V

[m/s], relative humidity RH, precipitation P [m/hr], incoming solar Qsi and longwave Qli radiation

[kJ/m2/hr], and ground heat flux Qg [kJ/m2/hr] (taken as 0 when not known) at each time step.

Time steps of 0.5, 1 and 6 hours have been used in data comparisons here.  When incoming solar

radiation is not available it is estimated as an extra terrestrial radiation (from sun angle and solar

constant) times an atmospheric transmission factor Tr, estimated from the daily temperature range
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using the procedure given by Bristow and Campbell (1984).  When incoming longwave radiation

is not available it is estimated based on air temperature, the Stefan-Boltzman equation and a

parameterization of air emissivity due to Satterlund (1979), adjusted for cloudiness using Tr.

Given the state variables U and W, their evolution in time is determined by solving energy

and mass balance equations.

dU
dt

 = Qsn+ Q
li
+ Qp + Qg - Q

le
 + Q

h
 + Qe - Qm

(1)

dW
dt

 = Pr + Ps - Mr  - E (2)

In the energy balance equation terms are (all in kJ/m2/hr): Qsn , net shortwave radiation; Qli ,

incoming longwave radiation;  Qp, advected heat from precipitation;  Qg, ground heat flux;  Qle,

outgoing longwave radiation;  Qh, sensible heat flux;  Qe, latent heat flux due to

sublimation/condensation;  and Qm, advected heat removed by meltwater.  In the mass balance

equation (all in m/hr of water equivalence) terms are:  Pr, rainfall rate;  Ps, snowfall rate;  Mr,

meltwater outflow from the snowpack;  and Ε, sublimation from the snowpack.  Many of these

fluxes depend functionally on the state and input driving variables.  We elaborate on the

parameterization of these functional dependencies below.  Equations (1) and (2) form a coupled set

of first order, nonlinear ordinary differential equations.  They can be summarized in vector notation

as:

dX
dt

 = F(X, driving variables)
(3)

where X = (U, W) is a state vector describing the snowpack.  With X specified initially, this is an

initial value problem.  A large variety of numerical techniques are available for solution of initial

value problems of this form.  Here we have adopted a Euler predictor-corrector approach (Gerald,

1978).

X' = X
i
 + ∆t F(X

i
, driving variables)

(4)

X
i+1

 = X
i
 + ∆t 

F(X
i
, driving variables) + F(X', driving variables)

2 (5)
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where ∆t is the time step, Xi refers to the state at time ti and Xi+1 refers to the state at time

ti+1=ti+∆t.  This is a second order finite difference approximation, with global error proportional

to ∆t2 (Gerald, 1978, p257).  Numerical instabilities sometimes occur under melting conditions

when the snowpack is shallow due to the nonlinear nature of the melt outflow parameterization.

To deal with this we compare Xi+1 to X' and if they differ by more than a specified tolerance

(0.025 m for W and 2000 kJ/m2 for U) iterate up to four times setting X' to Xi+1 then

recalculating Xi+1 at each iteration.  If convergence is still not achieved we take the solution that

would keep the liquid fraction of the snow constant.  Following we describe how each of the

processes involved in equations (1) and (2) are parameterized.

Depth averaged temperature - T

The snow and interacting soil layer average temperatures are obtained from the energy content and

water equivalence, relative to 0˚C ice phase.  

If U < 0 T = U/(ρw W Cs + ρg De Cg) All solid phase (6)

If 0 < U < ρw W hf T = 0˚C. Solid and liquid mixture (7)

If U > ρw W hf T = 
U - ρw W h

f
ρg De Cg + ρw W Cw 

All liquid (8)

In the above the heat required to melt all the snow water equivalence is ρw W hf [kJ] where hf is

the heat of fusion [333.5 kJ kg-1] and U in relation to this determines the solid-liquid phase

mixtures.  The heat capacity of the snow is ρw W Cs [kJ/˚C] where ρw is the density of water

[1000 kg m-3] and Cs the specific heat of ice [2.09 kJ kg-1 ˚C-1].  The heat capacity of the soil

layer is ρg De Cg [kJ/˚C] where ρg is the soil density and Cg the specific heat of soil.  These

together determine the T when U < 0.  The heat capacity of liquid water, ρw W Cw, where Cw is the

specific heat of water [4.18 kJ kg-1 ˚C-1], is included in (8) for numerical consistency during time

steps when the snowpack completely melts.

The parameter De is intended to quantify the depth of soil that interacts thermally with the

snowpack.  Heat flow in snow and soil is governed by Laplace’s equation.  The depth of

penetration of changes in surface temperature can be evaluated from the expression (Rosenberg,

1974):
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Rz
Rs

 = exp (- z ( π
αP )

1
2)

(9)

where Rs is the range of temperature oscillation at the surface, Rz the range of temperature

oscillation at depth z, P the period of oscillation, and α the thermal conductivity.  For soil α is

typically in the range 0.004 to 0.006 cm2/s.  Fig. 1 shows Rz/Rs  versus z for α = 0.005 cm2/s for

various periods.  This figure shows that for oscillations less than one week the effect at 0.4 m is

damped to less than 30% and even for monthly oscillations is still damped 50% at 0.4 m depth.

This result suggests using De = 0.4 m in our model since the time scale of interest is the seasonal

accumulation then melting of snow.  The state variable U represents energy content above this

level.  The ground heat flux represents heat transport at this depth and is therefore a long-term

average.  Oscillating, high frequency, ground heat fluxes above this depth are absorbed into U, the

energy stored in the snow and soil above depth De.  This procedure provides a simple

approximation of the effects of frozen ground, or snow falling on warm ground.

Radiation

Net shortwave radiation is calculated as

Qsn = Qsi (1-A) (10)

where albedo A, is calculated based on the age of the snow surface using a parameterization due to

Dickinson et al. (1993).  The age of the snow surface is retained as a state variable, and is updated

with each time step, dependent on snow surface temperature and snowfall.  When the snowpack is

shallow (depth z < h = 0.1 m) the albedo is taken as r Abg + (1-r) A where 

r = (1-z/h)e-z/2h.  This interpolates between the snow albedo and bare ground albedo with the

exponential term approximating the exponential extinction of radiation penetration of snow.

Outgoing longwave radiation is
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Q
le

 = εs σ Ts
4

(11)

where εs is emissivity, σ the Stefan Boltzmann constant [2.07 x 10-7 kJ m-2 hr-1 K-4] and Ts is

absolute temperature [K].

Snow fall accumulation and heat with precipitation

Measured precipitation rate P, is partitioned into rain Pr, and snow Ps, (both in terms of water

equivalence depth) using the following rule based on air temperature Ta, (U.S. Army Corps of

Engineers, 1956)

Pr =  P Ta ≥  Tr = 3 oC

Pr =  P(Ta -Tb)/(Tr - Tb) Tb < Ta < Tr (12)

Pr =  0 Ta ≤  Tb = - 1 oC

Ps = (P - Pr) F

where Tr is a threshold air temperature above which all precipitation is rain and Tb a threshold air

temperature below which all precipitation is snow.  The accumulation of snow is sometimes

subject to considerable wind redistribution with drifts forming on lee slopes.  We account for this

in the model through a snow drift factor, F, dependent on location.  Ideally F needs to be related to

topography.  In the application to Reynolds Creek, F was estimated by calibrating the snow water

equivalences obtained from the snow model (with F = 1) at each cell, Wm, against the observed

values, Wo.  The discrepancy between observations and predictions over an interval between

measurements is attributed to drifting and suggests F = 1 + (Wo - Wm)/Ps  where Ps is the gage

snowfall (calculated from P with F = 1) during the interval.  Values of F less than one correspond

to locations of depletion or wind scour.  This approach models drifting which actually occurs after

snowfall as concurrent with snowfall.  The calibration of F assumes that the snowmelt model

correctly accounts for all other processes (melt, sublimation, condensation, etc.) affecting the

accumulation and ablation of snow water equivalence.  Further details are given in Jackson (1994).

The temperature of rain is taken as the greater of the air temperature and freezing point and

the temperature of snow is the lesser of air temperature and freezing point.  The advected heat is

the energy required to convert this precipitation to the reference state (0˚C ice phase).
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Qp = Ps Cs ρw min(Ta, 0 ˚C) + Pr h
f
 ρw + Cw ρw max(Ta, 0 ˚C) (13)

Turbulent fluxes, Qh, Qe, E

Sensible and latent heat fluxes between the snow surface and air above are modeled using the

concept of flux proportional to temperature and vapor pressure gradients with constants of

proportionality, the so called turbulent transfer coefficients or diffusivity a function of windspeed

and surface roughness.  Considering a unit volume of air, the heat content is ρa Cp Ta and the

vapor content ρa q, where ρa is air density (determined from atmospheric pressure and

temperature), Cp air specific heat capacity [1.005 kJ kg-1 oC-1], and q specific humidity  [kg

water vapor per kg air].  Heat transport towards the surface, Qh [kJ/m2/hr] is given by:

Q
h
  =  K

h
ρa Cp (Ta - Ts) (14)

where Kh is heat conductance [m/hr] and Ts is the snow surface temperature.  Vapor transport

away from the surface (sublimation), Me [kg/hr] is:

Me  =  Ke ρa (qs - q) (15)

where qs is the surface specific humidity and Ke the vapor conductance [m/hr].

By comparison with the usual expressions for turbulent transfer in a logarithmic boundary

layer profile (Male and Gray, 1981; Anderson, 1976; Brutsaert, 1982) for neutral condition, one

obtains the following expression:

Kh  =  Ke  =  k
2 

V

1n (z/zo)
2
 = K

(16)

where V is wind speed [m/hr] at height z [m]; zo is roughness height at which the logarithmic

boundary layer profile predicts zero velocity [m]; and k is von Karman’s constant [0.4].

Recognizing that the latent heat flux towards the snow is:
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Qe  =  -hv Me (17)

and using the relationship between specific humidity and vapor pressure and the ideal gas law, one

obtains:

Qe  =  Ke 
hv 0.622

R
d
 Ta

abs
 (ea - es(Ts))

(18)

where es is the vapor pressure at the snow surface snow, assumed saturated at Ts, and calculated

using a polynomial approximation (Lowe, 1977); ea is air vapor pressure, Rd is the dry gas

constant [287 J kg-1 K-1] and hv the latent heat of sublimation [2834 kJ/kg].  The water

equivalence depth of sublimation is:

E  =  - 
Qe

ρw hv (19)

When there is a temperature gradient near the surface, buoyancy effects may enhance or dampen

the turbulent transfers.  This effect can be quantified in terms of the Richardson number or Monin-

Obukhov length.  Adjustments to the neutral transfer coefficients to account for these effects exist

and were tried based on the temperature difference between the air and snow surface.  However we

found that it was quite common that large temperature differences and low wind speeds resulted in

unreasonable correction factors, beyond the range for which they had been developed, so for the

purposes of the results presented here we have used neutral transfer coefficients. 

Snow Surface Temperature, Ts

Since snow is a relatively good insulator, Ts is in general different from T.  This difference is

accounted for using an equilibrium approach that balances energy fluxes at the snow surface.  Heat

conduction into the snow is calculated using the temperature gradient and thermal diffusivity of

snow, approximated by:
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Q = κ ρs Cs (Ts - T)/Ze = Ks ρs Cs (Ts - T) (20)

where κ is snow thermal diffusivity [m2 hr-1] and Ze [m] an effective depth over which this

thermal gradient acts.  The ratio κ/Ze is denoted by Ks and termed snow surface conductance,

analogous to the heat and vapor conductances.  A value of Ks is obtained by assuming a depth Ze

equal to the depth of penetration of a diurnal temperature fluctuation calculated from equation (9)

(Rosenberg, 1974).  Ze should be chosen so that Rz/Rs is small.  Here Ks is used as a tuning

parameter, with this calculation used to define a reasonable range.  Then assuming equilibrium at

the surface, the surface energy balance gives.

Q = Qsn + Qli+ Qh(Ts)+ Qe(Ts) + Qp - Qle(Ts) (21)

where the dependence of Qh, Qe, and Qle on Ts is through equations (14), (18) and (11).

Analogous to the derivation of the Penman equation for evaporation the functions of Ts in

this energy balance equation are linearized about a reference temperature T*, and the equation is

solved for Ts:

 Ts= 
Qsn+Q

li
+Qp+KTaρaCp-0.622Khv ρa(es(T*)-ea-T*∆)/Pa+3εsσT*4+ρsCsT Ks

ρsCs Ks+ K ρa Cp + 0.622 ∆ K hv ρa/Pa + 4 εs σ T*
3

(22)

where ∆ = des/dT and all temperatures are absolute [K].  This equation is used in an iterative

procedure with an initial estimate T* = Ta, in each iteration replacing T* by the latest Ts.  The

procedure converges to a final Ts which if less than freezing is used to calculate surface energy

fluxes.  If the final Ts is greater than freezing it means that the energy input to the snow surface

cannot be balanced by thermal conduction into the snow.  Surface melt will occur and the

infiltration of meltwater will account for the energy difference and Ts is then set to 0˚C.

Meltwater Outflux, Mr and Qm

The energy content state variable U determines the liquid content of the snowpack.  This result,

together with Darcy’s law for flow through porous media, is used to determine the outflow rate. 
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Mr = K
sat

 S*
3

(23)

where Ksat is the snow saturated hydraulic conductivity and S* is the relative saturation in excess

of water retained by capillary forces.  This expression is based on Male and Gray (1981, p. 400,

eqn 9.45).  S* is given by:

S* = 
liquid water volume - capillary retention

pore volume - capillary retention
 = ( L

f
1 - L

f

  -  Lc)/( ρw
ρs

 - 
ρw
ρ

i
 - Lc) (24)

where Lf=U/(ρwhfW) denotes the mass fraction of total snowpack (liquid and ice) that is liquid,

Lc [0.05] the capillary retention as a fraction of the solid matrix water equivalence, and ρi the

density of ice [917 kg m-3].  This melt outflow is assumed to be at 0˚C so the heat advected with

it, relative to the solid reference state is:

Qm = ρw h
f
 Mr (25)

Forest Cover

The presence of vegetation, especially forests, significantly influences energy exchanges at the

snow surface.  A forest canopy reduces windspeed, thus reducing sensible and latent heat

transfers.  It also affects the radiation exchanges.  The penetration of radiation through vegetation

has been widely studied (Sellers et al., 1986; Verstraete, 1987a; 1987b; Verstraete et al., 1990;

Dickinson et al., 1993), and models developed that discretize the canopy into layers treating the

energy balance of each layer separately (Bonan, 1991).  Here we avoid these complexities and

adopt a pragmatic parameterization modeled after the representation of snowmelt used by the

WEPP winter routines (Young et al., 1989; Hendrick et al., 1971).  Forest cover is

parameterized by the canopy density parameter Fc, representing the canopy closure fraction

(between 0 and 1).  Windspeed, and therefore the corresponding heat and vapor fluxes, are reduced

by a factor (1-0.8Fc).  Radiative fluxes Qsn, Qli and Qle in equation (1) are reduced by a factor (1-

Fc).  Adjustments are also made to the radiation terms in the calculation of snow surface

temperature (equation 22).  
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DATA

In this paper data collected at the Central Sierra Snow Laboratory (CSSL);  Utah State University

drainage and evapotranspiration research farm and Reynolds Creek Experimental Watershed are

used to calibrate and test the model.

Central Sierra Snow Laboratory

The CSSL located 1 km east of Soda Springs, California, measures and archives comprehensive

data relevant to snow.  It is at latitude 39˚19'N and at elevation 2100m.  We obtained the

meteorological and snow observation data for the winter of 1985 - 1986.  The meteorological data

is reported each hour and consists of temperature, radiation, humidity, precipitation, and wind

measurements at two levels in a 40 x 50 m clearing  and in a mixed conifer fir forest with 95%

forest cover.  Only data from the clearing are used here.  Snow depths and water equivalence are

measured daily (except on weekends) and eight lysimeters record melt outflow each hour.  We

used the temperature, precipitation, radiation (incoming solar and net), humidity and wind

measurements to drive our model and compared model output to measurements of snow water

equivalence, melt outflow and snow surface temperature (infrared sensor).

USU drainage and evapotranspiration research farm

An experiment to measure snow energy balance and sublimation from snow the winter of 1992 -

1993 is described  more fully by Tarboton (1994).  Data from this work included measurements

of snow water equivalence, snow surface temperature and the meteorological variables necessary

to drive our model.  The USU drainage and irrigation experimental farm is located in Cache Valley

near Logan, Utah, USA (41.6˚ N, 111.6˚ W, 1350m elevation).  The weather station and

instrumentation are in a small fenced enclosure at the center of a large open field.  There are no

obstructions to wind in any direction for at least 500m.  Cache valley is a flat bottomed enclosed

valley surrounded by mountains that reach elevations of 3000m.  During the period of this

experiment the ground was snow covered from November 20, 1992 to March 22, 1993.  Air

temperatures ranged from -23 ˚C to 16 ˚C and there was 190 mm of precipitation (mostly snow,
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but some rain).  The snow accumulated to a maximum depth of 0.5 m with maximum water

equivalent of 0.14 m.

Reynolds Creek Experimental Watershed

Upper Sheep Creek is a 26 ha catchment within the semi-arid Reynolds Creek experimental

watershed.  Snowmelt is the main hydrologic input and its areal distribution is heavily influenced

by wind induced drifting.  Detailed descriptions of the various features of the area are given in

Flerchinger et al. (1992) and references therein.  Snow water equivalence measurements are made

biweekly (as weather permits) on a 30.48 m (100 ft) grid over the watershed.  A digital elevation

model (DEM) was constructed from a 1:1200 map with 0.61 m (2 ft) contour interval developed

from low-level aerial photography.  The DEM grid was constructed to coincide with the grid used

for field measurements and provided slope and aspect inputs to the model radiation calculations.

Fig. 2 shows the topography and grid over Upper Sheep Creek together with locations of the

instrumentation.  Data from the winters of 1985 - 1986 and 1992 - 1993 were used in this study to

test the model running in a distributed mode at each grid cell.  Snow melt outputs were used as

hydrologic inputs for a water balance study (Jackson, 1994; Tarboton et al., 1995).

RESULTS

The model was calibrated against the CSSL data for the winter 1985 - 1986.  The energy balance

and overall accumulation and ablation of the snowpack is governed primarily by surface energy

exchange processes.  The adjustable parameters involved in these are zo and Ks, which were

adjusted to obtain a match between modeled and observed water equivalence (shown in Fig. 3),

and modeled and observed snow surface temperatures (Fig. 4), with the model driven by the

measured net radiation input. We then used measured incoming solar radiation to drive the model

and found that the melt is delayed (Fig. 3).  Discrepancies were analyzed and attributed to

differences in daytime net radiation, primarily affected by albedo.  The albedo parameterization

(Dickinson et al., 1993) has parameters Avo = 0.95 and Anir = 0.65 which represent the albedo of

new snow in the visible and infrared ranges.  Avo was reduced to 0.85 to match the daytime net

radiation when compared to measured CSSL 1985 - 1986 data (Fig. 5).  The resulting snow water

equivalence comparison (Fig. 3) indicates that some early season melt is not modeled resulting in
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slight over accumulation, but the main melt is well modeled.  In all results except the line indicated

on Fig. 3, Avo = 0.85 was used.  Melt outflow rate was compared to the average from the eight

melt lysimeters, with Ksat adjusted to get a good fit.  Results are shown in Fig. 6.  

Table 1 lists the adjustable parameters that were calibrated against the CSSL data.  Table 2

lists the remaining model parameters which were held fixed at their nominal values.  The model

was tested against the data from Reynolds Creek and USU drainage and evapotranspiration

research farm without further adjustment of parameters.  The Reynolds Creek study applied the

model to each 30.48 x 30.48 m grid cell over Upper Sheep Creek (Fig. 2).  The drift factor to

adjust snow input was estimated from the observed grided snow data for 1985-1986 (Jackson,

1994).  Fig. 7 shows the drift factors and Fig. 8 compares measured and modeled spatial

distribution of snow about halfway through the snowmelt phase in 1992-1993.  Due to space

limitations not all of the comparisons are shown. These results indicate that the model correctly

represents the spatial accumulation and melt patterns.  Fig. 9 compares measured and modeled

snow water equivalence at the USU drainage and evapotranspiration research farm.

CONCLUSIONS

The tests described have shown that this simple, depth averaged, mass and energy balance

snowmelt model is able to capture the essential physics of the snow accumulation and melt

processes and provide distributed hydrologic inputs.  Using parameter values calibrated against

CSSL data the model performed well when tested at other locations.  This comparison suggests

that the model is transportable and parameter values listed may be acceptable for wider application.

However, further testing against additional data is necessary.  In particular we need to test the

parameterization of forest cover and further evaluate the parameterization of albedo and the effect

of atmospheric stability on turbulent fluxes.

The model is available electronically on the internet from David Tarboton

(dtarb@cc.usu.edu).
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Table 1.  Adjustable parameter recommended values.

Parameter Notation Calibrated Value

Surface aerodynamic roughness zo 0.005  m

Surface conductance Ks 0.02 m/hr

Saturated hydraulic conductivity Ksat 20 m/hr

New snow visible albedo Avo 0.85

Table 2.  Snowmelt model fixed parameters.

Parameter Notation Reference Value

Ground heat capacity Cg 2.09 kJ kg-1 ˚C-1

Density of soil layer ρg 1700 kg m-3

Snow density ρs 450 kg m-3

Capillary retention fraction Lc 0.05

Emissivity of snow εs 0.99

Temperature above which precipitation is rain Tr 3˚C

Temperature below which precipitation is snow Ts -1˚C

Wind/air temperature measurement height z 2 m

Soil effective depth De 0.4 m

Bare ground albedo Abg 0.25

Albedo extinction depth h 0.1 m
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Figure Captions

Figure 1.  Depth of penetration of temperature fluctuations into soil with thermal conductivity α =
0.005 cm2/s.

Figure 2.  Upper Sheep Creek topography and instrumentation.

Figure 3. Comparison between observed and modeled snow water equivalence, CSSL.

Figure 4.  Comparison between observed and modeled snow surface temperatures, CSSL.  Net
indicates model driven by measured net radiation.  Solar indicates model driven by measured solar
radiation.

Figure 5.  Comparison between observed and modeled net radiation, CSSL.  Measured solar
radiation is input.

Figure 6.  Comparison between observed and modeled melt outflow rate, CSSL.  Measured solar
radiation is input.

Figure 7.  Drift factor from Jackson (1994).  Contours at 0.5, 0.9, 1.5, 2.5, 4 and 6.

Figure 8.  Observed and modeled spatial distribution of snow at Upper Sheep Creek, April 8,
1993.

Figure 9.  Observed and modeled snow water equivalence, USU research farm.
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a) Observed, April 8, 1993

b) Modeled, April 8, 1993

Figure 8.
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