

Vicarious Calibrations of GOES Imager Visible Channels

Fangfang Yu(ERT, Inc), Xiangqian Wu(NOAA/NESDIS), I-Lok Chang, Charlie Dean, Michael Weinreb (Riverside Tech.), Zhenping Li(ASRC) and Edward Baker (NOAA/NESDIS)

Calcon 2014 @ Logan, Utah

- **A variety of vicarious calibration methods are available for the GOES Imager visible channels**
	- **No onboard calibration device for GOES Imager visible channels**
	- **Different stable reference for each method**
	- **Reference characterization: Relative vs. absolute calibrations**
	- **Independently evaluate the sensor performance & cross verifications**
- **Request for high quality of calibrated radiance/reflectance**
	- **Reliable absolute calibration accuracy for the climate studies**
	- **High relative calibration accuracy for early change(trend) detection**
- **Applications:**
	- **GSICS re-analysis product**
	- **GOES-R ABI in-orbit radiometric calibration accuracy validation**

- **Evaluate the individual vicarious calibration method implemented in-house for GOES Imager visible channel at NOAA/NESDIS**
- **Integrate the different vicarious calibration methods to improve the calibration accuracy**
	- **Improve the relative calibration accuracy**
	- **Evaluate the difference between different absolute calibration results**

NORR GOES Imager Visible Vicarious Calibration Methods

- **Reference targets:**
	- **Stars – relative cal.**
	- **Ray-matching – relative cal.**
	- **Sonoran desert – absolute cal.**
	- **Deep Convective Cloud (DCC) – absolute cal.**

In-house implemented algorithms

- **Moon – expected to be implemented soon once the GSICS Implemented ROLO (GIRO) model is publically available**
- **Absolute calibration accuracy was achieved by calibrating the GOES Imager visible data traceable to Aqua MODIS Band 1 C6 standard**
	- **Recommended by the GSICS research working group vis/nir sub-group**
- **GOES-15 (GOES-West, 135W) and GOES-12 (GOES-East, 75W) as examples**

Spectral Response Functions & Desert/Clouds/Vegetation/Water Spectra

Stellar Calibration

- **Extremely stable reference**
	- **Used for image navigation purpose**
	- **Many stars available**
	- **Bremer et al. (1998) & Chang et al. (2012)**
- **Challenges**
	- **Relatively low Signal-to-Noise Ratio (SNR)**
	- **Each star has observation gap in a year**
	- **Sensitive to instrument diurnal/seasonal optics' temperature variation**
	- **Subject to the ground system on the INR signal processing**
- **Relative calibration**
	- **Chang et al. 2012 & Dean et al. 2012**
	- **Select bright stars**
	- **Exclude the midnight effect (filtering out the data falling in satellite midnight time ± 5hours)**
	- **Normalize the time-series SNR to Day1 data**
	- **Combine the normalize the SNR values**
	- **Average the combined SNR at monthly interval**

Courtesy of I. Chang

[32.05N-32.25N, 114.7W-114.4W]

Sonoran Desert

Agua MODIS C6 Sonoran Beflectance

- **Challenges:**
	- **Impact of seasonal variation of solar zenith angle**

stable at GOES viewing geometries.

– **Impacts of daily dynamic atmospheric components and periodic climatic variations e.g. ENSO events**

Target is long-term radiometrically, spatially and spectrally

- **Different SRFs**
- **No strict GEO-LEO ray-matching pixels for absolute cal.**
- **Absolute Calibration:**
	- **Quadratic fitting for sensor degradation + two sine functions for the impacts of seasonal changes of solar zenith angle and atmospheric components. impacts of seasonal changes of solar zenith angle and atmospher

	components.**
 $R_{pre,t} = a + bt + ct^2 + m_1 e^{dt} \sin(\alpha t + \beta_1) + m_2 e^{dt} \sin(2\alpha t + \beta_2)$

 $s_1 e^{dt} \sin(\alpha t + \beta_1) + m_2 e^{dt} \sin(2\alpha t + \beta_2)$

- **Hyperion data for the spectral correction**
- **One year of satellite measurements to develop the BRDF model to transfer the Aqua MODIS data to GOES viewing geometries**

Reference reflectance of Sonoran Desert

Desert Reference Reflectance, traceable to Aqua MODIS

GOES-East GOES-West

GOME-2 Simulated G14 and MODIS Refl.

- **Direct satellite-to-satellite inter-comparison to minimize the impacts of BRDF and different atmospheric components**
	- **Doelling, D. et al. (2004)**
- **Challenges**
	- **Lack of coincident hyper-spectral radiometric measurements in result in large uncertainty in spectral correction**
	- **Few collocations with same relative azimuth angles - BRDF**
- **Relative Calibration**
	- **Collocations at sub-satellite regions within ±10^o lat/lon**
	- **Viewing angle difference < 1%**
	- **High reflectance cloud collocations: MODIS reflectance > 50%**
	- **Reflectance ratio for sensor trending purpose**

Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted

Deep Convective Cloud (DCC)

- **Stable, spectrally flat, high reflectance and common to all the satellites**
	- **Doelling, D. et al. (2004)**
	- **Reflectance is represented with monthly identified DCC pixels**
- **Challenges**
	- **Slight variation in reflectance**
	- **Occasional insufficient DCC pixels may lead to relatively large reflectance deviation for GOES-West Satellites**
-

Courtesy of D. Doelling

• **Absolute Calibration**

- **Use mode or median reflectance of the monthly DCC pixels to represent the DCC reflectance**
- **At least 2,000 DCC pixels are needed to generate a statistically reliable monthly DCC reflectance value**
- **Use Ray-matching collocated DCC pixels to determine the reference reflectance**

Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted

Reference Reflectance of DCC

DCC Reference Reflectance, traceable to Aqua MODIS

1: SCIAMACHY data derived provided by D. Doelling, 2: GOME-2 data derived

DCC Reference Reflectance Derived from Ray-matching Collocated MODIS DCC Pixels

Histogram of MODIS DCC Reflectance for GOES-15 (Dec 2011 – March 2014)

Combination of the Different Vicarious Calibration Results

Integrated Vicarious Calibration

Similar degradation patterns over different reference targets may indicate that the spectral response function degradation, if any, is very small and negligible

• **Where is the truth of sensor degradation?**

–**The truth should exist where most observations converge**

• **Recursive filtering to remove the observations away from the "truth" - the fitting curve**

NORR Absolute Calibration Correction Comparisons

$$
Correction_Coefficient\ t_{t,i} = \frac{\text{Re}\ f_{-}R_{t=1,i}}{R_{t,i}} * \frac{\hat{S}_{t=1, \text{int}}}{\hat{S}_{t=1,i}}
$$

 \mathbf{where} , $R_{t,i} = \hat{R}_{t=1,i} \times Normal_Observation_{t, int}$

 $\hat{S}_{t,i} = a_i + b_i t + c_i t$

Sonoran Desert: $\text{Re } f_{R_{t,i=desert}} = \overline{R}_{\text{modis},i=desert} \times \text{SBAF}_{desert} + m_1 \sin(\alpha t + \beta_1) + m_2 \sin(2\alpha t + \beta_2)$ t ²
_{desert} × S.
× SBAF

DCC : $\text{Re} f _\textit{R}_{t,i=dec} = \overline{R}_{\text{modis},i=dec} \times \text{SBAF}_{dec}$

- **Reference reflectance, especially at Day1 ,is critical to determine the absolute calibration correction coefficients**
	- **Need long-term desert observation to ensure the accurate desert Day1 reflectance value**
- **•** Possible reflectance difference between overall DCC pixels (±20°from sub**satellite point) and subset DCC pixels (±10^o from sub-satellite)**
	- **Slight Land/ocean DCC difference?**
	- **Slight difference at different viewing angle, residual of DCC ADM correction?**
- **Impact of GOES scan mirror reflectivity between nadir (DCC) and off-nadir (Sonoran desert) observations.**

Time-Series of G12 Error Budget

Conclusions

- **The integrated method can improve the relative calibration accuracy for the GOES Imager visible channels (GOES-East)**
	- **Maximum overall uncertainty is about 2% in the first one year with long-term accuracy <0.5%**
	- **After about 2 years, the relative calibration accuracy is generally stable at <1%**
	- **Same error budget assessment is needed for the GOES-West satellites**
- **For the GOES-West satellites, the stellar calibration is expected to play a critical role to improve the relative calibration accuracy**
	- **Especially in the early stage of the satellite mission life**
- **For the GOES-East satellites, the ray-matching and DCC results play almost equally important roles in the integrated method**
	- **The stellar observations are expected to further improve the relative calibration accuracy**
- **The difference between desert- and DCC- based absolute calibration accuracy is less than 1%**
	- **Bias may be reduced with the correction of scan angle dependent reflectivity**
- **Tools and knowledge/experience will continue evolving and will be applied to validate the radiometric calibration accuracy of GOES-R ABI solar reflectance channels.**