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Motivations

• A variety of vicarious calibration methods are available for the 
GOES Imager visible channels
– No onboard calibration device for GOES Imager visible channels

– Different stable reference for each method

– Reference characterization: Relative vs. absolute calibrations

– Independently evaluate the sensor performance & cross verifications 

• Request for high quality of calibrated radiance/reflectance
– Reliable absolute calibration accuracy for the climate studies

– High relative calibration accuracy for early change(trend) detection

• Applications:
– GSICS re-analysis product

– GOES-R ABI in-orbit radiometric calibration accuracy validation
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Objectives

• Evaluate the individual vicarious calibration method 
implemented in-house for GOES Imager visible channel at 
NOAA/NESDIS

• Integrate the different vicarious calibration methods to 
improve the calibration accuracy
– Improve the relative calibration accuracy

– Evaluate the difference between different absolute calibration 
results

3



GOES Imager Visible Vicarious Calibration Methods

• Reference targets:
– Stars – relative cal.

– Ray-matching – relative cal.

– Sonoran desert – absolute cal.

– Deep Convective Cloud (DCC) – absolute cal.

– Moon – expected to be implemented soon once the GSICS Implemented ROLO 
(GIRO) model is publically available

• Absolute calibration accuracy was achieved by calibrating the GOES 
Imager visible data traceable to Aqua MODIS Band 1 C6 standard 
– Recommended by the GSICS research working group vis/nir sub-group

• GOES-15 (GOES-West, 135W) and GOES-12 (GOES-East, 75W) as 
examples 

In-house implemented 
algorithms
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Spectral Response Functions & 
Desert/Clouds/Vegetation/Water Spectra

GOES-EGOES-W
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Stellar Calibration

• Extremely stable reference
– Used for image navigation purpose
– Many stars available 
– Bremer et al. (1998) & Chang et al. (2012)

• Challenges
– Relatively low Signal-to-Noise Ratio (SNR) 
– Each star has observation gap in a year
– Sensitive to instrument diurnal/seasonal optics’ 

temperature  variation
– Subject to the ground system on the INR signal 

processing

• Relative calibration 
– Chang et al. 2012 & Dean et al. 2012
– Select bright stars
– Exclude the midnight effect (filtering out the data 

falling in satellite midnight time ± 5hours)
– Normalize the time-series SNR to Day1 data
– Combine the normalize the SNR values
– Average the combined SNR at monthly interval

Courtesy of I. Chang
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Sonoran Desert

• Target is long-term radiometrically, spatially and spectrally 
stable at GOES viewing geometries.

• Challenges:
– Impact of seasonal variation of solar zenith angle
– Impacts of daily dynamic atmospheric components and periodic climatic 

variations e.g. ENSO events
– Different SRFs
– No strict GEO-LEO ray-matching pixels for absolute cal.

• Absolute Calibration:
– Quadratic fitting for sensor degradation + two sine functions for the 

impacts of seasonal changes of solar zenith angle and atmospheric 
components.

– Hyperion data for the spectral correction
– One year of satellite measurements to develop the BRDF model to transfer 

the Aqua MODIS data to GOES viewing geometries

Yu, F. et al. (2014) JGR doi:10.1002/2013JD020702

[32.05N-32.25N, 114.7W-114.4W]
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Reference reflectance of Sonoran Desert

GOES-12 (East) GOES-15 (West)

Desert MODIS long-term reflectance (%) 32.59 34.29

SBAF (GOES/MODIS, Hyperion data derived) 0.949 0.929

Desert Reference Reflectance, traceable to Aqua MODIS

Daily median MODIS reflectance

Removal of contaminated pixels

Average the daily clear-sky pixel 
reflectance at monthly interval
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Trend fitting

Yu, F. et al. (2014) JGR doi:10.1002/2013JD020702
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Ray-matching    

• Direct satellite-to-satellite inter-comparison to minimize the 
impacts of BRDF and different atmospheric components
– Doelling, D. et al. (2004)

• Challenges
– Lack of coincident hyper-spectral radiometric measurements  in result 

in large uncertainty in spectral correction
– Few collocations with same relative azimuth angles - BRDF

• Relative Calibration
– Collocations at sub-satellite regions within ±10o lat/lon
– Viewing angle difference < 1%
– High reflectance cloud collocations: MODIS reflectance > 50%
– Reflectance ratio for sensor trending purpose
– Statistically stable ratio with monthly high reflectance cloud pixel #> 

5,000

GOES-East GOES-West

Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted
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Deep Convective Cloud (DCC)

• Stable, spectrally flat, high reflectance and common to all the 
satellites
– Doelling, D. et al. (2004)
– Reflectance is represented with monthly identified DCC pixels

• Challenges
– Slight variation in reflectance 
– Occasional insufficient DCC pixels may lead to relatively large reflectance 

deviation for GOES-West Satellites

• Absolute Calibration
– Use mode or median reflectance of the monthly DCC pixels to represent the 

DCC reflectance
– At least 2,000 DCC pixels are needed to generate a  statistically reliable monthly 

DCC reflectance value
– Use Ray-matching collocated DCC pixels to determine the reference reflectance

Courtesy of D. Doelling

Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted
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Reference Reflectance of DCC

GOES-12 (East) GOES-15 (West)

DCC MODIS long-term reflectance (%) 88.87 90.38

SBAF (GOES/MODIS) 0.9911 0.9942

DCC Reference Reflectance, traceable to Aqua MODIS

Time-series of monthly MODIS DCC 
reflectance for GOES-12

DCC Reference Reflectance Derived from Ray-matching 
Collocated MODIS DCC Pixels

1: SCIAMACHY data derived provided by D. Doelling, 2: GOME-2 data derived

Histogram of MODIS DCC Reflectance for 
GOES-15 (Dec 2011 – March 2014)

Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted
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Combination of the Different Vicarious 
Calibration Results

Normalized to the estimated 
Day1 reflectance

Trending fitting
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Integrated Vicarious Calibration

• Where is the truth of sensor degradation?
–The truth should exist where most observations 
converge

• Recursive filtering to remove the observations away 
from the “truth” - the fitting curve

Similar degradation patterns over different reference targets may indicate that the 
spectral response function degradation, if any, is very small and negligible

ENSO effects?
*Relative calibration accuracy improved to 0.41% 
when only ray-matching and DCC methods are 
combined
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Absolute Calibration Correction Comparisons
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Yu, F. and X. Wu (2014) Remote Sensing of Environment, Submitted
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Possible Causes to the Bias

• Reference reflectance, especially at Day1 ,is critical to determine the 
absolute calibration correction coefficients
– Need long-term desert observation to ensure the accurate desert Day1 reflectance 

value

• Possible reflectance difference between overall DCC pixels (±20ofrom sub-
satellite point) and subset DCC pixels (±10ofrom sub-satellite)
– Slight Land/ocean DCC difference?

– Slight difference at different viewing angle, residual of DCC ADM correction?

• Impact of GOES scan mirror reflectivity between nadir (DCC) and off-nadir 
(Sonoran desert) observations.

X

X

Yu et al. (2013), GSICS QL

GOES-East

GOES-West

nadir
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Time-Series of G12 Error Budget
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Conclusions

• The integrated method can improve the relative calibration accuracy for the GOES 
Imager visible channels (GOES-East)
– Maximum overall uncertainty is about 2%  in the first one year with long-term accuracy <0.5%
– After about 2 years, the relative calibration accuracy is generally stable at <1%
– Same error budget assessment is needed for the GOES-West satellites 

• For the GOES-West satellites, the stellar calibration is expected to play a critical role 
to improve the relative calibration accuracy
– Especially in the early stage of the satellite mission life

• For the GOES-East satellites, the ray-matching and DCC results play almost equally 
important roles in the integrated method
– The stellar observations are expected to further improve the relative calibration accuracy 

• The difference between desert- and DCC- based absolute calibration accuracy is less 
than 1%
– Bias may be reduced with the correction of scan angle dependent reflectivity

• Tools and knowledge/experience will continue evolving and will be applied to 
validate the radiometric calibration accuracy of GOES-R ABI solar reflectance 
channels.
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