
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Economic Research Institute Study Papers Economics and Finance 

1995 

The Queuing Theoretic Approach to Groundwater Management The Queuing Theoretic Approach to Groundwater Management 

Amitrajeet A. Batabyal 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/eri 

Recommended Citation Recommended Citation 
Batabyal, Amitrajeet A., "The Queuing Theoretic Approach to Groundwater Management" (1995). 
Economic Research Institute Study Papers. Paper 63. 
https://digitalcommons.usu.edu/eri/63 

This Article is brought to you for free and open access by 
the Economics and Finance at DigitalCommons@USU. It 
has been accepted for inclusion in Economic Research 
Institute Study Papers by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/eri
https://digitalcommons.usu.edu/econ
https://digitalcommons.usu.edu/eri?utm_source=digitalcommons.usu.edu%2Feri%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/eri/63?utm_source=digitalcommons.usu.edu%2Feri%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


BATABYAL@b202.usu.edu 

Economic Research Institute Study Paper 

ERI#95-14 

THE QUEUING THEORETIC APPROACH TO GROUNDWATER 

MANAGEMENT 

by 

AMITRAJEET A. BATABYAL 

Department of Economics 
Utah State University 

Logan, UT 84322-3530 

September 1995 



THE QUEUING THEORETIC APPROACH TO GROUNDWATER 

MANAGEMENT 

Amitrajeet A. Batabyal, Assistant Professor 

Department of Economics 
Utah State University 

Logan, UT 84322-3530 

The analyses and views reported in this paper are those of the author. They are not necessarily 
endorsed by the Department of Economics or by Utah State University. 

Utah State University is committed to the policy that all persons shall have equal access to its 
programs and employment without regard to race, color, creed, religion, national origin, sex, age, 
marital status, disability, public assistance status, veteran status, or sexual orientation. 

Information <}n other titles in this series may be obtained from: Department of Economics, UMC 
3530, Utah State University, Logan, Utah 84322-3530. 

Copyright © 1995 by Amitrajeet A. Batabyal. All rights reserved. Readers may make verbatim 
copies of this document for noncommercial purposes by any means, provided that this copyright 
notice appears on all such copies. 



THE QUEUING THEORETIC APPROACH TO GROUNDWATER 

MANAGEMENT 

Amitraj eet A. Batabyal 

ABSTRACT 

In this paper I propose and develop a new framework for modeling groundwater management 

issues. Specifically, I apply the methods of queuing theory-for the first time, to the best of my 

knowledge-to model a groundwater management problem from a long-run perspective. I 

characterize two simple management regimes as two different kinds of queues and then show how 

to pose a manager's decision problem as an optimization problem using queuing theoretic techniques. 

I solve for certain fundamental quantities, such as the expected system size, and then discuss the 

economic meaning and relevance of the queuing concepts being used. I close by discussing possible 

extensions to my basic models. 

Key words: groundwater, management, stochastic, queuing, theory 



THE QUElliNG THEORETIC APPROACH TO GROUNDWATER 

MANAGEMENT 

1. Introduction 

1 

When economists have studied the question of groundwater management, they have typically cast the 

problem in a deterministic, control theoretic framework. Brown and McGuire (1967), Burt (1967), Burt and 

Cummings (1977), and Provencher and Burt (1993) have all analyzed different aspects of the groundwater 

management problem within this kind of control theoretic framework. While this framework has yielded many 

valuable insights, in this schema, analysts have not been able to satisfactorily model the twin phenomena of 

uncertain dynamic demand and uncertain dynamic supply. Given this situation, in this paper I propose and 

analyze a new framework for modeling the question of groundwater management. This framework uses the 

techniques of queuing theory. There are two main advantages to this method as compared to the deterministic, 

control theoretic framework. First, I am able to model the twin phenomena of uncertain dynamic demand and 

uncertain dynamic supply effectively. Second, I am able to treat the inherently stochastic nature of the problem 

explicitly and not as something that is relevant but incidental to the problem owing to modeling difficulties. 

The rest of this paper is organized as follows. In section 2, I discuss the main attributes of groundwater 

briefly and then proceed to pose a groundwater management problem in a queuing context. I then explain the 

two kinds of queues that I propose to study. In section 3, I develop the two queuing models and then pose the 

management problem mentioned above as a simple optimization problem involving the choice of two control 

variables. Finally, in section 4, I present my salient fmdings, and I discuss some of the many directions in which 

my basic models may be extended. 

To clarify any potential confusion, let me state at the outset that my problem is not the dam problem 

which has been analyzed by queuing theorists such as Moran (1959) and Prabhu (1965) at some length. First, 

I am not interested in determining how much water should be stored by a groundwater manager. The issue of 
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storage is not germane to my problem. My problem is to determine how much water to supply and at what rate 

in some specified time period. Second, I am not interested in determining the optimal size of a dam; my 

secondary problem is to determine the optimal quota on water use within the aforementioned time period. Third, 

I am interested in the management problem, inter alia, due to the common property nature of groundwater use 

and the corresponding inefficiencies arising from unregulated use (see Dasgupta 1982, Chapter 6). As such, my 

principal motivation for studying this problem is not to make water supply more predictable in some statistically 

known manner. 

2. Preliminaries 

Water occurs as a stock and as a flow. Surface water, i.e., the flows in lakes, rivers, etc., is typically the 

result of runoffs from precipitation and/or snowpack melt; both of these physical processes are stochastic. On 

the other hand, groundwater exists in aquifers as a stock subject to stochastic recharge. This suggests why the 

supply of groundwater is uncertain. The demand uncertainty associated with groundwater is principally a 

function of intertemporal market and climatic conditions. Depending on these conditions, the demand for 

groundwater will exhibit temporal fluctuations. In a year with good rainfall and, hence, plentiful supplies of 

surface water, the demand for groundwater will typically be less than in time periods in which there is a drought. 

In these latter times, the demand for groundwater will increase. From a management perspective, what is 
f 

important is that the demand for groundwater is stochastic. 

An additional feature characterizing and providing a rationale for the regulation of groundwater is the 

fact that groundwater is a res communes, or a common property resource. That is, there are typically no well-

developed property rights to the aquifers containing groundwater. Even in a developed country like the USA, 

different states have a loose patchwork of rules governing the use of groundwater. For instance, in Texas, the 

common law system regulates groundwater use; in New Mexico, groundwater rights are defined by the prior 

appropriation doctrine. In California, a mixed bag of riparian rights and rights according to the prior 
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appropriation doctrine govern groundwater use. As a result, in the absence of regulation, each individual water 

user, in isolation, finds it profitable to exploit the aquifer until the price received from selling (using) the water 

obtained from the aquifer equals the average cost of obtaining the water.1 At this point of resource use, all 

economic rents from the aquifer are dissipated and the total revenues from the use of groundwater equal the total 

cost of pumping the groundwater from the aquifer. The inefficiencies associated with this rent dissipation are 

well understood (see Dasgupta 1982, Chapter 6); hence, I shall not pursue this issue any further. A related 

problem concerns the intertemporal misallocation of pumping due to the res communes nature of aquifers (Brown 

1974). 

The dynamic and stochastic features of groundwater use make the management problem amenable to 

analysis via queuing theoretic methods. By management, I am referring to a situation in which a social planner 

(hereafter manager) who is assigned property rights to an aquifer solves an optimization problem. In solving this 

problem, the manager explicitly takes into account the social benefit and the social cost stemming from the 

provision and use of groundwater. In my models, the manager's optimization problem involves the maximization 

of the difference between monetary inflows (benefit) and monetary outflows (cost) from the provision and use 

of groundwater. In what follows, I shall refer to this difference as the residual benefit. 

The uncertain demand for water over time is modeled by an independent and identically distributed (i.i.d.) 

stochastic arrival process of water users (hereafter users). The uncertain supply of water is modeled by an i.i.d. 
/ 

stochastic supply process of the water manager. The stochastic processes representing demand and supply are 

assumed to be independent of each other. More specifically, there is a single manager in charge of dispensing 

groundwater from an aquifer to the different users who pay a fee for the water that they receive. The users arrive 

at some central water -dispensing facility in accordance with some stochastic process with finite mean and form 

IThis is yet another manifestation of the so-called Isolation Paradox. See Sen (1967) for a discussion. 
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a queue. If the manager is idle, then the first user to arrive proceeds to obtain hislher water,2 otherwise the user 

waits in queue. Users arrive one at a time and are served one at a time in order of arrival. In the two cases that 

I analyze, I shall assume that the arrival process of the users is Poisson and that this fact is known to the manager. 

As a result, the interarrival times are exponentially distributed and the distribution of interarrival times has the 

Markovian property of being memoryless. I will denote its distribution function by M( -), its mean by 1/y, and 

its rate by y. I shall model the supply tmcertainty in two ways. In the first case I shall assume that the time taken 

by the manager in supplying water can be represented by an exponential distribution. In the second case, I shall 

assume that the manager's time to supply water is represented by some arbitrary distribution whose cumulative 

distribution function is G( -). That is, the supply times, denoted by S, have a cumulative distribution function 

denoted by G( -). In both cases-Markovian in the first and general in the second-I assume that the mean of 

the cumulative distribution function is finite; I denote this mean by lIE. 

The manager's task is to choose the queue capacity, i.e., the number of people he/she will supply water 

to in a specified time period and the rate at which he/she fills requests for water so as to maximize the residual 

benefit arising from the provision and use of groundwater. In economic parlance, the manager chooses a quota 

on water allocation in a certain time period and the rate at which he/she will distribute the available supply of 

water. In the language of queuing theory, I am studying, in turn, the MIMII and the WG/l queues, both with 

finite capacity. In this three-letter designation, the first letter refers to the fact that the interarrival times of the 
; 

users has the Markovian property. The second letter, M and G, respectively, refers to the fact that the manager's 

supply times distribution has the Markovian property in the first case, whereas this distribution is general in the 

second case. Finally, the number 1 refers to the fact that there is a single groundwater manager. 

I now proceed to a formal discussion of the queuing theoretic approach to the aforementioned water 

management problem. 

2This does not have to involve actual physical collection. Conceptually. obtaining could also mean arranging to 
have a certain quantity of water released by way of pipelines or canals. 
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3a. The Water Management Regime as a M1M11 
Queue with Finite Capacity 
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Since my analysis is being conducted from a long-run perspective, I first have to determine the stationary 

probabilities for this type of queue. I now introduce three sets of probabilities that I shall work with. If X(tJ 

denotes the number of water users in the queuing system at an arbitrary time t, then let 

P k == limt ..... Pr {X(t) - k} (1) 

be the long-run probability that there are exactly k users in the system. Let {ak: k ~ o} be the proportion of users 

who find k in the system when they arrive. Finally, let {dk: k ~ o} be the proportion of users who leave behind 

kusers in the system when they depart. It is important to note that P k can be interpreted as the proportion of time . 

that the system contains exactly k users. For my purposes, the relevant stationary probabilities are the (P,). 

However, since it will not be possible to obtain the (P,) directly in section 3b, I shall exploit some well-known 

relationships between the (a,), (d,), and (P,) to obtain the (P,). Since I will be working with fmite capacity 

queues, let me denote the capacity of the queue by K. Thus, the state space of the queue can be indexed by k, 

where k = 0, ... ,K. That is, when there are K users in the system, the manager will not provide water to any 

more users in a certain time period. K is, in fact, one of two choice variables for the manager. Later I will solve 

for the K which maximizes the residual benefit arising from the use of water. 

To determine the (PJ, I shall follow Ross (1985) and solve a set of balance equations. These equations 

make use of the basic principle that the rate at which the queue enters state k equals the rate at which it leaves 

state k. Using this rate equality principle, the rate at which the stochastic process (of arriving users) leaves state 

o must equal the rate at which the stochastic arrival process enters state O. So, for state 0, I have 

(2) 

where y and E are the parameters of the two exponential distributions, as discussed in section 2. Similarly, for 

any state k, k = 1 , ... , K - 1, I get 
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(3) 

Finally, for state K, the rate equality principle gives me the following balance equation 

(4) 

The equation for state K requires some explanation Note that state K can be left by means of a departure because 

once the system is in state K, no other users can enter the system. Analogously, state K can be entered only from 

state K-J, since there is no state K + 1. 

I now solve (2)-(4) in terms of the stationary probability that the manager is idle, i.e., in terms of Po. 

I get 

k-K 

PI - (y/e)Po ' 

P 2 • (y Ie )2 Po' . . . , 

PK • (y/efpo . 

I can now use the fact that E Pie - 1 to solve for Po explicitly. I get 
k-O 

Using (5) and (6) I get 

P _ { l-(y/e) }. 
o 1 _ (y Ie f+l 

P k - [( y Ie l{ 1 - (y Ie)} l' k _ 0, ... ,K . 
1 - (y Ie f+l 

(5) 

(6) 

(7) 

This accomplishes my first task. The stationary probabilities for the water management regime which I have 

modeled as aK stateMIMIJ queue are given by (7). 

I can now pose the manager's optimization problem. In my model, the manager's task is (a) to choose 

the number of users who will be supplied water during some time period and (b) to choose the rate at which 

he/she will supply water to the different users. The rate at which users arrive to demand water in a certain time 

period-which I take to be a month-is given by Int[y(l - P J] where Int[ -] denotes the integer part of the term 

inside the square brackets. Further, if the ith user demands Xj units of water for which he/she pays aj = a/x) 
i - IPIt(y(I-P.(')] 

dollars, then the manager's monetary inflows per month equal y (1- P K) E a i • Two additional 
i-I 
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interpretations are possible for the a j • First, they can be viewed as each individual groundwater user's tax arising 

from the use of groundwater. Second, the a j can also be viewed as a net payment, i.e., a payment which includes 

a return for groundwater use. I assume that the manager incurs fixed costs of $F to supply water and that he/she 

incurs variable costs which are a function of the rate at which he/she chooses to supply water and the number of 

users to whom he/she supplies water. I denote this variable cost function by C = C(E, K). The manager's 

objective is to maximize the total residual benefit per month arising from the provision of water, which I assume 

to be the difference between monetary inflows (benefit) and outflows (cost) as described above. Thus, the 

manager solves 

and 

i .I1It(y(1-Pr)] 

maxE,Kv(I-PK) ~ ai(xi)-C(e,K)-F. 
i .1 

(8) 

(9) 

(10) 

Equation (9) says that the weighted marginal cost of providing water per month (the RHS of the equation) must 

equal the weighted total sum of monetmy payments for water use. Similarly, (10) says that the weighted marginal 

cost-withrespecttoK-<>fprovidingwater (the RHS of the equation) must be set equal to a different weighted 
) 

sum of the total monetmy payments. The weights themselves are functions of the parameters of the two different 

exponential distributions. The solutions to (9) and (10) give us the optimal values of the choice variables E and 

K Since equations like (9) and (10) cannot, in general, be solved analytically, one will have to resort to numerical 

methods in order to obtain the optimal E and K. 

Two quantities which have a bearing on the efficiency of the management function and, hence, are of 

considerable interest to the manager are the average number of groundwater users in the system, i.e., the expected 

31 assume that the second-order conditions are satisfied. 
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system size (which I shall denote by L) and the average number of groundwater users waiting in queue or the 

expected queue size (which I shall denote by LQ)' The quantitiesL andLQ are useful for planning purposes. They 

provide the manager with summary statistics about the water users. Since the manager is a social planner vested 

with property rights to the aquifer, he/she will want to alter hislher choice variables over time if, for instance, the 

average number of users being supplied water is deemed to be too few. 
k-K 

Now L • E kP". For the K state~l queue, this simplifies to 
k-O 

L • ...:.,.Y ....... [ I_+_K--:(,-=-Y _, €...:,.f_+_l ---:(,--K_+ ---:1 ):....=..(..:..-Y '_€...;.,f-.L1 

( € - Y ) [1 - ( Y , € f+ 1 1 
(11) 

The expected queue size, L Q • Y tl W Q • where Y tl = expected arrival rate of users = Y (1 - P K) and WQ = expected 

time a user spends waiting in queue = [L' { Y (1 - P K)} - { I' €} ] . Thus, I get 

(12) 

wherePKis given by (7) andL is given by (11). 

Thus far, I have characterized a groundwater management regime as aMlM/J queue with fInite capacity. 

In democratic polities, society can choose how to use the maximized residual benefit. It can be used to maintain 

water supply facilities so as to make the management regime self-financing. It can be used to pay for water 

imports in times of emergency such as a drought. If one were to view the a i as net payments by users, then some 

of this benefit could be returned to the individual groundwater users. Finally, if society desires that the manager 

break even financially, then the manager's problem becomes one of choosing € and K so as to equate monetary 

inflows (benefIts) and outflows (costs). 

I now discuss an alternate queuing theoretic characterization of a groundwater management regime. 
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I now model the water management regime as a MlG/1 queue with fInite capacity. Before obtaining the 

stationary probabilities for the K state MlG/l queue, I fIrst have to obtain the stationary probabilities for the 

MlG/l queue with a countable state space. Because the manager's supply time distribution is arbitrary for this 

queue, the methods cannot be applied here that were employed in section 3a to obtain the stationarY probabilities 

for (X(t): f ~ OJ whereX(t) denotes the number of users in the system at time f. In fact, (X(t): f ~ OJ is not a 

discrete time Markov chain. As is usually done in this case, I proceed by analyzing the embedded Markov chain 

(X(n): n '"'"' 1, 2, . . .} where X(n) refers to the number of users left behind by the nth departure from the system 

(see Ross 1983, pp. 100-112). LetP = [Pi) denote the chain's transition probability matrix and let the one-step 

transition probabilities be4 

-yt( ,/-i+l 
P ij .. J e y t d G ( t), j ~ i-I, i ~ 1 

o U - i 1- 1)1 
(13) 

where G(.) is the distribution function of the manager's supply times. If I let trn = Pr{n arrivals during a supply 

time S = fj, then I get 

-yt( )JI 
e yt dG(t). 

nl 
(14) 

In order to obtain the stationary probabilities for the chain {X(n): n = 1, 2, ... }, I shall assume that 

t, - E n 1t n < 1 . That is, the mean number of arrivals in a supply time period is assumed to be less than 
n-l 

unity. This assumption ensures the ergodicity of the chain and hence the existence of the stationary probabilities. 

To determine the stationary probabilities {d k}, I need to solve the stationary equations. These are 

j-i .. l 

dt - d01t i ~ dj 1t i _j .. 1 , i - 0, 1,2, ... 
1-1 

(15) 

To solve the above set of equations, I shall use probability-generating functions as in Ross (1983, pp. 111-112). 

To this end, let 

41 use the Stieltj es integral to avoid problems arising from the potential nonexistence of the density function. 



and let 

D(z) - 11 diz i , Izl ~ 1 
i-O 

ll(z) - 11 
i - 0 

I 1t i Z . 

Multiplying the LHS and the RHS of (15) by z i , summing over i, and then solving for D(z) yields 

dO(I-z)ll(z) 
D(z) - ----

ll(z)-z 
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(16) 

(17) 

(18) 

Equation (18) can be further simplified by using L'Hopital's rule, noting that II(1) = 1 and that 

II' (1) = () = yE[supply time] = y(1/e), where E[ -J is the expectation operator. Performing these simplifications, 

I get do = 1 - () and 

D (z) _ (1 - ~)(1 - z)ll(z) 

ll(z) - z 
(19) 

Equation (19) is as far as I can go in obtaining the stationary probabilities of the embedded Markov chain 

{X(n): n = I, 2, ... }. So far, I have obtained the {dk } for the countable state Markov chain. However, I am 

actually interested in obtaining the {dk} for the K state embedded chain. I now proceed to obtain these 

probabilities. 

I frrst have to truncate the state space to k = 0 . . . , K - 1 states. This truncation necessitates a 

modification of the relevant stationary equations. These equations can now be written as 

j-i+ 1 

d. - do1t· .. 11 d.1t. ' 1' i-O, 1, ... ,K-2 r r. J r-J+ 
J-I 

(20) 
1I-K-2 j-K 1I-K-j-I 

di - 1 - do 11 1t 11 - 11 dj 11 1t 11' i - K - 1 
11-0 j-I 11-0 

The solution to these K equations will give us the {dk} for the K state chain. To obtain the solution, I shall 

proceed heuristically.5 Inspecting (15) and (20), I conjecture that the stationary probabilities for the K state 

5See Cohen (1982, pp. 570-572) for an alternate and considerably more rigorous approach to the solution. 
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embedded Markov chain must be proportional to the stationary probabilities for the countable state Markov chain 

which I now denote by {a:}. That is, 

(21) 

where L is the constant of proportionality. To verify that my conjecture is true, I first need to determine L. To 

k·X'.l k.X'.l k.X'-l 

obtain L I shall use the fact that 1 - L ~ d; - ~ d k' This tells me that L - 1 I ~ d;. From this I 
~o ~o ~o 

conclude that the stationary probabilities for the K state Markov chain are given by 

dOO 
dk - k.X'_lk ~ k - 0, 1 , ... , K - 1 (22) 

~ d; 
k.O 

I have now solved for the {dk } , i.e., the proportion of users leaving behind k in the system when they depart the 

system. However, we are really interested in the {Pk }. To obtain the {Pk }, I shall first solve for the {ak }. Now, 

in any queuing system in which users arrive one at a time and are supplied water one at a time, a k - d k' k ~ 0 

(Ross 1985, p. 308). This property holds in the case that I have been studying. Further, by the PASTA property 

(see Wolff 1989, pp. 293-297), ak - P k • Hence, to obtain the {Pk }, it suffices to find the {ak }. In my case, 

a k - d k' except that to obtain the {ak }, I have to expand the state space to include the K state. This can be done 

easily. First,notethatdt =Pr{an arrivalfinds kusers occupying the system/arrival does join the queue} and, 

a k - P k - (1 - a X' ) d k' k - 0 ~ . . . ~ K - 1 . (23) 

Finally, to fmd aX' - PX' ~ I use the rate equality principle alluded to in the derivation of (2)-(4). I have 

e (1 - do) - y (1 - aX') and, hence, 

(y/e)-1 + do 
aX'-PX'- ---

y/e 

Also, using (24), then (23) can be simplified to 

(1 - do)dk 
ak=Pk =--

y/e 

Thus, the required stationary probabilities for the K stateMlGlj queue are given by (24) and (25). 

(24) 

(25) 
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I am now in a position to discuss the manager's optimization problem. Reasoning analogous to that 

employed in section 3a reveals that the manager's optimization problem is given by (8). The relevant first-order 

necessary conditions for an interior maximum are6 

( 

t-lni[y(I-Pr)] ) [{k_X-l J2 k-X-l {k-X-l} {k_X_l} 1 {k_X-l J2 
~ at 11 d; - 11 d; + eo 11 d; loe - yo 11 d; loe - { oC(o)/oe} 11 d; (26) 
,-I k-O k-O k-O k-O k-O 

and 

[ {

i_lni[Y(I-Pr)]} 1 [{k_X-l } 1 i:l at (y - e) 0 ?:o d; 10K ~ {oC(o)/oK} . (27) 

Equation (26) tells us that optimality requires the manager to set the weighted marginal cost of supplying water 

(the RHS of the equation) equal to the weighted sum of total monetary inflows. Further, (27) tells us that the 

marginal cost of supplying water (the RHS of the equation) should be set equal to a different weighted sum of 

monetary inflows. Alternately, the weighted sum of total monetary inflows can also be interpreted as the marginal 

revenue from water use. The optimal € and K are defmed by (26) and (27) implicitly. As in section 3a, (26) and 

27) will typically have to be solved numerically to obtain the desired € and K. 

To obtain the expected system size, L, and the expected queue size, LQ,7 for the K state MlG/1 queue, 

I will follow a slightly different route. As is well known, L - Yaw. where W is the expected time that a water 

user spends in the system. Y a - Y (1 - P x), as in section 3a. W can be computed from the relation 

W - W Q + (11 e 1. Some algebra reveals that W Q - {Y e (1 - P x)E[S 21) I { 2 [ e - Y (1 -P x)]} (see Ross 1985, 

p. 337). Finally, L Q • YaW Q • Using these relationships, I get 

(28) 

and 

6r assume that the second-order conditions are satisfied. 

7These quantities were defmed in section 3 a. 
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(29) 

where S denotes a supply time andPKis given by (24). 

In addition to the ways suggested in section 3a of apportioning the residual benefit arising from the 

provision of groundwater, this benefit can be used for other purposes as well. This could include activities such 

as the fmancing of a monetary scheme which would reward water conservation during times of emergency. 

4. Conclusions and Potential Extensions 

In this paper I have proposed and analyzed a new framework for modeling a groundwater management 

problem. This framework applies the techniques of queuing theory. Specifically, I characterized two simple 

water management regimes as two different kinds of queues. I then went on to show how the manager could 

choose a quota on water allocation and the rate at which he/she would supply water in a certain time period so 

as to maximize the residual benefit arising from the provision and use of groundwater. 

The basic models discussed in this paper may be extended in many directions. In what follows, I suggest 

three possible extensions. One can make the models richer by considering bulk arrivals and/or bulk supply. 

While this would invalidate the ak = dk result, the explicit incorporation of bulk arrivals and/or bulk supply will 

permit one to analyze management regimes more general than the ones that I have analyzed. A second line of 

extension would;be to consider cases where the arrival process is arbitrary and the supply times process is either 

deterministic or some known stochastic process. This kind of setting would be in the spirit of the principal/agent 

paradigm of information economics.8 In this paradigm, the principal (my manager) is generally assumed to know 

the characteristics afIectingthe discharge ofhislher functions with certainty. However, the principal is assumed 

to know the characteristics of the agents (my users) only imperfectly. Finally, the use of queue networks would 

permit the analysis of interactions such as those between agricultural and nonagricultural uses of groundwater. 

8See Kreps (1989, Chapters 16 and 17) for an informative discussion of the principal/agent paradigm. 
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