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ABSTRACT	

	

Structural	and	Reduced-Form	Models:	An	Evaluation	of	Current	

Modeling	Criteria	in	Econometric	Methods	

	

by	

	

Ashley	M.	Funk,	Master	of	Science	

Utah	State	University,	2011	

	

Major	Professor:	Dr.	James	Feigenbaum	
Department:	Economics	

	

	 This	paper	evaluates	the	structural	form	model	of	John	Rust’s	1987	paper,	

Optimal	Replacement	of	GMC	Bus	Engines:	An	Empirical	Model	of	Harold	Zurcher,	by	

using	reduced-form	models	to	evaluate	the	same	data	and	interpret	the	results.		The	

question	is	whether	reduced-form	modeling	such	as	probit	and	logit	models	can	be	as	

useful	as	structural	models	for	prediction.		

	 	 	 	 	 	 	 	 	 	 						(22	pages)	
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	 1	

Introduction	
	
	
	
	 In	terms	of	types	of	models,	there	are	two	that	will	be	discussed.	Reduced-form	

models	evaluate	endogenous	variables	in	terms	of	observable	exogenous	variables	and	

serve	to	identify	relationships	between	the	variables.	Structural	models	are	derived	

from	theory	and	often	include	unobservable	parameters	that	help	describe	behavior	at	

a	deep	level.			

	 In	economic	research	papers	authors	use	structural	and	reduced-form	models	to	

describe	and	help	define	and	describe	the	data	that	has	been	collected	from	the	world	

around	them.			These	models	contain	variables	that	can	be	put	into	two	categories:	

dependent	and	independent.		Dependent	variables	are	functions	of	the	independent	

variables	and	receive	their	value	depending	on	the	value	of	independent	variables;	they	

are	derived	within	the	model.		Furthermore,	these	variables	may	be	governed	by	

parameters	such	as	utility	or	cost	parameters	that	give	supplemental	information	about	

the	model	and	can	be	used	to	forecast	behavior.		Sometimes	these	parameters	are	not	

observable	and	can	only	by	estimated	using	structural	form	models.			

	 The	models	containing	these	variables	and	parameters	are	simply	tools	to	

explain	past	behavior	and	forecast	future	behavior.		Econometrics	is	used	to	analyze	

data	using	different	estimators,	and	a	challenge	lies	in	determining	which	model	most	

effectively	describes	the	data.	In	an	attempt	to	depict	the	data	correctly,	however,	

models	may	become	too	formal,	extravagant,	and,	hence,	complicated	to	estimate.		The	
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parameters,	which	are	often	left	to	the	econometrician	to	evaluate,	can	be	abstract	and	

nonreplicable	to	other	researchers	but	may	be	needed	to	estimate	parameters	that	are	

left	out	of	reduced-form	models.	Should	these	two	models	be	used	simultaneously	as	

tools	in	estimation?	

In	1976	Economist	Robert	Lucas	wrote	a	paper	criticizing	the	way	

macroeconomists	built	and	interpreted	models.		Later	labeled	the	Lucas	Critique,	the	

paper	argues	that	it	is	unwise	to	try	to	predict	the	effects	of	a	change	in	economic	policy	

entirely	on	the	basis	of	relationships	observed	in	historical	data.		Lucas	argued	modelers	

should	only	include	“deep	parameters”	that	govern	individual	behavior	that	predict	

what	individuals	will	do	and	aggregate	the	decisions	to	calculate	the	macroeconomic	

effects	of	a	policy	change	(Lucas,	1976).		In	other	words,	Lucas	believed	microeconomic	

techniques	should	be	used	in	estimating	models	to	account	for	changes	in	policy	

through	people’s	reactions	to	the	changes.		He	believed	the	best	way	to	see	the	effect	of	

any	policy	change	is	through	aggregating	all	individuals’	behavioral	changes.		This	

critique	changed	the	way	econometricians	and	others	created	their	models.		More	and	

more	models	included	these	deep	parameters.		A	good	example	of	one	of	these	

parameters	is	risk	aversion	or	utility.		Many	macroeconomic	models	contain	such	a	

parameter	that	changes	the	output	of	the	model	when	adjusted.	Structural	models	with	

varying	parameters	became	the	standard	and	reduced-form	models	were	used	sparingly	

and	became	substandard.			
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This	paper	attempts	to	parallel	previous	structural	and	reduced-form	testing	

using	the	same	data	set	introduced	in	John	Rust’s	1987	paper,	Optimal	Replacement	of	

GMC	Bus	Engines:	An	Empirical	model	of	Harold	Zurcher.		In	his	paper,	Rust	creates	a	

structural	model	with	deep	parameters	to	estimate	an	optimal	stopping	rule.		For	the	

current	research,	a	reduced-form	model	will	be	used	to	test	the	same	data.		

	 The	hypothesis	to	be	tested	and	evaluated	in	this	paper	is	the	following:	

reduced-form	modeling	can	do	as	well	as	structural	models	and	can	add	value	to	

econometric	testing.		The	results	show	that	it	is	hard	to	prove	the	reduced-form	model	

can	do	as	well	as	the	Rust’s	structural	model	and	further	research	is	needed.		

This	paper	will	continue	with	a	description	of	the	econometric	model	that	will	

contain	a	description	of	the	data	to	be	used,	data	sources,	the	models,	and	a	description	

of	the	variables.		Furthermore,	an	estimation	of	the	reduced-form	models	and	

predictions	tables	will	be	included.		A	conclusion	reiterating	the	results	will	close	this	

paper.		

	
	

Literature	Review	on	Structural	vs.	Reduced-Form	Models	
	
	
	
	 The	previous	literature	on	this	topic	consists	mostly	of	research	papers	that	

briefly	mention	reduced-form	models	before	passing	on	to	a	structural	model	for	

estimation.		However,	a	1997	Econometrica	paper	by	Bill	Provencher	compares	and	

contrasts	structural	and	reduced-form	models	entitled	“Structural	versus	Reduced-Form	
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Estimation	of	Optimal	Stopping	Problems”.		The	paper	examines	“several	statistical,	

interpretive,	and	policy	implications	of	reduced-form	estimation	of	optimal	stopping	

problems”	(Provencher,	1997).	He	concludes	the	failure	of	reduced-form	modeling	lies	

in	failing	to	properly	interpret	the	relationship	between	the	model	and	underlying	

optimal	stopping	problem.		Provencher	argues	an	econometrician	should	be	acutely	

aware	of	the	data-generating	process	prior	to	choosing	which	type	of	model	to	use	and	

continues	by	saying,		“failure	to	understand	the	process	generating	the	data	may	lead	to	

incorrect	econometric	analysis	and	misinterpretation	of	coefficients”	(Provencher).			

	 Christopher	Sims	has	been	a	leader	of	research	in	the	application	of	vector	

autoregression	models	(VAR)	and	takes	this	argument	to	the	area	of	forecasting.		In	his	

paper,	Are	Forecasting	Models	Usable	for	Policy	Analysis?,	Sims	states	the	following	

when	discussing	the	interpretation	of	parameters		of	structural	equations:	“There	is	no	

unique	standard,	however,	for	when	a	parameter	has	an	economic	interpretation.		The	

parameters	in	a	model	may	have	interpretations,	yet	the	model	may	not	be	structural,	

in	the	sense	that	we	may	be	unable	to	use	it	to	predict	the	consequences	of	the	actions	

which	interest	us.		Conversely,	we	may	be	able	to	use	a	model	to	make	such	predictions	

accurately	even	though	some	or	all	of	its	parameters	do	not	have	neat	interpretations”	

(Sims,	1997).		Sims	goes	on	to	say	that	many	economists	have	come	to	think	of	

structural	models	as	models	with	satisfying	interpretations	for	all	parameters.		He	

believes	the	unarguable	assertion	that	predicting	the	effects	of	policy	requires	

identification	of	a	structural	model	thus	becomes	“via	a	semantic	confusion”,	a	source	

of	serious	misunderstanding	(Sims,	1997).		
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	 The	literature	by	Provencher	and	Sims	introduces	some	research	completed	on	

reduced-form	versus	structural	models.		Because	the	motivating	question	to	this	paper	

refers	to	the	value	of	econometric	tools	when	estimating	models	for	any	data	set	rather	

than	attempting	to	explain	behavior	of	a	certain	data	set	using	a	specified	model	(even	

though	only	one	data	set	is	used	in	this	research),	it	may	not	be	traditional.		In	other	

words,	the	topics	of	other	existing	literature	are	specific	to	the	data	and	not	the	tools	

used.		

	
	

The	Data	
	
	
	
	 The	data	and	model	to	be	discussed	come	from	John	Rust’s	1987	paper,	Optimal	

Replacement	of	GMC	Bus	Engines:	An	Empirical	model	of	Harold	Zurcher.		Harold	

Zurcher	was	the	superintendent	of	maintenance	at	the	Madison,	Wisconsin	

Metropolitan	Bus	Company,	and	Rust’s	null	hypothesis	was	that	“Zurcher’s	decisions	on	

bus	engine	replacement	coincide	with	an	optimal	stopping	rule”.	The	data	is	a	panel	

time	series	set	that	includes	accumulated	odometer	readings	of	buses	during	the	

months	between	December	1974	and	May	1985.		There	is	a	two-month	gap	between	

July	and	August	of	1980	where	no	data	exists	because	of	a	strike	within	the	company.		

Rust	estimates	the	structural	parameters	to	test	whether	Zurcher’s	behavior	is	

consistent	with	the	model.		Conversely,	seeing	how	a	reduced-form	model	compares	

using	the	same	data	motivates	the	research	in	this	paper.		
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The	original	data	given	to	John	Rust	included	three	types	of	maintenance	cost	

structures;	(i)	routine	maintenance	including	oil	changes,	brake	improvements,	and	the	

like;	(ii)	major	repairs	that	do	not	require	overhauls;	and	(iii)	engine	replacements	or	

major	overhauls	that	are	equivalent	to	engine	replacements.		We	focus	on	the	last	type.			

The	raw	data	set	includes	observations	for	166	buses	that	are	included	within	9	

groups.		Each	group	represents	a	different	model	bus.		For	example,	T8H203	is	a	60x4	

matrix	for	GMC	model	T8H203.		All	buses	were	not	in	the	company’s	possession	at	the	

beginning	of	the	time	period.		In	some	cases,	the	buses	were	bought	and	placed	on	the	

road	midway	through	the	time	period.		The	data	accounts	for	these	buses	by	stating	the	

first	month	and	first	odometer	reading	for	each	bus.		In	total,	there	are	15,964	data	

points;	a	significant	amount	of	data	by	most	standards	that	should	give	interesting	

results.		

The	data	contains	identifying	information	for	each	bus	including	the	bus	type	

and	year,	and	the	individual	bus	number.		For	the	purpose	of	modeling,	a	new	binary	

variable	was	added	to	the	data	set	called	“Replace”.			The	variable	is	given	a	value	of	1	if	

the	bus	had	a	replacement	in	that	month	and	0	if	no	replacement	occurred.			

	
	

Econometric	Model	
	
	
	
	 Rust	describes	three	models	in	his	paper	that	ultimately	laid	the	foundation	for	

the	structural	model	that	is	estimated	using	a	nested	fixed-point	algorithm.		The	first	
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model	includes	some	stylized	assumptions	that	restrict	the	model	but	allow	it	to	have	a	

closed	form	solution.		The	second	model	is	a	general	maximum	likelihood	estimation	

algorithm	that	does	not	need	the	limiting	assumptions	used	in	the	first	model.	Finally,	

he	takes	the	regenerative	stopping	problem	described	in	the	first	model	and	combines	it	

with	the	algorithm	of	model	the	second	model	to	produce	a	formal	structural	model.		

	 First,	the	regenerative	optimal	stopping	problem	used	in	the	first	model	of	Rust’s	

paper:	

	 𝑉! 𝑥! = 𝑠𝑢𝑝!𝐸 𝛽!!!𝑢(𝑥!,, 𝑓! ,𝜃!
!

!!!
𝑥! ,	

where	the	utility	function	u	is	given	by:	

	 𝑢 𝑥! , 𝑖,𝜃! =
−𝑐 𝑥!,𝜃!         if   𝑖! = 0,

− 𝑃 − 𝑃 + 𝑐 0,𝜃!     if   𝑖! = 1.               
	

The	state	variable	𝑥!	denotes	the	accumulated	mileage	since	last	replacement	on	the	

bus	engine	at	time	t.	Let	𝑖!	denote	Zurcher’s	replacement	decision	at	time	t,	where	

𝑖! = 0	means	keep	and	𝑖! = 1	means	replace	the	bus	engine.		Furthermore,	the	cost	

function	c	is	comprised	of	the	following:	

	 𝑐 𝑥,𝜃! = 𝑚 𝑥,𝜃!! + 𝜇 𝑥,𝜃!" 𝑏 𝑥,𝜃!" ,	

where	𝑚 𝑥,𝜃!! 	is	the	conditional	expectation	of	normal	maintenance	and	operating	

expenses,	𝜇 𝑥,𝜃!" 	is	the	conditional	probability	of	an	unexpected	engine	failure,	and	

𝑏 𝑥,𝜃!" 	is	the	“conditional	expectation	of	towing	costs,	repair	costs,	and	the	perceived	

dollar	cost	of	lost	customer	goodwill	in	the	event	of	an	unexpected	engine	failure”	(Rust,	
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1987).		Referring	back	to	the	value	function𝑉! 𝑥! ,	Π	is	an	infinite	sequence	of	decision	

rules	Π = 𝑓! , 𝑓!!!,… 	where	each	𝑓!	refers	to	Zurcher’s	replacement	decision	at	time	t.	

	 A	few	problems	arise	when	estimating	this	model	that	make	it	unreliable	in	tests.		

First,	the	solution	for	the	likelihood	function	depends	critically	on	specific	choice	of	

functional	form:	namely,	that	monthly	mileage	has	an	i.i.d.	exponential	distribution,	

which	the	data	refutes	(Rust).		Secondly,	and	maybe	more	restrictive,	is	that	the	state	of	

the	bus	is	completely	described	by	a	single	variable,	accumulated	mileage	𝑥!.	It	is	more	

probable	that	Zurcher	bases	his	replacement	decisions	on	other	information	𝜀!	also	

referred	to	as	the	unobservable	“error	term”,	a	state	variable	which	is	observed	by	the	

agent	(Zurcher)	but	not	by	the	statistician.			

	 The	second	model	described	in	the	Rust	paper	deviates	from	the	topic	to	

describe	structural	estimation	without	closed-form	solutions.		In	a	previous	paper	also	

written	by	Rust,	a	maximum	likelihood	estimation	algorithm	for	a	class	of	dynamic	

discrete	choice	models	is	developed	(Rust,	1987).		The	model	does	not	require	closed-

form	solutions	for	the	agent’s	stochastic	control	problem	and	treats	unobervables	𝜀!	in	a	

consistent	fashion.	For	a	full	description,	refer	to	original	paper.		

	 In	the	final	structural	model,	Rust	applies	the	nested	fixed-point	algorithm	to	the	

bus	engine	replacement	data	set	and	the	model	above	is	modified	to	be	as	follows.		

	 The	implied	utility	function	is:	

	 	 𝑢 𝑥! , 𝑖,𝜃! + 𝜀! 𝑖 = −𝑅𝐶 − 𝑐 0,𝜃! + 𝜀! 1     if 𝑖 = 1,
−𝑐 𝑥! ,𝜃! +  𝜀! 0                  if 𝑖 = 0.     	
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	 Where	RC	denotes	the	expected	cost	of	a	replacement	bus	engine.			

	 Relaxing	the	assumptions	of	the	first	model,	monthly	mileage	is	allowed	to	have	

an	arbitrary	parametric	density	function	g,	which	implies	a	transition	density	of	the	form	

	 	 𝑝 𝑥!!! 𝑥! , 𝑖! ,𝜃! = 𝑔 𝑥!!! − 𝑥! ,𝜃!  if 𝑖! = 1,
𝑔 𝑥!!! − 0,𝜃!                    if 𝑖! = 0.                	

	 From	this	model,	Rust’s	procedure	is	to	“estimate	the	unknown	parameters	

𝜃 = 𝛽,𝜃!,𝑅𝐶,𝜃! 	by	maximum	likelihood	using	the	nested	fixed-point	algorithm”	

(Rust).	This	is	where	the	estimation	deviates	from	the	original	paper.			

Here,	a	reduced	form	model	is	introduced	and	estimated	which	has	no	structural	

parameters	and	can	be	put	into	the	form	of	probit	and	logit.		In	the	reduced-form	

model,	𝑦!is	the	dependent	variable	which	will	take	values	𝑦! = 0 to	denote	“keep”	or	

𝑦! = 1 for	“replace”.		The	independent	variable	𝛽!	denotes	bus	engine	accumulated	

mileage	at	time	t.		Another	variable, 𝛽!,	will	be	estimated	to	show	the	effects	of	high	

mileage	on	a	bus	engine	replacement.		Both	probit	and	logistic	models	are	estimated.		A	

linear	model	will	act	as	a	comparison.		

	 	 𝑦 𝑡 = α+  𝛽! +  𝛽! + 𝜀!		

	 	 Replace	=	Intercept	+	Mileage	+	Mileage2	+	error	term.	

	 This	simple	model	is	a	substitute	to	the	earlier	formal	model	that	requires	

rigorous	calculations.		For	this	model,	pooled	effects	are	assumed.		There	are	three	

types	of	binary	choice	models	for	panel	data.		First,	a	random	effects	model	works	under	



	 10	

the	condition	that	there	are	no	individual	effects	within	groups	but	there	are	unique	

individual	characteristics	that	are	the	result	of	random	variation.			In	other	words,	the	

fact	that	the	data	is	separated	by	bus	type	has	no	effect	on	the	model.		Conversely,	a	

fixed	effect	model	allows	for	the	correlation	of	data	within	a	group	and,	hence,	a	

different	intercept	for	each	group.			In	this	data	set,	that	would	mean	that	each	bus	

within	a	group	may	be	correlated	but	not	with	buses	in	other	groups.		The	model	used	

here	is	a	pooled	effects	model	that	has	the	key	assumption	that	there	are	no	unique	

attributes	of	the	buses	within	groups	or	across	time.	This	will	lead	ultimately	to	one	

intercept	for	the	model.			

	
	

Estimation	
	
	
	
	 Before	entering	into	the	estimation	results,	an	introduction	of	the	statistical	

software	is	needed.		A	programming	language	and	statistical	software	environment	

called	R	is	used	in	the	following	estimation.		R	is	influenced	by	the	language	S	and	is	

becoming	standard	software	among	statisticians	partly	because	of	its	free	source	code	

and	graphing	capabilities.				

	Table	1	shows	estimated	coefficients	and	marginal	effects	(slope)	of	the	

variables.		Table	2	gives	the	standard	errors,	test	statistics,	and	p-values.		Table	3	gives	

the	predictions	of	the	model.		Tables	4	through	6	show	the	same	information	as	the	

previous	models	but	for	a	specific	bus	type.		Because	the	model	is	binary,	meaning	the	

dependent	variable	takes	a	value	of	0	or	1,	marginal	effects	are	computed	because	
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estimated	coefficients	with	these	models	do	not	convey	much	information.		Marginal	

effects	are	essentially	the	slopes	of	the	curves	in	question.		For	a	linear	model,	the	slope	

is	the	coefficient	and	does	not	vary	in	value.		Note	that	the	tables	include	the	variables	

(Intercept,	Mileage,	Mileage2)	and	the	estimates	produced	within	R	using	different	

packages	within	the	software	to	test	the	data.		Particularly,	and	function	called	glm()		is	

used.	The	general	linear	model	function	allows	regressions	with	binary	dependent	

variables	with	different	“family	links”	such	as	probit,	logit,	and	many	others	that	

describe	the	distribution	of	the	model.		

	
				
Table	1	Regression	Coefficients	

	

LM	 Probit	 Logit	

Variable	 Coefficient	 Slope	 Coefficient	 Slope	 Coefficient	 Slope	

Intercept	 -3.69e^-03	 -3.69e^-03	 -3.49	 	 -7.88	 	

Mileage	 1.20e^-07	 1.20e^-07	 1.00e^-05	 1.66e^-07	 2.84e^-05	 1.96e^-11	

Mileage2	 -2.45e^-13	 -2.45e^-13	 -2.00e^-11	 -2.00e^-11	 -5.72e^-11	 -3.96e^17	

	
	
	
	 Note	that	when	marginal	effects	are	computed,	the	slopes	move	closer	in	value	

to	each	other	with	all	three	estimators.			The	above	models	are	shown	to	be	significant	

at	the	99	percent	confidence	level	and	have	the	following	test	statistics	shown	in	Table	2	

Regression	Standard	Errors.		Again,	linear,	probit	,	and	a	logit	model	are	represented.		A	

linear	model	requires	a	t	value	for	the	test	statistic	whereas	probit	and	logit	models	

require	z	values.			
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Table	2	Regression	Standard	Errors	

LM	 Probit	 Logit	

Variable	 Std.	Error	 t	value	 P(>|t|)	 Std.	Error	 z	value	 P(>|z|)	 Std.	Error	 z	value	 P(>|z|)	

Intercept	 2.12e-13	 -1.73	 0.082	 2.08e-01	 -16.76	 <	2e-16	 6.24e-01	 -12.62	 <2e-16	

Mileage	 2.44e-08	 4.92	 8.37e-07	 1.92e-06	 5.200	 1.99e-07	 5.69e-06	 4.99	 5.86e-07	

Mileage2	 6.22e-14	 -3.93	 8.22e-05	 4.30e-12	 -4.65	 3.27e-06	 1.26e-11	 -4.54	 5.58e-06	

	

	 For	the	Linear	Model,	the	R-squared,	Adjusted	R-squared,	and	p-value	are	

0.002068,	0.001943,	and	6.69e-08	respectively.		The	R-squared	value	is	extremely	low	

and	is	not	a	desired	result.		Typically,	an	econometrician	likes	to	see	high	R-squared	

values	because	this	means	there	is	not	much	information	being	left	out	of	the	model.		

The	p-value,	however,	is	also	very	low	and	is	a	desired	result.			

	 To	test	the	model,	prediction	tables	for	the	variable	“Replace”	are	created	to	

show	the	effectiveness	of	the	reduced-form	models.	At	the	basic	level,	a	prediction	

table	shows	how	many	times	(and	at	which	times)	the	model	correctly	predicted	the	

same	value	as	the	original	data.		Specifically,	this	information	is	useful	in	determining	

the	properties	of	our	reduced-form	model	and	how	well	it	fits	the	data.		Both	the	probit	

and	logit	models	have	the	same	prediction	tables	and	only	one	is	represented	in	Table	3	

Prediction	Chart.		The	predicted	values	are	those	that	the	reduced-form	model	predicts,	

and,	conversely,	the	actual	values	are	those	that	match	the	data.	
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Table	3	Prediction	Chart	

	 Actual	 	

0	 1	 Totals	

Predict	 0	 15,840	 124	 15,964	

1	 0	 0	 0	

	 Totals	 15,840	 124	 15,964	

	
	
	
	 The	above	table	shows	that	the	reduced-form	model	correctly	predicts	that	most	

of	the	time	no	replacement	will	be	made,	but	it	fails	to	predict	that	some	replacements	

will	be	made.			In	fact,	the	model	did	not	predict	any	replacements	given	the	data.		This	

is	an	interesting	result	and	will	be	explored	in	the	Interpretations	section.		

	 To	give	further	information	about	the	data,	a	regression	on	just	one	bus	group	

was	conducted.		Bus	group	T8H230	had	a	significant	proportion	of	replacements	with	27	

in	total.		Most	replacements	were	conducted	in	the	years	1982	to	1985,	and	each	bus	

that	had	a	replacement,	only	had	one.		Other	bus	groups	had	no	replacements	and	may	

not	give	much	information	about	the	data	so	it	is	reasonable	not	to	include	them	in	the	

tests.		In	this	process,	we	are	focusing	on	data	that	has	the	characteristic	we	are	

interested	in.		The	following	table,	Table	4	T8H203	Regression	Coefficients,	shows	the	

test	statistics	for	the	probit	regression	of	bus	type	T8H230	similar	to	the	full	regression	

of	all	data	points.		
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Table	4		T8H203	Regression	Coefficients	

	 Estimate	 Std.	Error	 z	value	 Pr	(>|z|)	

Intercept	 -5.955	 1.42	 -4.182	 2.89	e-05	

Mileage	 3.66	e-05	 1.53	e-05	 3.287	 0.0170	

Mileage2	 -8.566	e-11	 4.041	e-11	 -2.120	 0.0340	

		
	
	
	 A	prediction	table	for	bus	group	T8H230	follows	that	is	similar	to	the	previous	

prediction	table.		For	probit	and	logit	regressions,	predictions	of	the	data	are	used	to	

show	the	effectiveness	of	the	model.		Similar	to	using	r-squared	and	adjusted	r-squared	

values	in	the	linear	model	to	see	how	well	the	model	fits	the	data.	Table	5	T8H203	

Prediction	Chart	shows	the	replacements	the	probit	model	predicted.	

	
Table	5	T8H203	Prediction	Chart	
	
	

	 Actual	 	

0	 1	 Totals	

Predict	 0	 3,333	 27	 3,360	

1	 0	 0	 0	

	 Totals	 3,333	 27	 3,360	

	
	
	
	 This	model	has	a	correct	prediction	rate	of	99.12	percent.		Again,	the	model	

correctly	predicts	that	most	of	the	time	no	replacement	will	be	made,	but	still	fails	to	

predict	that	some	replacements	will	be	made.			
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Interpretation	
	
	
	 The	original	regression	that	included	the	full	data	set	showed	that	a	reduced-

form	model,	whether	it	is	probit	or	logit,	is	highly	significant	at	any	level	but	because	of	

the	low	R-squared	value,	more	data	should	be	included.		Other	data	could	include	the	

cost	structure	of	replacements.		For	example,	replacements	are	not	only	a	function	of	

odometer	readings	but	how	much	a	replacement	will	cost	or	how	the	drivers	take	care	

of	the	bus	through	care	while	driving.	Or,	maybe	the	month	of	the	year	affects	

replacements.		Unfortunately,	this	information	is	not	immediately	available	and	could	

be	included	in	future	research.		

	 Next,	the	data	was	narrowed	to	just	one	bus	group	that	had	a	high	proportion	of	

total	replacements.	A	similar	process	was	used	in	Rust’s	paper.		He	put	the	buses	into	

four	categories	and	left	out	two	or	three	bus	types	depending	on	the	test.		In	every	test	

at	least	one	type	was	left	out	of	the	testing.	For	this	test	just	one	bus	type	was	used.		

Bus	Type	T8H230	had	the	most	replacements	at	24.			Again,	the	model	was	highly	

significant	and	predicted	replacements	almost	100	percent	of	the	time	but	failed	to	

predict	any	replacements.	

	 The	results	are	interesting	and	can	be	interpreted	different	ways.		One	way	is	to	

push	the	effectiveness	of	the	reduced-form	model	by	stating	that	with	a	miniscule	p-

value	and	high	percentage	of	correct	predictions,	we	failed	to	reject	the	null	hypothesis.	

Statistics	are	a	powerful	tool	and	information	presented	in	the	right	light	carries	much	

persuasion	with	readers.			The	interesting	result,	though,	is	that	the	reduced-form	
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models	never	predicted	a	true	replacement.		An	unbiased	interpretation	should	not	

leave	that	information	untouched;	the	model	did	indeed	fail	to	match	the	data.		

However,	there	are	only	127	replacements	in	the	entire	data	set.		That	is,	out	of	15,964	

data	points	only	127	have	the	qualifying	characteristic	we	are	interested	in:	engine	

replacement.	Proportionally,	that	results	in	less	than	one	percent	of	the	data	points	that	

had	a	bus	engine	replacement	(true	value	is	0.77	percent).		This	leads	to	the	question;	

can	a	structural	model	predict	replacement?	If	not,	then	a	richer	data	set	is	needed.		

Rust’s	paper	does	not	include	predictions	of	the	structural	model	and	leaves	an	opening	

for	future	research	and	a	few	unanswered	questions	for	this	paper.			

Further	analysis	of	the	data	could	be	conducted	using	Monte	Carol	simulation	to	

test	data	derived	from	the	structural	model.			A	Monte	Carlo	simulation	takes	the	

moments	(mean,	variance,	skewness,	and	kertosis)	of	the	original	data	set,	use	that	

information	as	the	natural	data	generating	process	(DGP)	and	generates	new	data	for	

testing.		Probit	and	Logit	models	could	again	be	used	to	test	the	data.		After	prediction	

tables	are	made,	a	comparison	of	new	and	old	prediction	rates	could	give	more	

answers.			

Conclusion	
	
	
	 Given	estimations	and	significant	values,	it	can	be	concluded	that,	indeed,	a	

reduce-form	model	can	perform	well	given	the	data	set	provided	from	Optimal	

Replacement	of	GMC	Bus	Engines,	but	another	step	is	needed:	evaluating	the	

performance	of	the	structural	model.		In	deriving	the	results	it	was	shown	that	there	are	
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failures	of	the	reduced-form	model.		Maybe	it	is	that	the	data	set	is	not	rich	enough	for	

an	optimal	stopping	problem,	or	maybe	it	is	that	more	independent	variables	are	

needed	in	the	regression.		Either	way	the	reader	chooses	interpret	these	results	is	not	

wrong.		For	the	purpose	is	to	show	that	reduced-form	models	are	a	just	another	tool	

and	should	be	used	supplementary	to	structural	models.		The	ease	of	computation	

alone	should	motivate	an	econometrician	to	expand	her	tool	set	to	include	reduced-

form.				

	
		

Further	Research	
	
	
	 An	extension	of	this	paper	could	include	an	estimation	of	John	Rust’s	structural	

model	as	described	before.	Prediction	tables	of	the	artificial	data	derived	from	the	

structural	model	are	the	next	step	in	this	process.			Using	those	estimations	as	the	data	

generating	process,	a	Monte	Carlo	study	could	be	conducted	to	“compete”	the	two	

types	of	models	to	see	which	outperforms.		The	assumptions	are	that,	again,	the	probit	

and	logit	will	do	just	as	well	as	the	structural	model.				
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