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ABSTRACT 

 
 

Evaluation of Competition Between Turfgrass and Trees in the Landscape 
 
 

by 
 
 

Christopher Hendrickson, Master of Science 
 

Utah State University, 2008 
 
 

Major Professors: Dr. Kelly Kopp and Dr. Heidi Kratsch 
 
Program: Plant Science (Plant Physiology) 
 
 

Population growth in regions of the Intermountain West has resulted in rapid 

growth of residential neighborhoods.  In Utah, the landscapes associated with these 

expanding neighborhoods consume vast quantities of treated water. This is a concern in 

all states of the Intermountain West, as water becomes increasingly scarce.  Traditionally 

used turfgrasses, trees and other plants in Intermountain West landscapes require 

significant amounts of supplemental water considering the intense sunlight, dry winds 

and sparse rainfall typical of the region.  Characterizing the interactions between 

turfgrass and tree species in these landscapes can aid in the identification of candidate 

species that consume less nutritional and water resources, while maintaining satisfactory 

appearance. 

A study was conducted investigating the nature of interactions between tree and 

turfgrass species in a constructed landscape of the Intermountain West.  An experiment 

was performed investigating differences in rooting length and volume between 



     

 

iv 
combinations of two tree (Robinia pseudoacacia L., Gleditsia triacanthos var. inermis 

L.) and three turfgrass [Poa pratensis L., Buchlöe dactyloides (Nutt.) Engelm., Festuca 

arundinacea Schreb.] species.  A minirhizotron system was used to obtain root images at 

three times during the growing seasons of 2006 and 2007 at depths from 1-15 cm in each 

tree-turfgrass rooting zone.  Images were analyzed to determine combined total volume, 

length, and surface area of turfgrass and tree roots.  This research shows that root growth 

differences occur in turfgrass-tree combinations containing all three turfgrass species.  

Buffalograss best resisted possible root growth inhibition, regardless of tree combination. 

Further evidence shows that Robinia secondary growth is vulnerable to presence of 

turfgrass in proximity. 
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CHAPTER 1 

 
INTRODUCTION 

 
 

As the Intermountain West continues to expand in population, landscapes will 

continue to grow in number (Bartlett et al., 2000).  These residential and commercial 

landscapes often require large amounts of supplemental water and fertilization to ensure 

species survival under conditions of extreme seasonal temperature fluctuations and small 

amounts of precipitation. 

Plants placed in landscapes compete both above and below ground for the 

resources they need to survive and grow (Wilson, 1993).  Above ground, light and space 

are sought to ensure they capture enough light for photosynthesis.  Below ground, plants 

must compete for water and nutrients.  In the Intermountain West these resources are 

often scarce.  While the nature and severity of competition varies among plants, 

competition may result in proliferation of one species at the expense of another (Hardin, 

1960). 

Below ground competition among plants can have many sources, effects, and 

responses in plants.  Nitrogen-fixing symbiotic root nodules and allelochemical 

production can be seen in response to below-ground competition.  While these have been 

characterized in individual plants as general responses to competition, very little is 

known about how resource competition in the root zone affects landscape plants.   

Characterizing and describing these effects and responses to below ground 

competition in the landscape is critical for developing management programs that aid in 

selecting better adapted plants requiring less supplemental water and nutrients.   
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The objective of this study was to determine the effects of root-zone competition 

between turfgrasses and trees in landscapes of the Intermountain West using a 

minirhizotron system for non-destructive sampling. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Recent population growth in regions of the Intermountain West has resulted in 

rapid growth of residential neighborhoods (Bartlett et al., 2000).  Properties have 

increased in number, and ornamental landscapes usually accompany these properties.  

This is a concern in Utah, as water becomes increasingly scarce.  In a constructed or 

natural landscape, plants growing together in close proximity will compete for critical 

resources needed for growth and maintenance.  In the root zone of a constructed 

landscape, this may occur as trees and turfgrasses compete for water and nutrients.  Many 

plants have evolved morphological or biochemical adaptations to this competition above 

and/or below the ground (Watson, 2004).  The effects of this competition and plant 

responses to them are poorly understood, and little work has been done to quantify and 

understand the impacts of competition on plants in constructed landscapes.   

Traditionally used turfgrasses, trees and flowers often require significant amounts 

of supplemental water due to intense sunlight, dry winds and sparse rainfall.  Over half of 

the treated municipal and industrial water for many cities in the high-elevation, arid 

western United States is applied to residential and commercial landscapes (Stewart et al., 

2004).  In the Intermountain West, often the greatest demand on municipal water 

resources is from residential customers (Smith, 2004; Cerny et al., 2002).  In some cases, 

ordinances and laws have been issued mandating the implementation of landscapes that 

consume less water (Landscape Management, 2004).    
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The nature of competitive interactions between trees and turfgrasses comes from 

their shared location of roots in the soil profile.  Requiring oxygen for respiration, the 

roots of both turfgrasses and trees grow mostly in the top 15 to 20 cm of the soil profile 

(Stewart et al., 2004).  Less oxygen at greater soil depths limits tree root growth, though 

some tree roots can be found at depths exceeding one meter (Jackson et al., 1999).  As 

turfgrass and tree roots approach and encounter one another, interactions that are both 

competitive and beneficial may occur.  The effects of this competition and plant 

responses to them are poorly understood, and little work has been done to quantify and 

understand the impacts of competition on plants in constructed landscapes.  Rooting 

density of both trees and turfgrasses decreases as depth in the soil profile increases, and is 

found mostly in the top 30 cm of the soil profile (Kozlowski and Pallardy, 1997; Stewart 

et al., 2005; Turgeon, 2002).  It is in this area of the root zone that the most competition 

for water and nutrients occurs in landscapes.  In areas where these resources are limited, 

competitive effects may be even greater (Wilson, 1993).  Analyzing the effects of root-

zone competition can provide an understanding of how turfgrasses and trees respond to 

limited resources. 

Some root interactions result in production and release of allelochemicals, in 

which one species’ roots inhibit the growth of another species (Bertin et al., 2003).  These 

compounds can be exuded into the soil solution or exist as volatiles.  Allelochemicals are 

a common and powerful means of gaining a competitive advantage in ecological 

communities.  Interactions between plants with an allelopathic capacity and those 

subjected to the compounds, often result in significant inhibition of growth of the 

exposed plant (Appendix B).   
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Other research has found that among competition with herbaceous plants, tree 

root systems develop deeper root systems when compared to trees not under competition 

(Peek et al., 2005).  Ecological and forestry studies have highlighted the reduced survival 

of tree seedling survival from the presence of grass cover (Bush and Van Auken, 1990; 

Wagner et al., 1999).  In these studies, seedling survival probability was shown to 

significantly decrease from competing turfgrass cover.  Honey mesquite seedlings were 

found to have reduced biomass when grown in the presence of herbaceous cover, when 

given equal light and water (Bush and Van Auken, 1990).  Studies of grassland and 

prairie ecosystems showed that the increased mortality rates among tree seedlings under 

grass cover were not sufficient to induce total tree exclusion (Scholes and Archer, 1997).  

Analysis of root-zone interactions between tree and herbaceous species also shows that 

tree biomass decreases under competition with grass roots (Wilson, 1993).  Notably, less 

biomass reduction was seen, in experimental trees, in competition with other tree roots of 

the same species (Wilson, 1993).  Belsky (1994) showed that under intense rainfall, trees 

were not able to extend roots deeper into the soil profile, beyond the reach of herbaceous 

plant roots.  Conversely, in low-rainfall sites, trees did not compete as intensely for water 

and nutritional resources, as they were able to extend their root systems deeper into the 

soil profile, beyond the reach of herbaceous species roots.   

In nearly all residential and commercially landscape areas, placement of 

turfgrasses and trees in close proximity to one another is common.  Often, the turfgrass 

and tree species are adapted to very different climates.  Frequent use of non-native trees 

in landscapes of the Intermountain West is largely a function of the lack of suitable tree 

species, with nearly all requiring irrigation (R. Kjelgren, personal communication; M. 
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Kuhns, personal communication).  Many of the commonly used tree species are not 

native to Utah (M. Kuhns, personal communication).    Turfgrass species commonly used 

in landscapes have widely variable water and nutrient needs depending on genotypic and 

environmental factors (Turgeon, 2002).   

Plants produce allelochemicals to better compete for water and nutrient resources 

in the root zone.  Allelochemicals are derived from modifications made to secondary 

metabolites present in plant tissues (Rice, 1984).  These chemicals are produced by either 

decaying plant matter, volatilization from living plant tissues, or exudation from living 

tissues (Bonanomi et al., 2006; van Noordwijk, 1996).  Allelochemicals are known to 

affect germination, growth, development, distribution, and reproduction of a number of 

plant species (Jose et al., 2006).  Work has shown that a common trigger for production 

and release of these compounds into soils is insect herbivory (Thelen et al., 2005).  

Recent research has focused on the site of action for these allelochemicals.  These 

physiological and biochemical approaches have sought to determine the mechanism(s) by 

which the compounds are hindering other plants’ growth (Sanchez-Moreiras et. al, 2005).  

This study sought transcriptional responses to Arabidopsis plants subjected known 

allelochemical analogs.  The up-regulation of these genes identified a novel set of genes 

that the plant used to combat and metabolize xenobiotic compounds.  This work has 

shown that allelochemicals are found in the soil either from production by capable 

species root tissue, or by decomposing leaf litter.  The compounds can be constantly 

produced, or produced due to predation by mammals or insects (Thelen et al., 2005).  The 

effects of these compounds can be powerful, resulting in undesirable growth inhibition in 

vulnerable species (Rice, 1984).  A well-known example of this is found in Juglans nigra 
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L. (black walnut).  The tree exudes the allelochemical juglone from its roots and 

decaying leaves (Rietveld, 1983) preventing the growth of some competing tree species 

in close proximity.  

 

Minirhizotrons in Root Study 

A variety of techniques have been developed to study the rooting dynamics and 

growth of trees and turfgrasses.  However, virtually all of these techniques are destructive 

to the plants. Destructive sampling can only offer data on the plants’ root system at a 

particular moment in time, which may not be representative of how the plants’ root 

systems behave through the course of a year.  Rhizotron facilities allow the visual 

monitoring of root growth through windows to study plant root systems, but these 

facilities can be costly.  Replication may be limited as a consequence.  Addressing these 

limitations, minirhizotron systems were developed, reducing experimental cost and 

improving replication (McMichael and Taylor, 1987).  The minirhizotron system has 

been used with success in the study of root systems of plants for various purposes.  This 

nondestructive means of root imaging allows precise data to be extracted from dynamic 

root systems over time.  Root images captured with minirhizotron systems are analyzed 

by software through which physical data can be assessed (Ingram and Leers, 2001).  

Minirhizotron systems consist of a high-magnification camera inserted into a clear tube 

placed in the soil of the root zone of plants to be studied.  Visualized by connection to a 

field computer, either video or still images of the plant roots are analyzed.  Furthermore, 

minirhizotron systems allow for frequent, non-destructive data collection from root 

systems over time (Liu and Huang, 2002).  Currently, available software allows for 
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analysis of the images collected using minirhizotrons and export of data for further work 

(Ingram and Leers, 2001).  Programs such as WinRhizo™ and RooTracker™ allow for a 

computer operator to load images from the minirhizotron system for digitization.  In this 

process, physical dimensions are calculated and assigned to all roots of all images.  

Further, these programs allow for the study of root architecture by tracking the growth of 

lateral roots off primary roots, designated by the operator.  It is the combination of the 

minirhizotron system, with this software that has allowed for successful long-term study 

of root system dynamics. 

Along with the camera and image collection computer, the minirhizotron system 

is also comprised of clear tubes through with the camera is inserted.  Roots encountering 

these tubes are captured and analyzed.  Tubes vary greatly in composition, orientation to 

target plants, length, shape and width/diameter.  Research objectives can lead to different 

image collection practices.  Intervals of 2, 5 or 10 cm could be used when collecting 

images with the minirhizotron system.  To ensure maximum accuracy in repeated session 

imaging with minirhizotron systems, outsides of tubes are commonly marked with tape or 

etched marks of precise distance intervals.  If images of identical locations over time 

diverge by even one or two millimeters, data analysis can be rendered inaccurate.  This 

would lead to a data set that doesn’t represent the actual dimensions of the root system. 

Computation of root physical dimensions provides a sufficient description of 

rooting quantity and depth, which correlate to the plants’ relative ability to extract water 

and nutrients from the soil profile (Ho et al., 2004). 
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Turfgrass Roots 

     Minirhizotrons have been used extensively in turfgrass studies since their 

introduction.  Murphy et al. (1994) evaluated minirhizotron methods for measuring 

rooting of creeping bentgrass (Agrostis stolonifera L.) and annual bluegrass (Poa annua 

L.).  They compared the method with destructive core sampling techniques for evaluation 

of root length and root weight densities and observed a seasonal pattern of turfgrass root 

development over time.  The minirhizotron method was found to be suitable for studying 

root phenology and profile distribution of turfgrasses.  The technique also gave a 

reasonable measurement of root quantity throughout the growing season (Murphy et al., 

1994).  Liu and Huang (2002) used the minirhizotron technique to study mowing effects 

on root production, growth, and mortality of creeping bentgrass.  They found that low 

mowing height was found to decrease new root production and to increase root mortality 

for both cultivars, and low mowing increased the ratio of dead to new roots in length and 

number.  The decreased root production and increased mortality caused by low mowing, 

in turn, had the potential to lead to water deficits and nutrient deficiencies (Liu and 

Huang, 2002).  Further exploring effects of water deficit, Fu et al. (2003) evaluated root 

growth of tall fescue (Festuca arundinacea Schreb.) exposed to deficit irrigation during 

the summer with a minirhizotron system.  Severe deficit irrigation applied to the turfgrass 

was found to increase total root number, illustrating the plants’ compensation 

mechanisms (Fu et al., 2003).   
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Tree Roots 

Tree rooting has been studied extensively in forest environments.  Studies have 

characterized tree root growth as a result of changes in soil nutrient or gas levels of a 

forest ecosystem (Jose et al., 2006; Joslin et al., 2000; Kern et al., 2004).  Work dating 

back over 10 years describes the forest nutrient flux in terms of carbon allocation and 

flow (Fogel, 1990; Jackson et al., 1999; Johnson et al., 2000; Thomas et al., 1996).  

Analysis of root dynamics with minirhizotrons was performed in forest settings, in which 

effects of elevated soil CO2, nitrogen fertility and time have been examined on pine and 

fir forest rooting characteristics (Johnson et al., 2000).  Other work has addressed the 

nutrient and water needs of trees in the urban and suburban environment.  Kjelgren and 

Montague (1998) evaluated the effects of features in the urban landscape on commonly 

planted trees.  The increased temperature and long-wave radiation associated with paved 

surfaces proved to have a substantial effect on Acer platanoides L. and Fraxinus 

americana L. water demand and water flux.   

Tingey et al. (2003) used minirhizotrons to determine optimal sampling 

frequencies for evergreen and deciduous tree species.  Using a minirhizotron system, 

Douglas fir (Pseudotsuga menziesii Mirb.) and littleleaf linden (Tilia cordata Mill.) were 

studied at sampling frequencies of 1, 2, 4 or 8 weeks.  The least frequent sampling was 

found to underestimate production and mortality of roots.  Thomas et al. (1996) used 

minirhizotrons to evaluate the seasonal root distribution of Monterey pine (Pinus radiata 

D. Don) grown at ambient and elevated carbon dioxide concentrations.  Elevated carbon 

dioxide levels were found to increase root carbon density (88%) within 0.15 m radius of 

the trees compared with ambient rhizospheric carbon dioxide levels (35%). Root carbon 
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density, or root carbon dioxide flux density, measures respirative capacity per unit area 

of root tissue. 

Turfgrasses and trees are not found growing together in significant numbers or 

sizes anywhere in nature, with a few exceptions (Watson, 2004).  Some climatic, soil, and 

anatomical factors influence the effects of this competition for both plant types 

(Hernandez-Leos, 1998).  Inevitably, the branches and leaves of trees growing near 

turfgrasses will intercept much of the light that otherwise would reach the turfgrass (Fry 

and Huang, 2004), creating a poor environment for turfgrass growth.   

Nodulating trees have access to a larger pool of available nitrogen (N) than do 

non-nodulating trees.  The N-fixing process occurring in the root nodules allows for trees 

to gain access to atmospheric N.  If trees and turfgrass are planted together, competition 

for N may occur (Hernandez-Leos, 1998).  With access to a larger source of N, 

nodulating trees would likely have a competitive advantage relative to non-nodulating 

trees, assuming supplemental N was not applied.  For this reason, a nodulating tree 

species such as black locust (Robinia pseudoacacia L.) might gain a competitive 

advantage over other tree species either with or without turfgrass presence.  The 

proliferation of the nodulating tree species black locust has been found to inhibit 

regeneration of pine forests in coastal sandy soils by outcompeting pines for space and N 

resources due to N fixation (Taniguchi et al., 2007).  Black locust is also found thriving 

in large monocultures in Japan (Nasir et al., 2005).  Black locust is an N-fixing tree, 

hosting Rhizobium bacterial symbionts in its root nodules.  Black locust undergoes very 

rapid juvenile growth, and has a N-fixing capacity of 30-35 kg ha-1 year-1 (Boring and 

Swank, 1984).  It is an early succession species, with the ability to form large stands that 
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rapidly out-compete nearby plants (Nasir et al., 2005).  Honeylocust is not a nodulating 

tree (Dirr, 1998).  While it lacks the ability to fix atmospheric N, it establishes well in 

most climates found in the continental United States and is commonly used in landscapes.  

Minirhizotrons have rarely been used, however, for the below-ground study of 

resource competition.  Peek et al. (2005) used a minirhizotron system to study fine root 

mortality and distribution related to resource competition among two native grasses and 

Big Sagebrush in the Great Basin desert.  While they did not directly compare species to 

one another, they did find that water availability did not correlate to fine root persistence 

in the species studied.  Hernandez-Leos (1998) found that Norway maple (Acer 

platanoides L.) tree rooting was altered in the presence of turfgrass or barley competition.  

This study determined that maple root systems produced far more biomass at greater 

depths in the soil profile when there was herbaceous competition compared to trees in 

mulch-covered plots.  These findings suggest a stress-response by the tree from the 

competition, possibly affecting tree resource acquisition in the soil profile. 

Spatial and temporal rooting dynamics of two tree species and three turfgrass 

species grown in various combinations were evaluated with a minirhizotron system with 

the objective of determining the effect of tree and turfgrass combination on root growth.  
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CHAPTER 3 
 

MATERIALS AND METHODS 
 
 

 
Plot Layout and Maintenance 

This study was conducted in 2006 and 2007 at the Utah State University 

Greenville Research Farm in North Logan, Utah (41°7’N, 111°8’W).  The experiment 

was arranged in a randomized, split-plot design with turfgrass species serving as the 

whole-plot factor and tree species serving as the subplot factor.  Twenty plots measuring 

6 × 6 m were installed on a Millville loam soil (a coarse-silty, mesic Typic Haploexeroll).  

Whole-plot factors included tall fescue (Festuca arundinacea Schreb.), buffalograss 

[Buchlöe dactyloides (Nutt.) Engelm.], Kentucky bluegrass (Poa pratensis L.) and 

mulched plots with trees but no turfgrass cover.  Each main turfgrass plot was split into 

two subplots containing one of two tree species, which served as the subplot factor 

(Figure 1), including nodulating black locust (Robinia pseudoacacia L.) and non-

nodulating honeylocust (Gleditsia triacanthos var. inermis L.) trees.  Buffalograss and 

Kentucky bluegrass plots were seeded and established in September 1998.  Tall fescue 

plots were established from sod in April 2005.  In April 2005, one black locust (Robinia 

pseudoacacia L.) and one honeylocust (Gleditsia triacanthos L.) tree was installed in 

opposing corners of each plot (5 m from each other).  The 20 plots included eight 

replications of buffalograss, four replications of tall fescue, four replications Kentucky 

bluegrass, and four replications of mulch-covered plots.  Eight buffalograss replications 
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were included due to lack of space to include turfgrass controls, and to collect 

additional data on the native buffalograss.   

 

TF KBG B B  
None None B TF  

B TF KBG KBG N 
KBG B TF B ▼ 

B B None None  
 
 
 
Figure 1. The arrangement of the plots with letters to indicate whole plot factor. B, 

‘None’, TF and KBG represent the whole plot factor, turfgrass coverage.  ‘B’-

Buffalograss; ‘TF’-tall fescue, ‘KBG’-Kentucky bluegrass, ‘None’-plots covered only 

with mulch. ‘N’-North. 

Two 90- × 5-cm minirhizotron tubes were installed at the base of each tree in each 

plot for imaging of root systems of both tree and turfgrass species.  Plots were hand-

weeded as needed and were mowed weekly at a height of 7.62 cm.  Plots were fertilized 

once annually with only 0.2441 kg N per 100 m2 to encourage root nodule formation.  
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Plots were irrigated both years at 80% evapotranspiration (ET) replacement. 

Minirhizotron (Bartz Technology, Carpinteria, CA) installation and use followed Murphy 

et al. (1994).  Tubes were installed April 2005, into the soil 20 cm from tree trunks in a 

lateral orientation and at a 30° angle downward from the soil surface.  Root-zone images 

were captured at 1-cm increments down the first 30 cm of each tube using the 

minirhizotron camera.  Images were acquired at eight-week intervals in June, August, and 

October (Sessions 1, 2, and 3, respectively) of 2006 and 2007.  Turfgrass quality ratings 

were assessed at each imaging session to quantify overall vigor and health, with 9 being 

the best quality rating and 1 being the worst (Skogley and Sawyer, 1992).   

 

Minirhizotron System 

Two clear cylindrical CAB minirhizotron tubes (90-cm-long, 5-cm-diameter) 

were inserted 20 cm from the base of the trunk of each tree into the soil using a metal 

guide tube (Figure 2) to prevent scratching of tubes during insertion (Johnson et al., 

2001).  Use of a guide tube also minimized soil compaction around the tube perimeter, 

and established good soil-to-tube contact (Johnson et al., 2001).  The tubes were placed at 

30° angles into the soil surface, lateral to tree trunks 15 cm deep (Figure 2).  This 

placement was used to provide representative images of both primary and fine roots 

originating from, and extending away from the trunk base.  Open ends of all tubes at the 

soil surface were covered between image-collection sessions with a polyvinyl chloride 

(PVC) end-cap over the above-ground end of the tube.  This was done to prevent 

irrigation water, rain water and light from entering the tubes, as well as minimizing 

interior condensation accumulation.  Prior to each imaging session, tubes were cleaned of 
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any internal condensation or dirt with a 9.5-mm pile paint-roller (washed and cleaned 

each time) placed on the end of a 2-m pole.  Upper ends of tubes were located 

approximately one inch above the soil line. 

 

Figure 2. Placement of minirhizotron tubes in plots. Vertical line indicates split plot.  

Tubes measure 40 × 5 cm, inserted 30° into soil. 

 

Tubes were set at right angles to one another (Figure 2).  Top ends of access tubes 

were 1 m apart.  The camera included with the minirhizotron system (BTC 100-X, Bartz 

Technology Corp., Carpinteria, CA) was used to take still images of the roots.  Due to the 

tube insertion angle of 30°, images taken at a tube length of 30 cm correspond to a soil 
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depth of 15 cm.  With this tube insertion angle, imaging of soil at depths to one-half 

the length of the tube can occur.  Deeper measurements would have required a greater 

angle of insertion. 

For measurements, the camera was moved manually down the tube with an 

attached indexing handle.  With the majority of competition between turfgrasses and trees 

expected in the top 30 cm of the soil profile (Kozlowski and Pallardy, 1997; Stewart et 

al., 2005; Turgeon, 2002), we chose to collect data in 1 cm intervals from the upper 15 

cm of the soil profile.  This interval could be varied based on the research question(s) 

being asked and the design of the experiment.  Our measurements represented combined 

tree and turfgrass roots visible in each tube.  Tree and turfgrass measurements were 

combined due to difficulty in distinguishing between tree and turfgrass species roots at all 

soil depths.  Cellulose acetate butyrate tubes were chosen to improve root pigmentation, 

which can aid root species distinction (Withington et al., 2003), but this was not apparent 

in our study.  We analyzed images to determine root physical dimensions using 

RooTracker™ v. 2.03 software (Duke University, Durham, NC).   

 

Root Dimensional Analyses 

Before analysis of minirhizotron images, RooTracker™ was calibrated by loading 

an acquired image of a metric ruler into the program.  A diameter measurement was 

performed by inserting a user-drawn 1-cm-diameter circle on the ruler contained in the 

image.  The program was calibrated to equate 66 pixels to 1 cm.  This allowed 

RooTracker™ to assign dimensions to measured roots in acquired images (Figure 3).  

First we traced the root length with a series of connected lines along the center of each 
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root.  The program then summed the pixel length of all traced lines for the root.  We 

assigned a root diameter by tracing circles to the two-dimensional width of each root in 

each image.  

 

Figure 3. A sample minirhizotron image, from a buffalograss-black locust plot, from 10 

cm soil depth.   

If the root changed diameter along its length, we traced multiple circles at each unique 

diameter section of the root.  RooTracker™ then computed a differential diameter across 

root length from circle to circle.  RooTracker™ computed root volume using the 

following formula: 
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in which ‘r’ represents the root radius, ‘length’ represents the root length, and 

‘Volume’ represents the computed root volume of an individual tree or turfgrass root.  

To assess combined tree and turfgrass total root length (TRL) and volume (TRV), 

images were analyzed with RooTracker™ 2.03 digitizing software.  Total root volume 

and TRL were acquired by summing all root volumes and lengths in each frame image.  

These values were then summed for all thirty frame images in each tube.  These summed 

values represented combined TRV and TRL of both tree and turfgrass roots encountering 

the tubes.  The TRV and TRL values were combined due to the difficulty in sufficiently 

distinguishing between tree and turfgrass species roots, particularly at depths exceeding 

10 cm.  Therefore, each frame image was treated as a composite of tree and turfgrass 

roots.  Tree roots’ total combined volume and length from mulched-plots were used to 

provide approximate maximum root content in turfgrass-covered plots. 

Tree caliper measurements (cm) were recorded at diameter breast height (dbh) 

prior to each imaging session.  Tree secondary growth (TSG) was determined by 

calculating the difference in tree caliper measurements from June 2006 to October 2007.  

Monthly mean maximum temperature and total monthly rainfall were recorded with an 

on-site weather station (Campbell Scientific ET 106, Campbell Scientific, Logan, UT).   

 

Statistical Analyses 

The experiment was statistically analyzed using PROC MIXED repeated 

measures analysis (SAS Inst., 2004).  Turfgrass and tree species, as well as session of 

measurement were treated as fixed variables and replication was a random variable. The 

analysis was repeated by session of measurement.  Data were log transformed to meet the 
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NID (equal variance and normal distribution of residuals) assumptions of analysis of 

variance.  Pair-wise comparisons of means were made using Saxton’s ‘pdmix800.sas’ 

macro (Saxton, 1998). These analyses were repeated for tree secondary growth (TSG) 

measurements.   
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CHAPTER 4 

 
RESULTS AND DISCUSSION 

 
 
 

Root Data 

Turfgrass species, tree species, and their interactions significantly affected TRV and TRL 

depending on session (Tables 1 and 2).  The interaction of treatment factors was significant for 

TRL, in June of 2006 and October of 2007 only.  The interaction of treatment factors was 

significant for TRV, in June and August of 2006 only (Tables 1 and 2).  Turfgrass species 

significantly affected TRL over the entire course of the experiment, but only significantly 

affected TRV in June and August of 2006.  Total root length and TRV was significantly lower in 

the mulch-covered plots than in all other plots, though not always significantly different (Figures 

4 and 5).  In Kentucky bluegrass–honeylocust combinations, TRL and TRV fluctuated more than 

any other honeylocust-containing plots (Figure 4) in 2006.  Over the course of the experiment, 

TRL means for mulch-covered plots were significantly lower than those of tree-turfgrass plots 

(Table 3).  This was not the case for mulch-covered plot TRV means (Table 4).  Mean TRL and 

TRV differences between buffalograss and tall fescue in combination with both tree species were 

not statistically different in any session of measurement (Tables 3 and 4).  Tree secondary 

growth was significantly affected by tree species, turfgrass species and their interaction (Table 

5).  All three turfgrass species affected lower secondary growth in black locust relative to 

mulched plots, while Kentucky bluegrass presence resulted in near-double the secondary growth 

inhibition of buffalograss and tall fescue (Figure 6 and 7). 
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Table 1. Summary of analyses of variance indicating significant source effects on combined 
turfgrass and tree total root length (cm) differences by session. 

 2006  2007  

source df session 1 session 2 session 3 session 1 session 2 session 3 

turfgrass 3 *** *** *** *** *** *** 

tree 1 *** NS† NS NS NS NS 

turf × tree 3 *** NS NS NS NS * 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the 0.001 probability level. 

† NS = not significant.  

 

Table 2. Summary of analyses of variance indicating significant source effects on combined 
turfgrass and tree total root volume (cm3) differences by session. 

 2006  2007  

source df session 1 session 2 session 3 session 1 session 2 session 3 

turfgrass 3 * *** NS† NS NS NS 

tree 1 NS ** NS NS NS NS 

turf × tree 3 * *** NS NS NS NS 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the 0.001 probability level. 

† NS = not significant. 
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Table 3. Turfgrass total root length (cm) means by session of measurement. 

  2006   2007  

turfgrass session 1 session 2 session 3 session 1 session 2 session 3 

B‡ 270.671B 626.662A 522.546A 569.416A 649.934A 696.592A 

KBG† 860.067A 559.937A 488.501A 581.923A 689.226A 811.084A 

TF† 232.403B 527.937A 545.297A 585.741A 669.292A 747.170A 

None 
(Mulch)† 

    9.595C   21.119B   14.636B   17.825B   20.530B   25.853B 

† N= 4, unless otherwise indicated. 

‡ N= 8. 

Note: All means of tree / turfgrass combinations followed by the same letter within each session 
group, are not significantly different at p =0.05 according to Fisher’s least significant difference 
test. 

HL–honeylocust, BL-black locust, B-buffalograss, KBG-Kentucky bluegrass, TF-tall fescue, 
None-mulch-covered 

 

Tree Caliper Measurements 

There was a significant interaction among tree × turfgrass species on TSG over the course 

of the experiment (Table 7).  All black locust trees in the mulch-covered plots had greater TSG 

than all black locust trees in plots containing turfgrass (Figure 3).      Honeylocust TSG was 

significantly inhibited in competition with buffalograss relative to mulched control plots.  Some 

physical damage occurred to black locust trees in both 2006 and 2007 due to wind damage and 

predation by the locust borer (Megacyllene robineae Forster). 
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Table 4. Combined tree and turfgrass total root volume (cm3) means by session of 
measurement.   

  2006  

Turfgrass / tree combination† session 1  session 2 

HL-Mulch   0.849B    3.098CD 

HL-B‡   6.473B    9.375BCD 

HL-TF 14.336B  15.813B 

HL-KBG 40.633A  43.553A 

BL-Mulch   0.316B    1.378D 

BL-B‡   9.253B  12.211BC 

BL-TF 11.128B  14.865B 

BL-KBG   7.801B    7.65BCD 

† N= 4, unless otherwise indicated. 

‡ N= 8. 

Note: All means of tree / turfgrass combinations followed by the same letter within each session, 
are not significantly different at p =0.05 according to Fisher’s least significant difference test. 

HL–honeylocust, BL-black locust, B-buffalograss, KBG-Kentucky bluegrass, TF-tall fescue, 
Mulch-mulch-covered. 
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Figure 4. Combined turfgrass and tree total root length (TRL) means by session for 2006 and 
2007 (cm).  Vertical bars represent standard error of means. 
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Figure 5. Combined turfgrass and tree total root volume (TRV) means by session for 2006 and 
2007 (cm3).  Vertical bars represent standard error of means.
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Table 5. Summary of analyses of variance indicating significant source effects on tree 
secondary growth (cm) (TSG) from 2006 to 2007. 

source df TSG 

tree 1 *** 

turfgrass 3 ** 

tree × turfgrass 3 * 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the 0.001 probability level. 
 
 

Tree and turfgrass species and tree × turfgrass interactions impacted tree 

secondary growth in this experiment (Table 7).  Growth among the three turfgrass species 

reduced secondary growth in black locust (Figure 6).  This is consistent with previous 

findings by Stewart et al. (2005) who cited that both buffalograss and Kentucky bluegrass 

inhibited successful establishment of littleleaf linden trees (Tilia cordata Mill.).  Due to 

shared deep rooting characteristics with buffalograss (Turgeon, 2002), tall fescue may 

have had the same effects on tree establishment and subsequent growth in this study.  

Hernandez-Leos (1998) also found that Kentucky bluegrass inhibits tree root growth and 

establishment.  Only buffalograss competition inhibited secondary growth of honeylocust 

(Figure 7).  Of all black locust trees, those grown in control plots without a turfgrass 

cover achieved the most secondary growth (Figure 6).  Of all honeylocust trees, only 

those in competition with buffalograss exhibited significantly reduced TSG relative to the 
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mulched-plots (Figure 7).  The higher growth rate of black locust trees in mulch-

covered plots suggests the presence of competitive effects, though this cannot be proven. 

Figure 6. Mean secondary growth (cm) of black locust trees in combination with 

turfgrasses from June 2006 to October 2007. 

B-buffalograss, KBG-Kentucky bluegrass, TF-tall fescue, None- mulch-covered 

Note: All means of tree / turfgrass combination followed by the same letter are not 
significantly different (p = 0.05) according to Fisher’s least significant difference test.   
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Figure 7.  Mean secondary growth (cm) of honeylocust trees in combination with 

turfgrasses from June 2006 to October 2007. 

B-buffalograss, KBG-Kentucky bluegrass, TF-tall fescue, None- mulch-covered 

Note: All means of tree / turfgrass combination followed by the same letter are not 
significantly different (p = 0.05) according to Fisher’s least significant difference test. 
 
Climate 

June and July of 2006 did not have as much rainfall as June and July of 2007 

during peak heat stress (Figure 8).  Monthly mean maximum temperatures were nearly 

identical, peaking at 33-34°C in July of both years. 
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Figure 8.  Mean monthly maximum temperature (°C) and total monthly rainfall (cm) for 

the 2006 and 2007 growing season.  Mean temperature calculated as average of high 

temperature of each 24-hour period per month. 

Visual Responses  

Differences observed in TRV and TRL did not manifest above ground for the 

turfgrasses, as turfgrass ratings were consistent with expected seasonal declines and 

recoveries.  Ratings were performed following the procedures described in Skogley and 

Sawyer (1992). 

 Due to low amount of tree roots identified in all plots, conclusions regarding the 

presence and effects of competition between the trees and turfgrasses could not be made.  

However, some indirect data suggests that competitive interactions could have occurred 
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between some of the turfgrasses and trees in our experiment.  Kentucky bluegrass 

rooting was inhibited by presence of black locust trees.  Further, tall fescue and 

buffalograss exhibited consistent root length and volume. Finally, buffalograss only 

inhibited secondary growth of honeylocust, while all turfgrass presence inhibited 

secondary growth of black locust relative to trees in mulch covered plots.   

Total root volume and TRL in plots containing Kentucky bluegrass was lower in 

the presence of black locust trees relative to honeylocust trees (Figure 4 and 5), though 

not always significantly different.  Sullivan et al. (2000), found that Kentucky bluegrass 

root systems consisted of >80% fine roots (<0.2 mm diameter), and these roots were 

positively correlated to the plants’ total N uptake rate.  Our results are consistent with 

these findings, given the presence of competing roots from black locust trees.  Evidence 

for black locust root presence was found in mulch-covered plots.  Mulched plot TRL 

means were nearly 15 cm in October 2006 and 26 cm in October of 2007 (Figure 4).  The 

N-fixing ability of black locust may have allowed for more N uptake, and consequent 

growth (Boring and Swank, 1984) compared to Kentucky bluegrass.  Secondly, reduction 

in TRV and TRL of black locust and Kentucky bluegrass plots, compared to buffalograss 

and tall fescue, may be a function of Kentucky bluegrass’s native climate.  A native grass 

of Europe and northern Asia (Casler and Duncan, 2003), Kentucky bluegrass is uniquely 

adapted to climates with higher annual precipitation and lower mean monthly summer 

temperatures than those of the 2006 and 2007 growing seasons (Figure 8).  This may 

exacerbate growth inhibition of roots by nodulating black locust roots.  Taking advantage 

of its adaptation to higher soil moisture content from more frequent rain events, Kentucky 

bluegrass developed a highly dense system of fine roots.  Such a shallow network of fine 
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roots has been shown to undergo severe dieback during heat stress (Bonos and 

Murphy, 1999; Turgeon, 2002).  The Kentucky bluegrass in this experiment was exposed 

to stress-inducing temperatures both 2006 and 2007.   

Total root volume and TRL of buffalograss and tall fescue were more consistent 

over time than with Kentucky bluegrass in the presence of black locust trees (Figure 4).  

Klingenberg (1992), found that buffalograss frequently produces fine root mass at depths 

up to and exceeding 0.9 m.  Fu et al. (2007) found that tall fescue produces significantly 

more root length and surface area at up to 18 cm soil depth under a 20% ET replacement 

irrigation regime, compared to 60 and 100% ET irrigation regimes.  The superior rooting 

depth potential of tall fescue and buffalograss, may explain our consistently greater TRL 

and TRV across all sessions in these plots (Klingenberg, 1992; Qian et al., 1997; Weaver, 

1958).  Huang (1999) found that buffalograss produced roots well below 30 cm in depth 

even under localized soil drying.  Our results were consistent with these findings, in that 

tall fescue and buffalograss may have avoided the effects of competition with the 

nodulating tree because their root systems can often extend to a depth below many of the 

black locusts’ fine roots (Huang, 1999; Qian et al., 1997), in contrast to mulch-covered 

plots.  Differences in TRL versus TRV and their significance in the same imaging 

sessions suggest the presence of tree roots (in the amounts measured in mulch-covered 

plots).  With larger diameters observed than turfgrass, tree roots would maintain a high 

TRV as TRL drops.  This could result from turfgrass root dieback during peak summer 

heat stress.  Mulch-covered plots offered an approximation of maximum tree root length 

and volume without the competitive effects of turfgrass presence.  While still present, 
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tree root length and volume in turf-covered plots were likely reduced, to different 

extents, given the effects of competition on each tree from the turfgrass cover.   
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CHAPTER 5 

 
CONCLUSIONS 

 
 

Competitive effects may have existed between the turfgrass and tree species in 

this experiment, but this cannot be proven.  Provided a consistent means of species 

identification, our system may be used to further study competitive interactions in the 

root zone of constructed landscapes.  Despite this difficulty with this, we cannot conclude 

that there were homogenous root growth responses among the tree-turfgrass 

combinations.  Though our objective was not satisfied, additional research in which roots 

could be distinguished should still be pursued.  Additionally, research with other 

landscape plant species would also be useful. 

This study encountered some difficulties that made the achievement of 

experimental objectives quite challenging.  While our null hypothesis was not accepted 

(in Chapter 3) we were unable to adequately meet experimental objectives.  Further study 

of below-ground interspecific competition will require a consistent and uniform means of 

root species distinction for definitive conclusions to be made using our system.  Analysis 

of turfgrass and tree combinations do show distinct differences among both tree caliper 

growth and rooting extent (Tables A-1, A-2).  With such economically important 

consequences, this area of research necessitates further investigation.   

In study of below-ground competition and its effects, perhaps the most important 

requirement is a complete and thorough understanding of minirhizotron technique.  By 

applying the benefits, and minimizing minirhizotrons’ drawbacks experiments can be 
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designed that capture the subtle effects of below-ground competition among trees and 

turfgrasses.   

Research into resource competition among plants remains a critical area of 

research for biochemical, ecological, agronomical, and horticultural concerns.  Some of 

the root growth inhibition seen in our rhizotron study suggested the presence and effects 

of allelochemical exudation.  For this reason, we explored the chemical families present 

in fine root tissues of our field-grown black locust specimens (Appendix B).   
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Table A-1. Black locust tree caliper measurements (at dbh) for 2006- 2007 

Calipers (cm) for sessions 1-6 from 2006-
2007      
Whole-plot 
turfgrass  

Tree 
Number 

Session 
1 

Session 
2 

Session 
3 

Session 
4 

Session 
5 

Session 
6 

        
Buffalograss 1 5.08 5.715 6.35 6.6675 6.985 7.3025 
Kentucky bluegrass 3 5.3975 5.3975 5.715 6.0325 6.35 6.35 
Buffalograss 5 8.335 10.97 10.97 11.97 14.605 15.3025 
None (Control) 7 9.525 10.16 10.4775 11.43 11.7475 12.065 
Tall fescue 9 5.08 5.715 5.715 6.35 6.985 7.3025 
Kentucky bluegrass 11 6.985 6.985 7.3025 7.62 7.9375 8.5725 
None (Control) 13 8.065 10.7 13.335 13.6525 13.97 14.605 
Tall fescue 15 8.255 8.5725 9.2075 9.6675 9.985 10.3025 
Buffalograss 17 3.81 4.445 5.3975 6.35 6.6675 6.985 
Buffalograss 19 7.62 7.62 8.255 8.255 8.5725 8.89 
None (Control) 21 8.89 10.16 10.795 10.795 11.43 12.7 
Tall fescue 23 6.35 6.6675 6.985 7.62 7.62 8.5725 
Kentucky bluegrass 25 5.715 6.0325 6.35 6.35 6.35 7.62 
Buffalograss 27 6.35 6.985 7.3025 7.9375 8.255 9.2075 
Buffalograss 29 5.715 6.35 6.35 7.62 8.5725 9.525 
Buffalograss 31 7.62 7.62 8.255 8.255 8.89 9.8425 
Tall fescue 33 5.715 5.715 6.35 6.35 6.985 7.62 
Kentucky bluegrass 35 5.08 5.08 5.3975 5.3975 5.715 6.35 
Buffalograss 37 4.445 4.445 4.7625 5.08 5.08 5.715 
None (Control) 39 12.7 13.335 13.6525 13.6525 13.97 14.605 
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Table A-2. Honeylocust tree caliper measurements (at dbh) for 2006 and 2007 

Calipers (cm) for sessions 1-6 from 2006-2007      

Whole-plot turfgrass  Tree Number 
Session 
1 

Session 
2 

Session 
3 

Session 
4 

Session 
5 

Session 
6 

        
Buffalograss 2 1.905 1.905 1.905 1.905 1.905 1.905 
Kentucky bluegrass 4 3.175 3.175 3.175 3.175 3.175 3.4925 
Buffalograss 6 2.54 2.54 2.54 2.54 2.54 2.54 
None (Control) 8 5.715 5.715 5.715 5.715 6.35 6.35 
Tall fescue 10 1.905 1.905 1.905 1.905 2.54 2.54 
Kentucky bluegrass 12 2.54 2.54 2.54 2.54 2.8575 2.8575 
None (Control) 14 6.35 6.35 6.35 6.35 6.6675 6.6675 
Tall fescue 16 1.905 1.905 1.905 1.905 1.905 1.905 
Buffalograss 18 6.6675 6.6675 6.6675 6.6675 6.985 6.985 
Buffalograss 20 2.2225 2.2225 2.2225 2.2225 2.2225 2.2225 
None (Control) 22 7.62 7.62 7.9375 7.9375 7.9375 8.255 
Tall fescue 24 1.905 1.905 1.905 1.905 2.2225 2.2225 
Kentucky bluegrass 26 2.54 2.54 2.54 2.54 2.54 2.54 
Buffalograss 28 2.54 2.54 2.54 3.175 3.175 3.175 
Buffalograss 30 1.905 1.905 1.905 1.905 1.905 1.905 
Buffalograss 32 2.54 2.54 2.54 2.54 2.54 2.54 
Tall fescue 34 1.905 1.905 1.905 1.905 1.905 1.905 
Kentucky bluegrass 36 2.54 2.54 2.54 2.54 2.54 2.8575 
Buffalograss 38 1.905 1.905 1.905 1.905 1.905 1.905 
None (Control) 40 6.0325 6.0325 6.35 6.35 6.35 6.6675 
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APPENDIX B 

INVESTIGATION OF ALLELOCHEMICAL PRESENCE IN FINE ROOT TISSUE OF 

BLACK LOCUST (Robinia pseudoacacia L.) 

 

ABSTRACT 

The presence of allelochemicals in the root zone of landscaped areas can have 

severe effects on the survival and proliferation of desired species.  These compounds are 

exuded by living or decomposing plant tissues as a means of competition for nutrient and 

water resources.  When exposed to these compounds, vulnerable species often exhibit 

significant root growth inhibition.  Some species used in landscapes of the Intermountain 

West exhibit allelopathy.  The allelochemicals produced by some of these plants are 

highly specific and effective.  There are very few thorough descriptions of many of the 

compounds found in allelopathic species in landscapes.  Native to the American plains 

and west, black locust trees have been explored as a source of potent bioactive chemicals.  

Allelochemicals from this tree vary in size and structure, but most come from the 

flavanoid family of chemicals.  Only a small portion of the described flavanoid chemicals 

found in black locust have been shown to be allelopathic.  As grasses and trees are 

frequently placed in close proximity in landscapes, additional exploration into the activity 

of these compounds is needed to fully understand the potential consequences of including 

black locust trees in a landscape setting.  A separation and analysis of field-grown black 

locust root extract was performed to determine chemicals present.   
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Introduction 

Over time, plants producing allelopathic compounds have accomplished what 

chemical companies have been working at for years.  Allelochemicals can range from 

simple to complex and often exhibit significant biological activity (Rice, 1984).  This 

activity can often take the form of root growth inhibition of an invading species.  Ji et al. 

(1996) found that numerous plant flavanoids bind to adenosine receptors in mammals, 

often with higher affinity for human forms.  Adenosine receptors mediate physiological 

actions of adenosine in the central nervous system (Ji et al., 1996).  Some research has 

suggested that allelochemicals present in phytotoxic plant residues could be used and 

exploited in numerous agronomic cropping scenarios (Whittaker and Feeny, 1971; 

Putnam and DeFrank, 1983; Putnam et al., 1983).  For these reasons, herbicide 

developers have focused attention on the mechanisms of allelochemical actions in these 

phytotoxic plant residues (Weston and Duke, 2003).  For many years, allelopathy has 

been reported across the Poaceae family, including Kentucky bluegrass (Sanchez-

Moreiras et al., 2004).  Poa species were among many found to inhibit the germination 

and establishment of juvenile woody plant species, likely due to allelopathic root 

exudates (Fales and Wakefield, 1981).  Allelopathy has also been reported in fine leaf 

and tall fescues.  Fescues are often used in landscapes as ground covers because they are 

able to out-compete surrounding plants.  Work by Bertin et al. (2007) has shown that 

meta-tyrosine, a potent broad-spectrum phytotoxin, is exuded from roots of Festuca 

rubra (L.) and Festuca arizonica (L.) species.   This work is merely the second and third 

found instances of meta-tyrosine production in plants, with the first being in Euphorbia 

myrsinitis (L.) (Bertin et al., 2007).  Tall fescue has been found to inhibit the growth of 
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pecan (Carya illinoensis (Wangenh.) K. Koch), Sweetgum (Liquidambar styraciflua 

L.) and white ash (Fraxinus americana L.) trees (Smith et al., 2001; Walters et al., 1976; 

Preece et al., 1991).  The type and nature of allelopathic chemicals varies greatly.  

Phenolates, hydroxamates, alkaloids, and quinones have all been found in various genera 

within the Poaceae family, each having distinct effects, such as pollen formation 

inhibition and hormone production inhibition (Buta et al., 1988).  Phytometallophores 

have also been found in root exudates in the Poaceae family (Welch, 1995). 

Some work into allelopathy in the black locust tree (Robinia pseudoacacia L.) has 

already proved enlightening.  Lin et al. (1973) screened numerous species for allelopathic 

and antimicrobial compounds, and black locust tested positive in bioassays.  Allelopathy 

has been reported in both roots and leaves of the black locust tree.  Arborists and 

landscape managers have been warned of allelochemical production in black locust bark 

and roots (Coder, 1999).  The lumber industry has given attention to black locust, noting 

that flavanoids isolated from harvested heartwood contribute to wood longevity (Smith et 

al., 1989).  These same compounds are thought to act as a signal to initiate Rhizobium sp. 

symbiosis with black locust roots (Scheidemann et al., 1997).  Extracts from black locust 

leaves proved significantly phytotoxic in bioassays with three types of herbaceous plants 

(Nasir et al., 2005).  This work isolated robinetin, myrcetin and quercetin (Figure 1).  

Aqueous solutions of these compounds in further bioassays confirmed the phytotoxic role 

of these flavanoid allelochemicals (Nasir et al., 2005).  Highly phytotoxic cyanamide 

(NH2-CN) was found present in black locust in January of 2008 (Kamo et al., 2008).  

This is only the second time the compound has been found in any plant.  



 

 

49 

 

Figure B-1. Structures of isolated allelopathic flavanoid monomers from black locust leaf 

litter. 

Source: reprinted from Journal of Chemical Ecology, Vol. 31, No. 9, p. 2183, Sept. 2005,  

with permission of Dr. Yoshiharu Fujii. 

 

Advances in detection and screening of volatile allelochemicals have elucidated 

2-hexenal and cis-2-hexenol in black locust (Fujii et al., 2005).  Flavanoids and 

associated oligoflavanoid chemical species have a broad range of biological sources and 
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activities.  White and green teas have been found to contain (+/-) catechin, epicatechin, 

kaempferol and other related compounds (Frei et al, 2006; Ververidis et al., 2007).  Green 

tea (Camelia sinensis L. (Kuntze)) has been shown to contain a diverse set of flavanoid 

monomers and oligomers (Frei et al, 2006).  One such flavanoid in green tea, EGCG has 

been shown to bind a T-cell receptor with high HIV virus affinity.  (Williamson et al., 

2006; Yamaguchi et al., 2002).  While these compounds have been described to have 

antioxidant and anti-viral properties, other flavanoids like resveratrol have been found to 

reduce tumor growth rates in humans (Joe et al., 2002).  Other described sources of 

bioactive flavanoids include chocolate, citrus fruits, and the Ginkgo biloba (L.) tree (Frei 

et al., 2006).  A family of flavanoids, the oligomeric proanthocyanidins (OPC) are potent 

pharmacologically active compounds.  These are dimers, trimers, or oligomers of 

monomer flavanoid compounds such as quercetin or catechin.  OPCs can be found in 

cranberry, bilberry, sea buckthorn, red grapes, and grape seed oil (Frei et al., 2006; 

Kennedy et al., 2002; Rösch et al., 2004).   OPCs are powerful antioxidants and have 

been shown to inhibit expression of a protein that constricts blood vessels (Schramm and 

German, 1998).  In black locust, these compounds have been found to exist in a family 

named prorobinetidins (Coetzee et al., 1995).   
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Figure B-2. Structure of prorobinetidin 20 from black locust. 

Source: from Tetrahedron. 51(8):2339-2352.  Reprinted with permission of J.P. 

Steynberg. 

They consist of flavanoid dimer and trimers.  While flavanoid monomer bioactivity and 

allelopathy has been demonstrated (robinetin, myrcetin and quercetin), the allelopathic 

potential of the prorobinetidins remains unexplored.  (Coetzee et al., 1995; Fujii et al., 

2005) 

While exploration into the black locust tree has isolated three flavanoid monomers 

and oligomers, the most recent research in Robinia pseudoacacia (L.) has brought 

attention to the species’ allelochemical vulnerability.  Black locust has been found 

susceptible to allelopathic inhibition by other plants (Furubayashi et al., 2007).  The 

herbaceous species Solidago altissima (L.), Andropogon virginicus (L.), Coronilla varia 

(L.), Daucus carota (L.), Festuca arundinacea (L.) and Phleum pretense (L.) have all 

been found to inhibit growth of black locust trees (Larson et al., 1980).  My study 

determined the presence of allelochemical exudation in a tree species with use in the 

Intermountain West.  Extraction, isolation and description of allelopathic compounds was 

performed. 
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Materials and Methods 

Experimental Design  

A representative sample of fine roots from 20 field-grown black locust trees was 

obtained and placed into storage at -80 degrees C.  All roots obtained had a measured 

diameter no larger than 5 mm.  Following cold storage, the roots were chopped into 1-cm 

pieces, then macerated using a mortar and pestle.  The sample was freeze-dried for 24 h 

using a Virtis Sentry Freezemobile freezedryer (SP Industries, Warminster, PA). After 

dehydration, the sample’s mass was determined to be 321.21 g.  The sample was placed 

in a 500-mL flask filled with 400 mL of 80 % aqueous methanol.  The sample was left in 

the methanol (chemical formula CH3OH) for 72 hours then vacuum filtered and 

concentrated.  Using an R-151 Rotovaporator (Buchi, Inc.  Postfach, Switzerland.), 

methanol was removed from the resulting extract.  The remainder was placed on the 

freeze drier for removal of water in the extract, producing a yellow-brown amorphous 

gum.  To this gum, 150 mL of hexane (chemical formula C6H14) was then added.   The 

solution was placed into a 500-mL separation flask.  To this, 150 mL of dichloromethane 

(DCM) was added (chemical formula CH2Cl2).  The separation flask was capped and 

shaken vigorously for 30 s.  Upon waiting 5 minutes for solvent separation and 

subsequent extract partitioning, the lower layer (DCM) was poured into a 250-mL flask.  

The upper layer (hexane) was then poured into another 250-mL flask.  The DCM fraction 

was poured back into the separation flask and allowed to settle.  To this, 150 mL of 80 % 

aqueous methanol was added.  The solvent mixture was shaken vigorously for 30 s in the 

separation flask.  An additional 5 min was allowed for solvent separation and extract 

partitioning.  The lower layer (methanol) was poured into a 250-mL flask.  The upper 
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layer (DCM) was poured into another 250-mL flask.  The three resulting fractions were 

again vacuum-filtered.   

The most polar methanolic fraction of this separation was then subjected to NMR 

analyses to confirm presence of desired polar metabolites.  Seeking the highly polar 

oligoflavanoid chemicals cited in previous literature, the methanol fraction was then 

subjected to further fractionation by elution through a 1000-mL column filled with 

Sephadex LH-20 ionized beads and excess of methanol.  A Spectra/Chrom CF-1 

(Spectrum Molecular Separations, Houston, TX) fraction collector was used to collect the 

column eluant at 5-min intervals.   

All fractions were subjected to preparative thin-layer chromatography (TLC) 

using aluminum-backed, silica-gel TLC sheets (Sorbent Technologies, Atlanta, GA) to 

identify fractions containing desirable compounds (Figure 2, 3).  Approximately 100 µL 

of each fraction was spotted onto the base of a 6 x 10 cm TLC sheet.  Seven sheets were 

used to accommodate all fraction subsamples.  The fractions were spotted 4-5 mm away 

from one another on the sheet.  The fraction solvent portions were then allowed to 

evaporate off the sheet, leaving only dry compound on the silica.   
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Figure B-3. Diagram of a TLC procedure.  The aluminum-backed silica-gel paper is 

allowed to uniformly absorb the well solvent.  Compounds are separated as they are 

carried up with the solvent front.                                                 

Source: http://en.wikipedia.org/wiki/Image:Cromatography_tank.png 

 

Figure B-4. Illustration showing the sequence of events in thin-layer chromatography.  

The solvent is absorbed and carried up the silica along with the compounds of interest. 

Source: http://en.wikipedia.org/wiki/Image:Tlc_sequence.png 
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The TLC sheets were placed in 5-mm-deep wells containing solvent of 

increasing polarity.  The first seven sheets were placed in a pure DCM solvent well.  The 

second seven sheets were placed in a well of 3 parts DCM: 1 part methanol mixture.  The 

third group of seven sheets was placed in a well of 1 part DCM: 1 part methanol mixture.  

The fourth group was placed in a well of 3 parts methanol: 1 part DCM mixture.  The 

final group of seven sheets was placed in pure methanol.  Well solvent was allowed to 

ascend the TLC sheets via capillary action and compounds separated by chemical 

polarity.  When the solvent ascended to the top of the sheets, they were removed from the 

well and allowed to air-dry.  Each sheet was then placed under a UV-B light to visualize 

compounds that had separated from the mixture contained in each fraction.  Compounds 

appearing dark under the UV-B light were those containing double or triple-bonds and 

were absorbing the incident radiation.  TLC plates of interest were then stained in a 

phosphomolybdic acid (chemical formula: H3[P(Mo3O10)4]) solution to allow visualization 

of all compounds under the visible light spectrum. After staining, the sheets were placed 

on a hotplate for 5 s to fix the stain onto the silica. Fractions of interest were pooled, and 

concentrated by removal of methanol via Rotovaporator.   The dried extract was 

dissolved in fully deuterated (radio-labeled) methanol (CD3OD) and subjected to 

additional NMR analysis. 

The dissolved sample was loaded onto a 250-mL flash chromatography column 

(60 x 4 cm).  The column was filled with 5 cm of silica gel, as directed in the procedure 

of Still et al.(1978) (Figure 4).  After sample loading, the column was eluted into 

fractions using solvent of increasing polarity.  Ten fractions were collected using 100 mL 

of 1 part DCM: 1 part methanol solvent.  Following this, ten fractions were collected 
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using 100 mL of a 3 part methanol: 1 part DCM solvent.  Ten more fractions were 

collected using 100 mL of pure methanol.  Finally, ten fractions were obtained by eluting 

the column with 100 mL of a 3 part methanol to 1 part distilled, deionzied water solution.  

All fractions were collected at 30 s intervals. 

 

Figure B-5. A diagram illustration of column chromatography techniques and fraction 

collection. 

Source: http://en.wikipedia.org/wiki/Image:Columnchromatography.gif 

 

Following elution, all 40 fractions were analyzed for chemical content using TLC 

separation, as described above.  Upon analysis and staining of TLC sheets, fractions of 

interest were concentrated by removal of solvent using Rotovaporator and water using a 

freeze-dryer.  Resulting dry material was weighed, then dissolved in deuterated methanol 

and subjected to a final NMR analysis for presence of desirable compounds.   
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NMR–  

NMR (Nuclear Magnetic Resonance) spectroscopy (at 300 MHz, 7.058 tesla) 

using a JEOL ECX-300 (JEOL, Ltd., Tokyo, Japan) with standard JEOL software (Alpha 

Data Systems, Tallahassee, FL) with labeled chloroform (chemical formula CHCl3), was 

performed on the methanolic fraction of the crude extract to screen for presence of novel 

compounds by 1H spectra.  Further NMR spectroscopy was performed using the same 

frequency and pulse strength on fractions from the Sephadex column, and those from the 

silica gel column.  Desired flavanoid monomers and oligomers’ proton spectra were 

screened by referring to NMR spectra in previously cited literature.   

 

Results 

Thin-Layer Chromatography 

Upon TLC screening of the 127 Sephadex column fractions, numbers 19 and 20 

(corresponding to eluant times of 95 and 100 min, respectively) when separated in a pure 

methanol solvent well yielded the most distinct visualization of compounds.  Three dark 

bands were seen on the TLC sheet.  The middle band appeared smeared and was not as 

distinct as the lower and top bands, indicative of acid / base equilibrium reactions on the 

sheet.  The smeared appearance also may have been indicative of the presence of more 

than one compound in the band.  Due to this, further column chromatography was 

performed.  Of the three, the middle and lower bands (corresponding to the most polar of 

the three) absorbed UV-B radiation.  The top band was visualized upon staining.  Upon 

TLC separation from the flash chromatography (silica gel) column, fractions containing 

compounds that were previously visualized in TLC sheets were isolated.  TLC sheets 
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were prepared to reproduce the three bands seen in TLC sheets from the Sephadex 

column.  Fractions 14 and 15 produced the top band, which did not absorb UV-B 

radiation.  These fractions were obtained using the less polar 3 parts methanol: 1 part 

DCM solvent.  The corresponding TLC was performed using a pure methanol solvent 

well.  Fractions 22 and 23 produced a very narrow and distinct middle band.  This band 

did absorb UV-B radiation like the middle band from the Sephadex column.  The 

corresponding TLC was performed using a 5 parts methanol: 1 part deionized, distilled 

water solvent solution.  These fractions were thought to contain the highly polar 

flavanoid and oligoflavanoid compounds of interest.  Like the sheet from the Sephadex 

column, this band absorbed UV-B radiation.  The TLC was performed with a 3 parts 

methanol: 1 part water well solution. 

 

Column Chromatography 

From the Sephadex LH-20 column separation of the methanol fraction of the root 

extract, a total of 127 fractions were collected over a span of 635 minutes.  All sample 

chemical components exhibiting color appeared to be eluted from the column within 300 

min.   

From the silica gel column (flash chromatography column), most sample 

chemical components appeared to be eluted using highly polar solvent mixtures.  

Fractions 33 through 37 contained a highly polar, UV-B absorbing component, rising 2 

cm (Rf of .185) on a TLC sheet with a well solvent of 3 parts methanol to 1 part water.  

Two additional compounds were isolated in earlier fractions eluted with less polar 

solvents. Fractions 33-37 contained 1.27 mg dry compound.  After solvent removal and 
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drying, fraction dry compound masses were determined.  Fractions 22-23 contained 

0.78 mg dry compound.  Fractions 14-15 contained 0.84 mg dry compound.  

 

NMR 

Initial NMR 1H spectra of the crude root methanolic extract methanol fraction 

revealed a rich and diverse pool of chemical species.  This warranted further separation 

as screening for flavanoid monomer and oligomer presence was inconclusive.  The 1H 

spectra of the crude methanolic extract and subsequent methanol fraction (in CDCl3 and 

CD3OD, respectively) of the desired compound were identical to those of robinetin and 

prorobinetidin.  Abundance of these compounds in the NMR sample was at 0.1 or less, 

demonstrating the very low concentration of compound present in the starting material. 

(Figure 5) 
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Figure B-6. NMR spectrograph of pooled silica column fractions 33-37.   

 

Discussion 

While at least one of the flavanoids and prorobinetidin forms was positively 

identified in the black locust methanolic extract, upon drying of the final purified 

fractions, a very low amount of the active material was recovered.  As a consequence, 

bioassays to test the recovered compounds’ activity and allelopathic potential were not 

possible. 

With the large amount of literature describing the rich biochemical diversity 

contained in black locust, further work in the tree’s flavanoid pool is needed.  Flavanoid-
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based allelopathy has been cited in many plants native to habitats near that of black 

locust (Stermitz et al., 2003).  There is a high probability that the prorobinetidins remain 

a family of black locust metabolites that have significant allelopathic potential.  Given the 

extensive amount of literature citing the invasive nature of black locust, there is evidence 

to suggest that it is able to gain a competitive advantage from an endogenous mechanism.  

Considering the phytotoxic nature of described flavanoid monomers including 

cyanamide, allelopathy is likely the mechanism allowing black locust to spread over such 

a broad geographic area.  Identification of chemotypes in black locust may also be 

possible.  Such chemical profiling may offer insight into the species response to varying 

soil and macroclimates. 

To properly screen for bioactivity and allelopathic potential of the 

prorobinetidins, a much larger sample of root tissue will be required.  While the 376-g 

sample did yield NMR spectra confirming flavanoid and prorobinetidin presence, it did 

not provide nearly enough purified dry matter to conduct bioassays.  Ideally, bioassays 

with logarithmically diluted sample concentration would be performed, to demonstrate a 

dose-dependent root growth inhibition.  This was demonstrated in a study by Nasir et al. 

(2005) with black locust flavanoid monomers.  A minimum of 3 kg of root material 

should be harvested and subjected to methanolic extraction to ensure enough purified 

compound to test for allelopathy and dose-dependent growth inhibition. 

Future work concerning allelopathy in black locust may also consider the source 

of all isolated active chemicals.  All but one article in the literature to date regarding 

allelopathy in black locust has not sought a genetic or in vivo source of these chemicals.  

While work by Nasir et al. (2005) demonstrated allelopathic flavanoid monomer 
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precipitation from decomposing leaf litter, there is likely a genetic source for at least 

one of the compounds found in the literature.  Proteomic investigations into low-copy 

enzymes responsible for synthesis of additional flavanoids, Prorobinetidins, cyanamides 

or additional novel chemicals could yield insight into how these compounds are produced 

in the cells of black locust.  Once isolated, such low-copy proteins could be sequenced in 

the search for responsible gene(s).  Transgene cultivars of numerous woody species could 

then be produced, utilizing the genetic mechanisms that may be producing these 

compounds in vivo.  This would result in plants with an internal capacity to defend 

against competing root systems.  Such plants would host an increased ability to secure the 

resources needed for growth and maintenance in a competitive situation. 

 

References 

Bertin, C., L.A. Weston, T. Huang, G. Jander, T. Owens, J. Meinwald, and F.C.  

     Shroeder. 2007.  Grass roots chemistry: meta-Tyrosine, an herbicidal nonprotein  

     amino acid. PNAS. 104(43):16964- 

     16969. 

Bertin, C., X. Yang, and L.A. Weston. 2003. The role of root exudates and  

     allelochemicals in the rhizosphere. Plant and Soil. 256:67-83. 

Boring, L.R., and Swank, W.T. 1984.  The role of black locust (Robinia pseudoacacia) in  

     forest succession. J. Ecol. 72(3):749-766. 

Bonanomi, G., M.G. Sicurezza, S. Caporaso, A. Esposito, and S. Mazzoleni. 2006.    

     Phytotoxicity dynamics of decaying plant materials.  New Phytol. 169:571-578. 

Buta, G.J., and David W. Spaulding. 1989. Allelochemicals in tall fescue-abscissic and  



 

 

63 
     phenolic acids.  J. Chem. Ecol. 15(5):1629-1637. 

Carral, E., M.J. Reigosa, and A. Carballeira. 1988. Rumex obtusifolius L: Release of  

     allelochemical agents and their influence on small-scale spatial distribution of   

     meadow species. J. Chem. Ecol. 14(9):1763-1773. 

Coder, K.D. 1999. Allelopathy in Trees. Arborist News. 8(3):53-58. 

Fales, S.L., and R.C. Wakefield. 1981. Effects of turfgrass on the establishment of   

     woody plants. J. Agron. 73:605-610 

Frei, B., and S.B. Lotito. 2006. Consumption of flavanoid-rich foods and increased  

     plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon?.  

     Free Radical Biol. and Med. 41:1727-1746. 

Fujii, Y., S.S. Parvez, M.M. Parvez, Y Ohmae, and O Iida. 2003.  

     Screening of 239 medicinal plant species for allelopathic activity using the  

     sandwich method.  Weed Biol. and Mgmnt. 3:233-3241. 

Fujii, Y., M. Matsuyama, S. Hiradate, and H. Shimozawa.  Dish pack method:  

     a new bioassay for volatile allelopathy. “Establishing the Scientific Base”:   

     Proceedings of the Fourth World Congress on Allelopathy. August 2005, Charles  

     Sturt University, Wagga Wagga, NSW, Australia 

Furubayashi, A., S. Hiradate, and Y. Fujii. 2007. Role of catechol structures in  

     the adsorption and transformation reactions of L-DOPA in soils. J. Chem. Ecol.  

     33:239-250. 

Inoguchi, M., S. Ogawa, S. Furukawa, and H. Kondo. 2003. Production of an  

     allelopathic polyacetylene in hairy root cultures of goldenrod (Solidago altissima   

     L.). Biosci., Biotech and Biochem. 67(4):863-868. 



 

 

64 
Ji, X., N. Melman, and K.A. Jacobson.  1996. Interactions of flavanoids and  

     other phytochemicals with adenosine receptors.  J. Med. Chem. 39:781-788. 

Joe, A.K., H. Lui, M. Sazui, M.E. Vural, D. Xiao, and I.B. Weinstein. 2002.  

     Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in   

     biomarker expression in several human cancer cell lines. J. Clin. Cancer Res.  

     8:893-903. 

Jose, S., R. Williams, and D. Zamora. 2006. Belowground ecological interactions in  

     mixed-species forest plantations. For. Ecol. and Mgmnt. 233:231-239. 

Kamo, T., M. Endo., M. Sato., R. Kasahara., H. Yamaya., S. Hiradate., Y. Fujii, N. Hirai,  

     and M. Hirota. 2008. Limited distribution of natural cyanamide in higher plants:  

     occurrence in Vicia villosa subsp. varia, V. cracca, and Robinia pseudo-acacia.  

     Phytochem. 69:1166-1172. 

Kennedy, J.A., M.A. Matthews and A.L. Waterhouse. 2002. Effect of maturity and vine  

     water status on grape skin and wine flavanoids. American J. Enol. and  

     Viticul. 53(4):268-274. 

Larson, M.M., and E.L. Schwarz. 1980. Allelopathic inihibition of black locust, red  

     clover, and black alder by six common herbaceous species. For. Sci. 26(3):511- 

     520. 

Lin, A., and M. C. Mathes. 1973. The in vitro secretion of growth regulators by isolated  

     callus tissues. American J. Botany 60(1):34-41. 

Nasir, Habib., Z. Iqbal, S. Hiradate, and Y.Fujii.  2005. Allelopathic potential of Robinia  

     pseudoacacia (L.). J. Chem. Ecol. 31(9):2179-2192. 

Preece, J.E., Nadia Navarrete, J.W. van Sambeek and Gerland R. Gafney. 1991. An in  



 

 

65 
     vitro microplant bioassay using clonal white ash to test for tall fescue allelopathy.  

     Plant Cell Tissue and Organ Culture. 27(2):203-210. 

Putnam, A. R. and J. DeFrank. 1983. Use of phytotoxic plant residues for selective weed  

     control. Crop Prod. 2:173-181. 

Putnam, A. R., J. DeFrank, and J. P. Barnes. 1983. Exploitation of allelopathy in annual  

     and perennial cropping systems. J. Chem. Ecol.9:1001-1010. 

Rösch D., C. Mügge, V. Fogliano, and L.W. Kroh. 2004. Antioxidant oligomeric  

     proanthocyanidins from sea buckthorn (Hippophae rhamnoides) Pomace. J.  

     Agric. Food Chem. 52(22):6712-6718. 

Sanchez-Moreiras, A.M., O.A., Weiss, and Reigosa, M.J., 2004. Allelopathic evidence  

     in the Poacaeae. The Botanical Review. 69(3):300-319. 

Scheidemann, P. and A. Wetzel. 1997. Identification and characterization of flavanoids in  

     the root exudate of Robinia pseudoacacia. Trees. 11:316-321. 

Schramm, D.D., and J.B. German., 1998. Potential effects of flavanoids on the etiology  

     of vascular disease. J. Nutr. Biochem. 9(10):560-566.  

Smith, A.L., C.L. Cambell, M.P. Diwakar, J.W. Hanover, and R. D. Millar. 1989.  

     Extracts from black locust heartwood as wood preservatives: a comparison of the  

     methanol extract with pentachlorophenol and chromated copper arsenate.  

     Holzforschung. 43(6):421-423. 

Smith, M.W., M.E. Wolf, B.S. Cleary and B.L. Carroll. 2001.  Allelopathy of  

     Bermudagrass, Tall Fescue, Redroot pigweed and Cutleaf evening primrose on Pecan.  

     HortSci. 36(6):1047-1048. 

Stermitz, F.R., H.P. Bais., T.A. Foderaro and J.M. Vivanco. 7,8-Benzoflavone: a  



 

 

66 
     phytotoxin from root exudates of invasive Russian knapweed. Phytochem. 64(2): 

     493-497. 

Still, W.C., M. Kahn and A. Mitra. 1978. Rapid chromatographic technique for  

     preparative separations with moderate resolution. J. Org. Chem.  

     43(14):2923-2925. 

Thelen, G.C., J.M. Vivanco, B. Newingham, W. Good, H.P. Bias, P. Landres, A. Caesar,  

     and R.M. Callaway.  2005.  Insect herbivory stimulates allelopathic exudation by an   

     invasive plant and the suppression of natives. Ecol. Ltrs. 8:209-217. 

Tian, Feifei and Jerry L. McLaughlin. 2000. Bioactive flavanoids from the black locust  

     tree, Robinia pseudoacacia. Pharm. Biol. 38(3):229-234. 

van Noordwijk, M., G. Lawson, J.J.R. Groot, and K. Hairiah. 1996. Root distribution in  

     relation to nutrients and competition. In: Tree-Crop Interactions – A Physiological   

     Approach (eds Ong CK.  Huxley, PA) pp. 319-364.  CAB International, Wallingford. 

Ververidis, F., E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos.  

     2007. Biotechnology of flavanoids and other phenylpropanoid-derived natural  

     products. Part 1: Chemical diversity, impacts on plant biology and human health.  

     Biotechnology Journal 2:1214-1234.  

Walters, D.T., and A.R. Gilmore. 1976. Allelopathic effects of fescue on the growth of  

     Sweetgum. J. Chem. Ecol. 2(4):469-479. 

Welch, R.M. 1995. Micronutrient nutrition of plants. Critical Reviews in Plant Science  

     14:49-82. 

Weston, L.A. and S.O. Duke. 2003. Weed and Crop Allelopathy.  Critical Reviews in  

     Plant Sciences. 22(3 & 4):367-389. 



 

 

67 
Whittaker, R.H. and P.P. Feeny. 1971. Allelochemics: chemical interactions between  

     species. Science. 171(3973):757-770. 

Williamson, M.P., T.G. McCormick, C.L. Nance and W.T. Shearer. 2006.  

     Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell  

     receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clinical Immun.  

     118(6):1369-1374. 

Yamaguchi K., H.M. Ikigai, Y. Hara and T. Shimamura. 2002. Inhibitory effects of (-)- 

     epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1  

     (HIV-1). Antiviral Research 53(1):19-34. 


	Evaluation of Competition Between Turfgrass and Trees in the Landscape
	Recommended Citation

	Microsoft Word - THESIS-(11)FINAL-DRAFT.doc

