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Abstract

Nonlinear Aerodynamic Corrections to Blade Element Momentum Model with Validation

Experiments

by

Robert S. Merrill, Master of Science

Utah State University, 2011

Major Professor: Dr. Stephen Whitmore
Department: Mechanical and Aerospace Engineering

Blade element momentum theory is well suited for propeller analysis during the early

stages of design. The analytic blade element momentum model is presented along with

a proposed nonlinear improvement. The analytical model makes small angle assumptions

which are known to be inaccurate under some conditions. The nonlinear model avoids these

assumptions. The results of the analytical and nonlinear models are compared against each

other. The di�erences between these are most prevalent on lower pitch propellers at high

advance ratios. A wind tunnel validation test is outlined. Results of the validation test and

other published data from the University of Illinois at Urbana-Champaign are compared to

the analytical and nonlinear blade element models. The test data matches the nonlinear

data with reasonable accuracy at high advance ratios.

(54 pages)
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Public Abstract

Nonlinear Aerodynamic Corrections to Blade Element Momentum Model with Validation

Experiments

by

Robert S. Merrill, Master of Science

Utah State University, 2011

Major Professor: Dr. Stephen Whitmore
Department: Mechanical and Aerospace Engineering

Many di�erent mathematical models have proved to estimate propeller performance. This

study looks at a common method called blade element momentum theory. Some inaccurate

assumptions are made to complete the calculations. A proposed model without these as-

sumptions is presented. Propeller performance is tested in a wind tunnel and compared to

the predictions made by both models. Published test data is also compared to both models.

The test data matches the proposed model with reasonable accuracy.

(54 pages)
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Introduction

Predicting the characteristics of high speed rotating �ow �elds, because of the inherently

unsteady �ow properties, is one of the most complex analytical problems in modern �uid

mechanics. Advances in computer execution speed, memory capacity and user interactivity

have allowed numerical techniques in computational �uid dynamics (CFD) to grow rapidly

in the last decade. Unfortunately, even with the growing capabilities of CFD, solutions

for rotating propellers and turbine blades are very di�cult to achieve. Generating CFD

grids that allow for accurate, converged solutions is an extremely di�cult problem. Small

changes in the grid layout or boundary conditions can dramatically e�ect the end results.

Thus, the sheer cost, volume of labor required for grid generation and long computational

times preclude the use of CFD during the early design stages of �ight vehicles that include

propeller systems.

For conceptual design, low-order engineering codes are still the preferred method for

designers. Engineering codes are powerful tools when applied in the conceptual design stage.

Their use in the early stages of design enables higher �delity CFD calculations or wind tunnel

tests to be performed on more mature vehicle concepts and can trim many months o� the

design process. Traditionally, one of the following low-order engineering design methods

have been used to calculate the steady state �ow properties behind rotating propellers and

turbine blades. These are momentum theory, Goldstein's vortex theory and blade element

theory. Often momentum theory is combined with blade element theory to produce a single

low-order prediction tool referred to as the combined blade element momentum (BEM)

theory.

Goldstein [1] developed a potential �ow vortex theory for propellers with a �nite number

of propellers in axial �ow. For moderate in�ow conditions, vortex theory has successfully

been used to derive the performance of propellers and wind turbines [2]. In the model, the

wake is considered to be a helical vortex sheet trailing the propeller at a constant pitch.
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Goldstein solves the problem of inter-meshed helical surfaces of in�nite axial extension and

�nite radius. The solution takes the form of a tip loading factor, a function of the in�ow,

the number of blades and the radial blade station [3].

The single biggest drawback of Goldstein's method is the requirement of precise knowl-

edge of the blade geometry including the chord pro�le and blade twist pro�le. Goldstein's

vortex theory, especially for screw propellers is very sensitive to errors in the input geometry.

Consequently, it is unclear whether vortex theory modeling error reported in technical liter-

ature is a result of error in the geometric model of the propeller, error in the airfoil section

aerodynamic performance modeling or errors in the assumptions associated with Goldstein's

vortex theory.

While the vortex theory represents an important tool for analysis, the geometry sensi-

tivity makes a di�cult tool to use for initial design. This process can be quite cumbersome

when a designer desires to embark without a preconceived geometry. As an alternative, this

research investigates the BEM theory and introduces several modi�cations to enhance the

predictive accuracy of the model. Momentum theory provides a simple momentum analysis

across the propeller disk. It gives a general description of the �ow through the propeller.

Blade element theory discretizes a propeller blade and each element is analyzed individually.

However, blade element theory alone lacks the ability of predicting the propeller induced

velocity needed to complete the �ow �eld description. The BEM theory uses concepts of

momentum theory to complete the blade element model.

The traditional method presented by McCormick [4] includes small angle assumptions

to obtain an analytical solution to the BEM equations. These assumptions are known to be

inaccurate, especially for low advance ratios and high advance angles. This paper presents

a nonlinear solution method that avoids these inaccurate small angle assumptions and as

such provides an enhancement to the well known BEM model. This paper compares the two

BEM solution methods to each other and to test data collected from propellers sized 8x8

and 11x5.5.
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Fig. 1: Illustration of propeller pitch and its
e�ect on the angle of attack.

Fig. 2: Illustration of propeller pitch
length.

Background

Propellers add momentum to the surrounding �uid to propel an object through the

�uid. Early airplane propellers were known as �airscrews� and act appropriately. A propeller

forces �uid in one direction, pushing itself in the other. It can also be thought of a rotating

wing such that the experienced velocity is the vector sum of the rotational velocity and the

forward velocity. As a propeller spins in air, it experiences a drag resistance to the rotational

motion. The shaft power required to overcome drag and keep the propeller spinning at a

constant rotational rate is known as the braking power. The shape of the propeller blade

determines its e�ectiveness at producing thrust. Propeller blades are inclined to the �ow

to allow better air capture and greater mechanical e�ciency. This inclination is referred to

as pitch. Figure 1 shows how the pitch angle is often varied along the length of the blade

to keep the angle of attack more constant. Pitch is measured as the distance the propeller

would travel in one revolution through a solid medium like a screw through wood. Figure 2

shows an example of pitch length. The local pitch angle is equal to

β = tan−1
(
λ

2πr

)
(1)

where λ is the pitch length and r is the local radius of the blade. Often a propeller may not

have the pitch pro�le as described in Eq. 1. In these cases, the pitch is measured by the

pitch length or angle at 75% of the radius of the blade. Propellers in this study follow the

pro�le of Eq. 1. Typically, performance of a propeller is quoted at a nondimensional velocity



4

known as the advance ratio. The advance ratio is the ratio of the distance a propeller moves

forward in the working �uid in one revolution to the diameter of the propeller itself. The

advance ratio is equal to

J =
V∞
ω
πR

(2)

The root of the blade is de�ned here as the innermost portion of the propeller that is

not intended to produce lift. The tip of the blade is the outermost portion of the blade.

Propellers are sized by their diameter and pitch quoted in inches. For example, a 10x5

propeller has a 25.4 cm (10 in) diameter propeller with a 12.7 cm (5 in) pitch length. The

propeller nomenclature gives no indication of its pitch pro�le.

Propellers are the main method of propulsion for small UAV's and hobby remote con-

trolled aircraft. They are commonly paired with electric DC motors. Direct current motors

are employed in this study as the means of providing the shaft power to spin the propeller. A

DC motor can be characterized by its no-load current and armature resistance. The no-load

current is the current that is drawn from a power source without any torque opposing the

motion of the motor. The torque of a motor is proportional to the current that is being sup-

plied to the motor, thus any current drawn by a motor over the no-load current contributes

directly to the torque production of the motor. The armature resistance is the electrical

resistance that is seen through the armature of the motor. The voltage being supplied to

the motor is proportional to the motor speed. The excess voltage above the voltage drop

due to the armature resistance contributes directly to the speed of the motor.
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Blade Element Momentum Theory

Blade Element Theory

Blade element theory estimates the performance of propellers by analyzing the aerody-

namic forces on discrete elements along the radius of the blade. Airfoil section properties are

used to �nd these discrete forces. They are integrated along the propeller to estimate a total

resultant thrust force and opposing torque. This torque multiplied by the angular rotation

rate is the braking power. The velocity that the blade elements experience is the vector

combination of the free stream axial velocity, induced velocity and rotational velocity. The

induced velocity is the increased in�ow created by the propeller. Figure 3 shows a propeller

blade section. The local pitch angle of the blade, β, is a function of the pitch length and

the radial distance from the axis. The advance angle, Φ, is the reduction in angle of attack

that results from the free stream velocity and is equal to

Φ = tan−1
(
V∞
ωr

)
(3)

The induced angle of attack is the reduction of the angle of attack due to the induced velocity.

As the free stream and the induced velocities increase, the angle of attack decreases. The

net angle of attack is equal to

α = β − αi − Φ (4)

Fig. 3: Velocities experienced by a blade element and their e�ect on the angle of attack.
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The lift and drag coe�cients for a single blade element are the same as those of an

airfoil cross section at the resultant angle of attack. The linear lift model and quadratic

drag model are

CL = CL0 + CL,α(β − αi − Φ) (5)

CD = CD0 + CD,LCL + CD,L2C2
L (6)

These models predict the thrust and drag well for moderate angles of attack. At angles

of attack above 10-15 degrees, the airfoil becomes stalled and these models are no longer

accurate. The thrust and torque contributions of each element are

dT =
1

2
ρ
(
V 2
∞ + (ωr)2

)
(CL cos(αi + Φ)− CD sin(αi + Φ))N cdr (7)

dQ =
1

2
ρ
(
V 2
∞ + (ωr)2

)
(CL cos(αi + Φ)− CD sin(αi + Φ))N c r dr (8)

It is important to note that the lift and drag coe�cients are nondimensionalized with respect

to the combined velocity V 2
∞ + ω2r2.

The thrust coe�cient is de�ned by

CT =
T

ρ( ω2π )2 (2R)4
=

T

ρR4 4ω2

π2

(9)

The di�erential thrust coe�cient, found by combining Eq. 7 and Eq. 9, is

dCT =
V 2
∞ + (rω)2

R4 4ω2

π2

(CL cos(αi + Φ)− CD sin(αi + Φ))N cdr (10)

and in dimensionless form

dCT =
J2 + π2x2

8
(CL cos(αi + Φ)− CD sin(αi + Φ))σ dx (11)

where
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x =
r

R

σ =
N c

R

The power coe�cient is de�ned by

CP =
Qω

ρ( ω2π )3 (2R)5
=

Qω

ρR5 4ω3

π3

(12)

The di�erential power coe�cient, found by combining Eq. 8 and Eq. 12, is

dCP =
V 2
∞ + r2ω2

R5 4ω3

π3

(CL sin(αi + Φ) + CD cos(αi + Φ))N c r dr (13)

and in dimensionless form

dCP = π
J2 + π2x2

8
(CL sin(αi + Φ) + CD cos(αi + Φ))σ x dx (14)

Di�erential thrust and power are solved for at each blade element. Integrating these

di�erentials give the total thrust and power coe�cient for the propeller.

CT =

ˆ xt

xr

J2 + π2x2

8
(CL cos(αi + Φ)− CD sin(αi + Φ))σ dx (15)

CP =

ˆ xt

xr

π
J2 + π2x2

8
(CL sin(αi + Φ) + CD cos(αi + Φ))σ x dx (16)

The integration limits are from the propeller root to the propeller tip and will be discussed

in more detail in the programming implementation section.

The required propeller geometry for the blade element theory is the diameter, number

of blades, pitch and chord variation along the radius. The propeller blade cross section

is required to solve for the lift and drag coe�cients in Eqs. 5 and 6. The last piece of
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Fig. 4: Stream tube encompassing concentric stream surfaces.

Fig. 5: Velocities and pressure along the slip stream of the propeller.

information required for closure of the di�erential thrust and power coe�cients is the induced

angle of attack on each element. The induced angle of attack is obtained by momentum

theory.

Momentum Theory

Momentum theory uses a simple �ow analysis to calculate the velocity distribution of

a slip stream by analyzing the �ow through axis-symmetric di�erential stream tubes. The

di�erential stream tube is made of stream surfaces which are comprised of all streamlines

that occupy a common radial location, thus the velocity is radius dependent. Figure 4

shows the concentric stream surfaces. The �ow is assumed to be incompressible, inviscid

and irrotational, even across the propeller disk. Momentum is balanced from far upstream

of the propeller to far downstream. The propeller is treated as an in�nitely thin disk with

an abrupt pressure increase across it. Figure 5 shows the the momentum �ow model. Each

stream surface inlet starts at the free stream velocity. The velocity continuously increases
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along the stream surfaces as it passes through the propeller disk to the exit of the stream

tube. The pressure decreases from the free stream condition to p just before the propeller

disk. The velocity at the propeller disk is V∞ + Vi(r). The pressure increases by ∆p across

the propeller disk and decreases to the free stream condition at the exit. The velocity at

the exit of the stream tube increases to Ve. Bernoulli's equation is applied to the stream

surface from the free stream to the propeller and from the propeller to the exit conditions

which yields the following:

p∞ +
ρV 2
∞

2
= p+

ρ (V∞ + Vi(r))
2

2
(17)

p+ ∆p+
ρ (V∞ + Vi(r))

2

2
= p∞ +

ρV 2
e

2
(18)

Eqs. 17 and 18 are combined and the pressure change across the propeller disk is solved for

∆p =
ρ
(
V 2
e − V 2

∞
)

2
(19)

Knowing the pressure di�erence across the propeller, a di�erential thrust from the propeller

is found by multiplying it by the di�erential area at the propeller disk

dT = ρ
(
V 2
e − V 2

∞

)
πr dr = ρ (Ve − V∞) (Ve + V∞)πr dr (20)

The di�erential thrust can also be found by a momentum balance through a stream

surface. The di�erence between the upstream and downstream momentum is that which is

added to the �ow by the propeller. The momentum balance is

dT + ṁ(r)V∞ = ṁ(r)Ve (21)

The di�erential mass �ow through the stream surface, calculated at the propeller disk, is

ṁ(r) = 2ρ (V∞ + Vi(r))πr dr (22)
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The momentum balance in Eq. 21 can then be written as

dT = 2ρ (V∞ + Vi(r)) (Ve − V∞)πr dr (23)

The di�erential thrust, Eqs. 20 and 23, are equated to produce the following relationship

between the free stream, induced and exit velocities

Ve(r) = V∞ + 2Vi(r) (24)

Using the exit velocity in Eq. 23 gives a de�nition of the di�erential thrust

dT = 4ρVi(r) (V∞ + Vi(r))πr dr (25)

which can be solved for the induced velocity. The induced velocity at a radial location is

Vi(r) = ±
√
V 2
∞
4

+
dT

4ρπr dr
− V∞

2
(26)

The positive root is kept meaning that Vi(r) > 0 which is expected when thrust is produced

opposite the direction of the free stream. The nondimensional induced velocity at a location

is

Ji(r) =

√
J2

4
+

1

πx

dCT
dx
− J

2
(27)

Equations 25 and 26 can be combined to give a relationship between thrust and power. In

a nondi�erential and nondimensionalized form, the ideal power coe�cient is

CP = CT

J
2

+

√
J2

4
+

2CT
π

 (28)

Equation 28 is considered to be an idealized relationship and is the upper limit of propeller

e�ciency.

Momentum theory has come under heavy scrutiny due to its neglect of obvious rotation

[5]. A propeller has been likened to a rotating wing and as such, creates a trailing vortices
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as the individual blade elements create lift. The vortices trail the propeller in a helical

fashion about the propeller axis as it moves through the working �uid. The actual source of

the induced velocity is from this helical vortex system. The induced �ow actually originates

from behind the propeller as opposed to in front as momentum theory assumes. As the focus

of this paper is on an improvement on combined blade element and momentum theory, the

shortcomings of momentum theory are accepted while warning the reader of its de�ciencies.

Analytical BEM

The momentum analysis provides the necessary �ow information for the blade element

theory to calculate thrust and power. The induced angle of attack from Figure 3 is

αi = tan−1

 Vi(r)√
V 2
∞ + (ωr)2

 (29)

and de�ned in nondimensional terms

αi = tan−1
(

Ji(r)√
J2 + π2x2

)
(30)

McCormick assumes the thrust is much greater than the drag such that it has little e�ect

on the induced angle of attack, induced angle of attack is small and the advance angle is

small. The di�erential thrust on a blade element, Eq. 7, then becomes

dT =
1

2
ρ
(
V 2
∞ + (ωr)2

)
CLN cdr (31)

Small angle approximation of the induced angle of attack, Eq. 29 produces

αi =
Vi(r)√

V 2
∞ + (ωr)2

(32)
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The di�erential thrust from momentum theory, Eq. 25, can be equated to the approximate

di�erential thrust, Eq. 31. After some manipulation, it becomes

α2
i + αi

V∞
ωr

+
CL,αNc

8πr

√
1 +

(
V∞
ωr

)2
− CL,αNc

8πr

√
1 +

(
V∞
ωr

)2

(β − Φ) = 0 (33)

The solution of this quadratic equation is the analytic induced angle of attack

αi = −1

2

V∞
ωr

+
CL,αNc

8πr

√
1 +

(
V∞
ωr

)2
 (34)

+
1

2

√√√√√V∞
ωr

+
CL,αNc

8πr

√
1 +

(
V∞
ωr

)2
2

+
CL,αNc

8πr

√
1 +

(
V∞
ωr

)2

(β − Φ)

The induced angle of attack is solved at each blade element and then used in Eq. 15 and

Eq. 16 to determine the thrust and power coe�cients.

Nonlinear BEM

The purpose of the nonlinear BEMmodel is to provide a more accurate representation of

what the propeller blade experiences by challenging the assumptions that the drag has little

e�ect on the induced angle of attack, the induced angle of attack is small and the advance

angle is small. The inaccuracies of these assumptions are clearly seen with high pitch

propellers at low advance ratios. The nonlinear modi�cation of blade element momentum

model iterates through a series of equations from both blade element and momentum theory

until a convergence on the induced angle of attack is reached on each blade element. The

induced angle of attack analytical approximation, Eq. 34, is the starting point for the

nonlinear iteration. The thrust coe�cient derivative with respect to x is then solved for.

This derivative is used to �nd the induced velocity. Last, the induced velocity is used to

calculate a re�ned estimation of the induced angle of attack. The iterated equations are

presented in Eqs. 35, 36 and 37.

dCT
dx

=
J2 + π2x2

8
(CL cos(αi + Φ)− CD sin(αi + Φ))σ (35)
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Fig. 6: User interface of the BEM code.

Ji(r) =

√
J2

4
+

1

πx

dCT
dx
− J

2
(36)

αi = tan−1
(

Ji(r)√
J2 + π2x2

)
(37)

with

Φ = tan−1
(
V∞
ωr

)
(38)

dCT =
J2 + π2x2

8
(CL cos(αi + Φ)− CD sin(αi + Φ))σ dx (39)

dCP = π
J2 + π2x2

8
(CL sin(αi + Φ) + CD cos(αi + Φ))σ x dx (40)

for closure. The converged induced angle of attack is solved at each blade element and then

used in Eq. 15 and Eq. 16 to determine the thrust and power coe�cients.

Programming Implementation

The computer code for the current study was written in Java for is ease in GUI program-

ming, ability to run independent of platform and as a learning experience for the author.

The program interface is shown in Figure 6. The geometric inputs to the code are the

chord/pitch pro�le �le, optionally pitch length, number of blades, lift slope, zero angle lift

coe�cient, and the drag coe�cients in the parabolic relation of drag to lift. The chord/pitch

pro�le �le is formatted in plain text. Each line contains a radial location, local chord length
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and optionally, the local pitch length. The radius of the propeller root and tip are de�ned

as the �rst and last radius value found in the �le. The diameter is twice the tip radius.

The operating condition inputs are rotational velocity, incoming velocity, temperature and

atmospheric pressure. The purpose of temperature and pressure is to �nd the air density

for dimensional results. Analysis inputs are a tip correction factor and number of blade

elements. For a �nite wing or lifting surface, the local sectional lift coe�cient must ap-

proach zero near the wing tip. Many di�erent approaches have been proposed to implement

this condition [6]. This analysis uses most simple accepted model for initial estimations by

assuming no lift is produced beyond x = 0.97 [7]. The blade element chord length and pitch

are found at the center of each blade element. The chord and pitch is linearly interpolated

from the provided blade pro�le geometry. If the center of the blade element is at a location

beyond the tip correction, the lift in the analytical BEM is set to zero. However, in the

nonlinear implementation, by setting the lift to zero, the derivative dCT becomes less than

zero. To avoid taking the root of a negative number, in the nonlinear BEM the di�erential

thrust coe�cient is alternatively set to zero. The thrust of a propeller is primarily a product

of the lift of the blade elements and this modi�cation is a reasonable approximation to the

tip e�ect correction developed by McCormick.

With the required information, the code solves for the di�erential thrust and power

coe�cients for each blade element and numerically integrates along the length of the blade.

Analytical and Nonlinear Comparisons

For the sake of comparison, the geometry of an APC 8x4, 8x6 and 8x8 Thin Electric

propellers are used for the following calculations. The chord pro�les remain equal between

the di�erent pitch lengths. It was hypothesized that the inaccuracies of the the analytical

BEM model would occur at high advance ratios where the advance angle is large and with

high pitch propellers. The high advance ratios would made the advance angle large, rejecting

any small angle approximations. The higher pitch propellers would also create a greater

induced angle of attack, again being less suited for a small angle approximation. Figures 7

and 8 compare the power and thrust coe�cients for each of the propellers. It is clear that
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Fig. 7: Comparison of thrust coe�cients between analytical and nonlinear BEM models for
propellers with di�erent pitch lengths.

Fig. 8: Comparison of power coe�cients between analytical and nonlinear BEM models for
propellers with di�erent pitch lengths.
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the impact that the high advance angle has on performance is more pronounced in the power

coe�cient than in the thrust coe�cient. Interestingly, the thrust coe�cient di�ers more with

the lower pitch propeller than the higher pitch propeller. The most reasonable cause for this

is the analytical assumption that lift is much greater than the drag. The assumption over

predicts the lift and therefore, thrust of the analytical model. The higher pitch a propeller

is, the more lift is produced on the blade, thus more thrust. This assumption is more

valid on higher pitch propellers than it is on lower as is evident in the thrust curves. This

di�erence outweighs any e�ect the induced angle of attack has on the higher pitch propellers

as originally thought.
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Experimental Procedures

Three types of experiments were performed. The sole purpose for two tests was to

characterize the DC motor used to power the propeller. The �rst, to measure the no-

load current by measuring the current drawn by the motor without a resistive load on

the shaft. The second measured the armature resistance by measuring the voltage and

current supplied to the motor while preventing the motor from spinning. The last, and

most intensive experiment was the validation experiment in which the thrust and braking

power was measured inside the wind tunnel at di�erent tunnel velocities. The 8x8 APC

Thin Electric propeller was tested in the wind tunnel, measuring thrust using both a load

cell an calculating a momentum integral from the wake. The wake was measured using a

sweeping pitot probe. Power being supplied to the motor was calculated through voltage

and current measurements.

Validation experiments were performed inside of a low speed nonrecirculating wind

tunnel owned by the Mechanical and Aerospace Department at Utah State University. The

wind tunnel test section dimensions are 40.6×40.6×121.9 cm (16×16×48 in.). The 8x8

propeller was installed to a motor and gear box assembly1. The motor assembly was situated

in the center of the test section and mounted to one end of a pivoting arm. The opposite

end of the lever arm extends out the bottom of the test section with the pivot just outside

of the wall of the tunnel. A load cell was attached to the outside end of the lever arm.

The pivot allows the forces to be isolated in the axial direction and allows a mechanical

advantage to use more of the load cell range. Figure 9 is a photo of the propeller installed

in the wind tunnel test section. Airspeed measurements consist of total pressure ports near

the side of the tunnel fore and aft of the propeller, a static port aft of the propeller and

a sweeping pitot probe aft of the propeller. The pitot probe is mounted to a traversing

track. The traversing track slides along a linear potentiometer for a position measurement

1The motor and gearbox are parts of a remote controlled airplane, a Hobby-
Zone Super Cub. The motor part number is HBZ7134 and the gear box, HBZ7129.
http://secure.hobbyzone.com/index/index_park_�yers_rtf/HBZ7300.html
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Fig. 9: Photo of propeller installation, pivot
arm and load cell con�guration.

Fig. 10: Block diagram of mechanical mea-
surements.

of the pitot probe. The voltage being supplied to the motor is measured through a voltage

divider circuit. The current being supplied to the motor is measured through an inductive

ammeter. Figure 10 shows a block diagram of the mechanical measurements. Table 1 lists

each transducer, their function, ranges and accuracies. The transducers will be discussed

individually in the following sections.

Airspeed Measurements

The total air pressure is measured by pitot probes 44.5 cm (17.5 in) upstream and

54.6 cm (21.5 in) downstream of the propeller. The di�erence between these measurements

indicates losses in the test section. A static pressure port is also located 54.6 cm (21.5 in)

downstream of the propeller. The di�erence between the downstream total pressure and

the downstream static pressure is measured. Both measurements are performed by two

Omega PX143-01BD di�erential pressure transducers. These two measurements give both

an upstream and downstream velocity outside of the propeller wake.

The sweeping pitot probe is oriented at the same height and 50.8 cm (20 in) downstream

of the propeller. The probe sweeps horizontally from the tunnel wall to approximately 3
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Table 1: List of Transducers and Their Respective Function and Speci�cations

Make/Model
Number

Measurement Function Range Accuracy

Omega
PX143-01BD

Di�erential
pressure

Tunnel loss ±6.9 kPa (1
psi)

0.03%
FS*

Omega
PX143-01BD

Di�erential
pressure

Free stream
velocity

±6.9 kPa (1
psi)

0.03%
FS*

Setra Datum 2000
model 2239

Di�erential
pressure

Velocity pro�le 0 - 3.7 kPa
(0.54 psi)

0.14%
FS*

Omega LCCD-25 Force Propeller thrust ±111 N (25
lbf)

0.2%
FS*

Fluke i30 Current Motor current 0.03 - 30A 1% of
reading

Shimpo DT-209X Rotation rate Motor RPM 6.0 - 99,999
RPM

±1 RPM

*As measured from calibration data

cm (1.2 in) past the center of the tunnel. The total and static pressure feed into a Setra

Datum 2000 model 2239 di�erential pressure transducer. The position of the pitot probe

is measured by a linear, pressure sensitive potentiometer. The combined measurement of

the position and airspeed allow for the measurement of the radial velocity pro�le from the

propeller. Each pressure sensor was calibrated using a wall mounted Meriam GP-6 model

40GE4 manometer.

Thrust Measurements

The propeller thrust is measured directly by the load cell mounted opposite of the

propeller on the pivot arm. One end of the load cell is attached to the pivot arm, and the

other to a rigid mount attached to the outer wall of the test section. The load cell is an

Omega LCCD-25. The calibration was performed in situ with known weights hanging on

a cord using a pulley to allow the cord to pull straight along the propeller axis. Figure 11

shows this arrangement.

Wake surveys were also used to indirectly measure the thrust of the propeller. The wake

pro�le is an indication of how much momentum was added to the �ow from the propeller.
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Fig. 11: In situ calibration of load cell using calibrated weights.

Power Measurements

The current being supplied to the motor is measured by a Fluke i30 inductive current

clamp. The speed of the propeller is measured by a Shimpo DT-209X laser tachometer. The

voltage supplied to the motor is measured directly through a voltage divider circuit into the

data acquisition unit.

Data Acquisition

The measurements were taken by a National Instruments DAQCard-6024 PCMCIA card

with a 12 bit resolution. The data acquisition card was connected to a National Instruments

BNC-2110 connector block. These make up the data acquisition unit (DAQ). Samples were

taken at 500 Hz for all the measurements apart from the RPM measurement which was

taken at 2 Hz.

Test Procedure

The motor no-load current, I0, was measured by simply allowing the motor to spin freely

without any opposition. The armature resistance is calculated by measuring the voltage and

current supplied to the motor while preventing the motor from spinning. Minutes prior to

propeller testing, atmospheric pressure and temperature were measured and logged. At each

tunnel velocity, a set of measurements was taken with and without powering the propeller.

The amount of drag created by the motor assembly and pivot arm was measured. The

propeller was allowed to spin during the drag measurements. This measured drag was later

subtracted from the thrust measurement. The motor was then powered and another set of
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measurements are taken. The pitot swept forward, from the tunnel wall to just past the

propeller axis and back to the wall. In total, 3 forward and back sweeps were made as part

of each test. The duration of a test was approximately 55 to 65 seconds.

Data Reduction

Momentum and mass are balanced upstream and downstream of the propeller to yield

the thrust momentum integral

T =

ˆ 2π

0

ˆ Rw

0
ρV 2
∞

(
V (r)2

V 2
∞
− 1

)
r dr dθ (41)

The Rw limit of integration is the outer location of the wake and is observed from the data

where wake remains equal with the free stream velocity. Conservation of mass through the

test section dictates that

R2
w

2
=

ˆ Rw

0

V (r)

V∞
r dr (42)

Equation 41 is integrated with respect to circumferential dimension, θ, and combined with

Eq. 42 such that the gross thrust is equal to

T = 2πρV∞

ˆ Rw

0

(
V (r)− V (r)2

V∞

)
r dr (43)

The measured velocity pro�les are biased in the position data. It is reasonable to assume

that the velocity pro�les are symmetric about the axis, therefore, in some cases, the pro�le

position data was biased such that the majority of any measured asymmetry was removed.

This asymmetry was an artifact of the measurement system. The velocity data was averaged

at each discrete measured position created by the bit resolution of the DAQ. A trapezoidal

integration was performed using the averaged velocity points to compute the wake integral in

Eq. 43. The drag and thrust pro�le were integrated individually. The drag was subtracted

from gross thrust to calculate the net amount of thrust.

The free stream velocity used in the advance ratio is adjusted to re�ect a more accurate

approximation of velocity where measured thrust and torque would be produced in open
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air. The propeller �ow is constrained by the tunnel. Therefore, the measured velocity is

di�erent than what would occur in an unconstrained �ow at the same level of performance.

This free stream velocity correction is outlined in Glauert [8] and is equal to

V ′∞
V∞

= 1− γ

2

τ√
1 + 2τ

(44)

where

τ =
T

πR2ρV 2
∞

γ =
πR2

St

and St is the cross sectional area of the wind tunnel test section. The free stream velocity

was calculated by the fore total pressure probe and the aft static pressure port.

Using a measured no-load current I0, and armature resistance Ra, the braking power

of the motor is calculated by

P = (I − I0) (E − I Ra) (45)

The measured pressures, the load cell thrust measurement, propeller speed and motor cur-

rent were averaged through the duration of the test with exception to the sweeping pitot

measurements.

Uncertainty

An uncertainty analysis was performed on each of the measured values. It was found

that the bit resolution of the Omega pressure sensors is primary cause of the measured

uncertainty. It was, at least, an order of magnitude greater than the random uncertainty,

instrument speci�cations or propagated uncertainties from atmospheric pressure or temper-

ature.

The load cell experienced an additional calibration uncertainty that could not be re-

moved through subsequent calibrations. The measured points from the calibration and the
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linear calibrated curve �t were as much as 0.044 lbf. apart. This quantity was assumed as a

standard error and root mean squared with the bit resolution to �nd the total uncertainty

of the load cell measurements.

The sources of uncertainty for the power calculations come from the bit resolution

of current measurement, ammeter instrument speci�cation and uncertainty of the motor

constants. The current bit resolution and 1% of reading speci�cation were root mean squared

to total a current standard uncertainty. The variation of the no-load current and armature

resistance are approximated to be UI0 = .05 and URa = .03 as found by multiple tests. The

uncertainty of the power measurement was root mean squared as

UP =

√(
∂P

∂I0
UI0

)2

+

(
∂P

∂I
UI

)2

+

(
∂P

∂Ra
URa

)2

(46)

The uncertainty of the measured voltage was insigni�cant compared to the other uncertain-

ties.

The uncertainty of the thrust measurement calculated by the wake surveys was esti-

mated using a Monte Carlo simulation. The measured velocity at each discrete location, the

position biases and the upper integration limit of the wake integral were randomly varied in

the simulation. All quantities are varied such that they have a normal distribution with a

speci�ed standard deviation. The standard deviation of the discrete velocities was calculated

from the measurement. The position bias, used to center the wake, and the outward inte-

gration limit was varied such that they had a standard deviation of 0.25 in. The simulation

was run 1000 times and the variation in the wake integral results were calculated.
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Results and Discussion

An APC 8x8 Thin Electric propeller was tested in the wind tunnel and compared to

the BEM code calculations. The chord and pitch pro�le of the propeller was supplied by the

manufacturer upon request. Airfoil geometry was not given therefore the aerodynamic lift

and drag constants were chosen such that they su�ciently matched the load cell measure-

ment data. These constants are in Table 2 and were used to characterize other propellers of

the same manufacturer and series.

Figure 12 shows averaged wake pro�les and are representative of the issues encountered.

Each pro�le shows some form of o�-centered asymmetry. Figure 12 (a) exhibits an additional

asymmetry such that the velocity is higher on the negative side of the r axis than on the

positive side. The source of this asymmetry is unknown and inconsistent with the symmetric

wake assumption. Figure 12 (b) shows a noisy location in the wake. This was typical of

each wake at higher tunnel velocities. Upon closer inspection, the measured wakes along

individual pitot sweeps varied. This e�ect was unpredictable and localized to the 6 cm

(2.5 in) to 10 cm (4 in) region. The uncertainty was also large, and therefore will not be

considered in the remaining comparisons.

Figure 13 shows the thrust and power coe�cients with 95% con�dence interval error

bars. These measurements are compared against the BEM models predictions. The test data

matches the models reasonably well, especially at higher advance ratios. At low advance

ratios, the thrust coe�cient of the BEM overestimates the thrust coe�cient. The reason

Table 2: Aerodynamic Constants Used in the BEM Code

Quantity Value

CL,α 5.5

CL0 0.2

CD0 0.02

CD,L 0.0

CD,L2 0.05
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(a) Thrust coe�cient (b) Power coe�cient

Fig. 12: Averaged wake pro�les highlighting sources of wake survey shortcomings.

(a) Thrust coe�cient (b) Power coe�cient

Fig. 13: Comparison of load cell derived thrust and power coe�cients to BEM models (APC
8x8 Thin Electric propeller).



26

Fig. 14: Angle of attack at each blade element at advance ratios J = 0 and J = 0.45 (APC
8x8 Thin Electric propeller).

for this discrepancy is the linear lift model that is used in the BEM models. The propeller

blade is stalled close to the root where the local pitch angle, β, is large. Figure 14 shows

the BEM-calculated angle of attack at two di�erent advance ratios. As the advance ratio

approaches zero, the majority of the blade experiences an angle of attack that is likely to be

out of its linear lift range. It is di�cult to determine exactly how wide the linear lift range

is without detailed airfoil information however, above 15◦ it is safely assumed that the blade

is stalled. At the higher advance ratio the angle of attack is closer to the linear lift range

for most of the blade span.

The BEM models were also compared to test data taken on APC propellers by Brandt

and Selig [9] of the University of Illinois at Urbana-Champaign. Figure 15 compares the

thrust an power coe�cients from the UIUC database against the model predictions for

the 11x5.5 propeller. For a lower pitch propeller the thrust coe�cients show very good

agreements, especially at the higher advance ratios. Clearly at the higher advance ratios

where Φ is large the nonlinear BEM model exhibits greater accuracy. Interestingly at the
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(a) Thrust coe�cient (b) Power coe�cient

Fig. 15: Comparison of thrust and power coe�cients (UIUC data) to BEM models (APC
11x5.5 Thin Electric propeller).

lower advance ratios, both BEM models under predict the thrust coe�cient. This result

is in direct contrast to the data presented in Figure 13 (a). For this case the blade pitch

is signi�cantly lower thus the blade remains unstalled for a signi�cantly larger segment of

the blade span. The UIUC power coe�cient data appears to be biased when compared

to the thrust coe�cient data. Insu�cient information is provided by the UIUC authors to

understand the source of this bias. The power coe�cient data was recalculated using Eq.

28 from the thrust coe�cient. These recalculated coe�cients are also plotted on Figure 15

(b). The recalculated data exhibit a closer relation to the nonlinear model.
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Conclusion

For conceptual design, low-order engineering codes are still the preferred method for

designers. Engineering codes are powerful tools when applied in the conceptual design stage.

Their use in the early stages of design enables higher �delity CFD calculations or wind tunnel

tests to be performed on more mature vehicle concepts and can trim many months o� the

design process. Traditionally, one of the following low-order engineering design methods

have been used to calculate the steady state �ow properties behind rotating propellers and

turbine blades. These are momentum theory, Goldstein's vortex theory and blade element

theory. Often momentum theory is combined with blade element theory to produce a single

low-order prediction tool referred to as the combined blade element momentum theory.

Goldstein's vortex method, although it has been successfully used to calculate the per-

formance of propellers and wind turbines, is very sensitive to errors in the input geometry

of the propeller, and as such is of limited use for the early stage design problems where the

propeller characteristics may not be well known. This paper revisits the combined blade ele-

ment momentum theory as an alternative. Unfortunately, the traditional analytical method

used by McCormick to solve for the thrust and power coe�cients using momentum theory,

assumes that the advance angle of the blade is small for all radial locations and at all ad-

vance ratios. This assumption is clearly inaccurate. At even moderate advance ratios, the

advance angle of the blade is signi�cantly larger than can be allowed in the small angle

approximation. The blade element thrust and power coe�cients are numerically calculated

without the inaccurate small advance angle assumption. The revised algorithm is derived

and example calculation using a Java based graphical user interface are presented. The e�ect

of this revised model is investigated and presented. As expected the modi�cations show the

greatest e�ect at higher advance ratios. However, e�ects are shown to be greater for lower

pitch propellers. McCormick assumes in the analytical model that the thrust is much greater

than the drag which fails with lower pitch propellers at high advance ratios. The traditional
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analytical model, thrust and power coe�cient predictions are typically overestimated by

1-5% when compared to the revised model.

The analytical models are compared against experimental measurements collected for

an APC 8x8 Thin Electric propeller blade, and against additional propeller data retrieved

from a database at the the University of Illinois at Urbana-Champaign. Generally the

models exhibit reasonable comparisons with the nonlinear (improved) BEM model showing

the best accuracy at higher advance ratios. At lower advance ratios, the models predictions

generally depart from the experimental measurements. This discrepancy is a result of poorly

known lift coe�cient distributions along the blade pro�les. The models as are currently

implemented rely on linear airfoil theory to predict the blade element lift coe�cients, and

for lower advance ratios the real blades are stalled along the lower sections of the blade near

the root. Simple code modi�cation to allow actual airfoil sectional lift coe�cients to be

input should greatly improve the accuracy of the model.

The greatest signi�cance of the revised model is the elimination of the theoretically

incorrect and philosophically unsatisfying assumptions used by McCormick to solve the

blade element momentum equations. The resulting algorithm is easily implemented with

only a small increase in complexity and computational time. The revised algorithm can

easily be programmed on any computer using readily available spreadsheet analysis tools.

Momentum theory makes simplistic assumptions on the source of the induced �ow. The

induced �ow is created by vorticity shed from the propeller. A point of future research would

be to continue with blade element theory and account for vorticity in the �ow. Goldstein's

vortex theory approximates a vortices trailing from the whole span of the propeller creating

a vortex sheet. A simplifying assumption would be that the propeller creates a single line

vortex from the tip of the propeller. This is supported by propellers typically having high

aspect ratios and minimal sweep creating a comparatively strong vortex o� the tip of the

blade greatly simplifying the helical vortex analysis.
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Appendix A: Manufacturer Supplied Data Files for APC 8x8 and 11x5.5 Thin

Electric Propellers

8x8 REV1 1/14/00 ELECTRIC GRAUPNER COMPETITION 12-11-

ORIGINAL FILE DATE BEFORE SURFDOC MODIFICATION: 12/18/2008
PROPDATA
RPM 16000.0000
RPS (n) 266.6667
DIA (D) 8.0000
NRJPTS 31

Airfoil section Cl & Cd coefficients ==> HAVE BEEN <== altered
to reflect stalling effects using Beta Angle, Advance Ratio,
and (empirical, P/D correlated) static thrust data as
correlating parameters.

======== NORMALIZED PERFORMANCE DATA (PLUS V) =========

DEFINITIONS:
J=V/nD (advance ratio)
Ct=T/(rho * n**2 * D**4) (thrust coef.)
Cp=P/(rho * n**3 * D**5) (power coef.)
Pe=Ct*J/Cp (efficiency)
V (model speed in MPH)

J Ct Cp Pe V
0.0500 0.0964 0.0703 0.0686 6.
0.0898 0.0982 0.0732 0.1205 11.
0.1296 0.1000 0.0762 0.1701 16.
0.1694 0.1016 0.0791 0.2175 21.
0.2092 0.1030 0.0820 0.2628 25.
0.2490 0.1041 0.0847 0.3061 30.
0.2888 0.1048 0.0871 0.3477 35.
0.3286 0.1052 0.0892 0.3876 40.
0.3684 0.1051 0.0909 0.4258 45.
0.4082 0.1046 0.0924 0.4623 49.
0.4480 0.1026 0.0924 0.4973 54.
0.4878 0.0994 0.0914 0.5308 59.
0.5276 0.0960 0.0899 0.5629 64.
0.5673 0.0921 0.0880 0.5937 69.
0.6071 0.0879 0.0856 0.6233 74.
0.6469 0.0833 0.0827 0.6517 78.
0.6867 0.0786 0.0796 0.6787 83.
0.7265 0.0738 0.0762 0.7042 88.
0.7663 0.0689 0.0726 0.7282 93.
0.8061 0.0639 0.0686 0.7509 98.
0.8459 0.0588 0.0644 0.7720 103.
0.8857 0.0536 0.0600 0.7912 107.
0.9255 0.0482 0.0552 0.8084 112.
0.9653 0.0427 0.0501 0.8236 117.
1.0051 0.0371 0.0446 0.8364 122.
1.0449 0.0314 0.0388 0.8450 127.
1.0847 0.0256 0.0327 0.8469 131.
1.1245 0.0196 0.0263 0.8388 136.
1.1643 0.0136 0.0195 0.8109 141.
1.2041 0.0074 0.0123 0.7235 146.
1.2439 0.0011 0.0051 0.2738 151.

========= GEOMETRY DATA ==============

DEFINITIONS:
THE QUOTED PITCH REFLECTS, IN GENERAL, ANGULAR MEASURE
AS DEFINED WITH A FLAT BOTTOM SURFACE. THIS WILL
AGREE WITH A PRATHER GAGE MEASUREMENT OVER MOST OF THE
EFFECTIVE PORTION OF THE BLADE.
THE LE-TE MEASURE IS DEFINED IN TERMS OF LEADING EDGE
AND TRAILING EDGE (MOLD) PARTING LINE DATUMS.
THE PRATHER MEASURE REFLECTS THE MOST LIKELY PITCH
INTERPRETATION FROM A PITCH MEASUREMENT DEVICE
THAT RESTS AGAINST THE LOWER SURFACE.
SWEEP IS DEFINED WITH L.E. POSITION.

STATION CHORD PITCH PITCH PITCH SWEEP THICKNESS TWIST MAX THICK
(IN) (IN) (QUOTED) (LE-TE) (PRATHER) (IN) RATIO (DEG) (IN)

0.9536 0.7216 8.0000 8.0000 7.0552 0.3978 0.1794 53.1685 0.1294
1.0038 0.7503 8.0000 8.0000 7.1322 0.4039 0.1715 51.7475 0.1287
1.0541 0.7767 8.0000 8.0000 7.1983 0.4094 0.1642 50.3800 0.1275
1.1043 0.8009 8.0000 8.0000 7.2561 0.4146 0.1574 49.0644 0.1261
1.1545 0.8229 8.0000 8.0000 7.3077 0.4193 0.1513 47.7993 0.1245
1.2048 0.8429 8.0000 8.0000 7.3544 0.4235 0.1456 46.5828 0.1227
1.2602 0.8625 8.0000 8.0000 7.4011 0.4277 0.1400 45.2958 0.1208
1.3547 0.8904 8.0000 8.0000 7.4708 0.4337 0.1321 43.2237 0.1176
1.4544 0.9126 8.0000 8.0000 7.5312 0.4384 0.1258 41.1997 0.1148
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1.5541 0.9278 8.0000 8.0000 7.5772 0.4417 0.1218 39.3264 0.1130
1.6538 0.9364 8.0000 8.0000 7.6038 0.4434 0.1199 37.5914 0.1123
1.7536 0.9390 8.0000 8.0000 7.6178 0.4437 0.1191 35.9830 0.1118
1.8533 0.9359 8.0000 8.0000 7.6290 0.4426 0.1182 34.4900 0.1106
1.9530 0.9275 8.0000 8.0000 7.6377 0.4402 0.1174 33.1022 0.1089
2.0527 0.9143 8.0000 8.0000 7.6449 0.4366 0.1165 31.8104 0.1065
2.1524 0.8968 8.0000 8.0000 7.6541 0.4317 0.1157 30.6061 0.1037
2.2521 0.8753 8.0000 8.0000 7.6647 0.4258 0.1148 29.4818 0.1005
2.3518 0.8503 8.0000 8.0000 7.6750 0.4187 0.1140 28.4304 0.0969
2.4515 0.8223 8.0000 8.0000 7.6839 0.4106 0.1131 27.4457 0.0930
2.5512 0.7917 8.0000 8.0000 7.6914 0.4015 0.1123 26.5222 0.0889
2.6510 0.7588 8.0000 8.0000 7.6937 0.3915 0.1114 25.6547 0.0846
2.7507 0.7242 8.0000 8.0000 7.6960 0.3807 0.1106 24.8386 0.0801
2.8504 0.6883 8.0000 8.0000 7.6990 0.3691 0.1097 24.0699 0.0755
2.9501 0.6515 8.0000 8.0000 7.7030 0.3567 0.1089 23.3447 0.0709
3.0498 0.6143 8.0000 8.0000 7.7082 0.3436 0.1080 22.6597 0.0664
3.1495 0.5771 8.0000 8.0000 7.7143 0.3299 0.1072 22.0117 0.0619
3.2492 0.5403 8.0000 8.0000 7.7218 0.3156 0.1063 21.3982 0.0575
3.3489 0.5043 8.0000 8.0000 7.7265 0.3009 0.1055 20.8164 0.0532
3.4487 0.4697 8.0000 8.0000 7.7244 0.2856 0.1046 20.2641 0.0492
3.5484 0.4368 8.0000 8.0000 7.7153 0.2700 0.1038 19.7392 0.0453
3.6481 0.4060 8.0000 8.0000 7.6972 0.2540 0.1030 19.2398 0.0418
3.7478 0.3779 8.0000 8.0000 7.6679 0.2377 0.1021 18.7642 0.0386
3.8466 0.3333 8.0000 8.0000 7.5050 0.2027 0.1013 18.3150 0.0338
3.9404 0.2245 8.0000 8.0000 7.4682 0.1029 0.1005 17.9070 0.0226

---- EFFICIENCY, POWER, TORQUE & THRUST DISTRIBUTION ----

MPH EFF POWER (Hp) TORQUE (in-lbf) THRUST (lbf)
6.061 0.6856E-01 0.7593 2.991 3.221
10.88 0.1205 0.7906 3.114 3.282
15.71 0.1701 0.8223 3.239 3.339
20.53 0.2175 0.8541 3.364 3.393
25.36 0.2628 0.8854 3.488 3.441
30.18 0.3061 0.9143 3.602 3.478
35.00 0.3477 0.9402 3.703 3.502
39.83 0.3876 0.9627 3.792 3.513
44.65 0.4258 0.9818 3.868 3.511
49.47 0.4623 0.9973 3.928 3.495
54.30 0.4973 0.9976 3.930 3.426
59.12 0.5308 0.9865 3.886 3.322
63.95 0.5629 0.9711 3.825 3.206
68.77 0.5937 0.9506 3.745 3.078
73.59 0.6233 0.9245 3.642 2.936
78.42 0.6517 0.8930 3.518 2.783
83.24 0.6787 0.8592 3.385 2.627
88.06 0.7042 0.8226 3.240 2.467
92.89 0.7282 0.7833 3.086 2.303
97.71 0.7509 0.7411 2.919 2.136
102.5 0.7720 0.6957 2.740 1.964
107.4 0.7912 0.6473 2.550 1.789
112.2 0.8084 0.5958 2.347 1.610
117.0 0.8236 0.5407 2.130 1.427
121.8 0.8364 0.4816 1.897 1.240
126.7 0.8450 0.4191 1.651 1.049
131.5 0.8469 0.3535 1.392 0.8539
136.3 0.8388 0.2841 1.119 0.6557
141.1 0.8109 0.2103 0.8286 0.4532
145.9 0.7235 0.1328 0.5231 0.2469
150.8 0.2738 0.5483E-01 0.2160 0.3734E-01

11x5.5 REV1 ELECTRIC GRAUPNER COMPETITION 12-11-99

ORIGINAL FILE DATE BEFORE SURFDOC MODIFICATION: 12/18/2008
PROPDATA
RPM 12000.0000
RPS (n) 200.0000
DIA (D) 11.0000
NRJPTS 17

Airfoil section Cl & Cd coefficients ==> HAVE BEEN <== altered
to reflect stalling effects using Beta Angle, Advance Ratio,
and (empirical, P/D correlated) static thrust data as
correlating parameters.

======== NORMALIZED PERFORMANCE DATA (PLUS V) =========

DEFINITIONS:
J=V/nD (advance ratio)
Ct=T/(rho * n**2 * D**4) (thrust coef.)
Cp=P/(rho * n**3 * D**5) (power coef.)
Pe=Ct*J/Cp (efficiency)
V (model speed in MPH)

J Ct Cp Pe V
0.0500 0.0735 0.0394 0.0932 6.
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0.0898 0.0641 0.0351 0.1638 11.
0.1296 0.0551 0.0309 0.2311 16.
0.1694 0.0495 0.0284 0.2951 21.
0.2092 0.0465 0.0273 0.3557 26.
0.2490 0.0433 0.0261 0.4126 31.
0.2888 0.0401 0.0249 0.4656 36.
0.3286 0.0367 0.0234 0.5147 41.
0.3684 0.0332 0.0219 0.5594 46.
0.4082 0.0296 0.0201 0.5992 51.
0.4480 0.0258 0.0183 0.6325 56.
0.4878 0.0219 0.0163 0.6560 61.
0.5276 0.0179 0.0142 0.6669 66.
0.5673 0.0138 0.0119 0.6584 71.
0.6071 0.0096 0.0094 0.6159 76.
0.6469 0.0052 0.0068 0.4896 81.
0.6867 0.0006 0.0042 0.1035 86.

========= GEOMETRY DATA ==============

DEFINITIONS:
THE QUOTED PITCH REFLECTS, IN GENERAL, ANGULAR MEASURE
AS DEFINED WITH A FLAT BOTTOM SURFACE. THIS WILL
AGREE WITH A PRATHER GAGE MEASUREMENT OVER MOST OF THE
EFFECTIVE PORTION OF THE BLADE.
THE LE-TE MEASURE IS DEFINED IN TERMS OF LEADING EDGE
AND TRAILING EDGE (MOLD) PARTING LINE DATUMS.
THE PRATHER MEASURE REFLECTS THE MOST LIKELY PITCH
INTERPRETATION FROM A PITCH MEASUREMENT DEVICE
THAT RESTS AGAINST THE LOWER SURFACE.
SWEEP IS DEFINED WITH L.E. POSITION.

STATION CHORD PITCH PITCH PITCH SWEEP THICKNESS TWIST MAX THICK
(IN) (IN) (QUOTED) (LE-TE) (PRATHER) (IN) RATIO (DEG) (IN)

0.9632 0.7941 5.5000 5.5000 4.2163 0.3922 0.2822 42.2645 0.2241
1.0234 0.8260 5.5000 5.5000 4.3014 0.3999 0.2662 40.5404 0.2199
1.0837 0.8555 5.5000 5.5000 4.3833 0.4072 0.2510 38.9296 0.2148
1.1439 0.8825 5.5000 5.5000 4.4616 0.4139 0.2369 37.4236 0.2090
1.2042 0.9070 5.5000 5.5000 4.5348 0.4202 0.2236 36.0144 0.2028
1.2644 0.9293 5.5000 5.5000 4.6028 0.4260 0.2112 34.6945 0.1963
1.3247 0.9491 5.5000 5.5000 4.6674 0.4314 0.1998 33.4570 0.1896
1.3851 0.9668 5.5000 5.5000 4.7287 0.4363 0.1893 32.2925 0.1830
1.4844 0.9927 5.5000 5.5000 4.8210 0.4433 0.1740 30.5276 0.1727
1.6033 1.0185 5.5000 5.5000 4.9146 0.4502 0.1590 28.6327 0.1619
1.7223 1.0389 5.5000 5.5000 4.9868 0.4554 0.1476 26.9413 0.1533
1.8413 1.0544 5.5000 5.5000 5.0342 0.4591 0.1398 25.4260 0.1474
1.9603 1.0649 5.5000 5.5000 5.0509 0.4611 0.1356 24.0623 0.1444
2.0793 1.0709 5.5000 5.5000 5.0466 0.4618 0.1342 22.8300 0.1437
2.1983 1.0725 5.5000 5.5000 5.0408 0.4609 0.1330 21.7119 0.1427
2.3173 1.0700 5.5000 5.5000 5.0374 0.4587 0.1318 20.6936 0.1410
2.4363 1.0636 5.5000 5.5000 5.0357 0.4553 0.1306 19.7629 0.1389
2.5553 1.0536 5.5000 5.5000 5.0356 0.4505 0.1294 18.9094 0.1364
2.6743 1.0401 5.5000 5.5000 5.0367 0.4446 0.1283 18.1241 0.1334
2.7933 1.0236 5.5000 5.5000 5.0394 0.4375 0.1271 17.3995 0.1301
2.9123 1.0041 5.5000 5.5000 5.0437 0.4294 0.1259 16.7291 0.1264
3.0313 0.9820 5.5000 5.5000 5.0494 0.4203 0.1247 16.1070 0.1224
3.1503 0.9575 5.5000 5.5000 5.0562 0.4102 0.1235 15.5285 0.1182
3.2693 0.9308 5.5000 5.5000 5.0640 0.3992 0.1223 14.9892 0.1138
3.3883 0.9022 5.5000 5.5000 5.0723 0.3874 0.1211 14.4853 0.1093
3.5073 0.8718 5.5000 5.5000 5.0794 0.3748 0.1199 14.0135 0.1046
3.6263 0.8401 5.5000 5.5000 5.0783 0.3614 0.1187 13.5709 0.0997
3.7453 0.8071 5.5000 5.5000 5.0749 0.3474 0.1175 13.1549 0.0949
3.8643 0.7732 5.5000 5.5000 5.0716 0.3329 0.1164 12.7633 0.0900
3.9833 0.7385 5.5000 5.5000 5.0683 0.3177 0.1152 12.3940 0.0851
4.1023 0.7034 5.5000 5.5000 5.0653 0.3021 0.1140 12.0451 0.0802
4.2213 0.6680 5.5000 5.5000 5.0625 0.2861 0.1128 11.7150 0.0753
4.3403 0.6326 5.5000 5.5000 5.0592 0.2696 0.1116 11.4024 0.0706
4.4593 0.5975 5.5000 5.5000 5.0557 0.2529 0.1104 11.1058 0.0660
4.5783 0.5629 5.5000 5.5000 5.0528 0.2360 0.1092 10.8240 0.0615
4.6973 0.5291 5.5000 5.5000 5.0501 0.2188 0.1080 10.5560 0.0572
4.8163 0.4962 5.5000 5.5000 5.0452 0.2015 0.1068 10.3009 0.0530
4.9353 0.4645 5.5000 5.5000 5.0252 0.1841 0.1056 10.0576 0.0491
5.0543 0.4343 5.5000 5.5000 4.9872 0.1667 0.1045 9.8255 0.0454
5.1733 0.4058 5.5000 5.5000 4.9281 0.1494 0.1033 9.6037 0.0419
5.2920 0.3723 5.5000 5.5000 4.6965 0.1253 0.1021 9.3922 0.0380
5.4081 0.2791 5.5000 5.5000 4.4124 0.0401 0.1009 9.1942 0.0282

---- EFFICIENCY, POWER, TORQUE & THRUST DISTRIBUTION ----

MPH EFF POWER (Hp) TORQUE (in-lbf) THRUST (lbf)
6.250 0.9321E-01 0.8822 4.634 4.934
11.22 0.1638 0.7865 4.131 4.303
16.20 0.2311 0.6918 3.633 3.701
21.17 0.2951 0.6357 3.339 3.323
26.15 0.3557 0.6118 3.213 3.121
31.12 0.4126 0.5853 3.074 2.910
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36.10 0.4656 0.5563 2.922 2.691
41.07 0.5147 0.5244 2.754 2.464
46.05 0.5594 0.4894 2.570 2.229
51.02 0.5992 0.4509 2.368 1.986
55.99 0.6325 0.4094 2.150 1.734
60.97 0.6560 0.3652 1.918 1.474
65.94 0.6669 0.3178 1.669 1.205
70.92 0.6584 0.2665 1.400 0.9280
75.89 0.6159 0.2108 1.107 0.6415
80.87 0.4896 0.1526 0.8013 0.3464
85.84 0.1035 0.9448E-01 0.4962 0.4273E-01
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Appendix B: Analysis Code Written in Java

An attempt has been made to include only the portions of code applicable to the blade

element momentum model and not to the portions pertaining to the graphical user interface.

Main class

private void calcButtonActionPerformed(java.awt.event.ActionEvent evt) {
// Create settings object and check for empty fields
try {

settings = new Settings();
initSettings();

} catch (NumberFormatException ex) {
JOptionPane.showMessageDialog(null, "Please make sure all fields are entered correctly");
return;

}
// get results type from dropbox
String resType;
resType = resultsCombo.getSelectedItem().toString();

// determine with method to use based off of the results type
if (resType.equals("Operating conditions")) {

calcOpCond();
}
if (resType.equals("RPM sweep")) {

calcRpmSweep();
}
if (resType.equals("Velocity sweep")) {

calcVinfSweep();
}
if (resType.equals("Angle of attack")) {

calcAoa();
}
if (resType.equals("Velocity profile")) {

calcVelProf();
}
if (resType.equals("Thrust distribution")) {

calcTDistb();
}

}
private void initSettings() {

// initialize settings object to store all parameters
settings.diameter = Double.parseDouble(textDiameter.getText()) / 12.0;
settings.radius = settings.diameter / 2.0;
if (!userDefPitch) {

settings.pitch = Double.parseDouble(textPitch.getText()) / 12.0;
}
settings.cd0 = Double.parseDouble(textCd0.getText());
settings.cd1 = Double.parseDouble(textCd1.getText());
settings.cd2 = Double.parseDouble(textCd2.getText());
settings.cl0 = Double.parseDouble(textCl0.getText());
settings.cla = Double.parseDouble(textCla.getText());
double RPM = Double.parseDouble(textRPM.getText());
settings.omega = RPM / 60.0 * 2.0 * Math.PI;
settings.vInf = Double.parseDouble(textVInf.getText());

double T = Double.parseDouble(textTemp.getText()) + 459.67; // Rankine
double P = Double.parseDouble(textPress.getText()) * .4911542 * 144; // lbs/ft^2
settings.rho = P / (1716 * T); // slug/ft^3
settings.tipCorr = Double.parseDouble(textTipCorr.getText());
settings.numOfElem = Integer.parseInt(textNumOfElem.getText());
settings.lambda = settings.vInf / (settings.omega * settings.radius);
settings.thetaR = settings.omega * settings.radius;
settings.numOfBlades = Integer.parseInt(textNumOfBlades.getText());

}

public Settings getSettings() {
return (settings);

}

private void calcOpCond() {
// Calculate performance at RPM and Vinf
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);
Element[] elems = new Element[num];
Element tempElem;
double locR = rRoot + intv / 2.0;
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// Initialize each element
for (int i = 0; i <= num - 1; i++) {

tempElem = new Element(locR, this);
elems[i] = tempElem;
locR += intv;

}
double ct = 0.0;
double cp = 0.0;

// Integrate (sum) along the blade
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
ct += tempElem.getDCt_dx() * intv / settings.radius;
cp += tempElem.getDCp_dx() * intv / settings.radius;

}
//System.out.println("CT = " + Double.toString(ct));
//System.out.println("CP = " + Double.toString(cp));

double nonLinCt = 0.0;
double nonLinCp = 0.0;
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
nonLinCt += tempElem.getNonLinDCt_dx() * intv / settings.radius;
nonLinCp += tempElem.getNonLinDCp_dx() * intv / settings.radius;

}

//System.out.println("NLCT = " + Double.toString(nonLinCt));
//System.out.println("NLCP = " + Double.toString(nonLinCp));

// Calculate thrust and power from coefficients
double T = ct * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 4.0) * 8.0

* Math.pow(settings.omega, 2.0) / Math.pow(Math.PI, 2.0);
double P = cp * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 5.0) * 8.0

* Math.pow(settings.omega, 3.0) / Math.pow(Math.PI, 3.0);
//System.out.println("T = " + Double.toString(T) + " lbf");
//System.out.println("P = " + Double.toString(P) + " Watts");

// Create results frame
ResultsFrame res = new ResultsFrame();
double J = settings.vInf / (settings.omega / (2.0 * Math.PI) * settings.diameter);
Double[] results = {ct, cp, nonLinCt, nonLinCp, T, P, J};
res.printResults(results);

}

private void calcRpmSweep() {
// Calculate performance at multiple RPMs
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);
double[][] results = new double[20][];
double dOmega = settings.omega / 20;

// Loop through RPM and calculate performance
for (int j = 1; j <= 20; j++) {

Element[] elems = new Element[num];
Element tempElem;
settings.omega = j * dOmega;
settings.lambda = settings.vInf / (settings.omega * settings.radius);
settings.thetaR = settings.omega * settings.radius;
double locR = rRoot + intv / 2.0;
// Initialize each element
for (int i = 0; i <= num - 1; i++) {

tempElem = new Element(locR, this);
elems[i] = tempElem;
locR += intv;

}
double ct = 0.0;
double cp = 0.0;

// Integrate (sum) along the blade
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
ct += tempElem.getDCt_dx() * intv / settings.radius;
cp += tempElem.getDCp_dx() * intv / settings.radius;

}
//System.out.println("CT = " + Double.toString(ct));
//System.out.println("CP = " + Double.toString(cp));

double nonLinCt = 0.0;
double nonLinCp = 0.0;
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
nonLinCt += tempElem.getNonLinDCt_dx() * intv / settings.radius;
nonLinCp += tempElem.getNonLinDCp_dx() * intv / settings.radius;

}
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//System.out.println("NLCT = " + Double.toString(nonLinCt));
//System.out.println("NLCP = " + Double.toString(nonLinCp));

double T = ct * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 4.0) * 8.0
* Math.pow(settings.omega, 2.0) / Math.pow(Math.PI, 2.0);

double P = cp * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 5.0) * 8.0
* Math.pow(settings.omega, 3.0) / Math.pow(Math.PI, 3.0);

double nlT = nonLinCt * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 4.0)
* 8.0 * Math.pow(settings.omega, 2.0) / Math.pow(Math.PI, 2.0);

double nlP = nonLinCp * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 5.0)
* 8.0 * Math.pow(settings.omega, 3.0) / Math.pow(Math.PI, 3.0);

//System.out.println("T = " + Double.toString(T) + " lbf");
//System.out.println("P = " + Double.toString(P) + " Watts");

double J = settings.vInf / (settings.omega / (2.0 * Math.PI) * settings.diameter);
double[] temp = {j * dOmega * 60 / (2.0 * Math.PI), ct, cp, nonLinCt, nonLinCp, T, P, nlT, nlP};
System.out.println(temp);
results[j - 1] = temp;

}

// Create results frame
String[] labels = {"RPM", "Ct", "Cp", "Nonlinear Ct", "Nonlinear Cp",

"Thrust", "Power", "Nonlinear Thrust", "Nonlinear Power"};
multiResultsFrame res = new multiResultsFrame();
res.printResults(results, labels);

}

private void calcVinfSweep() {
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);

double[][] results = new double[20][];
double dvInf = settings.vInf / 20;

for (int j = 1; j <= 20; j++) {

settings.vInf = j * dvInf;
settings.lambda = settings.vInf / (settings.omega * settings.radius);

Element[] elems = new Element[num];
Element tempElem;

double locR = rRoot + intv / 2.0;
// Initialize each element
for (int i = 0; i <= num - 1; i++) {

tempElem = new Element(locR, this);
elems[i] = tempElem;
locR += intv;

}
double ct = 0.0;
double cp = 0.0;

// Integrate (sum) along the blade
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
ct += tempElem.getDCt_dx() * intv / settings.radius;
cp += tempElem.getDCp_dx() * intv / settings.radius;

}
//System.out.println("CT = " + Double.toString(ct));
//System.out.println("CP = " + Double.toString(cp));

double nonLinCt = 0.0;
double nonLinCp = 0.0;
for (int i = 0; i <= num - 1; i++) {

tempElem = elems[i];
nonLinCt += tempElem.getNonLinDCt_dx() * intv / settings.radius;
nonLinCp += tempElem.getNonLinDCp_dx() * intv / settings.radius;

}

//System.out.println("NLCT = " + Double.toString(nonLinCt));
//System.out.println("NLCP = " + Double.toString(nonLinCp));

double T = ct * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 4.0) * 8.0
* Math.pow(settings.omega, 2.0) / Math.pow(Math.PI, 2.0);

double P = cp * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 5.0) * 8.0
* Math.pow(settings.omega, 3.0) / Math.pow(Math.PI, 3.0);

double nlT = nonLinCt * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 4.0)
* 8.0 * Math.pow(settings.omega, 2.0) / Math.pow(Math.PI, 2.0);

double nlP = nonLinCp * 1.0 / 2.0 * settings.rho * Math.pow(rTip, 5.0)
* 8.0 * Math.pow(settings.omega, 3.0) / Math.pow(Math.PI, 3.0);

//System.out.println("T = " + Double.toString(T) + " lbf");
//System.out.println("P = " + Double.toString(P) + " Watts");

double J = settings.vInf / (settings.omega / (2.0 * Math.PI) * settings.diameter);
double[] temp = {J, ct, cp, nonLinCt, nonLinCp, T, P, nlT, nlP};
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results[j - 1] = temp;
}
String[] labels = {"J", "Ct", "Cp", "Nonlinear Ct", "Nonlinear Cp",

"Thrust", "Power", "Nonlinear Thrust", "Nonlinear Power"};
multiResultsFrame res = new multiResultsFrame();
res.printResults(results, labels);
System.out.println(results[1].length);
System.out.println(results.length);

}

private void calcAoa() {
// Calculate the angle of attack all along the blade
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);

double[][] results = new double[num][];
Element[] elems = new Element[num];
Element tempElem;
double c = 180.0 / Math.PI;
double locR = rRoot + intv / 2.0;

// Initialize each element
for (int i = 0; i <= num - 1; i++) {

tempElem = new Element(locR, this);
elems[i] = tempElem;

double[] temp = {locR, locR / settings.radius, tempElem.getAoa()
* c, tempElem.getNonLinAoa() * c, tempElem.getAlphaI()
* c, tempElem.getNonLinAlphaI() * c};

results[i] = temp;
locR += intv;

}
// Create results frame
String[] labels = {"r", "x", "Linear aoa", "Nonlinear aoa",

"Linear induced aoa", "Nonlinear induced aoa"};
multiResultsFrame res = new multiResultsFrame();
res.printResults(results, labels);

}

private void calcVelProf() {
// Calculate velocity profile created at the blade, Vinf + Vi
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);

double[][] results = new double[num][];
Element[] elems = new Element[num];
Element tempElem;
double c = 180.0 / Math.PI;
double locR = rRoot + intv / 2.0;
// Initialize each element
for (int i = 0; i <= num - 1; i++) {

tempElem = new Element(locR, this);
elems[i] = tempElem;

double[] temp = {locR, locR / settings.radius, settings.vInf
+ tempElem.getInducedVel(), settings.vInf + tempElem.getNonLinInducedVel()};

results[i] = temp;
locR += intv;

}

String[] labels = {"r", "x", "Linear velocity", "Nonlinear velocity"};
multiResultsFrame res = new multiResultsFrame();
res.printResults(results, labels);

}

private void calcTDistb() {
// Calculate the thrust distribution along the blade
int num = settings.numOfElem;
double rRoot = chord.chordData[0][0];
double rTip = settings.radius;
double intv = (rTip - rRoot) / ((double) num);

double[][] results = new double[num][];
Element[] elems = new Element[num];
Element tempElem;
double c = 180.0 / Math.PI;
double locR = rRoot + intv / 2.0;
// Initialize each element
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for (int i = 0; i <= num - 1; i++) {
tempElem = new Element(locR, this);
elems[i] = tempElem;

double[] temp = {locR, locR / settings.radius, tempElem.getDCt_dx()
* intv / settings.radius, tempElem.getNonLinDCt_dx() * intv / settings.radius};

results[i] = temp;
locR += intv;

}
// Create results frame
String[] labels = {"r", "x", "Linear Ct", "Nonlinear Ct"};
multiResultsFrame res = new multiResultsFrame();
res.printResults(results, labels);

}

Settings class

public class Settings {

public double diameter;
public double radius;
public double thetaR;
public double pitch;
public double cl0;
public double cd0;
public double cd1;
public double cd2;
public double cla;
public double omega;
public double vInf;
public double rho;
public double tipCorr;
public int numOfElem;
public double lambda;
public int numOfBlades;
public double eps;
public double aspRatio;
public double oswEffFactor;

}

Chord class

public class Chord {

public double[][] chordData;
public double[][] pitchData;
private JProps jProps;

public void openAndParse(File file) {
try {

// Open file
BufferedReader bReader = new BufferedReader(new FileReader(file));
try {

/*
* Declare a temporary string buffer and a temporary dynamic
* array to store the data in a string format
*/

String buffString;
ArrayList stringChordData = new ArrayList();
// Build array
while ((buffString = bReader.readLine()) != null) {

stringChordData.add(buffString);
}
// Close file
bReader.close();

double area = 0.0;

String line = (String) stringChordData.get(0);
int dims = line.split("\t").length;
// Put string data into a workable double array

if (dims == 2) {
chordData = new double[stringChordData.size()][2];
jProps.userDefPitch = false;
for (int i = 0; i < stringChordData.size(); i++) {

line = (String) stringChordData.get(i);
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String[] arrLine = line.split("\t");
chordData[i][0] = Double.parseDouble(arrLine[0]) / 12.0;
chordData[i][1] = Double.parseDouble(arrLine[1]) / 12.0;

}
} else if (dims == 3) {

chordData = new double[stringChordData.size()][2];
pitchData = new double[stringChordData.size()][2];
jProps.userDefPitch = true;
for (int i = 0; i < stringChordData.size(); i++) {

line = (String) stringChordData.get(i);
String[] arrLine = line.split("\t");
chordData[i][0] = Double.parseDouble(arrLine[0]) / 12.0;
chordData[i][1] = Double.parseDouble(arrLine[1]) / 12.0;
pitchData[i][0] = Double.parseDouble(arrLine[0]) / 12.0;
pitchData[i][1] = Double.parseDouble(arrLine[2]);

}
}

} catch (IOException ex) {
JOptionPane.showMessageDialog(null, ex.getMessage());

}
} catch (FileNotFoundException ex) {

JOptionPane.showMessageDialog(null, ex.getMessage());
}

}

/**
* Method to find the local chord length
* @param radius
* @return
*/

public double findChord(double radius) {
// Default value of chord length in
double chord = 0.0;

// Iterate to find where the radius is from the given chord profile info
for (int i = 0; i < chordData.length - 1; i++) {

if (radius > chordData[i][0] && radius <= chordData[i + 1][0]) {
// Linear interpolation between the known chord points
chord = chordData[i][1] + (chordData[i + 1][1] - chordData[i][1])

/ (chordData[i + 1][0] - chordData[i][0])
* (radius - chordData[i][0]);

break;
}

}
return chord;

}

public double findPitch(double radius) {
// Default value of chord length in
double pitch = 0.0;

// Iterate to find where the radius is from the given chord profile info
for (int i = 0; i < pitchData.length - 1; i++) {

if (radius > pitchData[i][0] && radius <= pitchData[i + 1][0]) {
// Linear interpolation between the known chord points
pitch = pitchData[i][1] + (pitchData[i + 1][1] - pitchData[i][1])

/ (pitchData[i + 1][0] - pitchData[i][0])
* (radius - pitchData[i][0]);

break;
}

}
return pitch;

}

/**
* Method to find the aspect ratio of the propeller blade
* @param jProps
*/

public void initAspRatio(JProps jProps) {
double area = 0.0;
for (int i = 0; i < chordData.length - 1; i++) {

area = (chordData[i + 1][0] - chordData[i][0]) * (chordData[i + 1][1]
+ chordData[i][1]) / 2.0;

}

jProps.settings.aspRatio = Math.pow(jProps.settings.radius, 2.0) / area;
}

public Chord(JProps temp) {
jProps = temp;

}
}
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Element class

public class Element {

private double locR;
private double beta;
private double x;
private double thetaT;
private double sigma;
private double phi;
private double chord;
private double alphaI;
private double cl;
private double cd;
private double dCt_dx;
private double dCp_dx;
private double nonLinDCt_dx;
private double nonLinDCp_dx;
private double nonLinAlphaI;
private double nonLinCl;
private double nonLinCd;
/**
* Settings from JProps
*/

private Settings settings;

Element(double rad, JProps jProps) {
locR = rad;
settings = jProps.settings;
chord = jProps.chord.findChord(locR);
findBeta(jProps);
nonDimen();
findLinInducedAOA();
findLandD();
findDCt_dx();
findDcp_dx();

findNonLinDCt_dxDCp_dx();
}

private void findBeta(JProps jProps) {
// Find geometric pitch
if (jProps.userDefPitch) {

beta = jProps.chord.findPitch(locR);
} else {

beta = Math.atan2(settings.pitch, (2.0 * Math.PI * locR));
}

}

private void nonDimen() {
// Calculate nondimensional parameters
x = locR / (settings.radius);
thetaT = Math.sqrt(Math.pow(settings.lambda, 2.) + Math.pow(x, 2.)) * settings.thetaR;

sigma = (settings.numOfBlades * chord) / (Math.PI * settings.radius);
phi = Math.atan2(settings.lambda, x);

}

private void findLinInducedAOA() {
// Find the linear induced angle of attack
double a = settings.lambda / x + sigma * settings.cla / (8.0 * Math.pow(x, 2.0)) * thetaT / settings.thetaR;
double b = sigma * settings.cla / (2.0 * Math.pow(x, 2.0)) * thetaT / settings.thetaR * (beta - phi);
alphaI = 1.0 / 2.0 * (-a + Math.sqrt(Math.pow(a, 2.0) + b));

}

private void findLandD() {
// Find lift and drag
cl = settings.cl0 + settings.cla * (beta - (alphaI + phi));
cd = settings.cd0 + settings.cd1 * cl + settings.cd2 * Math.pow(cl, 2.0);

}

private void findDCt_dx() {
// Find differential thrust
if (x < settings.tipCorr) {

dCt_dx = Math.pow(Math.PI, 3.0) / 8.0 * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))
* (cl * Math.cos(phi + alphaI) - cd * Math.sin(phi + alphaI)) * sigma;

} else {
dCt_dx = Math.pow(Math.PI, 3.0) / 8.0 * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))

* (-settings.cd0 * Math.sin(phi + alphaI)) * sigma;
}

}

public double getDCt_dx() {
return dCt_dx;
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}

private void findDcp_dx() {
// find differential power
if (x < settings.tipCorr) {

dCp_dx = Math.pow(Math.PI, 4.0) / 8.0 * x * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))
* (cd * Math.cos(phi + alphaI) + cl * Math.sin(phi + alphaI)) * sigma;

} else {
dCp_dx = Math.pow(Math.PI, 4.0) / 8.0 * x * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))

* (settings.cd0 * Math.cos(phi + alphaI)) * sigma;
}

}

public double getDCp_dx() {
return dCp_dx;

}

private double[] findLandD(double ai) {
// find lift and drag of nonlinear induced angle of attack
double cl_ = settings.cl0 + settings.cla * (beta - (ai + phi));
double cd_ = settings.cd0 + settings.cd1 * cl_ + settings.cd2 * Math.pow(cl_, 2.0);
double[] data = {cl_, cd_};
return data;

}

private void findNonLinDCt_dxDCp_dx() {
// find nonlinear differential thrust and power
double err = 1.0;
double iterAlphaI1 = alphaI;
double iterAlphaI2 = alphaI;
double dLambda;
double iterDCt_dx = dCt_dx;
if (x > settings.tipCorr) {

iterDCt_dx = 0.0;
}

//double iterDCt_dx = dCt_dx;
double[] data;
double iterCl = cl;
double iterCd = cd;
int i;

for (i = 0; i <= 50 && (err > .000000001); i++) {
// Errors are produced in the dLambda calculation when dCt_Dx is less than zero.
// The only time this is zero is when x is greater than the tip correction
dLambda = -settings.lambda / 2.0 + Math.sqrt(Math.pow(settings.lambda / 2.0, 2.0)

+ 1.0 / (Math.pow(Math.PI, 3.0) * x) * iterDCt_dx);
iterAlphaI2 = Math.atan2(dLambda, Math.sqrt(Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0)));

data = findLandD(iterAlphaI2);
iterCl = data[0];
iterCd = data[1];
if (x < settings.tipCorr) {

iterDCt_dx = Math.pow(Math.PI, 3.0) / 8.0 * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))
* (iterCl * Math.cos(phi + iterAlphaI2) - iterCd * Math.sin(phi + iterAlphaI2)) * sigma;

} else {
iterDCt_dx = Math.pow(Math.PI, 3.0) / 8.0 * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))

* (-settings.cd0 * Math.sin(phi + iterAlphaI2)) * sigma;
}
err = Math.abs(iterAlphaI2 - iterAlphaI1);
iterAlphaI1 = iterAlphaI2;

}

nonLinDCt_dx = iterDCt_dx;

if (x < settings.tipCorr) {
nonLinDCp_dx = Math.pow(Math.PI, 4.0) / 8.0 * x * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))

* (iterCd * Math.cos(phi + iterAlphaI1) + iterCl * Math.sin(phi + iterAlphaI1)) * sigma;

} else {
nonLinDCp_dx = Math.pow(Math.PI, 4.0) / 8.0 * x * (Math.pow(settings.lambda, 2.0) + Math.pow(x, 2.0))

* (settings.cd0 * Math.cos(phi + iterAlphaI1)) * sigma;
}

nonLinAlphaI = iterAlphaI1;

nonLinCl = iterCl;
nonLinCd = iterCd;

}

double getNonLinDCt_dx() {
return nonLinDCt_dx;

}
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double getNonLinDCp_dx() {
return nonLinDCp_dx;

}

double getAlphaI() {
return alphaI;

}

double getNonLinAlphaI() {
return nonLinAlphaI;

}

double getAoa() {
return beta - (phi + alphaI);

}

double getNonLinAoa() {
return beta - (phi + nonLinAlphaI);

}

double getInducedVel() {
double dLambda = (-settings.lambda / 2.0 + Math.sqrt(Math.pow(settings.lambda / 2.0, 2.0)

+ 1.0 / (Math.pow(Math.PI, 3.0) * x) * dCt_dx));
return (dLambda * settings.omega * settings.radius);

}

double getNonLinInducedVel() {
double dLambda = (-settings.lambda / 2.0 + Math.sqrt(Math.pow(settings.lambda / 2.0, 2.0)

+ 1.0 / (Math.pow(Math.PI, 3.0) * x) * nonLinDCt_dx));
return (dLambda * settings.omega * settings.radius);

}
}

Results frame class

public void printResults(Double[] results) {
String stringResults = "Ct = \t" + Double.toString(results[0]) + "\n";
this.textResults.append(stringResults );
stringResults = "Cp = \t" + Double.toString(results[1]) + "\n";
this.textResults.append(stringResults);
stringResults = "Nonlinear Ct = \t" + Double.toString(results[2]) + "\n";
this.textResults.append(stringResults);
stringResults = "Nonlinear Cp = \t" + Double.toString(results[3]) + "\n";
this.textResults.append(stringResults);
stringResults = "Thrust = \t" + Double.toString(results[4]) + "\n";
this.textResults.append(stringResults);
stringResults = "Power = \t" + Double.toString(results[5]) + "\n";
this.textResults.append(stringResults);
stringResults = "Advance Ratio = \t" + Double.toString(results[6]) + "\n";
this.textResults.append(stringResults);

}

Multi-results frame class

public void printResults(double[][] results, String[] labels) {
int n = labels.length;
int m = results.length;
String stringResults;
for (int i = 0; i < n; i++) {

stringResults = labels[i] + "\t";
this.textResults.append(stringResults);

}

stringResults = "\n";
this.textResults.append(stringResults);

for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {

stringResults = Double.toString(results[j][i]) + "\t";
this.textResults.append(stringResults);

}
stringResults = "\n";
this.textResults.append(stringResults);

}

}
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