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Abstract

A Ladar-Based Pose Estimation Algorithm for Determining Relative Motion of a

Spacecraft for Autonomous Rendezvous and Dock

by

Ronald C. Fenton, Master of Science

Utah State University, 2008

Major Professor: Dr. Rees Fullmer
Department: Electrical and Computer Engineering

Future autonomous space missions will require autonomous rendezvous and docking

operations. The servicing spacecraft must be able to determine the relative 6 degree-of-

freedom (6 DOF) motion between the vehicle and the target spacecraft. One method to

determine the relative 6 DOF position and attitude is with 3D ladar imaging. Ladar sensor

systems can capture close-proximity range images of the target spacecraft, producing 3D

point cloud data sets. These sequentially collected point-cloud data sets were then registered

with one another using a point correspondence-less variant of the Iterative Closest Points

(ICP) algorithm to determine the relative 6 DOF displacements. Simulation experiments

were performed and indicated that the mean-squared error (MSE), angular error, mean,

and standard deviations for position and orientation estimates did not vary as a function of

position and attitude and meet most minimum angular and translational error requirements

for rendezvous and dock. Furthermore, the computational times required by this algorithm

were comparable to previously reported variants of the point-to-point and point-to-plane-

based ICP variants for single iterations when the initialization was already performed.

(89 pages)
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Chapter 1

Introduction

1.1 Motivation

In the future, organizations such as NASA, Lockheed-Martin, and Boeing will have

the capabilities for autonomous space missions. For missions without man-in-loop con-

trol, these spacecraft will require autonomous rendezvous and docking (RVD) operations

with either cooperative or non-cooperative spacecraft. In order to maneuver and dock, a

servicing spacecraft must be able to determine the relative 6 degree-of-freedom (6 DOF)

motion/orientation between the vehicle and the target spacecraft.

The critical tool required for these RVD maneuvers was a relative navigation sensor

system, which determined the relative position and orientation of the controlled spacecraft

with respect to the target spacecraft. Current relative position sensing methods used 2D

visual cameras and extensive image processing to determine the position and range of a

cooperative target. The limitations of 2D systems are that the size, shape, and range to

objects are all derived from interpretations of the surface reflectivity leaving them sensitive

to lighting conditions. Over the last few decades, 3D sensing technologies have matured

greatly and have proven to be more reliable. Thus, we have chosen to use a ladar system

for pose orientation. This required using a pose estimation algorithm, which used 3D point

clouds (3D cartesian XYZ range information) as an input, and using only that point cloud

(i.e. no feature extraction, etc).

Conceptually, a ladar-based autonomous RVD system would be able to produce accu-

rate 3D point cloud models in real time. Then two separate point clouds would be matched

together with each other, or independently matched to a solid model of the spacecraft.

From this match, the system could determine the necessary relative position and orienta-

tion between the vehicle and target spacecraft in the form of a quaternion.
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Therefore, the goal of this thesis was to find a precise mathematical algorithm, suitable

for 6 DOF range and orientation determination, such as the ICP algorithm. In this project,

our contribution was to analytically determine whether the ICP algorithm was accurate

enough for relative motion determination for autonomous rendezvous and dock using only

ladar-based point-clouds. This algorithm required the use of sequentially acquired and ac-

curate 3D LADAR (Laser Detection and Ranging), LIDAR (Light Detection and Ranging),

or Laser Radar point cloud models, in order to estimate 6 DOF orientation.

1.2 Approach of Research

The approach of this thesis project started by building a 3D model of a satellite and

using it as an input into the software simulator LadarSIM. Using the 3D model, LadarSIM

was able to build and generate point cloud models which provided complete 3D informa-

tion about the solid model. These point clouds were taken sequentially as time moved

forward from one instant to the next. The point clouds were then seeded into two variants

of the Iterative Closest Point (ICP) algorithm. After seeding two sequentially acquired

point clouds, the point-to-point and point-to-plane ICP variants were used to calculate the

6 DOF rotation (quaternion or rotation matrix), as well as the cartesian translation. To

study the ICP algorithm, a noise sensitivity analysis was performed by incorporating RMS

range error noise (0 cm, 2 cm, and 14 cm) into the point cloud models to estimate the

algorithms computational accuracy. Also, tests were performed to discover what improve-

ments in initialization must be made for real time requirements, in order to incorporate the

pose estimation software into a closed loop system for autonomous RVD. All results were

graphically analyzed, and tabularized for a quick quantitative analysis. Finally, methods for

future initialization implementation, alternative methods that could be incorporated into

the ICP framework to increase pose estimation accuracy, and future plans for experimental

hardware testing.
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1.3 Thesis Organization

This thesis was organized into five separate chapters. Following the introductory chap-

ter, the second chapter will review the literature describing autonomous RVD, several space

based ladar systems and hardware, and 6 DOF pose estimation algorithms using 3D ladar

point-cloud data. In the third chapter, a full discussion of the Iterative Closest Point (ICP)

algorithm will be given for the point-to-point and point-to-plane variations. The fourth

chapter will discuss how simulated data was obtained in LadarSIM, and show sensitivity

analysis results from the point-to-point and point-to-plane variations. Finally, the fifth

chapter will discuss sensitivity analysis conclusions and provide a road map for future re-

search endeavors.
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Chapter 2

A Review of the RVD Problem, Ladar Imaging, and Pose

Estimation

2.1 Autonomous Rendezvous and Dock

On March 16, 1966, the first rendezvous and dock (RVD) between two spacecraft

occurred when Neil Armstrong and Dave Scott manually performed a rendezvous in a

Gemini spacecraft and then docked with an unmanned Agena target vehicle. Over a year

later on October 30, 1967, the first man/computer controlled autonomous RVD took place

when the Soviet vehicles Cosmos 186 and 188 docked with one another. Since then, the

Russians have been performing autonomous RVD between support craft such as the Soyuz

and the Mir space station since the 1990s until its closure in 2001 [1–3]. In general, the

rendezvous and docking process consists of a series of orbital maneuvers and trajectories

that successfully bring an active satellite/spacecraft (S/C) (chaser) into the vicinity, and

eventually into contact with a passive satellite/spacecraft (target) through a set of planned

maneuvers (See fig. 2.1) [4]:

• Launch: injection into orbital plane of target and achievement of stable orbital con-

ditions;

• Phasing: reduction of orbital phase angle between chaser and target spacecraft;

• Far Range Rendezvous: transfer from phasing orbit to first aim point in close vicinity

of target spacecraft;

• Close Range Rendezvous: reduction of relative distance to target acquisition of final

approach, approach to capture point, and achievement of capture conditions; and
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• Mating: (docking or berthing) prevention of escape of capture interfaces and attenua-

tion of shock and residual motion, as well as, insertion into structural latch interfaces

and achievement of rigid structural connection.

For the case of docking, the chaser satellite has an active docking mechanism controlled

by the guidance, navigation, and control (GNC) system allowing the chaser spacecraft to

rigidly attach itself to the passive docking mechanism on the target spacecraft. Similarly,

berthing allows the chaser vehicle to arrive within a certain proximity of the target satellite

with zero relative velocities and angular rates. At this point, a robotic manipulator arm

extends from the chaser vehicle and orients itself until it interfaces with a berthing port on

the target satellite/spacecraft (See fig. 2.2) [1].

The next several sections in the thesis provide an overview the literature. Section

2.2 discusses 3D ladar scanning sensor technologies; sec. 2.3 discusses space-based sensors

range sensor scanners; sec. 2.4 discusses many of the space-based autonomous rendezvous

and dock missions and systems; sec. 2.5 discusses the historical background of 3D pose

estimation algorithms and the path that was followed to develop the ICP. The final section

provides a quick summary of the literature review.
 

Fig. 2.1: Rendezvous and docking process (short range rendezvous and docking).



6

 

Fig. 2.2: Docking and berthing.

2.2 3D Ladar Scan Sensor Technologies

Ladar systems combine the capabilities of radar and optical systems allowing simul-

taneous measurement of range, reflectivity, velocity, temperature, azimuth, and elevation

angles. Unlike traditional camera-based electro-optic (EO) systems, ladar systems are inde-

pendent of ambient lighting conditions in providing accurate range measurements, although

with coarser resolutions than EO systems. Ladar instruments will usually use one of two

techniques when calculating range measurements to an object: (1) continuous wave ladar,

which sends out modulated signals and measures the phase difference between transmit-

ted and received signals; or (2) pulsed ladar, which sends out individual laser pulses and

measures time-of-flight between transmitted and received signals [3].

Many ladar systems typically consist of a pulsed laser, scan and steering mechanism,

and a detector coupled to a high-speed clock to measure the laser pulse time-of-flight.

Ladars operate at wavelengths in the ultraviolet, visible, near, mid and far-infrared regions

(i.e., wavelengths between 0.5 ∗ 10−6 to 1 ∗ 10−5 m or frequencies between 600K THz to

30K THz). Range accuracies are a function of the pulse energy, width, receiver sensitivity,

and clock resolution, providing range accuracies from 1 to 3 cm over kilometer distances

with 0.05◦ angular resolutions. Image scan time, field-of-regard, and angular accuracy are

dependent upon laser pulse repetition frequency, scanner speed, range of motion, and reso-

lution. Primarily, the raw data obtained from any ladar instrument would be simultaneous

range, azimuth, and elevation angles.
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3D point-cloud images are generated by either scanning the laser beam over two di-

mensions or flashing numerous laser pulses over two dimensions at one time. The system

converts the data into a traditional 3D cartesian format. These 3D images contain signifi-

cantly more navigational information than a traditional 2D imager such as: area-inertias,

volumes, depth, etc. [5].

Over the last several decades, these ladar technologies have been developed so that

data could be acquired through a variety of methods. Blais [6] provided a brief review of

the past 20 years of development in the field of 3D laser imaging. This review discusses

range sensor development of single point laser scanners, slit scanners, pattern projection,

time-of-flight, and flash systems.

2.2.1 Single Point, Slit Scanner, and Pattern Projection

Single point 3D laser scanners use fast scanning mirrors which synchronize the optical

detector with the laser projection enabling the use of long focal length lens and zoom

configurations. However, complex scanning systems and components increase the cost of

laser scanners, while decreasing system speeds [6].

Slit scanners tend to be the most widely used triangulation-based 3D laser cameras be-

cause of their cost. As newer CCD and complementary metaloxidesemiconductor (CMOS)

arrays are developed, the lateral resolution increases because of a larger number of pix-

els, but range performance remains constant even with a decrease in the number CMOS

detectors and flawless internal optics.

Pattern projection techniques use multiple stripes or patterns projected on the object

rather than using a single laser line, mechanically scanning the scene, and processing in-

dependent range profiles. Drawbacks to this technology are de-focusing of the projected

pattern, smaller depth of focus, and reduction in dynamic range in intensity [6].

2.2.2 Time-of-Flight

For larger structures and longer ranges, time-of-flight (TOF) 3D scanners are the pre-

ferred choice for long range measurements. Their range accuracy remains relatively constant
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over the whole scan volume. Because these systems require detection of the time that light

propagates though air, measurements will be affected mostly by drift and jitter in elec-

tronics and discrimination methods. A pulse time-of-flight scanner detects the time a laser

pulse is reflected back to a receiving detector. Pico-second resolution requires extremely

sensitive electronics with high band-width, constant group-delays, and thermal stability. To

reduce noise, multiple pulses are averaged and resolutions on the order of 0.5 to 1 cm can

be measured. High frequency bandwidth in the electronics is needed to amplify the large

frequency spectrum associated with the laser pulses. Electronics are more complex for the

pulsed technology, but reduced bandwidth provides better range resolution on the order of

3 to 5 mm [6]. Time-of-flight ladar nominally have minimum ranges typically from 10 to

100 m due to the short flight period and high return intensity, with maximum ranges as far

as 10 km. Ladar systems are virtually immune to the varied lighting and viewing conditions

encountered in space, including both specular and diffuse reflecting surfaces.

2.2.3 Flash

Flash ladars use the time-of-flight approach for range determination. The laser trans-

mitter will flood illuminate a target area with a relatively short pulse (∼10 ns). The

time-of-flight pulses are measured in a per pixel fashion and are commonly represented by

stacks of pixels that represent wave front time series for each pixel in the focal plane array

(FPA). A new frame is triggered by each laser pulse, and each corresponding time series is

initiated by the reflected wavefront. The position of the detecting pixel yields the angular

position of the target element, and the time-of-flight yields the third dimension range. Flash

ladars, like point TOF ladar, also have the ability to track targets as far out as 10 kilome-

ters with range accuracies of 10-15 cm. The advantage to the flash technology is that with

a single shot, the complete 3D point-cloud of a target is able to be captured. Currently,

Ball Aerospace has designed a fourth generation flash ladar which they couple with FPGA

processors to quickly process 3D imaging ladar point-cloud data [7, 8].
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2.3 Space-Based Range Sensor Scanners

Vision systems that have been developed fall into one of two catergories, either passive

(video, stereo) or active (3D laser projection). Passive systems offer simplicity in hardware,

typically requiring only conventional video cameras. However, passive 2D video images do

not deliver direct 3D measurements that are required for most autonomous RVD situations.

Active systems, such as ladar scanners, provide direct range measurement to an object.

Also, the use of laser light offers strong advantages for discriminating against unwanted

backgrounds. So, over the years, many different institutions have used both 3D ladar

technologies and 2D video cameras for the purpose of obstacle avoidance, inspection, and

rendezvous and dock [9–18].

2.3.1 Laser Range Scanner (LARS)

The Laser Range Scanner (LARS), developed by the Canadian Space Agency (CSA)

[9, 10], was a versatile 3D sensor for space applications capable of doing surface imaging,

target ranging, and tracking. It was capable of short range (0.5 m to 20 m) and long

range (20 m to 10 km) sensing using time-of-flight methods. At short ranges, the resolution

was sub-millimeter and drops gradually with distance (2 cm at 10 m). For long range the

TOF provides a constant resolution of ±3 cm, independent of range. LARS was immune

to sunlight and adverse lighting and has clear advantages over a microwave ladar system

in terms of size, mass, power, and precision. The scanner had the ability to register high-

resolution 3D images of range and intensity (up to 4000 x 4000 pixels) and to perform

point target tracking as well as object recognition and geometrical tracking. For a single

target, refresh rates up to 137 Hz could be obtained. The digitizing and modeling of human

subjects, cargo payloads, and environments was possible with the LARS camera. LARS was

used to obtain target-based measurements, feature-based measurements, and, image-based

measurements like differential inspection in 3D space and surface reflectance monitoring of

the ISS on the STS-52 shuttle flight in October 1992.
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2.3.2 Laser Dynamic Range Imager (LDRI)

The Laser Dynamic Range Imager (LDRI), developed by Sandia National Laborato-

ries [11], was used to remotely measure vibration of the international space station (ISS)

structure and determine the structural mode frequencies and amplitudes. LDRI’s specifica-

tions included six modes of operation, a 40◦ FOV, range resolution of 0.1 inches, images of

640 x 640 pixels, and a 7.5 Hz update rate. The sensor flew on the space shuttle in December

2000, and provided range video of the newly installed P6 truss and solar array panels during

thruster firing. The measured vibration spectra captured the desired mode frequencies and

amplitudes with a resolution of 0.02 to 0.1 inches. Additional measurements of curvature in

the solar array panels demonstrated the potential for on-orbit characterization or inspection

of structures.

2.3.3 NEAR Laser Rangefinder (NLR)

The NLR, developed by Johns Hopkins University Applied Physics Laboratory [12],

was a direct-detection TOF laser altimeter that determined the range from the NEAR

spacecraft to Eros surface by measuring the time it took for a round-trip of laser pulses

with 0.312 m range resolution (single count). To determine the shape, mass, and density

of Eros, as well as to characterize local and regional scale topography, NLR data was used

to produce high resolution and high accuracy topographic grids and profiles. During the

one-year observation of Eros, approximately 11 million measurements were obtained from

NLR and combined with navigational information provided range measurements with 31.2

cm resolution and less than 6 m accuracy. Given this precision and accuracy for the NLR

data, the mass of Eros was determined to be within 0.0001%, while mass density was

determined to within 0.1%. NLR data products included a global topographic grid having

250 m resolution with 23.2 m rms best-fit radial accuracy and regional scale topographic

models with 5 m accuracy.
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2.3.4 LAser MaPper (LAMP)

LAMP, developed by the NASA Jet Propulsion Laboratory [13], was a flight qualified

laser radar that could form 3D images by emitting high power, short duration laser pulses,

which were directed by an internal gimbaled mirror in azimuth and elevation. The 2-axis

gimbal allowed programmable, 2-axis motion (azimuth and elevation) of a 5 cm diameter

beryllium mirror. It had an angular motion of 10◦ on both axes and a sweep rate of 10◦/sec

with the slow axis and up to 1000◦/sec using the fast axis. Thus, it could scan a 10◦ x 10◦

area in 1 second. LAMP’s processor is a 12.5 MHz, 32-bit MIPS R3000 Synova processor

with memory and RS422 interface. The processor controlled the gimbal, monitors/controls,

temperature, reads the laser levels, reads the timing chips, etc. LAMP was proposed as a

sensor for guidance and navigation for several different space missions: capture of a Mars

sample in Mars orbit, hazard avoidance sensor during smart landing on Mars, transverse

planning for Mars rover, rendezvous or docking with another spacecraft in Earth orbit, and

small body landing/exploration. In 2005, LAMP was the sensor onboard for the ST6/XSS11

ARX (autonomous rendezvous experiment). The objective of the ARX experiment was to

demonstrate and characterize an autonomous rendezvous system that autonomously locates

and rendezvous with a passive object [14].

2.3.5 Advanced Video Guidance Sensor (AVGS)

AVGS, developed by NASA/MSFC [15], was the continuation and advancement of

the Video Guidance Sensor, which flew successfully on STS-87 and STS-95. AVGS was

designed to be an autonomous docking sensor with updated electronics, increased range,

reduced weight, and improved dynamic tracking ability. AVGS was designed to provide line-

of-sight bearing from greater than one kilometer and provide 6 DOF relative position and

attitude data from 300 hundred meters to dock. AVGS’s sensor has two hardware modes

and several software modes that equate into various operations. AVGS required an initial

range estimate relative to the target (±20%) which was used to set firing parameters of laser

power, integration time, and imager threshold. AVGS collects image data by firing an 808

nm laser at the target and capturing the returned image with a 1024 x 1024 CMOS imager
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camera. The target’s retroflectors have a filter, which is opaque to 808 nm frequency, and are

not captured in the background image. Next, the AVGS fires an 850 nm laser at the target

and captures that image with the same CMOS imager camera, including the retroflectors

returns in its FOV. Then the two images are subtracted from one another leaving only the

retroflector images. The resultant pixels that are touching one another (three or more) are

called spots or blobs, and are preprocessed by an FPGA to pass these blob data to the

DSP processor. The DSP processor determines pattern size, pattern validity for tracking,

and computes the centroids for each set of image data. In tracking mode, the CMOS image

can is reduced to regions of interest (ROI) around all of the target image reducing physical

scan time allowing centroids of the target image to be processed at an increased rate. The

ROI’s are sized to allow the relative position of the target to shift in the FOV at a rate of

at least 2◦/sec.

2.3.6 Rendezvous Laser Radar (RVR)

The RVR, developed by the National Space Development Agency of Japan (NASDA)

[16], detects the reflected light using a CCD camera and an Avalanche Photo Diode. The

RVR estimates the line-of-sight angle by processing the CCD image and computes the

relative range by comparing phase difference between transmitted and received beam. The

RVR laser radar can measure out to a relative range of 660 m and within a line-of-sight

angle of 4◦. The unique feature of the RVR is its laser transmission method: it expands its

laser beam in the specified angle and has no scanning system (“static type” laser radar).

The RVR can function under the optical interference of the Sun and active optical sensors.

The RVR measurement accuracy requirements for bias error were 10 cm in range and

0.05◦ in line-of-sight. The range differences between in-orbit data and ground data were

within 2 cm and the line-of-sight differences were within 0.05◦. Finally, the RVR conducted

and properly targeted acquisitions at the docking position and handover point from GPS-

relavtive rendezvous and dock at 500 m and 150 m holding positions for the EST-VII mission

in 1998.
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2.3.7 Triangulation and Lidar (TriDAR)

Neptec has developed a 3D Automated Rendezvous and Docking Sensor (ARD) sys-

tem, under the 3D Automatic Target Recognition (3D ATR) project with the Canadian

Department of National Defence, which includes the TriDAR 3D sensor which combines

multiple ranging principles into a single scanning mechanism rather than a single ranging

principle in multiple scanning techniques [17, 18]. The TriDAR combines a short range,

high-precision auto-synchronous triangulation sensor with a mid- to long-range time-of-

flight LADAR sensor in the same unit for frequencies of 1-5 Hz. The triangulation principle

provides high-precision range measurements at close range; but the nature of the triangu-

lation geometry means that imprecision grows approximately with the square of range; and

even the best systems tend to only be practical up to the order of 10-20 meters. The Tri-

DAR design takes advantage of the auto-synchronous scanning approach to keep both the

detectors viewing the projected lasers while maintaining a small instantaneous field-of-view

(FOV). The instantaneous FOV can be scanned through a much larger field-of-regard up to

30◦ using dual-axes scanning mirrors. This scanning capability makes the TriDAR a ran-

dom access flying spot scanner. Coupling the sensor with Neptec’s Intelligent 3D software

there was a reduction in the amount of data collected and processed, drastically reducing

the computational overhead of working in 3D. The result is 6 DOF real-time tracking and

pose estimation at ranges from 150 meters to docked. An extended range LADAR module is

also in development that will extend 6 DOF tracking out to 200 meters and also provides 3

DOF tracking at ranges up to two kilometers. Focused on recognizing known objects from a

knowledge database and estimating their 6 DOF pose from long-range 3D data, this sensor

system provided extensive characterization of the algorithms and was completed using both

simulated and field data acquired with three different time-of-flight LADAR’s. Neptec also

developed a simulator for time-of-flight LADAR systems for the Canadian Department of

National Defence.



14

2.4 Space-Based Autonomous Rendezvous and Dock Mission and Systems

An ideal rendezvous and docking system would provide relative 6 DOF pose to the

guidance, navigation, and control system (GNC); operate autonomously; and provide multi-

functional capability. This need for autonomous rendezvous capability has been recognized

for some time and will be needed to meet and connect two spacecraft in orbit in the future.

Several different systems have been designed, flown, and discussed throughout the literature.

2.4.1 Engineering Test Satellite-VII

On July 7, 1998, the Engineering Test Satellite-VII (EST-VII) [16] successfully per-

formed the first autonomous rendezvous docking between uninhabited spacecraft. EST-VII

performed autonomous RVD so that a navigation function measures and estimates the rela-

tive position and velocity between the chaser and the target as needed. ETS-VII had three

separate navigation methods. Each of these navigation methods was selected automatically

depending on the distance between the two satellites: the GPS relative navigation was used

in the relative approach phase (from 10 km to 500 m), the RVR, a camera-type proximity

sensor was used in the final approach phase (from 500 m to 2 m), and the PXS was used

in the docking phase (within 2 m). RVD flight FP-1 was successfully completed on July 7,

1998, becoming the first autonomous RVD. In the FP-1 experiment, the chaser was pushed

out from the target at a rate of 1.8 cm/sec. The chaser spacecraft then started to control

relative position and attitude automatically and separated up to a 2 m holding point. The

two satellites continued formation flight for 15 minutes keeping a constant distance of 2 m

with range accuracy of a few centimeters using PXS navigation and relative 6 DOF control.

In the docking approach phase, requirements for position control accuracy had to be within

10 cm, and actual control errors were about 2 cm. Attitude control requirements had to be

within 2◦, and control errors were within 0.5◦ on each axis. Random errors were within 0.2

mm in relative position and less than 0.1◦ in relative attitude. The authors speculated that

the EST-VII project could be applied to advanced space vehicles such as the H-II Transfer

Vechile (HTV), the OSV, and lunar or Mars explorers.
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2.4.2 MRO Premier Rendezvous and Sample Capture System (RSCS)

The MRO Premier Rendezvous and Sample Capture System (RSCS), developed by

CNES/NASA [19], was designed for a Mars premier orbiter mission. The target carried a

radio beacon, enabling a suite of radio and optical sensors to locate, track, and autonomously

rendezvous with the released target. The first objective was to deliver four Netlander science

stations to the surface of Mars, and provide at least a year of science-telemetry. The sec-

ond objective was to demonstrate rendezvous technologies for future Mars-Sample-Return

missions. The rendezvous system used one-way radiometric and optical observables for dis-

tant measurements and optical methods exclusively for close observations. The hardware

configuration of this system consisted of two cameras, a duplicate of the Mars Reconnais-

sance Orbiter (MRO) Optical Navigation camera, and a wide angle camera, thought to

be a version the the Mars Exploration Rover lander camera. The RSCS was a combined

ground and flight software system, and when combined with the optical sensing instru-

ments onboard, provided a means of manual ground-in-loop tracking and maneuvering. It

also provides automatic closed loop tracking and maneuvering, and in the latter case, ac-

complished close-proximity operations including simulation of a capture. In conjunction

with the optical measurements, one-way doppler measurements were taken with the Electra

instrument onboard the carrier spacecraft. However, the system still required a combined

ground and flight software to accomplish the rendezvous and sample capture process.

2.4.3 Demonstration of Autonomous Rendezvous Technology (DART)

Demonstration of Autonomous Rendezvous Technology (DART) program was devel-

oped to demonstrate technologies required for spacecraft to locate and rendezvous with

another spacecraft without direct human guidance [20]. The vehicle was scheduled to per-

form a series of orbit transfers to arrive at a point near a target satellite and demonstrate

a collision avoidance maneuver extremely close to the target vehicle using the AVGS hard-

ware. On April 15, 2005, DART was launched aboard a Pegasus rocket and reached vicinity

of the target spacecraft where AVGS was used for navigation to demonstrate many differ-

ent rendezvous and docking capabilities. Some of these tests were to demonstrate AVGS
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capabilities, demonstrate various approach techniques, demonstrate station keeping on the

nadir axis at a distance of 50 m from the target, demonstrate station keeping on the veloc-

ity axis at a distance of 15 m from the target, demonstrate station keeping on the docking

port axis at a distance of 5 m from the target, and demonstrate autonomous operations

following loss of AVGS lock and requisition. DART successfully completed the location and

rendezvous phases of its operations, closing to within approximately 92 m (300 ft) of the

mission’s target: the Multiple-Path Beyond-Line-of-Site Communications (MUBLCOM)

satellite. The MUBLCOM satellite design had retroflectors for use with the AVGS installed

along the edge of the central ring. DART’s AVGS instrument was also able to acquire the

MUBLCOM satellite, accomplishing one of the mission’s key RVD objectives. However,

the DART spacecraft was unable to complete all of its close proximity and circumnaviga-

tion operations near the MUBLCOM satellite due to a depleted fuel situation. The entire

sequence was designed to be accomplished under autonomous control.

2.4.4 Orbital Express

NASA was investigating a fully integrated repair and replacement program for satellite

systems in the Orbital Express program, scheduled for launch and flight-testing in October

2006 [21]. The Orbital Express Demonstration system program has the goal of validating the

technical feasibility of robotic, autonomous on-orbit refueling and reconfiguration satellites.

To accomplish this, a prototype servicing satellite (ASTRO) and surrogate next-generation

serviceable satellite (NEXTSat) have been designed. The key element to enabling the AS-

TRO satellite to successfully approach and capture the NEXTSat client satellite is the

Autonomous Rendezvous and Capture Sensor System (ARCSS). The ARCSS system pro-

vides relative state information for NEXTSat from ranges of hundreds of kilometers until

capture. ARCSS consists of three imaging sensors: a narrow field of view acquisition and

tracking sensor (VS1), a mid to short-range wide field of view visible track sensor (VS2),

and an infrared sensor (IRS) for continuous situational awareness during day and nighttime

operations. ARCSS is designed to acquire a client satellite at ranges extending beyond 200

km by using its narrow field of view visible sensor, where the client satellite appears as
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a point source. Eventually, the client satellite will come into range of the infrared sensor

and laser rangefinder. The laser-based tracking system, adopted form DART, was used to

independently measure the attitude, range, and bearing of NEXTSat for short-range and

capture operations of less than 200 m. The Orbital Express system will demonstrate for the

first time: 1) fully autonomous rendezvous out to 7 km with a capability that could support

rendezvous at separation distances up to 1,000 km; 2) soft capture and sub-meter range

autonomous station-keeping; and 3) on-orbit refueling and component replacement as well

as other robotic operations using as its primary sensor AVGS. The Orbital Express mission

lifted off on 08 March, 2007, from Cape Canaveral Air Force Station in Florida with an

agenda to demonstrate autonomous RVD. Upon successful demonstration of all scenarios,

Orbital Express will provide the foundation for developing an operational system that can

provide routine on-orbit servicing of existing and future space assets. The Orbital Express

completed its final and most challenging unmated rendezvous and capture scenario on 02

July, 2007. The operation was completely autonomous, with the two satellites operating at

distances of up to 7 km apart, and often with only passive optical and infrared imaging for

guidance. The mission marked the second successful grapple and capture of the NextSat

by the ASTRO, using its robotic arm. Finally, on the 22 July, 2007, the Orbital Express

satellites performed their end-of-life maneuvers and have been decommissioned [22].

2.4.5 XSS-11

The purpose of the AFRL XSS-11 demonstration mission, launched April 11, 2005,

was the development and on-orbit verification of guidance, navigation, and control capa-

bilities that would enable a micro-satellite to safely and autonomously rendezvous with

multiple space objects [23]. Utilizing a scanning Ladar to acquire and track the object,

XSS-11 automatically transitions from rendezvous into closed loop proximity operations.

The ground or on-board planner can select from a menu of GNC modes that command

the vehicle to station-keep at way points, or circumnavigate the object using natural or

forced-motion trajectories. Attitude determination was initially achieved with the Lost-in-

Space algorithm which utilizes between 5 and 7 stars and performs pattern matching of
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the presented star measurement information using a star catalog that is stored onboard.

Attitude guidance for all slew modes is done with a rate limited slew about the eigen-axis of

the attitude error quaternion. The attitude error quaternion is formed by differencing the

desired quaternion form the actual body quaternion. Relative navigation is performed by

combining ladar range and bearing measurements with the propagated inertial states in an

extended Kalman filter. The EKF consisted of three orbit propagators that keep track of

absolute XSS-11 relative states, and filtered non-truth position and velocity information in

Earth Centered Inertial coordinates. The system also includes on-board collision avoidance

system that can trigger an abort burn due to a safety constraint violation. The mission

duration was slated to be 12-18 months and by the fall of 2005 it had performed over 20

rendezvous maneuvers with the Minotaur 4th stage, several days of circumnavigation opera-

tions, and hours of active, closed-loop station keeping at various ranges and vantage points.

Current plans suggest that XSS-11 will conduct rendezvous and proximity maneuvers with

several U.S.-owned dead or inactive target objects near its current orbit [3, 23].

2.4.6 Hubble Robotic Service Vechicle (HRV)

NASA proposed using multiple 2D cameras and a ladar sensor as the baseline sys-

tem for the Relative Navigation Sensor for Hubble Space Telescope (HST) Robotic Vehicle

(HRV) [24]. The NASA HRV mission had two primary objectives. The primary objective

of the HRV was to dispose safely of the HST at the end of its science mission by provid-

ing a controlled re-entry capability to the HST. The secondary objective was to extend

the scientific life of the HST through ORI/ORU replacement or augmentation. The HRV

consisted of two modules: the De-Orbit module and the Ejection Module. The HRV was

going to be capable of an approach and capture of the HST that is in an inertial hold

control mode or uncontrolled and tumbling at a rate of up to 0.22◦/sec per axis. After

HST attitude rates are determined, the HST capture axis would be propagated in time in

order to select a relative point in space and a corresponding time from which to initiate

the capture approach. In the case of a tumbling HST, the analysis showed that accurate

propagation of the capture axis was extremely sensitive to the magnitude and accuracy of
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the estimated HST angular rates. The Relative Navigation Sensor System would provide

the relative position and attitude data during the proximity operatives and capture phases.

It consisted of a Ladar system, laser camera system, and vision processing unit that utilizes

nine digital cameras and halogen illuminators, but the project was canceled.

Summing up this section of the literature review, several different range sensor tech-

nologies have been discovered leading to exciting low and high-cost sensors that have been

used in space applications. Using these sensors, several aerospace companies have devel-

oped systems using sensors such as AVGS, LAMP, etc, to try and perform autonomous

rendezvous and dock to date.

2.5 3D Pose Estimation Algorithms

3D pose estimation is the process of determining the position and orientation (rotation

matrix/quaternion and cartesian translation) between two separate objects or the same

object at two sequential times. Many position and orientation algorithms require point

correspondences (the relationship between points in a point-cloud from one time instance

to the next) to determine the 6 DOF of a rigid body (pose) using 3D range images gathered

from ladar systems.

In 1984, Blostein and Huang [25], presented four different algorithmic methods for

determining general 3D motion (rotation and translation) based upon rigid body motion

mechanics and point correspondences. The first was the direct linear method that set

up four 3D systems of linear equations in order to solve for the twelve unknown motion

parameters of the ordered pair (R(~q), p(x, y, z)) where R(~q) was the rotation matrix and

p(x, y, z) was the translation vector. In order to solve these linear equations, four non-

coplanar pairs of point correspondences were needed to solve the system of equations. The

second method was based upon translation invariants. A 3D unit vector was constructed

between any two points on the rigid body. Therefore, only three point correspondences

were needed to solve directly for the rotation matrices parameters, and consequently the

translation matrix was obtained through direct substitution. The third technique, adapted

spherical projection, used the assumption that the rotation matrix can be represented as a
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eigen-axis unit vector and a rotational angle about that vector. Using the 3D unit vectors

constructed in the previous algorithm with the rotation axis, one could simply solve for the

unknown parameters. The fourth approach looked at the 3-D motion with parameters based

upon a screw decomposition of the rotation matrix, requiring knowledge of only three point

correspondences. The four different algorithms derived could be used at different times for

different cases depending on whether coordinate frames and origins could be established,

as well as the number of point correspondences which could be determined from the range

data.

In 1986, Huang, Lin, and Lee [26] presented a way to find 3D point correspondences

in position and orientation estimation based upon a direct linear method. This algorithm

utilizes a matrix eigen-decomposition to calculate four possible solutions to the rotation

matrix with the understanding that the two centroids at different instances in time are

governed by the correct rotation matrix solution. In the algorithm, point correspondences

were assumed known, but in order to calculate the centroids at both time instances this

knowledge did not need to be known. To determine the correct solution out of the possible

four solutions, the points are rearranged until the euclidean norm between the two data sets

was minimized.

Also in 1986, Huang et al., as well as Blostein and Margerum [27], developed two sep-

arate point-cloud-based algorithms. The first was based on the frequency domain Fourier

transform, and the second algorithm was based upon a least squares estimation which re-

quired point correspondences. The reason that point correspondences were not necessary in

the Fourier approach was because they are not needed to calculate the Fourier transform.

The algorithm sets up two functions based on the 3D coordinates given, and takes into

account that the Fourier transforms of these two functions must undergo the same rotation

and translation. The second algorithm solves for the rotational and translational compo-

nents by setting up a least squares estimate term based on the six motion parameters (three

for translational and three Euler angles for rotation(ψ, θ, φ)). This iterative algorithm takes

into account that the rotation matrix can be decoupled into three successive rotations about
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the z, y, and x axis by the corresponding Euler angles. In this process two of the Euler

angles were held constant at initial guesses while the other angle was solved for through an

iterative process until the least squared error was minimized.

In 1987 Arun, Huang, and Blostein [28] developed a least-squares algorithm that used

the singular value decomposition (SVD) of a 3 x 3 covariance matrix constructed from the

two point sets to compute the rotation and translational components. In 1991, Umeyama

[29] combined and modified the SVD algorithm by checking certain terms calculated by

the SVD to ensure that the degenerate (reflection) case did not happen when the data was

either noisy or co-linear. Both algorithms required that point correspondences be known.

In 1989, Huang and Lee [30] developed two position and orientation algorithms using

3D point cloud orthographic projections. In the case where two orthographic views were

known, the rotation matrix was solved for by simply moving both sets of objects points to the

origin without loss of generality. The second algorithm used orthographic projections once

again, but takes them at three different time instances instead of two. Once again, linear

combinations were constructed to solve for the rotation. In the case where two orthographic

projections were used, there are an infinite number of solutions off by only a scaling factor.

When three orthographic projections and four point correspondences were used, it ensured

a unique solution plus the existence of reflection for the rotational component.

At the end of the decade (1989) and into the next decade (1991), engineers and scientists

began looking at the impact noise might have upon motion estimation algorithms [31,

32]. Huang, Weng, and Ahuja developed a closed form solution for motion parameters by

exploiting redundancies in the data to obtain better estimates when noise was present. To

account for noise in the algorithm, the error in the motion parameters was estimated based

upon the standard deviation of the error and the variance of the errors.

In 1987 [33–35], Horn, Hilden, Negahdaripour, Walker, et al. developed three least-

squares pose estimation algorithms. The first of these algorithms used the SVD closed form

solution, but instead of using Euler angle, rotation axis and angle, or screw decomposition

they used the quaternion representation for rotation. The second least-squares technique
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used orthonormal matrices like the technique developed by Weng, Huang, and Ahuja [36].

Both these algorithms incorporate the necessary rigid body constraints, use all the data

collected, and calculate the optimal motion transformation.

Smith and Nandhakumar in 1994 [37], developed a new and innovative algorithm that

took into account that laser radars do not instantaneously acquire the range images, but

sequentially scan an object through single laser shots. The method developed was an

iterative, linear, feature-based approach which used the non-zero image acquisition time

constraint to accurately recover motion parameters from the distorted structure of 3D range

images. A set of linear equations was set up to solve for an estimate of the rotational

and translational components. Then, the velocity estimates looped back into the iterative

process to refine the rotational and translational components until the change in any one

motion parameter resided below some threshold; however, their method still required point-

correspondences.

Liu and Rodrigues in 1999 used a geometrical technique to estimate motion from range

images [38]. In this geometrical algorithm, a reflected correspondence pair, a correspondence

vector, and reflected correspondence vector are defined such that the pole of displacement

vector and rotation axes can be calculated. Because the data collected most likely contained

noise, the algorithm had a fuzzy reasoning approach blended into it to correct the solutions

and more accurately calculate motion parameters. Zhang, Liu, and Huang in 2002 [39]

presented an algorithm which showed that the 3D structure of a corner could be recovered

by introducing a new coordinate system, and by knowing only this one corner and two point

correspondences over two separate views was sufficient enough to determine the rotational

and translational components. Because many spacecraft are shaped like giant rectangular

boxes, this algorithm looked to be promising because of its use of orthonormal relations

and 3D corner structure, but was not investigated for this thesis because the author was

looking into an algorithm with more generalization for 3D objects.
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2.6 Literature Review Summary

From the literature review, a determination was made that the best algorithm suited for

this type of work was using the Singular Value Decomposition (SVD) or the Eigen-Value

Decomposition (EVD) methods; however, both methods required point correspondences

between the sequential point sets. In 1992, two independent groups [40, 41] developed and

completely described an iterative algorithm using the SVD and EVD to calculate pose

known as the Iterative Closest Point (ICP) Algorithm where point correspondences did not

have to be known. The algorithms and literature will now be reviewed in detail in the

following chapter.
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Chapter 3

Iterative Closest Point (ICP) Algorithm

3.1 Taxonomy of ICP Variants

The Iterative Closest Point (ICP) algorithm has become one of the dominant regis-

tration methods in the literature for aligning a pair of range images or globally aligning

several 3-D point based range images. Originally developed by Chen and Medoni [41] and

Besl and Mckay [40], the ICP algorithm takes two sequentially acquired range images and

calculates the registration parameters: specifically the quaternion (describing the rotation

matrix) between the two targets and the cartesian translation vector. In 1994, [42] used

both the range information and the intensity images in a version of the ICP algorithm. In

1994, [43] developed zippered polygon meshes which became extremely important in the

ICP algorithm when constructing meshes of solid objects and calculating point-to-plane

distances. In 1996, [44] described how the ICP algorithm could be used in medical appli-

cations to build 3D representations of bones at different times throughout a surgery. In

1996, [45] described a method to incorporate the k-d tree structure into point matching in

order to speed up point correspondence computational times. In 1996, [46] used the ICP

algorithm as a basis for multiple image matches and derived a numerical algorithm using

the point-plane error metric. In 1997, [47] developed a global image registration method

based upon the ICP algorithm. Then in 1998 [48], he developed a similar global image

registration method using the eigen-value decomposition (EVD) method as opposed to the

singular value decomposition (SVD) method. In 1997, [49] performed a sensitivity analysis

of the ICP algorithm in the presence of data corrupted by noise for the first time. In the

same year, he also developed a system which used the ICP algorithm and meshing math-

ematics to merge multiple range images together for image registration [50]. In 1997, [51]

used the traditional ICP algorithm and modified it to use the color information provided
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by the imager. In 1997, [52] used luminance and depth images incorporated into the ICP

algorithm in order to determine pose. In 1997, [53] discussed the mathematics behind how

to calculate the distances from points to surfaces, and one surface to another. In 1999, [54]

used an ICP bootstrapping method to optimally estimate rigid body motion. The same

year, [55] used the ICP algorithm for multiple registration of extremely large data sets not

seen or used previously. In 2000, [56] used the algorithm on the statue Michelangelo to

build a full 3D CAD image. In 2002, [57] discussed the trimmed ICP algorithm which used

a trimmed least squares error metric. In 2002, [58] developed a multi-resolution ICP scheme

to determine registration. In 2003, [59] refined the point-to-point ICP algorithm to be more

selective in the point-to-point matches determined in the ICP algorithm by use of weighting

matrices. In 2003, [60] used the ICP algorithm to model non-rigid objects from multiple

range images. In 2004, [61] used a sensor projection method to improve the ICP algorithm

for registering range images globally.

3.2 ICP Algorithm Overview

Since the ICP algorithms introduction, several different variants have been developed

improving or modifying basic concepts and steps within the algorithm. Rusinkiewicz, for

his dissertation [62], studied the computational effect that theses variants had on each

step and iteration within the ICP algorithm. The steps within the ICP algorithm are as

follows: (1) initialization, (2) point selection, (3) calculating point-to-point or point-to-

plane correspondences, (4) calculating registration parameters, and (5) minimizing an error

metric (see fig. 3.1).

3.3 Initialization

Given a pair of range images, the first step in general was to initialize the algorithm

by generating an initial alignment between the two point clouds. One constant difficulty in

using the ICP algorithm revolves around the algorithm calculating registration parameters

that provide a global minimum, not a local minimum. Several initial alignment methods

have been used when trying to assure global convergence of the ICP algorithm, such as



26

 

Nx

Np

( )( )[ ]∑
=

−−=∑ pN

i

T
xipi

p
px xp

N 1

1 µµ vvvvCross Covariance Matrix

Q(Σpx)

Eigenvalue/Quaternion 
Decomposition

Calculate Maximum Eigenvalue and 
Select Associated Eigenvector

rq
v

Optimized Quaternion

( )rqR
v

Optimized Rotation 
Matrix

( ) pr NqR *
v

Initial Registration

Register

Iterate

no

yes

MSE OK?

EXIT

Nx

Np

( )( )[ ]∑
=

−−=∑ pN

i

T
xipi

p
px xp

N 1

1 µµ vvvvCross Covariance Matrix

Q(Σpx)

Eigenvalue/Quaternion 
Decomposition

Q(Σpx)

Eigenvalue/Quaternion 
Decomposition

Calculate Maximum Eigenvalue and 
Select Associated Eigenvector

Calculate Maximum Eigenvalue and 
Select Associated Eigenvector

rq
v

Optimized Quaternion
rq
v

Optimized Quaternion

( )rqR
v

Optimized Rotation 
Matrix

( ) pr NqR *
v

Initial Registration

Register

Iterate

no

yes

MSE OK?

EXIT

Fig. 3.1: Iterative closest point algorithm flow chart.

tracking scanner position and indexing surface features [63,64], spin-image surface signatures

[65, 66], computing principal axes of scan of ladar scanned range images [50], searching for

corresponding points between images [67], calculating image corners, [39], and manually

inputting the initial alignment.

However, in this thesis, manually inputting the initial registration quaternion was cho-

sen because of its simplicity in application; however, this becomes a brute force approach

to finding the initial registration. Thus, many equally spaced initial quaternions were

constructed and used within the ICP algorithm. Because the point clouds used contain

such large numbers of points with an associated range error, a set of 312 initial regis-

tration quaternions were constructed from all normalized combinations of the following

quaternion sets q0 = {1, 0.5, 0} , q1 = {1, 0.5, 0,−0.5,−1} , q2 = {1, 0.5, 0,−0.5, 1}, and

q3 = {1, 0.5, 0,−0.5, 1}. The quaternion can be described as a 4D vector [q0; q1; q2; q3]

that describes the rotation of a rigid body in 3D space. For the purpose of the ICP algo-

rithm, each term q0 to q3 was given a value equally spaced from -1 to 1 in increments of 0.5.

This subdivides the infinite number of possible rotations in 3D space. The All combinations

in which q0 was negative were thrown out because they were equal to another quaternion
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combination where the q0 term was positive (i.e., the 3D rotation transformation was the

same).

For example, the initial quaternion has the form:

~q =
[
q0 q1 q2 q3

]
. (3.1)

Now choose one value from each of the sets listed above :

~q =
[
1 1 1 1

]
. (3.2)

Finally, the quaternion has to be normalized (3.3) such that q2
0 + q2

1 + q3
2 + q2

3 = 1 and

perform the rotational transform to the first point set data:

~qnorm = ~q/‖~q‖. (3.3)

This normalized quaternion can now be used for an apriori guess as to the rigid body

rotation. Therefore, the normalized apriori quaternion can be applied to the first of the

two point clouds (R1) to be used in the ICP algorithm using eq. 3.4 where R(~qnorm) is the

rotation matrix corresponding to the normalized quaternion.

R1 = R(~qnorm) ∗R1 (3.4)

Now by exhaustively using all initial alignment possibilities, the algorithm can succes-

sively search for the global minimum to the registration problem at the expense of compu-

tational time. This process is accomplished as follows: (1) given two point clouds there is a

set of registration parameters relating the two point clouds to each other, (2) apply one of

the 312 apriori guess to the first point cloud, (3) run all steps in each iteration of the ICP

algorithm discussed in secs. 3.4 - 3.7 for this single apriori guess to obtain a solution, (4)

continue applying n apriori guesses repeating step 3 until all 312 apriori guesses have been

used, and (5) select the solution that provides the global minimum.
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3.4 Point Selection

Once an initial alignment has been found, the ICP algorithm chooses the number of

points from each point-cloud to be used for point-to-point matching, or building meshes

for point-to-plane matching. This step of the algorithm can be the simplest step, but has

the greatest impact on computational speeds. Thus, three possible strategies for 3-D range

images are discussed. First, there is the case where all the points provided are used, which

has the worst computational speeds, with a computational order (algorithms computational

burden) of O(NsNp) [40]. Next, there are two separate sub-sampling strategies, which can

be used to ease the computational burden of the point selection process. These are uniform

random sampling [43] (or random sampling [45]), and normal-space sampling. Uniform

random sampling simply selects points in a uniformly random way, without regard to any

feature information. Normal-space sampling first sorts the points into bins according to

their surface normals. Then these bins are uniformly sampled so that the resulting subset

has a more uniform distribution of surface normals. Uniform random sampling on a surface

has order O(Ns), where Ns was the number of points and normal-space sampling is O(N2
s ).

Once the selection of points has been performed, a k-d tree structure was used to store

range images in this structure [68]. The k-d tree is a generalization of a binary-search

tree for efficient search in high dimensional (multi-dimensional) spaces. The k-d tree was

created by recursively splitting a point-cloud data set down the middle of its dimensions

of greatest variance until the leaf nodes contain a small enough number of data points

(see fig. 3.2) [69]. The figure below represents a general point cloud in 3D space (e.g.,

feature points on satellite). In the figure, the white lines show how the feature points in

the point-cloud have been used to create bins for the rest of the points within the point-

cloud. The k-d tree structure can then be stored into a buffer or computer memory. This

allows nearest-neighborhood searches to be accomplished more efficiently by matching the

appropriate branch/bin with the corresponding point or plane. This reduces the number

of point matches that have to be done during each iteration because once a point or plane

has been matched to a specific bin/branch. The algorithm continues to go back to the
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points within that branch/bin and no other for the remainder of the ICP algorithm. The

expected number of operations for the nearest neighbor search was O(logN) as compared

to the O(NpNx) which was the computation order when comparing every point in one data

set with every point in the other data set.

3.5 Point Matching

After selecting an appropriate number of points and applying an initial rotation, the

ICP algorithm finds the closest or most compatible set of matches between the points in

the two sets of data R1 = (x1, x2, · · · , xn) and R2 = (y1, y2, · · · , ym) obtained from the

object (e.g., satellite). In order to match points in the first data set to the points or planes

in the second data set, either a point-to-point distance can be utilized (sec. 3.5.1), or a

point-to-plane distance calculation can utilized (sec. 3.5.2).

 

Fig. 3.2: Example of a 3D k-d tree being constructed from a 3D point cloud data set.
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3.5.1 Point-to-Point Correspondences

The first method, point-to-point matching, begins by calculating the distance from one

point in the first point cloud to those points in the second point cloud by (3.5). Remember

though, each point has been matched mathematically through the k-d tree construction

and search algorithm to a specific branch/bin. Therefore, the point matching distance

calculation occurs between each point in the first point cloud and only those points in the

second point cloud residing in the specific bin or branch (See fig. 3.3.). The point matching

selection is accomplished by selecting the point match with the minimum distance between

the two points (i.e., min(d(xi, yi)) for all i, j. During this process, several points in the first

point cloud have the possibility of being matched to the same point in the second point

cloud during one more iterations of the ICP algorithm.

d(xi, yj) =
√

(xi1 − yj1)2 + (xi2 − yj2)2 + (xi3 − yj3)2 for i, j = 1 : max(m,n) (3.5)

When each point in R1 had a corresponding matched point (see fig. 3.3) in R2, the

algorithm proceeds to the next step in the algorithm: calculating the corresponding regis-

tration between the matched point sets. However, the point-to-point matching operation

has to be done during each iteration of the ICP algorithm until an error metric between

the two data sets has been minimized. Applying this technique leads to longer computa-
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Fig. 3.3: Example of point-to-point matching.
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tional times and a greater mean-squared error then the point-to-plane matching according

to an analysis done by Rusinkiewicz [62]. These methods are outlined by past authors have

used a variety of methods that incorporate some variation on the point to plane methodol-

ogy [41,49,50,53,56].

3.5.2 Point-to-Plane Correspondences

The point-to-plane correspondence step is dependent upon whether the 3D rigid object

did or did not have a 3D CAD model/finite element model with all the appropriate triangle

vertice information. If the object has a 3D CAD model, most software programs can

directly import the finite element model elements with all associated triangle vertices. For

the case where the object geometry was unknown,no finite element/3D CAD model, the

algorithm needs to create and store triangular mesh information for each range image to

build up a database of 3D mesh information that can be used in the point-to-plane matching

methodology. Two simple yet different software tools were used for constructing these

triangular meshes: (1)“trimesh” a MATLAB command, and (2) “trimesh2” a C++ library

constructed by Rusinkiewicz for construction and manipulation of triangular meshes. Once

one of these two programs was employed, a triangular mesh of the point-cloud data might

appear as follows (see fig. 3.4):

In the calculations outlined below, there are two separate coordinate frames that are

used for these calculations. The first coordinate system is the “inertial” coordinate frame

represented with variables sub/superscripted with a capital “I” (e.g., XI is the x-axis unit

vector for the inertial coordinate system). The first coordinate system is centered at the

location of the ladar, and the second coordinate system is centered around one of the three

vertices. The second coordinate system is the “plane” coordinate frame constructed from

three vertices on the plane (AI , BI , and CI) by (3.6). These variables are represented with

a sub/superscripted capital “P” (e.g., XP is the x-axis unit vector for the plane coordinate

frame). In the description of this methodology, it is always been stated that there are two

separate point clouds that the algorithm calculates the position and orientation between.

Whereas, in the description of the meshing algorithm, an explanation is given that suggests
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Fig. 3.4: Example of a triangular mesh constructed from data taken by a canesta ladar
system.

the building of database of meshes for this rigid object that are used instead. They coin-

cidentally are one in the same. If no database was initially provided, then the algorithm

begins with the first two point clouds, and the first point cloud becomes the initial database.

Now, once the pose of the 3D rigid object is calculated and a global minimal solution cal-

culated, the previous two point clouds can be saved together in the database or the second

point cloud can be stored as the only point cloud in the database. The second point cloud

then becomes the first point cloud in the next pose estimation when a third point cloud

is obtained. After meshing the first two 3-D point-clouds and building a database, the

point-to-plane distances and correspondences are calculated using the steps outlined below.

First, choose one of the planes from the first 3D point-cloud mesh (labeled “plane”

in fig. 3.5) where ~AI , ~BI , and ~CI are the three triangular vertices for that plane in the

inertial coordinate system. Then, choosing a point (IRi
point) from the second point cloud

mesh where i = 1 : N and N is the number of points in the second point cloud for the point-

to-plane distance calculation in (3.6). This point-to-plane distance calculation can then be

done for each plane/mesh in the first point cloud with the points in the second point cloud.
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Also, the k-d search methodology is used to speed up computations by telling the algorithm,

which points in the second point cloud should be matched with each individual plane as is

done in the point-to-point matching method. After the point-to-plane distance calculation

is done, each plane was matched to a point in the second point cloud by selecting the match

that satisfied min(d(IRi
point, AI)) for all i and each plane/mesh.

d(IRi
point, AI) = ~n · (IRi

point −BI), (3.6)

where ~n is the chosen planes surface normal.

In order to perform the registration step of the algorithm, the algorithm needs to have

two sets of points matched to one another to construct the cross-covariance matrix among

other mathematical terms described in sec. 3.6. However, the following method matches

points-to-planes; therefore, a point on the surface of the plane had to be mathematically

calculated to have two sets of matched points. So to begin the second coordinate system,

generally a triad of orthogonal coordinates, which defines the a plane/mesh coordinate

system, was constructed using the three plane vertices AI , BI , and CI in (3.7).

R
POINT

I

X
POINT

P

X
I

Y
I

Z
I

X
P

Y
P

Z
P

P
TRANS

I

A
I

B
I

C
I

Z

R P
O

IN
T

I

-
P T

R
A

N
S

I

P
O

IN
T

I

=

“Inertial”

“Plane”

Fig. 3.5: 3D Representation of a triangular mesh and point-cloud point used for point-to-
plane distance calculation.
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ZP = ±

(
~AI − ~BI

)
∣∣∣ ~AI − ~BI

∣∣∣
; XP = ±

(
~AI − ~BI

)
×

(
~CI − ~BI

)
∣∣∣
(

~AI − ~BI

)
×

(
~CI − ~BI

)∣∣∣
; YP = ~ZP × ~XP (3.7)

Using a specific combinations of these three vectors, TI→P the transformation (rotation)

matrix between the plane/mesh fixed coordinate system and ladar-fixed coordinate system

is constructed.

TI→P =




XT
P

Y T
P

ZT
P




(3.8)

Now, that the two coordinate systems have been calculated an the orientation between

those coordinate systems, the process of calculating the point on the planes surface can

be accomplished. Assuming that ~Bi is the center of the plane coordinate system, then

the vector Iptrans is the distance between the center of the inertial coordinate system and

the plane coordinate system. The vector IZi
point is the difference between the vector ~Bi

and the point IRi
point and can be calculated by (3.8). This point was then transformed

or expressed in the plane coordinate frame eq. 3.7 by using the transformation matrix

constructed in (3.9), and now the variable has the notation P Zi
point because it is viewed in

the plane coordinate frame. Finally, by projecting the vector P Zi
point onto the plane, the

point P Xi
point in the plane coordinate frame has been found. The projection of P Xi

point is

accomplished and calculated by (3.10).

IZi
point = IRi

point − Iptrans (3.9)

P Zi
point = TI→P

[
IRi

point − Iptrans

]
= TI→P

[
IZi

point

]
(3.10)

P Xi
point =




0

ey · P Zi
point

ez · P Zi
point




(3.11)
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Finally, rotate and translate P Xi
point from (3.11) into the inertial coordinate system via

(3.12) to obtain IXi
point. Therefore, for each minimum selected point-to-plane match that is

done through iteration, there is now a corresponding point-to-point match for IRi
point and

IXi
point.

IXi
point = Iρtrans + TP→I

[
P Xi

point

]
(3.12)

The above derivation was done with more of an engineer’s perspective. However, this

point-to-plane distance calculation step was also presented by Neugebauer [53], Chen [41],

and Besl/McKay [40] assuming minimal knowledge in mathematics or computer science.

Each iteration k in the literature was described as finding the closest point in a point set T

for each point to a surface S(k−1), which represents the initial position of the registration

surface for this iteration. Let the point sets s(k−1)i and t(k−1)i be the points selected

respectively from S(k−1) and T , where s(k−1)i is paired with t(k−1)i for i = 1, 2, ..., N . The

set s(k−1)i was chosen to be the vertices in S(k−1), then the corresponding t(k−1)i is the point

contained on one of the triangles in T that has a minimum distance to s(k−1)i. If we let t

be a triangle in T defined by the vertices ~tu,~tv, and ~tw, the distance between s(k−1)i and t

is given by (3.13):

d(s(k−1)i, t) = min
u+v+w=1

‖u~tu + v~tv + w ~tw − s(k−1)i‖, (3.13)

where u, v, w ∈ [0, 1]. To find the point t(k−1)i to be paired with each s(k−1)i, the triangles

in the targeted surface T are searched through for the triangle τ that gives the minimum

distance. The point t(k−1)i is then selected as

t(k−1)i = u~τu + v ~τv + w ~τw, (3.14)

where d(s(k−1)i, τ) was minimized.

After using either the point-point or point-plane distance calculations a distance thresh-

old was used, which allows certain point matches that could be completely incorrect to be
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rejected. Similarly, a point pair culling percentage can be used, which culls a given per-

centage of point matches that have the greatest distance between points according to some

multiple of the standard deviation [45]. Also, point pair matches can be rejected when they

fall on the boundaries of the triangular meshes [43]. By selecting small subsets of the point

matches available, the computational burden of the algorithm can be greatly reduced by

rejecting point matches that are outliers.

3.6 3D Relative Pose Estimation (Registration)

Registration is the process of calculating the rotation matrix (quaternion) and cartesian

translation between two objects (see fig. 3.6). Registration of multiple point clouds and

planar surfaces is an important research topic in the areas of computer vision, computer

graphics, robotics, and medicine for the past several years. These registration algorithms

and methods developed are used in a variety of tasks ranging from complicated surgeries to

constructing accurate 3-D CAD models of priceless artifacts such as Davids Michelangelo

and the Great Buddha [56,68].

Once a set of compatible point correspondences has been found, the registration prob-

lem is solved directly through matrix based computations. To simplify the problem, the

mean of both data sets is calculated and subtracted from every point in the corresponding

range image so that only the rotational component needs to be calculated. In the liter-

ature [40, 41, 53, 62], several authors emphasize that there needs to be around a 40-60%
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Fig. 3.6: Simulated demonstration of a spacecraft moving through 3D space with the reg-
istration parameters (rotation matrix and cartesian translation).
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overlap between the point-clouds for the algorithm to converge. The two methods most

commonly used in finding the rotation matrix (quaternion) in the ICP algorithm are either

the Singular-Value Decomposition (SVD) or the Eigen-Value Decomposition (EVD)-based

methods. The singular value decomposition (SVD) method calculates the rotation matrix

by performing the SVD decomposition on the cross-covariance matrix between the point-to-

point matched data sets [33,35]. The two methods, SVD and EVD, provide the same pose

estimation values but in different formats (rotation matrix and quaternion).The quaternion-

based method calculates the quaternion equal to the eigenvector associated with the max-

imum eigenvalue of a 4 x 4 matrix constructed from the cross-covariance matrix between

the point-to-point matched data sets [28,29,34]. In this thesis, both methods were initially

studied, but the EVD method was chosen for the final pose estimation results, so knowing

whether one is more accurate is important. In the literature, the author Kalman [70] shows

that both the EVD and SVD can be derived from the other, and presents applications and

performance for the SVD while mentioning that identical results were obtained when using

the EVD method. These two methods are described in secs. 3.6.1 and 3.6.2.

3.6.1 Singular Value Decomposition (SVD) Algorithm

The first mathematical method used to calculate the registration was the SVD method.

In order to do this, the two point-sets centroids µR1 and µR2 are calculated from (3.15) and

(3.16) where R1 and R2 have size N1 and N2.

~µR1 =
1

N1

N1∑

i=1

~Ri
1 (3.15)

~µR2 =
1

N2

N2∑

i=1

~Ri
2 (3.16)

Then the 3 x 3 cross-covariance matrix between the two matched point-sets was calcu-

lated from the two point clouds in (3.17). Even though both point sets may have different

sizes, the matched data sets contain the same number of data points. This was because

when matching the first data set, which might contain more points, each point has a match
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with the second point cloud even if there were duplicate matches.

ΣR1R2 =
1
N

N∑

i=1

[(
~Ri
1 − ~µR1

)(
~Ri
2 − ~µR2

)T
]

(3.17)

As mentioned above, the SVD of the cross-covariance matrix was calculated. From this

calculation, three separate matrices U , Σ, and V were calculated containing the eigenvalues

and eigenvectors of the cross-covariance matrix. According to the theory of the SVD [71],

every matrix A ∈ Amxn can be factored as

A = UΣV H , (3.18)

where U ∈ Amxm and V ∈ Anxn are both unitary matrices and Σ has the form,

Σ = diag(σ1, σ2, · · · , σp), (3.19)

where p = min(m,n) and the diagonal elements of Σ are called the singular values of A

and are usually ordered from the largest singular value down to the smallest singular

value. The matrices U and V are formed from the terms ui and vi which are eigenvectors

of AAT , and AT A, respectively, as given by (3.20) and (3.21).

U = [u1,u2, · · · ,um] (3.20)

V = [v1,v2, · · · ,vn] (3.21)

After taking the singular value decomposition of the cross-covariance matrix calculated

in (3.17), the pose estimation parameters RR1R2(ψ, θ, φ) and pR1R2(x, y, z) can be calculated.

The rotation matrix is calculated by multiplying the matrices U , V , and S (identity matrix)

in the specific order shown in (3.22). This derivation and order are described completely in

Appendix A outlining the need for the identity matrix.

RR1R2(ψ, θ, φ) = V SUT (3.22)



39

Because of the geometry of certain 3D objects, such as perfect spheres or the case

of a triangle centered along its midpoint, the SVD algorithm will fail to work. However,

Umeyama [29] solved the problem of the degenerate case. In the degenerate case, the

determinate of the cross-covariance matrix goes to -1; and in order to correct for this

degeneracy, the last term of the identity matrix used in the rotation matrix calculation

was set equal to -1. To ensure that the degenerate case would not happen in software, the

registration calculation used a matrix S separated into the following two cases as follows:

S =





I if det(U)det(V ) = 1

diag(1, 1, · · · , 1,−1) if det(U)det(V ) = −1.
(3.23)

To calculate the translation vector component of the pose, it is necessary to use both

the rotation matrix calculated in (3.22) and the mean/centroid values from (3.14) and

(3.15). The ICP algorithm described throughout the thesis outlines an algorithm that

provides a solution that performs a least squares optimization for only the rotation matrix

component of the pose. Because the two point-clouds may only overlap by 40-60%, the

centroid values calculated in (3.15) and (3.16) will not represent the same physical point on

the object. Therefore, the translation vector being calculated in this algorithm will represent

the translation of the object in addition to algorithmic error caused by these two centroid

values not representing the same physical point. Since, the algorithm does not optimize for

the translation vector independently, it will be dependent entirely on the centroid values

and the rotation matrix and can be calculated as follows:

pR1R2(x, y, z) = µR2 −R(ψ, θ, φ)µR1 . (3.24)

Described below is an entire step by step method for using the SVD algorithm.

3.6.2 Eigen-Value Decomposition (EVD) Algorithm

In the EVD algorithm described by Horn and Walker [33–35], the covariance matrix is

calculated in (3.16). However, several different vectors and matrices are used to calculate
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Algorithm 3.1 Singular Value Decomposition (SVD) Algorithm
Input:

Point set P with Np,
Point set X with Nx,

Initialization:
Let m = number of spatial dimensions
Calculate µp and µx /* Mean Vectors of P and X data sets*/
Calculate Σpx /* Covariance matrix between P and X data sets */

Begin
Calculate the singular value decomposition of Σpx(U,D, V )
and use the identity matrix for S.

If rank (Σpx) > m− 1
Calculate the registration motion parameters as follows:

RR1R2(ψ, θ, φ) = V SUT /* 3x3 Registration Rotation Matrix */
pR1R2(x, y, z) = µx −R(ψ, θ, φ)µp /* 3x1 Translation Matrix */

Else rank (Σpx) ≤ m− 1

S =
{

I if det(U)det(V ) = 1
diag(1, 1, · · · , 1,−1) if det(U)det(V ) = −1

Calculate the registration parameters: RR1R2(ψ, θ, φ)
and pR1R2(x, y, z) using the adjusted identity matrix.

End
End

Output:
RR1R2(ψ, θ, φ) and pR1R2(x, y, z) /* Final Pose Estimation Registration Parameters */
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the rotation matrix. The first term Aij is an anti-symmetric matrix formed from the cross-

covariance matrix (where i and j are indices for elements in the matrix A being constructed),

and then the elements of Aij are used to construct the column vector ∆. Finally, this

column vector ∆ and the cross-covariance matrix are used to construct a symmetric matrix

Q(ΣR1R2).

Aij = (ΣR1R2 − ΣT
R1R2

)ij (3.25)

∆ = [A23A31A12]T (3.26)

Q(ΣR1R2) =




trace(ΣR1R2) ∆T

∆ ΣR1R2 + ΣT
R1R2

− trace(ΣR1R2)I


 (3.27)

From the matrix Q(ΣR1R2) above, the eigen-values (λi) and eigenvectors (xi) of Q(ΣR1R2)

are calculated, then −→q r was selected as the unit eigenvector (xi) corresponding to the max-

imum eigenvalue (λi). This quaternion is used to calculate RR1R2(ψ, θ, φ) from the quater-

nion ~qr in (3.28) in (3.29). The translation vector pR1R2 from (3.24) was calculated using

the rotation matrix found in (3.29) with the same problems explained above (see Appendix

B).

~qr =
[
q0 q1 q2 q3

]
(3.28)

RR1R2(~qr) =




q2
0 + q2

1 − q2
3 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2




(3.29)

Described below is an entire step by step method for using the EVD algorithm.
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Algorithm 3.2 Eigen-Value Decomposition (EVD) Algorithm
Input:

Point set P with Np,
Point set X with Nx,

Initialization:
Let m = number of spatial dimensions
Calculate µp and µx /* Mean Vectors of P and X data sets*/
Calculate Σpx /* Covariance matrix between P and X data sets */

Begin
Calculate the anti-symmetric matrix Aij = (Σpx − ΣT

px)ij

Form the vector ∆ = [A23A31A12]T

Calculate the matrix Q(Σpx):

Q(Σpx) =
[

trace(Σpx) ∆T

∆ Σpx + ΣT
px − trace(Σpx)I

]

Calculate the eigenvalues (λi) and eigenvectors (xi) of Q(Σpx)
Select −→q r as the unit eigenvector (xi) corresponding to the maximum eigenvalue (λi)
Calculate RR1R2(ψ, θ, φ) from ~qr

Calculate pR1R2x, y, z = ~µx −RR1R2(ψ, θ, φ)~µp

End

Output:
RR1R2(ψ, θ, φ) and pR1R2x, y, z /* Final Pose Estimation Registration Parameters */
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3.7 Error Metric Minimization

3.7.1 Point-to-Point Error Metric

The final step in the ICP algorithm is to compute an error metric that the algorithm

uses as a measure to the success of the calculated registration at each iteration. For most

applications, a mean square error (MSE) or sum of the squared distance between corre-

sponding points after applying the calculated registration is used as represented in (3.30).

MSE =
1
N

N∑

i=1

‖~xi −RR1R2(ψ, θ, φ)~yi − pR1R2x, y, z‖2 (3.30)

3.7.2 Point-to-Plane Error Metric

Similarly, the final step in the ICP algorithm (point-plane variation) is to compute an

error metric that the algorithm uses as a measure of the success of the calculated registra-

tion at each iteration. For most applications, a mean square error (MSE) or sum of the

squared distance between corresponding point and mesh/plane after applying the calculated

registration was used where ~n was the surface normal as represented in (3.31).

MSE =
1
N

N∑

i=1

∥∥~n · (IRi
point −RR1R2(ψ, θ, φ)BI − pR1R2x, y, z)

∣∣2 (3.31)

The overall ICP algorithm has been condensed and is shown on the next page (see

Appendix C).
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Algorithm 3.3 Iterative Closest Point (ICP) Algorithm
Input:

Point set R1 with Np,
Point set R2 with Nx,

Initialization:
Let k= 0
Let τ = 0.001 /*Error Tolerance*/
Let MSEk = 1 ∗ 108 /*Initial Mean-squared Error*/
Define Normalized Initial Rotational and Translational States
Calculate the cross-covariance matrix from (3.17)

Begin
For

Let R1,k = Rinit(ψ, θ, φ)R1 + pinit

While MSEk+1 −MSEk ≥ τ
• Calculate correspondences for point set R2,k from (R1,k, R2,k

from (3.5) (point-point) or (3.6-3.12) (point-plane)
• Compute the registration parameters: R12,k(ψ, θ, φ), p12,k

between R1,k and R2,k using either (3.22-3.23) or (3.24-3.28,3.23)
• Apply the registration: R1,k+1 = R12,k(ψ, θ, φ)R1,k + p12,k

• Calculate MSEk+1 and let k = k + 1
End

End

Output:

Rfinal(ψ, θ, φ) and pfinal(x, y, z)
/* Final Pose Estimation Registration Parameters */
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Chapter 4

ICP Implementation and Simulation Results

4.1 Simulated Experimental Data Collection Procedure

This project employed the direct use of a 6 DOF pose estimation algorithm (i.e., ICP

algorithm), which uses sequentially gathered range images, also known as point clouds, to

calculate 6 DOF relative pose and orientation. To study the robustness (i.e., the charac-

teristic where the output or response is insensitive to the variation of the inputs) of the

ICP algorithm and its future implementation into real time hardware applications, range

images, or point clouds, were generated by simulation only. The method used to generate

point cloud models was through a simulation program developed at the Center for Advanced

Imaging Lidar (CAIL) at Utah State University. This software package, LadarSIM, incorpo-

rates performance-related parameters associated with the laser, detector, signal processing,

scanner dynamics, platform dynamics, navigation errors, and scene properties to provide

general system analysis, error source modeling, and 3-D points clouds [72]. The data gath-

ered from this simulation program is gathered simulated in manner where all points are

gathered all at once similar to a flash ladar technology. The only information that was used

from these images was range information (x,y,z information) for every single point in each

point-cloud image. There was no INS/GPS data on the target, and the EVD least squares

estimation algorithm is used on the point-clouds. No feature extraction methods are used

to help obtain point matches that are necessary for the EVD algorithm. Finally, all the

point-cloud images are for a simple solid model of a spacecraft, as shown in fig. 4.1. The

simulated point cloud were generated assuming the range between the ladar and the target

was approximately 1 km. The angular resolution between shots was 100 rad with an RMS

range error of 0 cm, 2 cm or 14 cm, based on realistic ladar transceiver error models.
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Fig. 4.1: LADARSIM model of a (a) 3D solid model, (b) point-cloud with 14 cm range
error, (c) point-cloud with 2 cm range error, and (d) point-cloud with zero cm range error
noise.
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4.2 Point-to-Point ICP Algorithm Results

The purpose of this project was to determine a suitable registration algorithm that

would accurately, quickly, and robustly find the position and orientation from a pair of

range images. For this thesis project, the point-to-point ICP algorithm simulations were

performed on simulated data that had 0 cm range error and 14 cm range error taken at a

distance of approximately 1 km. Results were obtained from the simulated range images

of a spacecraft going through varying angular rotations such as: 1◦, 5◦, 10◦, 20◦, 40◦, and

60◦, about one or three orthogonal rotational axes at the same time. The point-to-point

ICP algorithm was then used to calculate the registration parameters using only 10% of

the range data points (i.e., anywhere between 50 points and 2500 points) to speed up

computation times. To test the sensitivity of the ICP algorithm, a Monte Carlo-based test

strategy was performed by running 50 individual runs of the ICP point-to-point algorithm.

For each of these 50 separate runs, two different point clouds were chosen. The second

point cloud was rotated about a single-axis or about all three axes. The ICP algorithm was

then used to compare these two individual point-clouds. Previously, it was stated that the

translation vector when estimated is a combination of the actual translation between the

two point-clouds, plus the additional error caused as a result of centroids being located at

different physical positions. To estimate the error due to this misalignment, the translation

applied to the second point cloud was zero along all three axes. Since there is no translation

involved, the estimated translation vector represents the error directly related to the centroid

misalignment. After all these simulations were set up many values were analyzed. The

measured values included euler angular errors, eigen-axis angular errors, algorithm times,

MSE, translational errors, etc. The data from these simulations was processed to find

values such as the mean and standard deviation values over the 50 trials for several of the

important pose parameters above.

Of the parameters obtained from simulation, eigen-axis angular errors, mean-squared

error (MSE), and translational errors were determined to be most relevant to rendezvous

and dock capabilities. Eigen-axis error is the error between the true rotation angle used to
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move the second point cloud and the angle calculated by the ICP algorithm. The next value

is the translational error, which is the error between the true translation that was used when

moving the second point cloud and the translation calculated using the ICP algorithm. Since

no translation is used for these simulations, the error related only to centroid misalignment.

The final value was the MSE, which is the error between the individual points in the two

point clouds, meaning each point in the first point cloud ends up matched to a point in

the second point cloud after the final iteration and the sum of the distances between these

points gives us the MSE. Each of these values was calculated for 50 separate trials, for each

of the six rotations about one or three rotation axes. In each of the tables (Table 4.1 to

Table 4.6), for both single-axis and three-axis rotations, the mean and standard deviation

values were calculated from the 50 experimental trials for each of the six varying rotation

angles using a point-to-point error metric.

Table 4.1: Eigen-axis angular error means and standard deviations values between actual
rotation and point-to-point ICP algorithm for 14 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Mean Standard Mean Standard
Angle(◦) Error (◦) Deviation (◦) Error (◦) Deviation(◦)

1 2.05 1.30 2.22 2.21
5 2.22 2.22 1.85 1.36
10 1.87 1.35 2.22 1.51
20 1.85 1.09 2.54 2.23
40 2.31 2.29 2.44 2.26
60 1.81 1.36 1.89 1.37

Table 4.2: Cartesian translation error means and standard deviation values between actual
rotation and point-to-point ICP algorithm for 14 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Translation Standard Translation Standard
Angle(◦) Error(cm) Deviation (cm) Error(cm) Deviation(cm)

1 18.1 11.41 15.6 8.19
5 15.5 7.89 15.6 7.63
10 15.5 8.84 16.6 8.01
20 17.6 8.81 14.1 8.39
40 15.3 9.01 14.9 8.64
60 15.0 7.09 16.2 7.44
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Table 4.3: Mean-squared alignment error means and standard deviations between registered
point sets for point-to-point ICP algorithm for 14 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation MSE Standard MSE Standard
Angle(◦) (cm) Deviation (cm) (cm) Deviation(cm)

1 12.3 6.82 11.6 5.67
5 11.5 5.68 11.0 5.48
10 11.0 5.49 11.9 5.41
20 12.5 6.27 11.5 5.63
40 11.5 5.65 11.5 5.65
60 11.0 5.50 11.0 5.48

Table 4.4: Eigen-axis angular error means and standard deviations values between Actual
rotation and point-to-point ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Mean Standard Mean Standard
Angle(◦) Error (◦) Deviation (◦) Error (◦) Deviation(◦)

1 1.53 1.19 1.72 1.18
5 1.51 1.09 1.71 1.30
10 1.28 0.94 1.71 1.51
20 1.83 1.41 1.79 1.21
40 1.64 1.29 1.79 1.14
60 1.74 1.23 1.46 1.57

Table 4.5: Cartesian translation error means and standard deviation values between actual
rotation and point-to-point ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Translation Standard Translation Standard
Angle(◦) Error(cm) Deviation (cm) Error(cm) Deviation(cm)

1 15.9 9.14 14.8 8.34
5 14.1 7.47 15.2 8.31
10 15.8 9.60 14.8 8.17
20 15.2 6.75 13.9 6.88
40 15.3 8.34 15.9 7.83
60 14.8 7.34 14.8 7.58
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Table 4.6: Mean-squared alignment error means and standard deviations between registered
point sets for point-to-point ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation MSE Standard MSE Standard
Angle(◦) (cm) Deviation (cm) (cm) Deviation(cm)

1 9.8 1.89 9.6 1.68
5 9.8 1.45 9.6 1.76
10 9.7 1.35 9.7 1.88
20 9.8 1.84 9.7 1.70
40 9.8 2.02 9.6 1.26
60 9.8 1.53 9.8 1.90

All the previous data was processed and condensed down further into four smaller

tables which were more easily discernable (Table 4.7 to Table 4.10) for the rotational and

translational error values. For single-axis rotation, angular errors fell between 1.28◦ and

1.83◦ for noiseless and 1.81◦ to 2.31◦ for noisy data; whereas for three-axis rotation, the

angular error fell between 1.46◦ and 1.79◦ for noiseless and 1.85◦ to 2.54◦ for noisy data.

Similarly, the translational errors fell between 14.1 to 15.9 cm for noiseless and 15.0 to 18.1

cm for noisy data; whereas, for three-axis rotation the translational errors were 13.9 to 15.2

cm for noiseless and 14.1 to 16.6 cm for noisy data.

Rotational results suggest that for all rotations the estimated rotation was around 2◦,

which although quite accurate is too large for RVD operations that require precise pose

estimates. The translational results were in the 10-20 cm range, and these were compared

to a satellite that was 6 m x 4 m x 2 m. The translational error calculated was a root-

sum-squared (RSS) error where each term in the x, y, and z axis were squared, summed

together, and the square root taken. The translation error then was between 3-10% of the

actual size of the spacecraft depending on the dimension to which the comparison is made.

Because the centroids are not the same in the two point-clouds, the relative error due to this

misalignment has been bounded at 3-10% the object size and can now be modeled. Another

question posed as a result of this analysis is whether or not that 3-10% relative error would

remain constant as the object decreased or increased in size. Also, as long as there is a

40-60% overlap among the point clouds and for rotations up to 60◦ all the calculated values
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remain constant. The MSE values were used as the stopping criterion for the ICP algorithm.

The MSE value represented a RSS values between the points in the first point cloud and the

points in the second point cloud. A metaphor for this description would be taking two pieces

of tin foil and crinkling them up separately, and folding them up into the shape of some

object. By crinkling up the tin foil separately, there are different places where the tin foil

peaks like the points of a point-cloud. Then, say you match up the two pieces of tin foil and

perform point-to-point distance calculations between matched points on the tin-foil, sum

all those distances together, take the square root, and this would essentially be the MSE

value calculated by the ICP algorithm. For the point-to-point simulations, the MSE were

between 9-12 cm being about 3-5% of the spacecraft’s relative size, which directly relates

to how well the point clouds over lie one another. Couple all the values from rotational

error, translational error, and MSE together the point-to-point ICP variant was moderately

accurate when it came to estimating pose, but was not accurate enough for rendezvous and

dock proximity operations; however, the large range errors did not significantly increase

these errors using the point-point method.

A special simulation was performed that took two point-clouds and sub-sampled the

data between 0%-90% of the total number of points. Then, a single simulation was per-

formed for a 20◦ rotation about the z-axis. This experiment showed that as the number

of points increased from 0%-90%, angular error only saw a 1 decrease for a 100% increase

in the algorithm time; however, this data was obtained using only one trial which might

explain the trough at 50% points used (see fig. 4.2). To more accurately understand this

relationship, it is recommended that at least 50 trials be used to smooth out the angular

error data. The important take home message from this experiment though is that num-

ber of points does drastically affect computational time; whereas, rotational error does not

increase as the number of points used decreases. Also, one may conclude that if a range

image is gathered with a small resolution with enough overlap between the two-point sets,

pose estimation can be accurately done with the ICP algorithm.
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Fig. 4.2: Angular error and algorithm time between actual rotation and ICP calculated
rotation for a z-axis rotation as number of points increased.

4.3 Point-to-Plane ICP Algorithm Results

As mentioned above, the purpose of this project was to determine a suitable registration

algorithm that would accurately, quickly, and robustly find the position and orientation

from a pair of range images. The point-plane variation of the ICP algorithm described

by Rusinkiewicz [62] was evaluated within this thesis to reduce the mean-squared error

during each iteration and speed up computations. In his dissertation, it was shown that for

each iteration, the point-plane variant MSE converged much faster than the point-to-point

variant that was used before. However, the dissertation never discussed how accurate the

algorithm could calculate the registration parameters and how computational times would

suffer without an initial registration parameter given. For this thesis, the point-to-plane

ICP algorithm simulations were performed on simulated data that had 0 cm range error,

2 cm range error, and 14 cm range error taken at a distance of approximately 1 km as

before. Simulation results were obtained from the simulated range images of a spacecraft

going through varying angular rotations such as: 1◦, 5◦, 10◦, 20◦, 40◦, and 60◦ about one
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or three orthogonal rotational axes at the same time. Thus, the experiment selects two

separate 3D point clouds randomly from a set of range images that were collected with

LadarSIM. At this point, the second point cloud was rotated by one of the angles listed

earlier either about one axis, or about all three axes using the same rotation angle about all

the axes. The point-to-plane ICP algorithm was then used to calculate the registration for

comparison using only 1% of the possible data points ranging between 1000 points and 3000

points. For this set of simulations, instead of using only 0 cm and 14 cm noise range error

data, a third set of data was collected at 2 cm noise range error all using the point-to-plane

error metric (see Tables 4.7-4.15).

Table 4.7: Eigen-axis angular error means and standard deviations values between actual
rotation and point-to-plane ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Mean Standard Mean Standard
Angle(◦) Error (◦) Deviation (◦) Error (◦) Deviation(◦)

1 0.031 0.017 0.052 0.033
5 0.043 0.024 0.044 0.025
10 0.047 0.033 0.054 0.022
20 0.057 0.055 0.062 0.029
40 0.074 0.045 0.075 0.024
60 0.079 0.050 0.220 0.270

Table 4.8: Cartesian translation error means and standard deviation values between actual
rotation and point-to-plane ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Translation Standard Translation Standard
Angle(◦) Error(cm) Deviation (cm) Error(cm) Deviation(cm)

1 2.1 0.72 2.1 0.67
5 2.1 0.72 2.1 0.84
10 2.1 0.72 1.8 0.70
20 2.0 0.60 1.9 0.83
40 2.1 0.61 3.0 1.81
60 2.0 0.68 7.8 8.05
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Table 4.9: Mean-squared alignment error means and standard deviations between registered
point sets for point-to-plane ICP algorithm for 0 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation MSE Standard MSE Standard
Angle(◦) (cm) Deviation (cm) (cm) Deviation(cm)

1 0.33 0.22 0.45 0.27
5 0.34 0.20 0.38 0.23
10 0.35 0.18 0.47 0.23
20 0.47 0.25 0.47 0.25
40 0.48 0.24 0.79 0.35
60 0.45 0.21 1.37 2.25

Table 4.10: Eigen-axis angular error means and standard deviations values between actual
rotation and point-to-plane ICP algorithm for 2 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Mean Standard Mean Standard
Angle(◦) Error (◦) Deviation (◦) Error (◦) Deviation(◦)

1 0.053 0.024 0.070 0.053
5 0.051 0.026 0.065 0.053
10 0.056 0.034 0.095 0.062
20 0.055 0.038 0.186 0.120
40 0.079 0.056 0.490 0.697
60 0.129 0.084 0.654 0.715

Table 4.11: Cartesian translation error means and standard deviation values between actual
rotation and point-to-plane ICP algorithm for 2 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Translation Standard Translation Standard
Angle(◦) Error(cm) Deviation (cm) Error(cm) Deviation(cm)

1 2.1 0.72 2.1 0.67
5 2.1 0.72 2.1 0.84
10 2.1 0.72 1.8 0.70
20 2.0 0.60 1.9 0.83
40 2.1 0.61 3.0 1.81
60 2.0 0.68 7.8 8.05
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Table 4.12: Mean-squared alignment error means and standard deviations between regis-
tered point sets for point-to-plane ICP algorithm for 2 cm RMS range error point cloud
data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation MSE Standard MSE Standard
Angle(◦) (cm) Deviation (cm) (cm) Deviation(cm)

1 0.33 0.22 0.45 0.27
5 0.34 0.20 0.38 0.23
10 0.35 0.18 0.47 0.23
20 0.47 0.25 0.47 0.25
40 0.48 0.24 0.79 0.35
60 0.45 0.21 1.37 2.25

Table 4.13: Eigen-axis angular error means and standard deviations values between actual
rotation and point-to-plane ICP algorithm for 14 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Mean Standard Mean Standard
Angle(◦) Error (◦) Deviation (◦) Error (◦) Deviation(◦)

1 0.39 0.26 0.35 2.21
5 0.44 0.25 0.37 1.36
10 0.41 0.28 0.44 1.51
20 0.38 0.26 0.39 2.23
40 0.43 0.25 0.42 2.26
60 0.49 0.30 0.89 1.37

Table 4.14: Cartesian translation error means and standard deviation values between actual
rotation and point-to-plane ICP algorithm for 14 cm RMS range error point cloud data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation Translation Standard Translation Standard
Angle(◦) Error(cm) Deviation (cm) Error(cm) Deviation(cm)

1 2.23 1.08 2.25 1.12
5 2.29 1.31 2.28 1.47
10 2.78 1.80 2.79 1.78
20 2.73 1.49 2.83 2.87
40 2.30 1.74 5.07 7.34
60 2.84 2.20 7.05 9.63
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Table 4.15: Mean-squared alignment error means and standard deviations between regis-
tered point sets for point-to-plane ICP algorithm for 14 cm RMS range error point cloud
data.

True Z-Axis Rotation ZYX-Axis Rotation
Rotation MSE Standard MSE Standard
Angle(◦) (cm) Deviation (cm) (cm) Deviation(cm)

1 7.1 2.20 7.1 2.25
5 7.1 2.19 7.2 2.24
10 6.9 2.17 7.1 2.26
20 7.3 2.22 7.2 2.21
40 7.2 2.24 7.2 2.18
60 6.9 2.19 7.4 2.23

The data from Tables 4.7 to 4.15 was processed as before in order to determine how well

the algorithm performed. For the single-axis rotation and three-axis rotation, angular error

fell between 0.031◦ and 0.890◦ for 0, 2, and 14 cm RMS range error point-clouds. Similarly,

the translational errors fell between 2.00 to 8.05 cm for 0,2, and 14 cm RMS range error

data sets for the single- and three-axis rotational cases.

Here for the point-to-plane experiments the rotational error have values that are all

nearly below 1◦, which are much more accurate than the best point-to-point rotational errors

seen. Notice that the only rotation angle that had larger errors then most other cases was

the 60◦ case. This happens because the ICP algorithm requires approximately 60% overlap

between point clouds, and when the point clouds are extremely similar, like those obtained

through simulation, that point ends up near a rotation angle of 60◦. Translational errors

decreased to the point where they are 1-5% the size of the satellite implying that the point-

plane variation of the ICP algorithm is able to deal with the centroid misalignment better.

The MSE error values for the point-to-plane variation experiments were down around 0.50

cm, which are an order of magnitude lower than the previous point-point experiments. This

can be best explained by the previous tin-foil explanation. Instead of using the peak points

on the second piece of tin-foil, meshes or planes can be constructed from those peaks using

the peaks as vertices. Then the points in the first piece of tin-foil match to meshes instead

of points that might contain significant amounts of noise. Therefore, the MSE value can be

reduced ten-fold by being able to match a set of points over a meshed object and not a cloud
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of points per se. Taking a look at Tables 4.16-4.19, one can conclude that the point-to-plane

ICP variant was extremely accurate when it came to pose estimation even when 2 or 14 cm

range error was present.

Table 4.16: Single-axis rotational errors for point-to-point ICP Algorithm.
Range Error (RMS) No Noise 2 cm 14 cm
single-axis Rotation (◦) (◦) (◦)

Maximum Mean Angular Error 0.079 0.129 0.494
Minimum Mean Angular Error 0.031 0.024 0.383
Average Mean Angular Error 0.055 0.070 0.423

Average 1σ - Standard Deviation 0.037 0.044 0.267

Table 4.17: Single-axis translational errors for point-to-plane ICP Algorithm.
Range Error (RMS) No Noise 2 cm 14 cm
single-axis Rotation (cm) (cm) (cm)

Maximum Mean Translational Error 2.10 2.10 2.84
Minimum Mean Translational Error 2.00 2.00 2.23
Average Mean Translational Error 2.09 2.09 2.53
Average 1σ - Standard Deviation 0.67 0.67 1.60

Table 4.18: Three-axis rotational errors for point-to-plane ICP Algorithm.
Range Error (RMS) No Noise 2 cm 14 cm
Three-axis Rotation (◦) (◦) (◦)

Maximum Mean Angular Error 0.220 0.654 0.890
Minimum Mean Angular Error 0.044 0.065 0.349
Average Mean Angular Error 0.054 0.260 0.477

Average 1σ - Standard Deviation 0.067 0.283 1.824

Table 4.19: Three-axis translational errors for point-to-plane ICP Algorithm.
Range Error (RMS) No Noise 2 cm 14 cm
Three-Axis Rotation (cm) (cm) (cm)

Maximum Mean Translational Error 7.76 7.76 8.05
Minimum Mean Translational Error 1.76 1.76 2.25
Average Mean Translational Error 3.09 3.09 3.71
Average σ - Standard Deviation 2.15 2.15 4.01
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4.4 Results Summary

Finally, after running all the experimental cases through the version of the ICP algo-

rithm written in MATLAB based on all the previous literature, the ICP version that was

coded using a previous students work [73] and the Rusinkiewicz ICP code from his disserta-

tion work. Using the newly formed MATLAB simulation, several different figures were put

together showing two simulated cases and how the pose was correctly calculated for the two

point clouds. In each case, the figure shows the two point clouds in their initial orientation

and each in their final orientation after running the ICP algorithm through several itera-

tions. Although the data gathered from the experiments showed accurate pose estimation,

being able to see that the point-plane variation of the algorithm works helps drive home

the point at least one more time (See fig. 4.3).

The final analysis that was performed for this thesis was to summarize and compare

the point-to-point variant and the point-to-plane variant. Table 4.20 summarizes all the

data from tables 4.1-4.19. In the end, the point-to plane variant of the ICP algorithm is an

order of magnitude better at estimating both rotational and translational pose parameters.

Whether the rigid body motion was about one axis or three axes, as well as the rotational

magnitude, both methods show considerable robustness to estimating pose parameters.

Finally, one set of results that was not analyzed in depth was the considerable problem

with having to brute force through the initialization process. When Monte Carlo simulations

were being performed, having to do 50 experiments with 312 initial guess, plus the number

of iterations per initial guess begin to add up and required days to perform. On orbit,

this type of algorithm computation time would be diastrous and completely unreasonable

for real-time RVD. Overall, the ICP algorithm has great potential to be able as a RVD

pose estimation algorithm given only point-clouds images and nothing else, but will require

further investigation regarding initialization methods.
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Table 4.20: Final comparison of point-point and point-plane ICP algorithm for single-axis
and three-axis cases.

Point-Plane Point-Point
Single-axis Rotation

0 cm (Rotational Error) 0.055◦ ± 0.037◦ 1.59◦ ± 1.19◦

0 cm (Translation Error) 2.09 cm ± 0.67 cm 15.2 cm ± 8.1 cm
14 cm (Rotational Error) 0.423◦ ± 0.267◦ 2.02◦ ± 1.60◦

14 cm (Translational Error) 2.53 cm ± 1.60 cm 16.1 cm ± 8.8 cm

Three-axis Rotation
0 cm (Rotational Error) 0.054◦ ± 0.067◦ 1.69◦ ± 1.32◦

0 cm (Translation Error) 3.09 cm ± 2.15 cm 14.9 cm ± 7.9 cm
14 cm (Rotational Error) 0.477◦ ± 1.82◦ 2.21◦ ± 1.82◦

14 cm (Translational Error) 3.71 cm ± 4.01 cm 15.5 cm ± 8.1 cm
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Fig. 4.3: Two separate point clouds prepared for ICP Algorithm (a) initial orientation 2 cm
range error, (b) final orientation 2 cm range error range error, (c) initial orientation 14 cm
range error, and (d) final orientation 14 cm range error.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the three goals that were expected to be completed were:

• determine the accuracy the ICP algorithm when determining relative position and

attitude of a spacecraft from ladar data, and

• determination of requirements needed to build a real-time relative navigation sensor

(future work).

Experimental testing was been done using ladar-based navigation methods to locate

the position and orientation of a nearby spacecraft in simulation. Position and attitude

were determined by comparing the sequentially acquired point-clouds generated from solid

model of the spacecraft with each other. The generic point-cloud matching algorithm known

as the Iterative Closest Point (ICP) method resulted in modest accuracy for the point-to-

point variant, but exhibited much better accuracy for the point-to-plane variation (See

Table 4.20).

The nominal requirements for most RVD systems and projects listed in the literature

mentioned are less than 1◦ in orientation and less than 1 m in translational error for au-

tonomous RVD. Results show that the MSE, angular error, mean, and standard deviations

for position and orientation registration between the ranges of 1− 60◦ did not vary (< 2.5◦

- point-to-point and < 0.5◦ - point-to-plane). This implied that pose accuracy of the ICP

algorithm was independent of orientation for a symmetric spacecraft. The principal algo-

rithmic results to date have shown a major success in implementing the point-plane and

point-point variants of the ICP algorithm with single iteration computation times less than

1 sec comparable to iteration times shown by Rusinkiewicz in his disseration [62], as well
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as other papers in the literature, but still with the problem of brute force initialization in

this thesis.

Ladar imaging systems can be used as relative 3D navigation sensors for robotic space-

craft. These sensors provide extremely accurate, lighting independent relative position

maps of their targets. They also have a major role in spacecraft identification for situa-

tional awareness missions, as demonstrated by the current AFRL XSS-11 mission. However,

this study has pointed out that a more efficient processing algorithm would be needed for

real-time applications. Flying spot ladar systems with tight scan range control of the type

flown on missions like XSS-11 [23] are expensive and difficult to gain access to.

5.2 Future Work

The principal analysis work for this project was to thoroughly study the algorithms

that determine position and orientation of the target spacecraft from 3D ladar data. Specific

problems, which need to be addressed, include improving the initial orientation estimate,

improved point-cloud matching methods, and integrating non-point cloud methods.

5.2.1 Future Work on Initialization

This thesis has identified several problems needing to be overcome before a ladar relative

navigation system could be completed. First, the computational effort required for accurate

navigation solutions was excessive; which leads us to the conclusion that it is “too slow”

for real-time implementation in a navigation situation. The algorithms, in their current

implementation, simply take too much time for use in real-time work. This is primarily

because in the initialization of the algorithm, where the apriori knowledge is non-existent

an initial orientation was picked from 312 different possibilities. This has been acceptable

so far, since the focus of the research has been on demonstrating that an accurate solution

could be found.

Therefore, new innovative algorithms must be added to the current work so that com-

putational requirements can be extensively reduced to the level where they can run in

real-time, or at approximately 2 to 5 Hz. Based on current simulation work, the primary
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delay comes in the initialization of the relative location of the target. Currently, it takes

several minutes for initialization on a standard PC. Future initialization research is recom-

mended to attack this problem in several ways such as: a correlation method such as MACH

filtering, spin filters, neural networks, geometry exploitation (feature extraction), etc. [74].

5.2.2 Future Work on Alternative Methods

One idea would be to construct an algorithm that exploits the geometry of the 3D

point cloud, such that, a reasonable guess for a initial alignment can be obtained and

re-run all experiments described above on a truth model. Secondly, since the point-to-

point ICP variant was robust under all registrations and it makes sense that the point-to-

plane variant will behave similarly. This may lead to quaternion estimates with sub-degree

accuracy and computational times similar to those in Rusinkiewicz [30], Simon [9], and

ZinBer [17] and others. Finally, an extended Kalman filter will be implemented for real-

time hardware implementation with the Canesta ladar and experiments because it will

provide the initial alignment on all 3-D registrations following the first one; as well as,

providing both spacecrafts position, rates, and velocities continuously between all sample

times and registration updates.

One exceptionally other promising method is the direct integration of high-resolution

2D Electro-Optic (e.g., CMOS imager) data directly with the coarser 3D ladar data. SDL/USU

and CAIL has developed and patented a combined ladar/Electro-Optic (EO) TEXEL sensor

that combines the advantages of both an EO camera and a ladar sensor (US Patent Number

6,664,529, held by SDL). This camera provides real-time spatially correlated ladar/EO data

sets. The correlated TEXEL ladar/EO data may be able to provide higher accuracy mea-

surements for orientation than either method alone. The 3D ladar data would then be used

for orientation measurements by using Iterative Closest Point (ICP) algorithms to match

the ladar point-cloud to a known solid model of the spacecraft. Simultaneously, real-time 2D

image matching algorithms are used and the higher resolution (100 to 1) EO camera data

is used to align relative displacement between ladar shots, improving the accuracy of the

point cloud image. Once a position and orientation estimate is made from the ladar data,
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an extended Kalman filter (EKF) based on the 12th order nonlinear dynamics described by

Hills and Eulers equations [4] could be used to propagate and update the dynamic state of

the spacecraft. Note that the output of this filter is used to seed the initial orientation used

by point-cloud analysis, reducing the computational times required.
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Appendix A

Singular Value Decomposition (SVD) Algorithm Proof

In the text book written by Moon and Stirling [71], a proof behind how the SVD can be

used to solve least squares problems was presented. Because the translational component

has been removed from the point clouds R1 and R2, the pose estimation problem can be

considered the least-squares solution of the generalized equation Ax = b where A would be

the rotation matrix for our case. Now the problem becomes minimizing the norm of the

error, ‖Ax− b‖. Now, substituting in the SVD for A

min ‖Ax− b‖ = min ‖UΣV Hx− b‖ = min ‖ΣV Tx− UHb‖. (A.1)

The latter equality follows from the fact that U is unitary, and multiplication by a

unitary matrix does not change the length of a vector. Let v = V Hv and b̂ = UHb. Then

the least squares problem can be written as min ‖Σx−b̂‖. Thus, the solution to the problem

is

v = Σ†b̂. (A.2)

The solution for x̂ comes from working the problem backwards:

V T hatx = Σ†UH b̂, (A.3)

x̂ = V Σ†UH b̂. (A.4)

The matrix V Σ†UH is the pseudoinverse of A

A† = V Σ†UH . (A.5)
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The final step would be to incorporate the identity matrix which takes care of the

degenerate case and dropping the singular value matrix because it just scales the rotation.

A† = V SUH (A.6)

Note: All subscripts are subject to variable changes provided in the thesis because

subscripts used for the following derivation come directly from the research text or paper!
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Appendix B

Eigen-Value Decomposition (SVD) Algorithm Proof

Horn [33] has a proof for why the eigenvector associated with the maximum eigenvalue

ends up being the optimal rotation. To find the rotation that minimizes the sum of squares of

the errors, the quaternion q̇ that maximizes q̇Qq̇ subject to the constraint that q̇q̇ = 1 where

Q was the symmetric matrix constructed from the cross-covariance matrix. The symmetric

4x4 matrix Q will have four real eigenvalues, say, λ1, λ2, , λ3, and λ4. A corresponding set

of orthogonal unit eigenvectors ė1, ė2, ė3, and ė4 can be constructed such that

Qėi = λiėi for i = 1, 2, 3, and 4. (B.1)

The eigenvectors span the 4D space, so an arbitrary quaternion q̇ can be written as the

linear combination in the form

q̇ = α1ė1 + α2ė2 + α3ė3 + α4ė4. (B.2)

Since the eigenvectors are orthogonal

q̇ · q̇ = α2
1 + α2

2 + α2
3 + α2

4. (B.3)

Knowing that this has to equal one, and since q̇ is a unit quaternion the following

happens and since ė1, ė2, ė3, and ė4 are eigenvectors of N the conclusion is the second

equation.

Qq̇ = α1λ1ė1 + α2λ2ė2 + α3λ3ė3 + α4λ4ė4 (B.4)
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q̇T Qq̇ = q̇ · (Qq̇) = α2
1λ1 + α2

2λ2 + α2
3λ3 + α2

4λ4 (B.5)

Now suppose that we have arranged the eigenvalues in the order so that

λ1 ≥ λ2 ≥ λ3 ≥ λ4. (B.6)

Then we see that

q̇T Qq̇ ≤ α2
1λ1 + α2

2λ2 + α2
3λ3 + α2

4λ4 < λ1, (B.7)

so that the quadratic from cannot become larger than the most positive eigenvalue. Also,

the maximum is attained when we choose α1 = 1 and α2 = α3 = α4 = 0, that is, q̇ = ė1.

Thus the conclusion is that the unit eigenvector associated to the most positive eigenvalue

maximizes the quadratic form q̇T Qq̇,

q̇ = ė1. (B.8)

Note: All subscripts are subject to variable changes provided in the thesis because

subscripts used for the following derivation come directly from the research text or paper!
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Appendix C

Convergence Theorem of ICP Algorithm

Besl and McKay [40] have shown the convergence of the ICP algorithm. The key ideas

were that: 1) least squares registration generically reduces the average distance between

correspondences during each iteration, and 2) the closest point determination generically

reduces teh distance for each point individually.

Theorem: The iterative closest point algorithm always converges monotonically to a

local minimum with respect to the mean-square distance objective function.

Proof: Given Pk = ~pik = ~qk(Po) and X, compute the set of closest points Yk = ~yik as

prescribed above given the internal geometric representation of X. The mean-squared error

ek of the correspondence is given by

ek =
1
N

N∑

i=1

‖~yik − ~yik‖2 . (C.1)

Then the Q operator was applied to get ~qk and dk,

dk =
1
N

N∑

i=1

‖~yik −R(~qkR)~pi0 − ~qkT ‖2 . (C.2)

It is always the case that dk ≤ ek. Suppose that dk > ek. If this were so, then the

identity transformation on the point set would yield a smaller mean square error than the

least squares registration, which cannot possibly be the case. Next, let the least squares

registration ~qk be applied to the point set P0, yielding the point set Pk+1. If the previous

correspondence to the set of points Yk were maintained, the the mean square error is still

dk as follows:

dk =
1
N

N∑

i=1

‖~yik − ~pi,k+1‖2 . (C.3)
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However, during the application of the subsequent closest point calculation, a new

matched point set Yk+1 would be obtained. Therefore, ‖~yi,k+1 − ~pi,k+1‖ ≤ ‖~yik − ~pi,k+1‖
for each i =1,Np because the point ~yik was the closest point prior to transformation by ~qk.

If ~yi,k+1 were further from ~pi,k+1 than ~yik, then this would directly contradict the closest

point operation being performed. Therefore, the mean square errors ek and dk must obey

the following inequality:

0 ≤ dk+1 ≤ ek+1 ≤ dk ≤ ek, (C.4)

for all k.

After all that, the lower bound occurs since the mean-squared errors cannot be nega-

tive. Because the mean-squared error sequence would be non-decreasing and bounded, the

algorithm as stated above must converge monotonically to a minimum value.
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