Utah State University
DigitalCommons@USU

Presentations

Materials Physics

Fall 11-16-2011

Exploring the Universe... One Electron at a Time

JR Dennison Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Physics Commons

Recommended Citation

Dennison, JR, "Exploring the Universe... One Electron at a Time" (2011). Physics Colloquium, Utah State University. *Presentations*. Paper 70. https://digitalcommons.usu.edu/mp_presentations/70

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Exploring the Universe... One Electron at a Time

J.R. Dennison

Materials Physics Group Physics Department, Utah State University

Supported by the NASA Space Environments & Effects Program and various other sources

Exploring the Universe with IR Space Telescopes

The James Webb Space Telescope will be a giant leap forward in our guest to understand the Universe and our origins. The Webb will examine every phase of cosmic history; from the first luminous glows after the Big Bang to the formation of galaxies, stars, and planets to the evolution of our own solar system. The science goals for the Webb can be grouped into four themes:

IR Space Telescopes

- SDL's Wide-field Infrared Survey Explorer
- Herschel Space Observatory
- Spitzer Space Telescope
- James Webb Space Telescope

The End of the Dark Ages: First Light and Reionization seeks to identify the first bright objects that formed in the early Universe, and follow the ionization history.

Assembly of Galaxies will determine how galaxies and dark matter, including gas, stars, metals, physical structures (like spiral arms) and active nuclei evolved to the present day.

The Birth of Stars and Protoplanetary Systems focuses on the birth and early development of stars and the formation of planets.

Planetary Systems and the Origins of Life studies the physical and chemical properties of solar systems (including our own) and where the building blocks of life may be present.

What Is Different About JWST?

Extremely Faint Objects Large sensitive optics

Large Open Structure Size and weight constraints Minimal shielding Large fluxes

Observations in IR Penetration through intergalactic dust clouds Optimized for (0.6 –28 um)

Very Low Temperature Passive cooling Virtually all insulators go to infinite resistance—perfect charge integrators

Large Sunshield

Large areas Constant eclipse with no photoemission

Stable, Low Light Environment Orbit at L2 Large solar activity variations In and out of magnetotail

Long Mission Lifetime (10-20 yr) No repairs Very long integration times

Complex, Sensitive Hardware

Large sensitive optics Complex, cold electronics

Paradigm Shift in Design Methods To big for conventional ground tests

Images from JWST

NASA's concern for spacecraft charging is caused by plasma environment electron, ion, and photon-induced currents. Charging can cause performance degradation or complete failure.

Majority of all spacecraft failures and anomalies due to the space environment result from plasmainduced charging

- Single event interrupts of electronics
- Arching
- Sputtering
- Enhanced contamination
- Shifts in spacecraft potentials
- Current losses

Solar panel damaged by localized charging event

National Aeronautics and Space Administration Lewis Research Center

A Simplified Approach to Space Environment Interactions Modeling...

<u>JWST</u>

Sunshield Space Passive Cooling Light Flux Charge Flux Low Flux Mission Lifetime (~20 yr)

<u>USU Lab</u>

Small Test Samples (~1 cm²) UHV Chamber (~10⁻⁹ Torr) Cryo Cooling (>30 K) No Light (dark room & chamber) Monoenergetic e-Beam (20eV to 30keV) Low Flux (<0.05 nA/cm² to >500 nA/cm²) Fountain of Youth and Pot of Au → Accelerated Testing

Materials Physics Group Measurement Capabilities

Electron Emission Pho Ion Yield Lum

Photoyield Luminescence

Conductivity Electrostatic Discharge

Radiation Induced Cond. Radiation Damage

Dependence on: Press., Temp., Charge, E-field, Dose, Dose Rate

USU Arc/Glow Test Configuration

Sample cooled with $I-N_2$ to 100-135 K. Chamber walls at ambient.

Materials Physics group

Diversity of Emission Phenomena in Time Domain

3

Glow Increases with Increasing Flux, Energy and Power

• Surface Glow, Edge Glow, and Arcing Frequency are all found to increase with increasing incident electron flux and energy.

How full is the bucket?

Problem complicated by:
The incident electron and ion

- The incident electron and ion ୩୦୦୦୫୪୫୧୫ ୧୪ ନାମ୍ୟାୟୁ-bucket.
- Charge interactions
- Etestron distribudation)
 Omission detrumines and some set of the buggestation of the buggestations.
- Conductivity of insulating materials determines: Conductors—Grates
 Seventorsderctors^{III}—Sieves
 Leaky Gristilators—Leaky buckets
 Good insulators wiGoods bibckets
 Extreme insulators activity of insulators
 - Time scale for charge transport and dissipation.

Electron Yield

Depth electrons penetrate is energy dependent

Conductivity determines deposited charge layer movement

It's all about where the electrons are--n_e(z)

Three Critical Processes in Charging

It's all about where the electrons are--n_e(z)

Electron Beam

	SiO ₂ Coating
	Conducting Mirror
-	SiO ₂ Substrate

Charging Scenarios

- Low Energy
 - Grounded
 - Ungrounded
- High Energy
 - Grounded
 - Ungrounded

1 cm Mirror sample

Low Energy - Grounded

$$V_{s}(t) = V_{o} \left[1 - e^{-t\sigma_{DC}}/\epsilon_{o}\epsilon_{r} \right]$$
$$V_{o} = \frac{\bar{J}_{0} [1 - Y(E_{b})]}{\sigma_{DC}} R(E_{b}) \frac{[D - R(E_{b})]}{D}$$

Low Energy - Ungrounded

High Energy - Grounded

High Energy - Ungrounded

Ungrounded POM Mirror Test Results

Example of POM Arc-Video

Frame before

arc

Frame after arc

Frame of

Difference between frame before and frame of arc

Complete set of dynamic transport equations

$$J = q_e n_e(z,t) \mu_e F(z,t) + q_e D \frac{dn_{tot}(z,t)}{dz}$$
 {Sum of electron drift and diffusion current densities J_i }

$$\frac{\partial}{\partial z} F(z,t) = q_e n_{tot} / \epsilon_0 \epsilon_r$$
 {1D Gauss's Law}

$$\frac{\partial n_{tot}(z,t)}{\partial t} - \mu_e \frac{\partial}{\partial z} [n_e(z,t)F(z,t)] - q_e D \frac{\partial^2 n_e(z,t)}{\partial z^2} = N_{ex} - \alpha_{er} n_e(z,t) n_{tot}(z,t) + \alpha_{et} n_e(t) [N_t(z) - n_t(z,t)]$$

{1D Continuity equation with drift, diffusion and source terms}

$$\frac{dn_h(z,t)}{dt} = N_{ex} - \alpha_{er} n_e(z,t)n_h(z,t)$$

{1D hole continuity equation with Generation and recombination terms}

$$\frac{dn_t(z,\varepsilon,t)}{dt} = \alpha_{et} n_e(z,t) [N_t(z,\varepsilon) - n_t(z,\varepsilon,t)] - \alpha_{te} N_e exp\left[-\frac{\varepsilon}{kT}\right] n_t(z,\varepsilon,t)$$

{1D trapping continuity equation for electrons}

A quantum mechanical model

of the spatial and energy distribution of the electron states

Band Theory of (Crystalline) Conductors, Insulators and Semiconductors

Conductor Partially filled bands

Insulator Completely filled bands Semiconductor Insulators at finite T

Disorder introduces localized states

Momentum q

Conductivity in Highly Disordered Insulation Materials

$$\sigma(t) = \sigma_{DC} + \sigma_{Polarisation}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t)$$
Polarization
$$\sigma_{Pol}^{o} e^{-t/\tau_{Pol}}$$

Drift and hopping conductivity

Dispersive transport

RIC and Luminescence

Beam off

Beam on

Luminescence: Excitation and Relaxation

Multi-Photon Luminescence

Multi-Photon Relaxation

Luminescence: Temperature Dependence

-110 C

-4 C

-80 C

SLR Spectral Radiance vs Temperature

Jniversity

Red decreases with increasing T

Temperature Dependent UV-Vis Spectra

UtahState

Temperature Model for Multiphonon Luminescence

High Temperature Model

	Color of Electron-Induced Luminescence							
	Gaussian Energy State							
nperature (K)		Blue	Red					
	0	→0	→max					
	Low	in between	in between					
	High	\rightarrow half max	\rightarrow half max					
Ter								

Effective Fermi Level

Fermi Energy

- Identify specific defect mechanisms
- Quantify luminescence intensities, peak positions, and peak shifts with T
- Study initial time dependence as traps fill to Efeff
- Make lower T (<30 K) and higher (<400 K) T measurements

Materials Physics Group Measurement Capabilities

Electron EmissionPhotoyieldOIon YieldLuminescenceE

Conductivity Electrostatic Discharge

Radiation Induced Cond. Radiation Damage

Dependence on: Press., Temp., Charge, E-field, Dose, Dose Rate

Just a drop in the bucket...

Complete	set	of	dynamic				
transport equations							
$J = q_e n_e(z,t) \mu_e$	$_{2}F(z,t) +$	$q_e D \frac{dn_{to}}{dt}$	$\frac{dz}{dz}$				
$\frac{\partial}{\partial z}F(z,t) = q_e n$	$\epsilon_{tot}/\epsilon_0\epsilon_r$						
$\frac{\partial n_{tot}(z,t)}{\partial t} - \mu_e \frac{\partial}{\partial z} \left[n_e \right]$	z,t)F(z,t)]	$-q_e D \frac{\partial^2 n_e}{\partial x}$	$\frac{N_{ex}(z,t)}{z^2} = N_{ex} -$				
$\alpha_{er} n_e(z,t) n_{tot}(z,t)$	$) + \alpha_{et} n_e(t)$	$[N_t(z) - z]$	$n_t(z,t)$]				
$\frac{dn_h(z,t)}{dt} = N_{ex} - $	$\alpha_{er} n_e(z)$	$(t)n_h(z,$	t)				
$\frac{dn_t(\mathbf{z},\boldsymbol{\varepsilon},t)}{dt} = \alpha_{et} n_e(\mathbf{z},t)$	$z, t)[N_t(z, \varepsilon)]$	$)-n_t(z,z)$	ε, t)] —				
$\alpha_{te} N_e exp\left[-\frac{\varepsilon}{kT}\right] n_t$	$t(\mathbf{z}, \varepsilon, t)$						

<u>A quantum mechanical model</u> of the spatial and energy distribution of the electron states

USU Physics Department Colloquium

November 15, 2011

