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ABSTRACT 

Counting the individuals in a population before and after an annual period of environmental stress allows 
the proportions of the initial population surviving the period to be computed. A series of such observations 
over n annual periods gives a sequence s1, s2, ... , sn- A statistical model is formulated from axioms 
describing the survival process, and it is concluded that these observed values may usefully be regarded as 
realizations of a random variable that arises from the normal generated distribution (n.g.d.). Equations for 
estimating the n.g.d. parameters ~ and T 

2 from observed survival proportions,.by the,.method of moments 
and maximum likelihood are given. The distributions of parameter estimates ~ and T 2 are obtained and 
discussed in the context of testing hypotheses comparing survival among different populations. Finally, the 
dependence of the n.g.d.upon parameters ~ and T

2 is examined in terms of altering survival, either by 
population self-regulation mechanisms or man-induced controls. The intent is to provide insight into the 
relationship between the n.g.d. and its supporting axioms and, more generally, basic knowledge of 
population processes. 

INTRODUCTION 

Consider a population of animals or plants over a period 
of time within the year, in which natural mortality is the 
only means of changing the number of individuals. The 
proportion of the population surviving the period is s = 
N 2 !Ni, where N 1 is the number alive at the beginning of the 
period, N 2 are alive at the end of the period. Observation 
over n years gives a sequence Si, s 2, . . , Sn which, apart 
from sampling error, may differ. A natural question is 
whether the observed values can be usefully regarded as 
realizations of a random variable s that arises from a 
probability density function q(s). This paper develops a 
model, based upon the normal distribution, which leads to 
the conclusion that such observations can often be 
adequately described by the normal generated distribution 
(n.g.cl.) q(s), 

q(s) -q, [(1/T )(<ll"'(s) - t ))/ T q, (<ll"'(s)) 

0 < s < I, - 00 < t < 00 , 0 < T' < 00 (!) 

where ( and T 
2 are parameters, cp ( ·) is probability density 

function of the standard normal distribution and ¢i ( ·) the 
standard normal cumulative distribtition function. The 
n.g.d. was first derived by Chiu (1974). 

The development is as follows. A set of axioms are given 
leading to Equation l for q(s). The axioms are statements of 
the factors that characterize the population and its 
environment and which are assumed to determine survival. 
The discussion of Equation l for q(s} centers on three topics. 
First, equations for estimating the parameters { and T 

2 

using observed survival proportions both by the method of 
moments and by maximum likelihood are given. Second, 
testing hypotheses concerning the true parameters t and T 2 

are discussed. Third, the dependence of q(s) upon 
parameters t and T 2 is examined in terms of altering 
survival, either by population self-regulation mechanisms or 
man-induced controls. One practical use of these results is 
that fall-to-spring survival, which is often quite uncertain, 
can be estimated for a number of different years, these 
observations used to estimate the parameters and, finally, 
the n.g.d. q(s) used to make probability statements 
concerning future survivals, 

DERIVATION OF NORMAL GENERATED 
DISTRIBUTION q(s) 

Consider a period of time from t 1 to t 2 (such as fall to 
spring) where mortality is the only means of change in 
population size, and assume: 

Axiom 1: An individual is subject to a stress u by its 
environment. The environment is defined as everything 
exogenous to an individual and includes predators, 
competing individuals and weather. 

Axiom 2: An individual is characterized by a strength v for 
resisting an environmental stress u. 

Axiom 3: If u > v the individual dies; otherwise survives. 

Stress u and strength v arc quantitative variables, but 
may not be directly measurable. We can only measure 
aspects of component factors such as, for example, air chill 
and snow pack conditions, which Verme (1968} found 
positively correlated with winter deer mortality in northern 
Michigan. What is being postulated by introducing the 
concepts of stress and strength is an underlying dimension of 
variation where positions on the dimension can be 
associated with an interval scale of measurement. Used in 
this sense, there is a continuum of values for the variable 
"stress u" which summarizes all of the environmental 
information relating to mortality. An organism could then, 
in theory, be subject to increasing values of stress u, and the 
value above which it could not survive corresponds to its 
strength v. 

The next assumption makes allowance for differing 
strengths v and stresses u within the population and 
environment. 

Axiom 4: u and v are distributed in a bivariate normal 
distribution with means µ u and µ 

0
, variances au 2 and 

a v 2 and correlation coefficient p . 

Both u and v are taken as the sum of a great many 
fundamental but stochastic effects and therefore, under 
certain conditions, are reasonably asserted as being normally 
distributed. The conditions for this holding can, to a degree, 



be forced by properly defining the population. For example, 
consider a group of young individuals and a second group of 
old individuals. If the strength distribution in each group is 
normally distributed but not identical, a "population" 
formed from the merger of both groups could not have its 
overall strength distribution normally distributed. A 
population should be defined so that no known factors exist 
which affect an individual's ability to survive. That is, a 
collection of organisms should be stratified on the basis of 
age-, density- and location-related factors which can affect 
survival. Any remaining differences in individual survival 
within a strata can only be accounted for by stochastic 
effects, and each strata can then be treated as a separate 
population. For example, an appropriate population might 
be juvenile deer living in an area where habitat and climate 
are not predictably location-dependent and where total 
herd size is not large enough to affect survival strongly. 

Letting x be the difference of v and u, the distribution of x 
is univariate normal with mean: 

(2) 

and variance: 

(3) 

where p is the correlation between u and v. The random 
variable x is termed the "extensity" of the survival process. 

An individual survives the period when x > 0, so that the 
fraction of the population surviving is obtained from the 
integral of the normal probability density N (x; µx, ox 2): 

( 4) 

Transforming x to standard form by letting z = (x - µ x) 
I ax gives the final form for the single-period model: 

µxi ax 
s - f q,(z)dz (5) 

This model appears in reliability and psychometric 
theory. In reliability, v represents the strength of a 
mechanical or electronic part and u the stress acting on the 
part; sis the probability a part will fail in service (Shooman 
1968, pp. 441-452). The model is also identical to the 
well-known Thurstone (1959, pp. 19-38) judgmental model 
where a stimulus u interacts with a subject's ability to 
discriminate the stimulus, or v. The variable s is the 
probability a randomly chosen subject will be able to 
differentiate a randomly selected stimulus. In both cases the 
models are derived on the basis of the normal distribution. 

The single-period model (Equation 5) holds for any one 
season with extensity parameters µx and a x 2 constant, but 
there is no reason to suppose these parameters are constant 
among seasons. For simplicity, only variation in µ x is 
assumed. The parameter µ x is assumed to follow a normal 

3 Data Processing 

distribution, and the argument is essentially a repeat of that 
presented previously in support of Axiom 4; an appeal to the 
central limit theorem. 

Axiom 5: The difference between mean strength µ v and 
mean stress µ u, or µ x, is normally and independently 
distributed with mean µ 1 and variance a 1 

2
, designated by 

g(µ xl• 

The final form of the multiperiod model results from 
transforming g(µ x) using Equation 5 in the general form s 
= h(µx), For fixed a/, the marginal density for survivals 
among years, q(s), is obtained from the transformation 
relation: 

(6) 

where h- 1 (s) is the inverse form of Equation 5, giving µ x as 
a function of s, and is found to be 

q(s)-(axl a,)exp(µx'l2ax'-(µx- µ,)'!2o,') (7) 

Equation 7 can be algebraically manipulated to arrive at the 
n,g,d. Equation 1 if new parameters t = ( µ 11 ox) and T 2 

= ( a ii a x) 2 are used. 

A straightforward integration of Equation 1 gives the 
cumulative distribution function Q(s): 

(8) 

For particular values of s, q(s) and Q(s) are easily obtained 
using tables or appropriate computer functions: (f)(s) can be 
evaluated using the error function and Q) (s) using the 
standard normal cumulative distribution function. 

PARAMETER ESTIMATION 

Chiu (1974) has derived the mean E(s) and variance 
Var(s)ofq(s). Definingc - t I V(l+r') andw - r'/(1 
+ T 2), the expressions are 

E(s) - <I> (c) (9) 

Var(s) - Pr { y,; c, z 4 c; w) -E'(s), (JO) 

where y and z have a joint bivariate normal distribution 
with zero means, unit variances and correlation of w. The 
procedure for obtaining moment estimates £ and T 2 of 
parameters ~ and T 2 is to compute the first two sample 
moments using the observations Si, s2, ••• , sn and equate 
these to <I> (c) and Pr { y,;;c, z < c; w ), the first two theo
retical moments. Values of i and ~ 2 are then searched for 
according to an iterative scheme until a sufficiently accurate 
solution is obtained. Tables given by Owen (1962) can be 
used for evaluating the bivariate normal distribution. 

Maximum likelihood estimates of ~ and T 2 can be 
obtained by forming the likelihood function qn(s) from 
Equation 1. The likelihood method yields estimates: 
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, n 
' ~ :l: cV'(s;)/n 

i = I 
n ' 
:i: ( <ll"'(s;)- ~ )'In 

i = l 

4 

(11) 

(12) 

A check for bias in these estimators shows that ( is unbiased 
while ; 2 can be made unbiased by multiplying Equation 12 
hy the quantity nl(n-l). 

HYPOTHESIS TESTING CONCERNING n.g.d. q(s) 

In certain instances it may be required to test hypotheses 
concerning q(s). For example, to test H0 : q(s) = ql'>), where 
c/(s) is a specified form of q(s), against an appropriate 
alternative, amountstotcstingH 0 : ( = l* and H0 : T

2 = 
T 2

' against the chosen altern~tives. Such tests can be 
performed by ob.serving that ( give~ by Equation 11 is 
normally distributed while (n--1) T

2 IT: is chi-square 
distributed with n-1 d.j. The estimate T

2 is calculated 
from Equation 12 and corrected for bias. The observations 
s1, s2,. , • , Sn must, of course, be independent for these dis
tributions to hold. 

' ' The distributions of ( and T 
2 follow from Equation 5 

which can be written: 

(13) 

Since JJ.x is by definition normally distributed, Equation 13 
implies the same for <1:>-1(s). Therefore, from Equations 11 
and 12, C and the unbiased form of T 2 arc normally and 
chi-square distributed, re~<;pectively. 

MODEL PARAMETER DEPENDENCE 

Measures of mean survival and the probability of survival 
Jess than a specified level s* are of interest to population 
control. The dependence of each upon the model 
parameters µ i, o 1 and ox is examined in the following. 

Using 
survival 

t ~ (µ/ox) and T' ~ (o,lax)', the mean 
E(s) given by Equation 9 can be reformulated as 

(14) 

It foHows from the sigmoid relation <P ( ·) that, for a given 
ox 2 and a 12, E(s) increases with mean extensity µ 1, the 
greatest rate of increase occurring where µ 1 = 0.0. 
Conversely, holding µ 1 constant and varying ox 2 or o i 2 

changes E(s) according to the value assumed by µ 1- If µ 1 < 
0, E(s) increases with increasing o/ or o/; if /J.1 =0, E(s) 
does not change with o x2 or a/; ifµ i >0, E(s) decreases 
with increasing o / or a 1

2
• 

A second measure is the probability a realized value for 
survival less than a specified levels* occurs. The concern is 
that a low value of sin a given year reduces the population 
size to a point where its resource value vanishes or, at the 
extreme, becomes nonsustaining. The condition imposed is 

where Q(s*), as given by Equation 8, is restricted to being 
less than a specified value p. The objective is to determine 
the parameter space satisfying Equation 15. With some 
algebra this translates to: 

(16) 

Of general interest to extinction are small values of s* and p 
such thats', p < 0.5. This implies ¢·'(s'), <ll·'(p) < 0. With 
this understanding, if Equation 16 is satisfied for any 
set of values ox, a i, µ i, it will remain satisfied if 
ax and/or µ 1 are made arbitrarily large or o 1 is reduced to 
zero. 

Habitat manipulation which raises the mean strength µ v 
by making food more abundant, or decreases the mean 
stress µ u by creating an improved shelter complex, leads to 
increased mean extensity µ 1 . From the above it follows that 
increasing µ 1 increases the mean survival·E(s) and reduces 
the probability of extinction Q(s*). Habitat control, 
however, would likely alter ox 2

, and it is conceivable, 
although unconfirmed, that manipulation might raise µ 1 but 
alter a·/ so that survivals actually decreases. Ideally, the 
strategy for a maximal increase in E(s}, in addition to 
increasingµ 1, is to increase o/ ifµ 1 < 0 and decrease Ox

2 

if µ 1 > 0. VVhet)1er µ 1 is positive or negative can be decided 
by estimating ~ from data using Equation 11 and testing 
H

0
: C = 0 against the appropriate alternative. 

It does not follow, however, that increased mean survival 
E(s} implies a reduced probability of extinction. If µ1 > 0 
and a/ is decreased, then E(s) will increase but Q(s*) will 
also increase. This can be explained by reference to Figure 
1, curves 7 and 9. If µ, > 0, then , > 0, and if T' < 1, 
then decreasing o / will at some point cause T

2 > I. This 
process results in an increase not only in E(s) but in Var(s) as 
well, and an increase in the probability contained in the 
lower tail of the q(s) curve. 

Equation 16 makes explicit the relationship between 
climatic variation among years and variation in extensity 
exhibited by the organism in its environment, o i2 and o / 
respectively. The two are opposed; when great variation in 
climatic stress exists among years ( a i2 large), the probability 
of extinction is minimized by making Ox 2 as large as possible 
by habitat manipulation. Also, the organisms' behavior may 
be relevant in changing o/ through the dependence of ax 2 

upon the strength-stress correlation p (Equation 3). If 
strong animals occupy low-stress microhabitats and weak 
animals occupy a high-stress area, p < 0 and a x2 is 
increased compared to that for random habitat occupancy. 
It follows that the optimal behavioral strategy to minimize 
extinction over the stress period is for nature to prescribe 
p< 0. 

CONSEQUENCES OF NONNORMALITY 

The assumption of normality appears in Axiom 5 where 
extensity f1x is taken as normally distributed as g(µx)- The 
transforming function, of general forms = h(µx), is the 
cumulative normal distribution given by Equation 5. The 



sigmoid curves = h( µ x), in Figure 2 is purposely skewed 
to represent a nonnormally distributed extensity, and g( µ x) 
is also skewed, The transformation (Equation 6) can be 
C\'aluated graphically by drawing q(s} so that any bounded 
area under the q(s) curve equals the corresponding area 
under the g( µ x) curve, as indicated by the shading in Figure 
2. Under conditions where µ 1 is varied and where s = 
h( µ x) remains sigmoid and g( µ x) bell-shaped, although both 
are quite skewed. the transformed curve can be adequately 
fit by q(s) (Equation l); the resulting shapes are well 
characterized by those shown in Figure 1. Thus, exact 
normality is not important. However, severe nonnormality 
which departs from being bell-shaped, such as multimodal 
distributions, yields striking cases which are ill fit by the 
11.g.d. q(s). 

EXAMPLES OF ESTIMATED q(s) CURVES 

Figure l gives typical q(s} curves for a partition of the ~ 
and T

2 parameter space. In practice, t and ;z can be 
calculated from the observations s 1, Sz. . . , sn using 
Equations 11 and 12 and Figure 1, used to identify the 
general form of the survival density. The specific form can 
be obtained from Equation l and probability statements 
concerning survival from Equation 8. 

Nine sels of population survival data taken from the 
literature were used to generate q(s} curves: l} grouse brood 
survival, Connecticut Hill study area (Darrow 1947a, p. 
315}; 2) grouse brood survival, Adirondack study area 
(Darrow 1947a, p. 315); 3) adult grouse over-winter survival, 
Connecticut Hill study area (Darrow 1947b, p. 531); 4) 
adult grouse over-winter survival, Adirondack study area 
(Darrow 19476, p. 531; 5) juvenile partridge over-winter 
survival (Severtzoff 1934, p. 419); 6) great tit summer-to
spring survival (Lack 1968, pp. 60-61); 7) bobwhite 
over-winter survival (Errington 1945, p. 13); 8) bobwhite 
over-winter survival (Kozicky and Hendrickson 1952, p. 
484); 9) yearly survival of young roe deer (Severtzoff 1934, 
p. 422). Page references give location of tabular data as 
shown in Figure 3 and Table 1; none is bimodal as in 
curves 3, 6 and 9 in Figure L Bimodal curves result when 
the variance of µx among years exceeds the variance of the 
cxtensity, that is ( o 1/ o xY = T 

2 > l. Referring to the 
graphical transformation (Figure 2) for given µ 1 and ax 2. 
the larger a i2 become..<;, the greater is the spread of 
realizations of µ x along the abscissa and hence the 

3. 0 

2.0 

1. 

0 

1:(<0,, 2 <1 

2:!;<0,, 2 -1 

3:(<0,, 2 >1 

0.5 1.0 0 
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probability of s being near O or 1 increases. The effect is 
most conspicuous when the mean of g(µx), or µ 1, is zero, so 
that q(s) is symmetric. If T 2 = 1, q(s) is the uniform 
distribution; if T 2 < 1, q(s) is unimodal with mode at s = 
0,5; if T 2 > 1, there are modes at s = 0 and 1 and an 
antimode at s = 0.5 (Figure 1, cases 5, 4, 6). 

Thus, as o i2 becomes larger than Ox 2. q(s} becomes 
bimodal and there is an increase in the probability of low 
(and high) survival. Hence bimodal forms may be rare or 
nonexistant in nature. This behavior can also explain the 
end of range for a population of animals or plants. For 
example, the terminus of a forest occurs where a i2 begins to 
exceed ax 2 even though µ 1 remains constant as the 
boundary is approached. 

SUMMARY 

Given a set of independent sµrvival data Si, s2, . , • , sn 
for a given population obtained over n years, the normal 
generated distribution (n.g.d.; Equation 1) developed by 
Chiu (1974) can be used to obtain the distribution of 
survival proportions. Maximum likelihood estimates of the 
parameters ~ and T 2 can be found from Equations 11 and 
12 and the cumulative distribution function Q(s) (Equation 
8) used to give probability estimates of survival. Hypothesis 
tests concerning the distribution of survival can be 
performed based upon the distributions of the parameter 
estimates t and ; 2

. 

The axioms leading to the n.g.d. depend upon 
assumptions of normality regarding the abstract concept of 
extensity. The..,;e cannot be subjected to empirical study. 
However, the model is robust for departures from normality 
that retain the bell-shaped feature. In any application, the 
researcher has knowledge of the survival process beyond the 
observations Si, s 2 , ..• , Sw Comparison of this knowledge 
with probability statements derived from the model is the 
most practical way to judge model validity. 

The relationships among the parameters µ 1, o/ and Ox2 

concisely describe how man~ or self-regulating controls 
affect survival. These relationships hold in an idealized 
setting given by the model axioms. Still, they raise useful 
questions regarding the concepts of habitat management 
and population self-regulation strategies. 

4:('"0,, 2 <1 

5:(•0,-r 2 -1 

6:('"0,, 2 >1 

0.5 

' 
1.0 0 

7:(>0,T 2 <1 

8:(>0,1 2 •1 

o.s 1.0 

Figure 1. Typical probability densities of survival proportions, q(s) by the normal generated 
distribution (Equation l} for parameter space ranges:~ <, = , > O; T 2 <, = , > l. 
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figure 2. Graphical method for transforming g(µ x) using s = h(f-'-x) to obtain q(s). The 
transformation preserves corresponding shaded areas under the g(µ x) and q(s) curves. 
dµ x) ands = h(/J x) are not normal, but q(s) is still approximately n.g.d. distributed. 
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Figo.rc ;>,, Normal generated distribution q(s) fitted to sur
Yival reali:;.ation Si, S2, , sn taken from the literature. 
Case numlwrs identify <"":urves; references to data used are 
given i.n icxf. 
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