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Abstract

Variational Asymptotic Micromechanics Modeling of Composite Materials

by

Tian Tang, Doctor of Philosophy

Utah State University, 2008

Major Professor: Dr. Wenbin Yu
Department: Mechanical and Aerospace Engineering

The issue of accurately determining the effective properties of composite materials has

received the attention of numerous researchers in the last few decades and continues to be

in the forefront of material research. Micromechanics models have been proven to be very

useful tools for design and analysis of composite materials. In the present work, a ver-

satile micromechanics modeling framework, namely, the Variational Asymptotic Method

for Unit Cell Homogenization (VAMUCH), has been invented and various micromechancis

models have been constructed in light of this novel framework. Considering the periodicity

as a small parameter, we can formulate the variational statements of the unit cell through

an asymptotic expansion of the energy functional. It is shown that the governing differen-

tial equations and periodic boundary conditions of mathematical homogenization theories

(MHT) can be reproduced from this variational statement. Finally, we employed the finite

element method to solve the numerical solution of the constrained minimization problem. If

the local fields within the unit cell are of interest, the proposed models can also accurately

recover those fields based on the global behavior. In comparison to other existing models,

the advantages of VAMUCH are: (1) it invokes only two essential assumptions within the

concept of micromechanics for heterogeneous material with identifiable unit cells; (2) it has

an inherent variational nature and its numerical implementation is shown to be straightfor-

ward; (3) it calculates the different material properties in different directions simultaneously,

which is more efficient than those approaches requiring multiple runs under different loading

conditions; and (4) it calculates the effective properties and the local fields directly with the
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same accuracy as the fluctuation functions. No postprocessing calculations such as stress

averaging and strain averaging are needed.

The present theory is implemented in the computer program VAMUCH, a versatile

engineering code for the homogenization of heterogeneous materials. This new microme-

chanics modeling approach has been successfully applied to predict the effective properties

of composite materials including elastic properties, coefficients of thermal expansion, and

specific heat and the effective properties of piezoelectric and electro-magneto-elastic com-

posites. This approach has also been extended to the prediction of the nonlinear response

of multiphase composites. Numerous examples have been utilized to clearly demonstrate

its application and accuracy as a general-purpose micromechanical analysis tool.

(280 pages)
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Chapter 1

Introduction

The main impetuses of using composite materials are low weight-stiffness ratio, en-

hanced fatigue life, and corrosion resistance. Other thrusts of applications in some special

fields include wear resistance, thermal-acoustical insulation, low thermal expansion, and

low thermal conductivity, etc. In recent years, more and more engineering structures are

made of composite materials to achieve better performance. The increased complexity

of composite structure at the microlevel, however, greatly complicates the analysis of the

structural behavior, which is indispensable for the rational design of these structures. Direct

analysis of such structures, although possible, is computationally intensive and unrealistic.

One way of determining the properties of composite materials can be accomplished by ex-

perimental tests. In many cases, it is not practical that experimental determinations are

performed for all possible reinforcement types due to the volume and cost of the required

tests. Fortunately, composite materials have a necessary characteristic, namely, statistical

homogeneity (SH) [1] so that we can define a representative volume element (RVE), which

is, as indicated by Hill [2], structurally entirely typical of the whole mixture on average

and contains a sufficient number of inclusions for the apparent overall moduli to be ef-

fectively independent of the boundary conditions. In the present investigation, the RVE

is conceptually similar to the crystallographic unit cell (UC) [3] and is the building block

of the “lattice” of composite materials, namely, a periodic volume element. Based on the

fundamental concept of RVE, micromechanics models are employed to simplify the analysis

without significant loss of accuracy. As illustrated in Fig. 1.1, micromechanics models en-

able us to decouple the analysis for composites with heterogeneous microstructures into a

local micromechanical analysis over the microstructures and a global analysis of the material

without microstructural details. The global analysis requires effective properties obtained

from the micromechanical analysis. The responses calculated by the global analysis can be

fed into the recovery relations provided by the micromechanical analysis to calculate the

pointwise information within the microstructure.
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Composite materials with 

heterogeneous microstructure

Global-local decomposition

using the concept of UC

Micromechanical 

analysis of the UC
Global analysis with 

effective properties

Global responsesRecovery relations

Local displacements, strains,

and stress within the UC

Effective 

material properties

Fig. 1.1: The basic steps of structure analysis with heterogeneous microstructures using the
concept of unit cell.

1.1 Literature Review on Micromechanics

The study of micromechanics has been an active research area for many decades and

continues to be the forefront of analysis of composite materials. Excellent reviews of mi-

cromechanics were given in Hashin [1], Nemat-Nasser and Hori [4], Milton [5], Christensen

[6], and Mura [7]. In the following of this chapter, a review of micromechanics from open

literature is presented.

1.1.1 Volume Averaging and Effective Properties

The property “averages” of different RVE are statistically indistinguishable. Thus,

the heterogeneous composites can be homogenized into equivalent homogeneous materials

having effective properties. This homogenization is performed in terms of volume averaging.

The average stresses and average strains over the RVE are expressed as:

σ̄ij =
1
Ω

∫

Ω
σij dΩ (1.1)

ε̄ij =
1
Ω

∫

Ω
εij dΩ (1.2)

where Ω is the volume of RVE.
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One of the central goals of micromechanics is to obtain effective properties. The defi-

nitions of effective properties of composite materials can be defined by means of direct or

energy expressions.

• Direct expressions:

Elastic constitutive equations

σ̄ij = C∗
ijklε̄kl

ε̄ij = S∗ijklσ̄kl (1.3)

Thermoelastic constitutive equations

σ̄ij = C∗
ijklε̄kl − C∗

ijklα
∗
klθ̄

ε̄ij = S∗ijklσ̄kl + α∗ij θ̄ (1.4)

Piezoelectric constitutive equations

σ̄ij = C∗
ijklε̄kl − e∗ijkĒk

T̄i = e∗ijk ε̄kl + k∗ijĒj (1.5)

Electro-magneto-elastic constitutive equations

σ̄ij = C∗
ijklε̄kl − e∗ijkĒk − q∗ijkH̄k

T̄i = e∗iklε̄kl + k∗ijĒj + a∗ijH̄j

B̄i = q∗iklε̄kl + a∗ijĒj + µ∗ijH̄j (1.6)

Fourier law of heat conduction

q̄i = −K∗
ijφ̄,j (1.7)

where the Cijkl and Sijkl are the stiffness and compliances; αij are the thermal ex-

pansion coefficients; eijk and qijk are the piezoelectric and piezomagnetic third or-

der tensors, respectively; kij , µij , and aij are the dielectric permittivity, magnetic

permeability, and magneto-electric second order tensors; Kij are the components of
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the second-order thermal conductivity tensor; σij , εij are the tensors of stresses and

strains, respectively; Ti, Ei, Bi, Hi, qi, and φ,j denote the vectors of the electric flux

density (or electric displacement), the electric field, magnetic flux density, magnetic

field, heat flux, and temperature gradients, respectively. The “over-bars” stand for

volume average values of the field variables over the volume of RVE. Superscripts “*”

denote effective properties whose calculation are determined by the micromechanics

model one employs.

• Energy expressions:

Elastic strain and complementary strain energy

∫

Ω

1
2
Cijkl εij εkldΩ =

1
2
C∗

ijkl ε̄ij ε̄klΩ (1.8)

∫

Ω

1
2
Sijkl σij σkldΩ =

1
2
S∗ijkl σ̄ij σ̄klΩ (1.9)

Helmholtz free energy

1
2

∫

Ω
(Cijkl εij εkl+2βij εij θ+cv

θ2

T0
)dΩ =

1
2
(C∗

ijkl ε̄ij ε̄kl+2β∗ij ε̄ij θ̄+c∗v
θ̄2

T0
)Ω (1.10)

where

β∗ij = −C∗
ijklα

∗
kl (1.11)

Electric enthalpy of piezoelectric materials

∫

Ω
εT DεdΩ = ε̄T D∗ε̄Ω (1.12)

where

ε = bε11 2ε12 ε22 2ε13 2ε23 ε33 E1 E2 E3cT (1.13)

and D is a 9× 9 matrix including the elastic, piezoelectric, and dielectric matrix and

is expressed as

D =




C −e

−eT −k


 (1.14)

where C is a 6× 6 elastic stiffness matrix; e is a 6× 3 piezoelectric coupling matrix;

and k is a 3× 3 dielectric constant matrix.
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Electromagnetic enthalpy of electro-magneto-elastic materials

∫

Ω
εT
|| D̂ε||dΩ = ε̄T D̂∗ε̄Ω (1.15)

where

ε|| = bε11 2ε12 ε22 2ε13 2ε23 ε33 E1 E2 E3 H1 H2 H3cT (1.16)

and D̂ is a 12×12 matrix including the elastic, piezoelectric, dielectric, piezomagnetic,

magneto-electric, and magnetic permeability properties and is expressed as

D̂ =




C −e −q

−eT −k −a

−qT −aT −µ




(1.17)

where C is a 6× 6 elastic stiffness matrix; e is a 6× 3 piezoelectric coupling matrix;

k is a 3× 3 dielectric constant matrix; q is a 6× 3 piezomagnetic matrix; a is a 3× 3

magneto-electric coupling matrix; and µ is a 3× 3 magnetic permeability matrix

Energy integral (define effective thermal conductivity)

1
2

∫

Ω
Kij φ,i φ,jdΩ =

1
2
K∗

ij φ̄,i φ̄,jΩ (1.18)

1.1.2 Rigorous Bounds

(1) Rules of Mixtures

Voigt’s and Reuss’ rules of mixtures provide the effective properties of composites in

terms of the quantity, and properties of its constituents based on simplifying assumptions

which are that strain is uniform or stress is uniform. Their use is tempered with extreme

caution and they only offer the upper and lower bounds with big difference in most cases.

It is well known that the properties of fiber-reinforced composites are controlled by the

volume fraction, properties and spatial array of constituents. Figure 1.2 is a typical RVE of

fiber-reinforced composites with fiber square array. The fiber is infinitely long perpendicular

to the paper. It will be used to illustrate the rules of mixtures for obtaining the effective

properties.
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Fig. 1.2: RVE of fiber-reinforced composites with fiber square array.

I. Voigt’s rule of mixture According to Voigt, the strain is assumed to be uniform in

the composites, i.e., εij = ε̄kl. Then, the generalized Hookie’s law may be expressed as

σij = Cijklεkl = Cijklε̄kl (1.19)

where σij , Cijkl, and εkl are the functions of coordinates.

In terms of the concepts of macroscopically average stress and strain of the composites,

the following expressions can be obtained

σ̄ij =
1
Ω

∫

Ω
Cijklε̄kl dΩ =

(
1
Ω

∫

Ω
Cijkl dΩ

)
ε̄kl = C̄ijklε̄kl (1.20)

where C̄ijkl are the volume average of stiffness constants of the composites.

The effective stiffness constants C∗
ijkl of the homogenized material are the linear con-

stants linking the average stresses and average strains of the composites. It is known that

the constitutive relation of the homogenized material is,

σ̄ij = C∗
ijklε̄kl (1.21)
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It is easy to get the below corollary from Eqs. (1.20) and (1.21),

C∗
ijkl = C̄ijkl = VfC

(f)
ijkl + VmC

(m)
ijkl (1.22)

where Vf and Vm are the volume fraction of the fiber and matrix, respectively; C
(f)
ijkl and

C
(m)
ijkl are the elastic stiffness constants of the fiber and matrix, respectively.

II. Reuss’ rule of mixture According to Reuss, the stress is assumed to be uniform in

the composites, the strain-stress relation can be written in terms of compliance constants,

such that

εij = Sijklσkl = Sijklσ̄kl (1.23)

By virtue of the concept of average strain, we obtain the following:

ε̄ij =
1
Ω

∫

Ω
Sijklσ̄kl dΩ =

(
1
Ω

∫

Ω
Sijkl dΩ

)
σ̄kl = S̄ijklσ̄kl (1.24)

where S̄ijkl are the volume average of compliance constants of composites.

The constitutive relation of the homogenized material using the compliance matrix is

described as

ε̄ij = S∗ijklσ̄kl (1.25)

From Eqs. (1.24) and (1.25) , we can conclude

S∗ijkl = S̄ijkl = VfS
(f)
ijkl + VmS

(m)
ijkl (1.26)

where Vf and Vm are the volume fraction of the fiber and matrix, respectively; S
(f)
ijkl and

S
(m)
ijkl are the elastic compliance constants of the fiber and matrix, respectively.

(2) Hashin-Shtrikman-Type Variational Bounds

Variational bounds use energy principles to determine the bounds for effective proper-

ties. Paul [8] obtained the bounds for alloyed materials based on the principle of minimum

potential and complementary energy. Hashin-Shtrikman-type bounds are thought of as the

best possible bounds when the only available geometric information is the volume fraction.

However, such bounds can be improved if additional information such as shape of inclusions
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and geometry of the microstructure are added into the formulation. Further developments

of such bounds are discussed in [1, 9]. A brief summary of the Hashin-Shtrikman bounds is

given in this section.

Cubic Polycrystals Hashin-Shtrikman [10] established more improved bounds than the

rules of mixtures for effective shear moduli of an aggregate of cubic crystals in terms of a

variational method,

• Lower bound

G∗
(−) = G1 + 3

(
5

G2 −G1
− 4β1

)−1

(1.27)

• Upper bound

G∗
(+) = G2 + 2

(
5

G1 −G2
− 6β2

)−1

(1.28)

where G1 and G2 are the two shear moduli of a crystal of cubic symmetry. While β1 and

β2 are defined as

β1 = − 3 (K + 2G1)
5G1 (3K + 4G1)

(1.29)

β2 = − 3 (K + 2G2)
5G2 (3K + 4G2)

(1.30)

where K is the bulk modulus of polycrystals. K is the same as the bulk modulus of a single

cubic crystal and is expressed as:

K =
1
3

(C11 + C12) (1.31)

where C11 and C12 are the elastic moduli of a single cubic crystal. In comparison, the

bounds obtained from rules of mixtures are also listed here:

• Lower bound (Reuss bound)

G∗
(−) =

5G1G2

2G2 + 3G1
(1.32)

• Upper bound (Voigt bound)

G∗
(+) =

1
5

(2G1 + 3G2) (1.33)
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Statistically Isotropic Composites The bounds [11] for statistically isotropic compos-

ites is established on the basis of the concept of a polarization field. The bounds for the

bulk modulus and the shear modulus of two-phase statistical homogeneous composites are

given by

K∗
(−) = K1 +

V2

1
K2−K1

+ 3V1
3K1+4G1

(1.34)

K∗
(+) = K2 +

V1

1
K1−K2

+ 3V2
3K2+4G2

(1.35)

G∗
(−) = G1 +

V2

1
G2−G1

+ 6V1(K1+2G1)
5G1(3K1+4G1)

(1.36)

G∗
(+) = G2 +

V1

1
G1−G2

+ 6V2(K2+2G2)
5G2(3K2+4G2)

(1.37)

when

K1 < K2 (1.38)

G1 < G2 (1.39)

where K1 and K2 are the bulk modulus of the phases, respectively; G1 and G2 are the shear

modulus of the phases, respectively; and V1 and V2 are the volume fraction of the phases,

respectively.

Fiber-reinforced Composites The bounds [12] for the plane strain bulk modulus and

the transverse shear moduli of two-phase composites are found to be

K∗
(−) = K1 +

V2

1
K2−K1

+ V1
K1+G1

(1.40)

K∗
(+) = K2 +

V1

1
K1−K2

+ V2
K2+G2

(1.41)

G∗
(−) = G1 +

V2

1
G2−G1

+ V1(K1+2G1)
2G1(K1+G1)

(1.42)
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G∗
(+) = G2 +

V1

1
G1−G2

+ V2(K2+2G2)
2G2(K2+G2)

(1.43)

where K1 and K2 are the plane strain bulk moduli, respectively; and G1 and G2 are the

plane strain transverse shear modulus, respectively; These bounds are developed in terms

of phase moduli and phase volume fraction.

(3) Improved Bounds

Improved bounds depend nontrivially on two-point or high-order correlation functions

and require more geometrical information besides volume fractions [13, 14]. For the con-

ductivity and elastic moduli of isotropic two-phase media, they are bounds that are tighter

than the Hashin-Shtrikman bounds.

Milton [15] derived the bounds for effective properties of two-component macroscopi-

cally homogeneous and isotropic composites, which improved upon Hashin-Shtrikman bounds

in terms of geometrical parameters, i.e., ζ1 and η1, as well as volume fraction of the con-

stituents. ζ1 and η1 range from 0 to 1, which incorporate three-point correlation functions.

Milton also developed four-point bounds on the effective axial shear modulus of transversely

isotropic two-phase composites [16]. However, higher order bounds such as three- and four-

point bounds diverge with increasing contrast of constituent properties, even though they

are definitely an improvement over the two-point bounds. Further discussions of improved

bounds have been given in [9, 13, 14].

1.1.3 Analytical Methods

The bounds provide approximate assessments of effective properties, while the ana-

lytical methods are aimed to determine unique solutions for the effective properties of a

heterogeneous medium.

(1) Dilute Concentration

Dilute concentration problems involve a single particle embedded in an infinite medium

in one RVE . The volume fraction of particles are very small and the particles are far apart.

Consequently, the interactions between particles can be ignored. The exact solutions for

effective shear modulus and bulk modulus have been developed by Dewey [17].
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• Shear modulus

G∗

Gm
= 1−

15 (1− νm)
[
1− Gp

Gm

]
Vp

7− 5Gm + 2 (4− 5νm) Gp

Gm

(1.44)

• Bulk modulus

K∗ = Km +
(Kp −Km) VP

1 + Kp−Km

Km+ 3
4
µm

(1.45)

(2) Composite Sphere Assemblage Model

For high volume fraction particle composites, Hashin [18] introduced a composite sphere

assemblage model, which consists of various sizes of particles embedded in continuous ma-

trix. The composites are idealized as the assemblage of coated spheres. Each coated sphere

is composed of a spherical particle and a concentric matrix shell. The ratio of the volume of

the individual spherical particle to the total volume of the corresponding individual coated

sphere reflects the volume fraction of the composites. However, this model is only available

for the effective bulk modulus, which is given by

K∗ = Km +
Vp

1
Kp−Km

+ 3Vm
3Km+4Gm

(1.46)

where Kp and Km are the bulk modulus of the particles and matrix, respectively; Gp and

Gm are the shear modulus of the particles and matrix, respectively; and Vp and Vm are the

volume fraction of the particles and matrix, respectively.

(3) Composite Cylinder Assemblage Model

The composite cylinder model introduced by Hashin and Rosen [19] is used to obtain

five independent effective properties of fiber-reinforced composites when the composites are

assumed to be transversely isotropic materials. This model considers the composites as

the assemblage of coated cylinders. Each coated cylinder consists of cylindrical fiber (with

radius a) with an annulus of matrix (with radius b). For each coated cylinder, the ratio of

a to b is constant and reflect the volume fraction of composites. By use of this model, the

axial effective Young’s modulus and Poisson’s ratio are found to be

E∗
11 = VfEf + (1− Vf ) Em +

4Vf (1− Vf ) (νf − νm)2 Gm

(1−Vf)Gm

Kf+
Gf
3

+ Vf Gm

Km+Gm
3

+ 1
(1.47)
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ν∗12 = (1− Vf ) νm + Vfνf +
Vf (1− Vf ) (νf − νm)

(
Gm

Km+Gm
3

− Gm

Kf+
Gf
3

)

(1−Vf)Gm

Kf+
Gf
3

+ Vf Gm

Km+Gm
3

+ 1
(1.48)

where Kf and Km are the bulk modulus of the fibers and matrix, respectively; Gf and Gm

are the shear modulus of the fibers and matrix, respectively; and Vf and Vm are the volume

fraction of the fibers and matrix, respectively.

(4) Self-Consistent Method

All self-consistent methods are based on the Eshelby result [20], which is valid for

ellipsoidal inclusions and assumes a perfect bonding between the phases.

The original work of developing the self-consistent scheme was performed by Hershey

[21], Kröner [22], and Kerner [23] to model the behavior of single or polycrystalline materials.

Hill [24] and Budiansky [25] simultaneously extended the self-consistent method to high

concentration multiphase media. They used the idea of a single inclusion embedded within

an effective matrix having the effective elastic moduli of the composites, and thus the

interactions of the inclusions are accounted for.

It should be noted that the self-consistent methods are implicit methods which compute

the solutions by iteration, since the effective properties of the composites are imbedded

directly in the formulation.

Generally speaking, these methods are not suitable for materials with both a high

volume fraction of inclusions as well as a high modulus contrast between the constituents

[26]. Another difficulty associated with these methods can be observed in rigid inclusions

and porous composites. They fail to give correct estimations of shear modulus at a volume

fraction of 1
2 in the case of voids and at a volume fraction of 2

5 in the case of rigid inclusions

[6].

(4) Mori-Tanaka Method

Another analytical model which is also based on the Eshelby Tensor is the Mori-Tanaka

method [27]. Benveniste [28] reformulated the application of the Mori-Tanaka’s theory to

the calculation of the effective properties of composites in terms of the equivalent inclusion
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idea of Eshelby and the concept of “average stress” in the matrix of Mori and Tanaka. The

central assumption of this method is that the average strain in the interacting inclusions

can be approximated by that of a single inclusion embedded in an infinite matrix subjected

to the uniform average matrix strain. This method providevs an explicit formulation for

the calculation of effective properties of composites, thus it allow one to perform homoge-

nization analysis at minimum computational cost. Berryman and Berge [29] provided an

excellent comparison and contrast between self-consistent methods and the Mori-Tanaka

approximation. They concluded that explicit methods of Mori-Tanaka and Kuster-Toksöz

[30] are suitable to predict the effective elastic moduli of multiphase composites in which

the volume fraction of host materials is 70− 80% or more.

One important characteristic of this method is that it permits full packing of reinforce-

ment inclusions with 0 ≤ c ≤ 1, where c is the volume fraction of inclusions. At all volume

fractions, the Mori-Tanka method describes the microstructure of composites as aligned

ellipsoidal inhomogeneities embedded in a matrix, which can be thought of as affinely de-

formed version of the composite sphere assemblage (CSA) of Hashin [31]. Therefore, this

scheme is well suited for composites with aligned matrix-inclusion microtopologies. Re-

cently, there are many extensions of this method that have been developed for nonaligned

cases.

(5) Three-phase Model

To obtain the effective properties of two-phase composite materials, Hashin devised

two common idealized geometric models, namely, composite sphere assemblage (CSA) and

composite cylinder assemblage (CCA) [18, 19]. However, Hashin methods can not provide

all the exact solutions for effective properties even though they are exact elasticity methods

instead of self-consistent methods. Both models can only offer bounds for the transverse

shear modulus. Christensen and Lo [32] later developed a so-called three-phase model used

to offer an exact solution for the remaining transverse shear modulus. Three-phase model is

based on the elasticity solution for spherical or cylindrical geometries, and thus it does not

rely on the Eshelby solution for inclusions. Christensen [33] also performed a critical evalua-

tion of the Mori-Tanaka scheme, differential method, and three-phase model and concluded

that only the three-phase model provides reasonable results at high concentration. The

range of validity of the Mori-Tanaka method was established in terms of the results of the
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three-phase Model as rigorous results [34]. This model has also been successfully employed

to calculation of effective thermal conductivity of composites [35, 36]. It is interesting to

note that the three-phase model is often referred to as the generalized self-consistent method

despite in fact that it is not a self-consistent method.

1.1.4 Numerical Methods

The effective properties of composites can be approximately obtained by numerically

solving the governing equations over RVE associated with appropriate boundary conditions.

Numerous numerical methods have been employed for resolving the microfields, such as early

finite difference methods, boundary element methods, and finite element methods (FEM).

There are many micromechanics models that deal actually with the composites with the

assumption of periodic microstructures. The reinforcements are arranged in rectangular,

square, hexagonal array, or some other pattern of array. The smallest element is taken as

RVE with periodic boundary conditions. Different RVE undergoes identical deformation

when the composite medium is subjected to uniform far field loading. These approaches

include fast Fourier transforms [37], discrete Fourier transforms [38], the tranformation field

analysis [39], method of cells (MOC) developed by Aboudi [40, 41, 42, 43], and RVE-based

finite element methods [44]. In this section, we give a brief review of the MOC and the

finite element methods.

(1) MOC and its Variants

For unidirectional fiber reinforced composites, the microstructure of the composite ma-

terials are assumed to be periodic, namely, the fibers are in a periodical array in the matrix.

Due to characteristics of periodic arrangement, the composites can be analyzed using a sin-

gle repeating cell, which is divided into four subcells. One of the subcells represents fiber,

while the others stand for the matrix. The basic assumption of MOC that the displacement

vector within each subcell varies linearly with local coordinates. The continuity condition of

displacements and tractions is imposed at the interfaces between subcells as well as between

the repeating cells on average sense. The applications of MOC are summarized in Aboudi

[45].

Generalized Method of Cells (GMC) [46] is the further generalized MOC, in which the

repeating unit cell consists of an arbitrary number of subcells. It extends the capability
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of MOC in many aspects including the inelastic thermomechanical behavior of multiphase

metal matrix composites, modeling various fiber shapes and arrays, porous composites and

damage, and the interfacial region around reinforcement inclusions. However, the basic

assumption of GMC is the same as that of MOC, i.e., the displacement vector within the

subcell is linearly dependent on local coordinates.

The obvious advantage of GMC is that the complete set of effective properties can be

obtained just within one step analysis. This model is more computationally efficient than

finite elements for modeling fiber composites. However, the deficiency of MOC and GMC is

that they can not estimate the local stress and strain accurately due to the lack of so-called

shear coupling resulting from the linear assumption of displacement fields. To overcome the

shortcoming, a new micromechanics model, i.e., high fidelity GMC (HFGMC) [47] has been

developed by incorporating the mathematical homogenization technique and second order

expansion of displacement within each subcell. HFGMC has been employed to model the

elastic, thermoelastic [47], thermoinelastic [48, 49], and local fiber-matrix debonding [50].

(2) Finite Element Method

The finite element method (FEM) is a commonly used numerical scheme for determin-

ing both global response and the local fields. It is thought of as one of the most accurate

method and is usually adopted as a benchmark to verify the validity of other schemes. The

main advantages of this method are the geometrical versatility and the capability of mod-

eling a wide class of constitutive models for constituents. Its computational expense is high

for three-dimensional models. Therefore, sometimes the simplification is adopted to reduce

the 3D model to a 2D axisymmetric or planar one.

Sun and Vaidya [44] proposed a vigorous micromechanics method for using a rep-

resentative volume element (RVE) to predict the mechanical properties of unidirectional

fiber composites. The determination of composite moduli in this model is based on the

equivalence in strain energy between the equivalent homogeneous material and the original

heterogeneous material. The correct boundary conditions imposed on RVE is paramount.

The plane sections of RVE remain plane when it is subjected to normal loading, while in two

dimensional plane strain shear analysis the edges of RVE do not remain straight and just

satisfy periodicity and symmetry. This approach has demonstrated its prediction accuracy.

Ghosh and coworkers [51, 52, 53] developed the Voronoi cell finite element method
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(VCFEM) in order to computationally model arbitrary heterogeneous materials. This

method is based on the Dirichlet tessellation of microstructural material elements into a

network of multi-sided convex Voronoi polygons. This VCFEM has inherent computational

advantages over the conventional finite element method, especially in the case of simulating

the realistic microstructure of unidirectional composites [54, 55].

1.2 Motivation and Objective

From the background in the last section, numerous micromechanics models have been

developed and many of the existing approaches are based on various ad hoc assumptions.

However, a good theory should minimize the use of assumptions, particularly those which

are not absolutely needed. According to the author’s understanding, there are only two

essential assumptions within the concept of micromechanics for composite materials with

identifiable UCs:

• Assumption 1 The exact solutions of the field variables have volume averages over

the UC.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective material

properties are assumed to be the intrinsic properties of the material when viewed

macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the

first assumption is that the exact solutions of the field variables are integrable over the

domain of the UC, which is true almost all the time. The second assumption implies

that we can neglect the size effects of the material properties in the macroscopic analysis,

which is an assumption often made in conventional continuum mechanics. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with

h as the characteristic size of the UC and l as the macroscopic size of the macroscopic

material. All the others assumptions such as particular geometry shape and arrangement of

the constituents, specific boundary conditions, and prescribed relations between local fields

and global fields are convenient but not essential.
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Among the existing micromechanics approaches, the method of cells and its develop-

ments established by Aboudi have been shown to be general methods. Commercial finite

element software such as ANSYS and ABAQUS can also be general-purpose tools for mod-

eling of composites. However, the prediction of effective properties of composite materials

using commercial software is not efficient enough. The drawbacks of commercial software

are as follows:

1. The different linear material properties in different directions can not be obtained

simultaneously. It requires multiple runs under different boundary conditions.

2. For modeling some properties of heterogeneous materials, for example, thermal con-

ductivity, with constituents having full anisotropy, ANSYS and other FEM package

can only handle constituents up to orthotropic materials, which is an unnecessary

restriction.

3. Postprocessing calculations which introduce more approximations, such as averaging

stress and strain, are needed.

Therefore, the primary objective of the present research is to develop a new general-

purpose micromechanics tool to predict the effective properties and behavior of composite

materials using the variational asymptotic method (VAM) [56] and two essential assump-

tions within the concept of micromechanics. VAM simplifies the procedure of solving phys-

ical problems that can be formulated in terms of a variational statement involving one

or more small parameters. In contrast to conventional asymptotic methods, VAM carries

out asymptotic analysis of the variational statement, synthesizing both merits of variational

methods (viz., systematic, simple, and easy to be implemented numerically) and asymptotic

methods (viz., without ad hoc assumptions). VAM has been used extensively to construct ef-

ficient high-fidelity structural models for composite beams [57], composite and smart plates

[58, 59, 60], and composite and smart shells [61, 62], achieving an excellent compromise

between accuracy and efficiency.

1.3 Outline of the Dissertation

The present dissertation is organized in the following way:
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• Chapter 2 is a journal article to be submitted. In this paper, a micromechanics model

was developed for the prediction of the effective properties and the distribution of

local fields of smart materials which are responsive to fully coupled electric, magnetic,

thermal, and mechanical fields.

• Chapter 3 is a journal article entitled “Variational Asymptotic Homogenization of

Heterogeneous Electromagnetoelastic Materials.” In this paper, the variational asymp-

totic method is used to develop a micromechanics model for predicting the effective

properties and local fields of heterogeneous electromagnetoelastic materials

• Chapter 4 is a journal article entitled “Variational Asymptotic Micromechanics Mod-

eling of Heterogeneous Piezoelectric Materials,” which presents the derivation and

application of a new micromechanics model for predicting the effective properties and

local fields of heterogeneous piezoelectric materials.

• Chapter 5 is a journal article entitled “A Variational Asymptotic Micromechanics

Model for Predicting Conductivity of Composite Materials.” In this paper, a novel mi-

cromechanics model was constructed to obtain both effective conductivity and the lo-

cal fields of the heterogeneous materials in light of the variational asymptotic method.

• Chapter 6 is a journal article (under review) entitled “Asymptotical Approach to Ini-

tial Yielding Surface and Elastoplasticity of Metal Matrix Composites.” The focus

of this paper is to develop a micromechanics model for predicting the initial yield-

ing surface, overall instantaneous moduli, and elastoplastic behavior of metal matrix

composites.

• Chapter 7 is a journal article to be submitted. The primary objective of this paper

is to develop a micromechanics model for predicting the nonlinear behavior of the

electrostrictive multiphase composites.

• Chapter 8 presents the conclusions and proposes the future work.

• All of the work described in Chapter 2 to Chapter 7 are based on the framework of

the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH). The

original theory and formulation of the VAMUCH are contained in Appendix A and
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B. Appendix C perform a critical evaluation of the predictive capabilities of various

advanced micromechanics models using several case studies.
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Chapter 2

A Multiphysics Micromechanics Model of Smart Materials

Using the Variational Asymptotic Method

1

Abstract

The primary objective of the present paper is to develop a micromechanics model for the

prediction of the effective properties and the distribution of local fields of smart materials

which are responsive to fully coupled electric, magnetic, thermal and mechanical fields.

This work is based on the framework of the variational asymptotic method for unit cell

homogenization (VAMUCH), a recently developed micromechanics modeling scheme. For

practicle use of this theory, we implement this new model using the finite element method

into the computer program VAMUCH. For validation, several examples will be presented

to compare with the existing models and demonstrate the application and advantages of

the new model.

2.1 Introduction

Smart materials are responsive to multiple physical fields, such as electric, magnetic,

or thermal fields, in additional to the traditional mechanical field. Behavior of such materi-

als will be multiphysical and predictive tools are essential for effective design and analysis

of such materials. Usually, one single constituent will not be sufficient to create desirable

properties needed for real applications. Often times, two or more constituents are used to

engineering the microstructure of the smart material to achieve better properties. Further-

more, such heterogenous materials might exhibit new properties not existing in any of the

constituents due to the coupling of different fields. For example, the most interesting behav-

ior of smart composites consisting of piezoelectric and piezomagnetic constituents is that the

magnetoelectric effect, which is only present in composites but absent in constituent phases,
1Coauthored by: Tian Tang and Wenbin Yu.
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is created by the interaction between the constituent phases, a result of the so-called prod-

uct property [1]. The mechanical constitutive response of the active materials is coupled

with the non-mechanical effects [2]. For example, the continuum of thermo-piezoelectric can

exhibit mechanical-electric coupling and pyroelectric effect. The thermo-piezomagnetic ma-

terial is able to exhibit mechanical-magnetic coupling and pyromagnetic effect. Generally

speaking, smart materials could have fully coupled electro-magneto-thermo-elastic behavior

which exhibit both mechanical-electric and mechanical-magnetic coupling effects as well as

pyroelectric, pyromagnetic, and the magnetoelectric effects.

The constitutive equations of thermo-elastic material, thermo-piezoelectric material,

thermo-piezomagnetic material, and fully coupled electro-magneto-thermo-elastic material

are expressed using Eqs. (2.1), (2.2), (2.3), and (2.4), respectively:

• Thermo-elastic constitutive equations

σij = Cijklεkl − Λijθ (2.1)

• Thermo-piezoelectric constitutive equations

σij = Cijklεkl − ekijEk − Λijθ

Di = eiklεkl + κikEk + piθ

(2.2)

• Thermo-piezomagnetic constitutive equations

σij = Cijklεkl − qkijHk − Λijθ

Bi = qiklεkl + µikHk + miθ

(2.3)

• Thermo-electric-magnetic-elastic constitutive equations

σij = Cijklεkl − ekijEk − qkijHk − Λijθ

Di = eiklεkl + κikEk + aikHk + piθ

Bi = qiklεkl + aikEk + µikHk + miθ

(2.4)

where Cijkl, ekij , qkij , and Λij are the elastic, the piezoelectric, the piezomagnetic, and the

thermal stress tensors, respectively (Note that Λij = −Cijklαkl, where αkl is the thermal
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expansion coefficients); κik, aik, and pi are the dielectric, magnetoelectric, and pyroelectric

tensors, respectively; and µik and mi are the magnetic permeability and pyromagnetic

tensors.

Li and Dunn [3] employed the Mori-Tanaka method [4] for the micromechanics analysis

of the average fields and effective moduli of fully coupled magneto-electro-elastic composites

where the closed-form expressions are obtained for effective magneto-electro-elastic proper-

ties of circular cylinder fibrous and laminated two-phase composites. Aboudi [5] developed

a homogenization method for the prediction of the effective properties of magneto-electro-

thermo-elastic composites using the framework of high-fidelity generalized method of cells.

The predictions of this model agree with those of Mori-Tanaka model well. Lee et al. [6]

developed a finite element analysis-based micromechanics approach through averaging of

the representative volume element (RVE) to determine the effective dielectric, magnetic,

mechanical, and coupled-field properties of this composites as functions of the phase vol-

ume fractions, the fiber arrangements in RVE, and the fiber material properties with special

emphasis on the poling directions of the piezoelectric and piezomagnetic fibers. The au-

thors recently constructed a micromechanics approach for the prediction of the effective

properties and local fields of heterogeneous electromagnetoelastic materials [7]. The work

is based on the framework of variational asymptotic method for unit cell homogenization

(VAMUCH) [8-12]. None of the above approach involve the effective specific heat for smart

heterogeneous materials, which is, as pointed out by Rosen and Hashin [13], the quantity

of heat necessary to produce a uniform temperature rise under the conditions of constant

surface boundary conditions. The effective specific heats of the composite are not the sim-

ple weighted averages of the specific heat of components because the values of the local

fields may change although the values of the global fields are kept constant when the smart

material is subjected to fixed surface boundary conditions and a uniform temperature rise.

The primary objective of the present paper is to enable VAMUCH for smart hetero-

geneous composites to capture the fully coupled multiphyiscal behavior including electric,

magnetic, thermal, and elastic behavior and their interactions. The resulting theory and

companion code will be able to predict effective multiphysical properties (including the ef-

fective elastic, piezoelectic, piezomagnetic, and magnetoelectric coupling coefficients as well

as the thermal stress coefficients, pyroelectric constants, pyromagnetic constants, and spe-

cific heats) and calculate the local multiphysical field distribution within the microstructure.
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This work is build upon the variational asymptotic method [14] along with two essential

assumptions within the concept of micromechanics for heterogeneous with an identifiable

unit cell (UC):

• Assumption 1 The exact solutions of the field variables have volume averages over

the UC. For example, if ui, φe, and φm are the exact displacements, electric potential,

and magnetic potential within the UC occupying a volume Ω, respectively, there exist

vi, ψe, and ψm such that

vi =
1
Ω

∫

Ω
ui dΩ ≡ 〈ui〉

ψe =
1
Ω

∫

Ω
φe dΩ ≡ 〈φe〉

ψm =
1
Ω

∫

Ω
φm dΩ ≡ 〈φm〉

(2.5)

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective properties

are assumed to be the intrinsic properties of the material when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field variables can be integrated over the

domain of UC, which is true almost all the time. The second assumption implies that we

will neglect the size effects of the material properties in the macroscopic analysis, which

is an assumption often made in the conventional continuum mechanics. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with h

as the characteristic size of the UC and l as the macroscopic size of the material. Others

assumptions such as particular geometry shape and arrangement of the constituents, specific

boundary conditions applied to the UC, and prescribed relations between local fields and

global fields are not needed for this study.

2.2 Theoretical Formulation

Three coordinates are used in our formulation: two cartesian coordinates x = (x1, x2, x3)

and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3) (see Fig. 2.1). We

use xi as the global coordinates to describe the macroscopic structure and yi parallel to xi
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Fig. 2.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

as the local coordinates to describe the UC (Here and throughout the paper, Latin indices

assume 1, 2, and 3 and repeated indices are summed over their range except where explicitly

indicated). We choose the origin of the local coordinates yi to be the geometric center of

UC. For example, if the UC is a cube with dimensions as di, then yi ∈ [−di
2 , di

2 ]. To uniquely

locate a UC in the heterogeneous material we also introduce integer coordinates ni. The

integer coordinates are related to the global coordinates in such a way that ni = xi/di (no

summation over i). It is emphasized although only square array is sketched in Fig. 2.1, the

present theory has no such limitations.

The same effective properties can be calculated from an imaginary, unbounded, and

unloaded heterogeneous material with the same microstrucutre as the real, loaded, and

bounded one in light of the essential assumption 2. Therefore, the micromechanics model

could be developed from an imaginary, unloaded, heterogeneous material which completely

occupies the three-dimensional (3D) space R and composes of infinite many repeating UCs.

The total potential energy of this imaginary material is equal to the summation of the
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Helmholtz free energy stored in all the UCs, which is

Π =
∞∑

n=−∞

∫

Ω

(
1
2
εT Dε + εT ηθ +

1
2
cv

θ2

T0

)
dΩ (2.6)

where

ε = bε11, 2ε12, ε22, 2ε13, 2ε23, ε33, E1, E2, E3,H1, H2,H3cT (2.7)

containing the 3D strain field εij , the 3D electric field Ei, and the 3D magnetic field Hi,

which are defined for a linear theory as:

εij(n;y) =
1
2

[
∂ui(n;y)

∂yj
+

∂uj(n;y)
∂yi

]
(2.8)

Ei(n;y) = −∂φe(n;y)
∂yi

(2.9)

Hi(n;y) = −∂φm(n;y)
∂yi

(2.10)

and D is a 12× 12 matrix containing all the necessary material constants for characterizing

the fully coupled thermoelectromagnetoelastic materials such that

D =




C −e −q

−eT −k −a

−qT −aT −µ




(2.11)

where C is a 6× 6 submatrix for elastic constants, e is a 6× 3 submatrix for piezoelectric

coefficients, q is a 6× 3 submatrix for piezomagnetic coefficients, k is a 3× 3 submatrix for

dielectric permeability, a is a 3 × 3 submatrix for electromagnetic coefficients, and µ is a

3× 3 submatrix for magnetic permeability.

Other terms in Eq. (2.6) include η, which is a 12×1 matrix containing the second-order

of thermal stress tensor Λij , vectors of pyroelectric pi, and vectors of pyromagnetic mi; cv

is the specific heat per unit volume at constant volume, T0 is the reference temperature at

which the constituent material is stress free, θ denotes the difference between the actual

temperature and the reference temperature.

Since the infinite many UCs form a continuous heterogenous material, we need to

enforce the continuity of the displacement field ui, the electric potential field φe, and the
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magnetic potential φm on the interface between adjacent UCs, which are:

ui(n1, n2, n3; d1/2, y2, y3) = ui(n1 + 1, n2, n3;−d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3) = ui(n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2) = ui(n1, n2, n3 + 1; y1, y2,−d3/2)

φe(n1, n2, n3; d1/2, y2, y3) = φe(n1 + 1, n2, n3;−d1/2, y2, y3)

φe(n1, n2, n3; y1, d2/2, y3) = φe(n1, n2 + 1, n3; y1,−d2/2, y3)

φe(n1, n2, n3; y1, y2, d3/2) = φe(n1, n2, n3 + 1; y1, y2,−d3/2)

φm(n1, n2, n3; d1/2, y2, y3) = φm(n1 + 1, n2, n3;−d1/2, y2, y3)

φm(n1, n2, n3; y1, d2/2, y3) = φm(n1, n2 + 1, n3; y1,−d2/2, y3)

φm(n1, n2, n3; y1, y2, d3/2) = φm(n1, n2, n3 + 1; y1, y2,−d3/2)

(2.12)

The smart heterogeneous materials considered here is subjected to a uniform temperature

deviation θ. Therefore, the continuity condition for temperature field between adjacent

UCs is automatically satisfied. The exact solution of the present problem will minimize

the summation of Helmholtz free energy in Eq. (2.6) under the conditions in Eqs. (2.5)

and (2.12). To avoid the difficulty associated with discrete integer arguments, we can

reformulate the problem, including Eqs. (2.6), (2.8), (2.9), (2.10), and (2.12) in terms of

continuous functions using the idea of quasicontinuum [15]. The corresponding formulas

are listed below.

Π =
∫

R

〈
1
2
εT Dε + εT ηθ +

1
2
cv

θ2

T0

〉
dR (2.13)

εij(x;y) =
1
2

[
∂ui(x;y)

∂yj
+

∂uj(x;y)
∂yi

]
≡ u(i|j) (2.14)

Ei(x;y) = −∂φe(x;y)
∂yi

(2.15)

Hi(x;y) = −∂φm(x;y)
∂yi

(2.16)
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and

ui(x1, x2, x3; d1/2, y2, y3) = ui(x1 + d1, x2, x3;−d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3) = ui(x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2) = ui(x1, x2, x3 + d3; y1, y2,−d3/2)

φe(x1, x2, x3; d1/2, y2, y3) = φe(x1 + d1, x2, x3;−d1/2, y2, y3)

φe(x1, x2, x3; y1, d2/2, y3) = φe(x1, x2 + d2, x3; y1,−d2/2, y3)

φe(x1, x2, x3; y1, y2, d3/2) = φe(x1, x2, x3 + d3; y1, y2,−d3/2)

φm(x1, x2, x3; d1/2, y2, y3) = φm(x1 + d1, x2, x3;−d1/2, y2, y3)

φm(x1, x2, x3; y1, d2/2, y3) = φm(x1, x2 + d2, x3; y1,−d2/2, y3)

φm(x1, x2, x3; y1, y2, d3/2) = φm(x1, x2, x3 + d3; y1, y2,−d3/2)

(2.17)

Introducing Lagrange multipliers, we can pose the variational statement of the microme-

chanical analysis of UC as a stationary value problem of the following functional:

J =
∫

R

{〈
1
2
εT Dε + εT ηθ +

1
2
cv

θ2

T0

〉
+ λi(〈ui〉 − vi)

+ λe(〈φ〉e − ψe) + λm(〈φ〉m − ψm)

+
∫

S1

γi1 [ui(xj ; d1/2, y2, y3)− ui(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

γi2 [ui(xj ; y1, d2/2, y3)− ui(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3 [ui(xj ; y1, y2, d3/2)− ui(xj + δj3d3; y1, y2,−d3/2)] dS3

+
∫

S1

α1 [φe(xj ; d1/2, y2, y3)− φe(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

α2 [φe(xj ; y1, d2/2, y3)− φe(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

α3 [φe(xj ; y1, y2, d3/2)− φe(xj + δj3d3; y1, y2,−d3/2)] dS3

+
∫

S1

β1 [φm(xj ; d1/2, y2, y3)− φm(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

β2 [φm(xj ; y1, d2/2, y3)− φm(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

β3 [φm(xj ; y1, y2, d3/2)− φm(xj + δj3d3; y1, y2,−d3/2)] dS3

}
dR

(2.18)

where λi, λe, λm, γij , αi, and βi are Lagrange multipliers introduced to enforce the con-

straints in Eqs. (2.5) and (2.17), Si are the surfaces with ni = 1, xj represents the triplet
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of x1, x2, x3, and δij is the Kronecker delta. Following the general procedure of VAMUCH,

we can obtain the following change of variables for ui, φe, and φm:

ui(x;y) = vi(x) + yj
∂vi

∂xj
+ χi(x;y) (2.19)

φe(x;y) = ψe(x) + yi
∂ψe

∂xi
+ ζe(x;y) (2.20)

φm(x;y) = ψm(x) + yi
∂ψm

∂xi
+ ζm(x;y) (2.21)

where χi, ζe, and ζm are the fluctuation functions, satisfying the following constraints in

view of Eqs. (2.5) when the origin of the local coordinate system is chosen to be the center

of UC:

〈χi〉 = 0 〈ζe〉 = 0 〈ζm〉 = 0 (2.22)

Substituting Eqs. (2.19), (2.20), and (2.21) into Eq. (2.18), we obtain a stationary value

problem of a functional defined over UC for χi, ζe, and ζm according to the variational

asymptotic method [14], such that:

JΩ =
〈

1
2
εT Dε + εT ηθ +

1
2
cv

θ2

T0

〉
+ λi 〈χi〉+ λe 〈ζe〉

+ λm 〈ζm〉+
3∑

j=1

∫

Sj

γij(χ
+j
i − χ−j

i )dSj

+
3∑

j=1

∫

Sj

αj(ζe
+j − ζe

−j)dSj +
3∑

j=1

∫

Sj

βj(ζm
+j − ζm

−j)dSj

(2.23)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

ζe
+j = ζe|yj=dj/2, ζe

−j = ζe|yj=−dj/2 for j = 1, 2, 3

ζm
+j = ζm|yj=dj/2, ζm

−j = ζm|yj=−dj/2 for j = 1, 2, 3

Matrix ε can be expressed as

ε = ε̄ + ε1 (2.24)
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with

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33 Ē1 Ē2 Ē3 H̄1 H̄2 H̄3cT

ε1 = bε̂11 2ε̂12 ε̂22 2ε̂13 2ε̂23 ε̂33 Ê1 Ê2 Ê3 Ĥ1 Ĥ2 Ĥ3cT (2.25)

and

ε̄ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
Ēi = −∂ψe

∂xi
H̄i = −∂ψm

∂xi

ε̂ij =
1
2

(
∂χi

∂yj
+

∂χj

∂yi

)
Êi = −∂ζe

∂yi
Ĥi = −∂ζm

∂yi
(2.26)

where ε̄ will be shown later to be the global field variable array containing the strain field,

the electric field, and the magnetic field for the material with homogenized effective material

properties. The functional JΩ in Eq. (2.23) forms the backbone of the present theory. This

stationary value of this functional can be solved analytically for very simple cases such as

binary composites, however, for general cases we need to use numerical techniques such as

the finite element method (FEM) to seek numerical solutions.

2.3 Finite Element Implementation

It is not efficient to perform the FEM soultion in light of Eq. (2.23) because the La-

grange multipliers increase the number of unknowns. In practice, we minimized the following

functional

ΠΩ =
1
Ω

∫

Ω

(
1
2
εT Dε + εT ηθ +

1
2
cv

θ2

T0

)
dΩ (2.27)

under the following constraints

χ+j
i = χ−j

i , ζe
+j = ζe

−j , and ζm
+j = ζm

−j for j = 1, 2, 3 (2.28)

The constraints in Eqs. (2.22) do not affect the minimum values of ΠΩ but help uniquely

determine χi, ζe, and ζm. We actually constrain the fluctuation function at an arbitrary

node to be zero and later use this constraint to recover the unique fluctuation functions.

The degrees of freedom of the nodes on the positive boundary surface (i.e., yi = di/2)

are slave to the nodes on the opposite negative boundary surface (i.e., yi = −di/2). By

assembling all the independent active degrees of freedom (DOFs), we can implicitly and
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exactly incorporate the constraints in Eqs. (2.28).

Introduce the following matrix notation

ε1 =




∂
∂y1

0 0 0 0

∂
∂y2

∂
∂y1

0 0 0

0 ∂
∂y2

0 0 0

∂
∂y3

0 ∂
∂y1

0 0

0 ∂
∂y3

∂
∂y2

0 0

0 0 ∂
∂y3

0 0

0 0 0 − ∂
∂y1

0

0 0 0 − ∂
∂y2

0

0 0 0 − ∂
∂y3

0

0 0 0 0 − ∂
∂y1

0 0 0 0 − ∂
∂y2

0 0 0 0 − ∂
∂y3








χ1

χ2

χ3

ζe

ζm





≡ Γhχ (2.29)

where Γh is an operator matrix. The χ is discretized using the finite elements as

χ(xi; yi) = S(yi)X (xi) (2.30)

with S representing the shape functions and X is a column matrix of the nodal values of

the mechanical, electric, and magnetic fluctuation functions. Substituting Eqs. (2.29) and

(2.30) into Eq. (2.27), the discretized version of the functional is obtained as

ΠΩ =
1

2Ω
(X T EX + 2X T Dhεε̄ + ε̄T Dεεε̄

+ 2X T Dhθθ + 2ε̄T Dεθθ + Dθθ
θ2

T0
)

(2.31)

where

E =
∫

Ω
(ΓhS)T D(ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T DdΩ

Dεε =
∫

Ω
DdΩ Dhθ =

∫

Ω
(ΓhS)T βdΩ

Dεθ =
∫

Ω
βdΩ Dθθ =

∫

Ω
cvdΩ
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Minimizing ΠΩ in Eq. (2.31), we obtain the following linear system

EX = −Dhεε̄−Dhθθ (2.32)

The fluctuation function X in Eq. (2.32) is linearly proportional to ε̄ and θ so that the

solution can be written symbolically as

X = X0ε̄ + Xθθ (2.33)

Substituting Eq. (2.33) into Eq. (2.31), we obtain the Helmholtz free energy density of the

UC as

ΠΩ =
1
2
ε̄T D̄ε̄ + ε̄T η̄θ +

1
2
c̄v

θ2

T0
(2.34)

with

D̄ =
1
Ω

(X T
0 Dhε + Dεε)

η̄ =
1
Ω

[
1
2
(DT

hεXθ + X T
0 Dhθ) + Dεθ

]

c̄v =
1
Ω

[X T
θ DhθT0 + Dθθ

]

where ε̄ is a column matrix containing the global strains, global electric fields, and global

magnetic fields; D̄ in Eq. (2.34) is a 12×12 effective material matrix containing the effective

material properties which can be expressed as

D̄ =




C∗ −e∗ −q∗

−e∗T −k∗ −a∗

−q∗T −a∗ −µ∗




(2.35)

η̄ is a 12 × 1 effective matrix containing the second-order thermal stress tensor Λij , the

pyroelectric vectors pi, and the pyromagnetic vectors mi; and c̄v is the effective specific

heat.

After solving the fluctuation function χ, we can recover the local fields, such as local

displacements, electric potential, magnetic potential, stresses, electric displacements, and

magnetic flux density in terms of the macroscopic behavior including the global displace-

ments vi, the global electric potential ψe, the global magnetic potential φm, and the global
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field variables contained in ε̄. First, the fluctuation functions should be uniquely determined

using the constraints in Eq. (2.22). Then, we can recover the local displacements, electric

potential, and magnetic potential using Eqs. (2.19), (2.20), and (2.21) as





u1

u2

u3

φe

φm





=





v1

v2

v3

ψe

ψm





+




∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

∂ψe

∂x1

∂ψe

∂x2

∂ψe

∂x3

∂ψm

∂x1

∂ψm

∂x2

∂ψm

∂x3








y1

y2

y3





+ S̄X̄ (2.36)

Here S̄ is different from S due to the recovery of slave nodes and the constrained node. The

local strain field, the electric field, and the magnetic field can be recovered using Eq. (2.24)

along with Eq. (2.29) as

ε = ε̄ + ΓhS̄X̄ (2.37)

The local stress, the electric displacement field, and the magnetic flux density can be re-

covered straightforwardly using the 3D constitutive relations for the constituent material

as

σ = Dε + ηθ (2.38)

where σ is a column matrix containing 3D stresses, electric displacements, and magnetic

flux density such that

σ = bσ11 σ12 σ22 σ13 σ23 σ33 − T1 − T2 − T3 −B1 −B2 −B3cT (2.39)

where σij , Ti, and Bi denote the stress tensor, the electric flux density vector, and the

magnetic flux density vector, respectively.

2.4 Numerical Results

The predictive capability of the effective properties of VAMUCH has been demonstrated

using many examples [11]. In this section, we will use VAMUCH to predict the effective

elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, and electromagnetic

coupling constants as well as the thermal stress coefficients, pyroelectric, pyromagnetic

coefficients, and specific heat, and recover the distribution of the local fields.
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Table 2.1: Material properties of the composite constituents (BaTiO3, CoFe2O4, and epoxy)

BaTiO3 CoFe2O4 Epoxy
C11(GPa) 162 269.5 5.53
C12(GPa) 78 170 2.97
C23(GPa) 77 173 2.97
C22(GPa) 166 286 5.53
C55(GPa) 43 45.3 1.28

k11(C/Vm) 12.6× 10−9 0.093× 10−9 0.1× 10−9

k33(C/Vm) 11.2× 10−9 0.08× 10−9 0.1× 10−9

µ11(Ns2/C2) 0.1× 10−4 1.57× 10−4 0.01× 10−4

µ33(Ns2/C2) 0.05× 10−4 −5.9× 10−4 0.01× 10−4

e11(C/m2) 18.6 0 0
e21(C/m2) -4.4 0 0
e51(C/m2) 11.6 0 0
q11(N/Am) 0 699.7 0
q21(N/Am) 0 580.3 0
q51(N/Am) 0 550 0
α11(1/K) 6.4× 10−6 10× 10−6 54× 10−6

α22(1/K) 15.7× 10−6 10× 10−6 54× 10−6

α33(1/K) 15.7× 10−6 10× 10−6 54× 10−6

cv(kJ/m3.K) 3193.62 2000 -

2.4.1 Two-phase composites

We consider a two-phase composite composed of a CoFe2O4 piezomagnetic matrix

reinforced by BaTiO3 piezoelectric fibers which is an example extensively investigated in

[3], [6], and [11]. The piezoelectric fibers are of circular shape and arranged in a square

array. Both constituents are transversely isotropic with the axis of symmetry oriented in

the 1-direction. The independent material constants of constituents are given in Table 2.1.

Fig. 2.2 and 2.3 show the effective CTEs and specific heat varying with volume fraction

of CoFe2O4. The effective pyroelectric and pyromagnetic constants of the composite are

illustrated in Fig. 2.4 and 2.5, respectively, although they are absent in either of the individ-

ual phase. The current program can also accurately recover the local distribution of the field

variables resulting from the application of certain external loading conditions. Fig. 2.6 and

2.7 show the contour plots of the distributions of σ22 and von Mises stress within UC (VOF

20%) which are induced by the applied boundary conditions of ε22 = 0.1%, E2 = 100V/m,

and 100K uniform temperature rise from stress free state.
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Fig. 2.2: Effective thermal expansion coefficients.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Volume fraction of fibers

P
y

ro
m

a
g

n
e

ti
c

 c
o

e
ff

ic
ie

n
t 

( 
  

1
0

  
 N

/A
m

K
)

X
-3
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Fig. 2.6: Contour plot of σ22 (GPa).

Fig. 2.7: Contour plot of von Mises stress (GPa).
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Fig. 2.18: Effective pyromagnetic coefficients.

2.4.2 Three-phase composites

The three-phase electromagnetoelastic composite considered consists of an elastic epoxy

matrix reinforced with piezoelectric (BaTiO3) and piezomagnetic fibers (CoFe2O4). The

piezoelectric fiber is of circular shape and at the center of the unit cell while the piezomag-

netic fibers in the shape of quarter squares are located at the four corners of unit cell as

shown in Fig. 2.8. The material properties of the three constituents are listed in Table 2.1.

Fig. 2.9-2.18 show that the variation of the effective properties of composites with respect to

the volume fractions of the piezoelectric fibers (BaTiO3) when the matrix volume fraction

is fixed at 0.5. Effective material properties include elastic constants, dielectric coefficients,

magnetic permeability coefficients, piezoelectric coefficients, piezomagnetic coefficients and

electromagnetic coefficients as well as thermal stress coefficients, pyroelectric, and pyromag-

netic coefficients.

2.5 Conclusion

A fully coupled micromecahnics model has been constructed for predicting the effective

properties of smart composites. It can also accurately recover the distribution of the local
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fields. It provides a convenient tool for the investigation of smart composite materials.
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Chapter 3

Variational Asymptotic Homogenization of Heterogeneous

Electromagnetoelastic Materials

1

This chapter is a journal paper published in the International Journal of Engineering

Science, Vol. 46, No. 8, 2008, pp. 741-757.

Abstract

The variational asymptotic method is used to develop a micromechanics model for

predicting the effective properties and local fields of heterogeneous electromagnetoelastic

materials. Starting from the total electromagnetic enthalpy of the heterogenous continuum,

we formulate the micromechanics model as a constrained minimization problem taking ad-

vantage of the fact that the size of the microstructure is small compared to the macroscopic

size of the material. To handle real microstructures in engineering applications, we imple-

ment this new model using the finite element method. A few examples are used to demon-

strate the application and accuracy of this theory and the companion computer program,

VAMUCH. The present results are compared with those available in the literature.

3.1 Introduction

The smart composites consisting of piezoelectric and piezomagnetic constituents have

received significant attention due to their extensive applications in broadband magnetic

field probes, electronic packaging, acoustic devices, hydrophones, sensors, and actuators.

The magnetoelectric effect in composites, which is absent in constituents, is created by the

interaction between the constituent phases, a result of the so-called product property. Van

Ran et al. [1] reported that the electromagnetic coefficient obtained in BaTiO3 −CoFe2O4

composites is two orders larger than that of Cr2O3, which had the highest electromagnetic

coefficient among single-phase materials known at that time. A broadband electromagnetic

transducer with a flat frequency response is also achieved using composites in [2]. Since
1Coauthored by: Tian Tang and Wenbin Yu.
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then, many theoretical and experimental studies have been performed on the electromag-

netic coupling in the piezoelectric-piezomagnetic composite materials [3-11]. Harshe and

his co-workers [3,4] investigated the 3-0/0-3 electromagnetic composites in terms of simple

geometrical model by assuming that the particles embedded in matrix are small cubes. Nan

[5] proposed a non-self-consistent model to predict the effective properties of piezoelectric-

piezomagnetic two-phase composites which fails to satisfy the exact relations derived in

[6]. Li and Dunn [7] solved the inclusion problem for an infinite electromagnetoelastic

medium to obtain the generalized Eshelby tensors which can be used to predict the effec-

tive properties of electromagnetoelastic composites. For example, The Mori-Tanaka mean

field method is used in [8] to study the average fields and effective moduli of composites

that exhibit full coupling between elastic, electric, and magnetic fields, where closed-form

expressions are obtained for effective electromagnetoelastic properties of circular cylinder

fibrous and laminated two-phase composites. The Mori-Tanaka method is also used in [9] to

derive a closed-form solution for effective moduli of piezoelectric-piezomagnetic two-phase

composites for four practical inclusions: elliptical cylinder, circular cylinder, penny shape,

and ribbon. Huang et al. [10] analytically obtained the optimum fiber volume fractions at

which these coefficients reach their maximum values. Li [11] studied the average electromag-

netoelastic field in a multi-inclusion or inhomogeneity embedded in an infinite matrix and

developed a numerical algorithm to evaluate electromagnetoelastic Eshelby tensors. Aboudi

[12] developed a homogenization method to predict the effective properties of electromag-

netothermoelastic composites using the framework of high-fidelity generalized method of

cells. The predictions of this model agree with those of Mori-Tanaka model well.

As suggested in [13], adding an elastic polymer matrix into the two-phase electro-

magnetoelastic composite will increase the ductility and formability of the composites. To

perform a micromechanical modeling of this three-phase electromagnetoelastic composites,

Lee et al. [14] developed a finite element analysis-based micromechanics approach through

averaging of the representative volume element (RVE) to determine the effective dielectric,

magnetic, mechanical, and coupled-field properties of this composites as functions of the

phase volume fractions, the fiber arrangements in RVE, and the fiber material properties

with special emphasis on the poling directions of the piezoelectric and piezomagnetic fibers.

The objective of this paper is to develop a micromechanics model based on the frame-

work of variational asymptotic method for unit cell homogenization (VAMUCH) for pre-
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dicting the effective properties and local fields of electromagnetoelastic composites. This

framework is build upon the variational asymptotic method [15] along with two essential

assumptions within the concept of micromechanics for composites with an identifiable unit

cell (UC):

• Assumption 1 The exact solutions of the field variables have volume averages over

the UC. For example, if ui, φe, and φm are the exact displacements, electric potential,

and magnetic potential within the UC occupying a volume Ω, respectively, there exist

vi, ψe, and ψm such that

vi =
1
Ω

∫

Ω
ui dΩ ≡ 〈ui〉

ψe =
1
Ω

∫

Ω
φe dΩ ≡ 〈φe〉

ψm =
1
Ω

∫

Ω
φm dΩ ≡ 〈φm〉

(3.1)

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective properties

are assumed to be the intrinsic properties of the material when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the

first assumption is that the exact solutions of the field variables can be integrated over the

domain of UC, which is true almost all the time. The second assumption implies that we

will neglect the size effects of the material properties in the macroscopic analysis, which

is an assumption often made in the conventional continuum mechanics. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with

h as the characteristic size of the UC and l as the macroscopic size of the material. Other

assumptions such as particular geometry shape and arrangement of the constituents, specific

boundary conditions applied to the UC, and prescribed relations between local fields and

global fields are not needed for this study.

This VAMUCH modeling framework has been successfully applied to predict effective

thermoelastic properties including elastic constants, specific heats, and coefficients of ther-

mal expansions, and effective thermal conductivity and associated local fields [16-18]. It is
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Fig. 3.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

also applied to accurately predict the initial yielding surface and elastoplastic behavior of

metal matrix composites [19].

3.2 Theoretical Formulation

Three coordinates are used in our formulation: two cartesian coordinates x = (x1, x2, x3)

and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3) (see Fig. 3.1). We

use xi as the global coordinates to describe the macroscopic structure and yi parallel to xi

as the local coordinates to describe the UC (Here and throughout the paper, Latin indices

assume 1, 2, and 3 and repeated indices are summed over their range except where explicitly

indicated). We choose the origin of the local coordinates yi to be the geometric center of

UC. For example, if the UC is a cube with dimensions as di, then yi ∈ [−di
2 , di

2 ]. To uniquely

locate a UC in the heterogeneous material we also introduce integer coordinates ni. The

integer coordinates are related to the global coordinates in such a way that ni = xi/di (no

summation over i). It is emphasized although only square array is sketched in Fig. 3.1, the

present theory has no such limitations.

As implied by Assumption 2, we can obtain the same effective properties from an
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imaginary, unbounded, and unloaded heterogeneous material with the same microstrucutre

as the real, loaded, and bounded one. Hence we could derive the micromechanics model

from a imaginary, unloaded, heterogeneous material which completely occupies the three-

dimensional (3D) space R and composes of infinite many repeating UCs. For composites

containing piezoelectric and piezomagnetic phases, the total electromagnetic enthalpy is

equal to the summation of the electromagnetic enthalpy [20] stored in all the UCs, which is

Π =
∞∑

n=−∞

∫

Ω
2HdΩ (3.2)

where 2H is twice the electromagnetic enthalpy, given by

2H = εT Dε (3.3)

where

ε = bε11 2ε12 ε22 2ε13 2ε23 ε33 E1 E2 E3 H1 H2 H3cT (3.4)

containing the 3D strain field εij , the 3D electric field Ei, and the 3D magnetic field Hi,

which are defined for a linear theory as:

εij(n;y) =
1
2

[
∂ui(n;y)

∂yj
+

∂uj(n;y)
∂yi

]
(3.5)

Ei(n;y) = −∂φe(n;y)
∂yi

(3.6)

Hi(n;y) = −∂φm(n;y)
∂yi

(3.7)

and D is a 12× 12 matrix containing all the necessary material constants for characterizing

completely coupled electromagnetoelastic materials such that

D =




C −e −q

−eT −k −a

−qT −aT −µ




(3.8)

where C is a 6× 6 submatrix for elastic constants, e is a 6× 3 submatrix for piezoelectric

coefficients, q is a 6 × 3 submatrix for piezomagnetic coefficients, k is a 3 × 3 submatrix

for dielectric permeability, a is a 3 × 3 submatrix for electromagnetic coefficients, and µ
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is a 3 × 3 submatrix for magnetic permeability. C, k, and µ will not vanish all the time,

while other coefficients including e, q, a will vanish if the corresponding coupling does

not exist. For example, if the magnetic field is not coupled with the electric field, then

a = 0. If the magnetic field is not coupled with the mechanical field, then q = 0. If the

electric field is not coupled with the mechanical field, then e = 0. Even if a certain coupling

does not exist in any of the constituent phases, it may appear as an effective property of

a composite. For example, the interesting behavior of electromagnetoelastic composites is

the overall electromagnetic coupling effect present in the composite, but entirely absent in

any of the individual phases. Therefore, the electromagnetic coefficients a could be a new

material properties produced by simply engineering the microstructure in such a way to

combine two or more different phases.

In view of the fact that the infinite many UCs form a continuous heterogenous material,

we need to enforce the continuity of the displacement field ui, the electric potential field φe,

and magnetic potential φm on the interface between adjacent UCs, which are:

ui(n1, n2, n3; d1/2, y2, y3) = ui(n1 + 1, n2, n3;−d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3) = ui(n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2) = ui(n1, n2, n3 + 1; y1, y2,−d3/2)

φe(n1, n2, n3; d1/2, y2, y3) = φe(n1 + 1, n2, n3;−d1/2, y2, y3)

φe(n1, n2, n3; y1, d2/2, y3) = φe(n1, n2 + 1, n3; y1,−d2/2, y3)

φe(n1, n2, n3; y1, y2, d3/2) = φe(n1, n2, n3 + 1; y1, y2,−d3/2)

φm(n1, n2, n3; d1/2, y2, y3) = φm(n1 + 1, n2, n3;−d1/2, y2, y3)

φm(n1, n2, n3; y1, d2/2, y3) = φm(n1, n2 + 1, n3; y1,−d2/2, y3)

φm(n1, n2, n3; y1, y2, d3/2) = φm(n1, n2, n3 + 1; y1, y2,−d3/2)

(3.9)

The exact solution of the present problem will minimize the summation of electromag-

netic enthalpy in Eq. (3.2) under the conditions in Eqs. (3.1) and (3.9). To avoid the

difficulty associated with discrete integer arguments, we can reformulate the problem, in-

cluding Eqs. (3.2), (3.5), (3.6), (3.7), and (3.9) in terms of continuous functions using the
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idea of quasicontinuum [21]. The corresponding formulas are listed below.

Π =
∫

R

〈
εT Dε

〉
dR (3.10)

εij(x;y) =
1
2

[
∂ui(x;y)

∂yj
+

∂uj(x;y)
∂yi

]
≡ u(i|j) (3.11)

Ei(x;y) = −∂φe(x;y)
∂yi

(3.12)

Hi(x;y) = −∂φm(x;y)
∂yi

(3.13)

and

ui(x1, x2, x3; d1/2, y2, y3) = ui(x1 + d1, x2, x3;−d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3) = ui(x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2) = ui(x1, x2, x3 + d3; y1, y2,−d3/2)

φe(x1, x2, x3; d1/2, y2, y3) = φe(x1 + d1, x2, x3;−d1/2, y2, y3)

φe(x1, x2, x3; y1, d2/2, y3) = φe(x1, x2 + d2, x3; y1,−d2/2, y3)

φe(x1, x2, x3; y1, y2, d3/2) = φe(x1, x2, x3 + d3; y1, y2,−d3/2)

φm(x1, x2, x3; d1/2, y2, y3) = φm(x1 + d1, x2, x3;−d1/2, y2, y3)

φm(x1, x2, x3; y1, d2/2, y3) = φm(x1, x2 + d2, x3; y1,−d2/2, y3)

φm(x1, x2, x3; y1, y2, d3/2) = φm(x1, x2, x3 + d3; y1, y2,−d3/2)

(3.14)
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Introducing Lagrange multipliers, we can pose the variational statement of the microme-

chanical analysis of UC as a stationary value problem of the following functional:

J =
∫

R

{〈
εT Dε

〉
+ λi(〈ui〉 − vi) + λe(〈φ〉e − ψe) + λm(〈φ〉m − ψm)

+
∫

S1

γi1 [ui(xj ; d1/2, y2, y3)− ui(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

γi2 [ui(xj ; y1, d2/2, y3)− ui(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3 [ui(xj ; y1, y2, d3/2)− ui(xj + δj3d3; y1, y2,−d3/2)] dS3

+
∫

S1

α1 [φe(xj ; d1/2, y2, y3)− φe(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

α2 [φe(xj ; y1, d2/2, y3)− φe(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

α3 [φe(xj ; y1, y2, d3/2)− φe(xj + δj3d3; y1, y2,−d3/2)] dS3

+
∫

S1

β1 [φm(xj ; d1/2, y2, y3)− φm(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

β2 [φm(xj ; y1, d2/2, y3)− φm(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

β3 [φm(xj ; y1, y2, d3/2)− φm(xj + δj3d3; y1, y2,−d3/2)] dS3

}
dR

(3.15)

where λi, λe, λm, γij , αi, and βi are Lagrange multipliers introduced to enforce the con-

straints in Eqs. (3.1) and (3.14), Si are the surfaces with ni = 1, xj represents the triplet

of x1, x2, x3, and δij is the Kronecker delta. Following the general procedure of VAMUCH,

we can obtain the following change of variables for ui, φe, and φm:

ui(x;y) = vi(x) + yj
∂vi

∂xj
+ χi(x;y) (3.16)

φe(x;y) = ψe(x) + yi
∂ψe

∂xi
+ ζe(x;y) (3.17)

φm(x;y) = ψm(x) + yi
∂ψm

∂xi
+ ζm(x;y) (3.18)

where χi, ζe, and ζm are the fluctuation functions, satisfying the following constraints in

view of Eqs. (3.1) when the origin of the local coordinate system is chosen to be the center

of UC:

〈χi〉 = 0 〈ζe〉 = 0 〈ζm〉 = 0 (3.19)
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Substituting Eqs. (3.16), (3.17), and (3.18) into Eq. (3.15), we obtain a stationary value

problem of a functional defined over UC for χi, ζe, and ζm according to the variational

asymptotic method [15], such that:

JΩ =
〈
εT Dε

〉
+ λi 〈χi〉+ λe 〈ζe〉+ λm 〈ζm〉+

3∑

j=1

∫

Sj

γij(χ
+j
i − χ−j

i )dSj

+
3∑

j=1

∫

Sj

αj(ζe
+j − ζe

−j)dSj +
3∑

j=1

∫

Sj

βj(ζm
+j − ζm

−j)dSj

(3.20)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

ζe
+j = ζe|yj=dj/2, ζe

−j = ζe|yj=−dj/2 for j = 1, 2, 3

ζm
+j = ζm|yj=dj/2, ζm

−j = ζm|yj=−dj/2 for j = 1, 2, 3

Matrix ε can be expressed as

ε = ε̄ + ε1 (3.21)

with

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33 Ē1 Ē2 Ē3 H̄1 H̄2 H̄3cT

ε1 = bε̂11 2ε̂12 ε̂22 2ε̂13 2ε̂23 ε̂33 Ê1 Ê2 Ê3 Ĥ1 Ĥ2 Ĥ3cT (3.22)

and

ε̄ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
Ēi = −∂ψe

∂xi
H̄i = −∂ψm

∂xi

ε̂ij =
1
2

(
∂χi

∂yj
+

∂χj

∂yi

)
Êi = −∂ζe

∂yi
Ĥi = −∂ζm

∂yi
(3.23)

where ε̄ will be shown later to be the global field variable array containing the strain field,

the electric field, and the magnetic field for the material with homogenized effective material

properties. The functional JΩ in Eq. (3.20) forms the backbone of the present theory. This

stationary value of this functional can be solved analytically for very simple cases such as

binary composites, however, for general cases we need to use numerical techniques such as

the finite element method (FEM) to seek numerical solutions.
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3.3 Finite Element Implementation

It is possible to formulate the FEM solution based on Eq. (3.20), however, it is not the

most convenient and efficient way because Lagrange multipliers will increase the number of

unknowns. To this end, we can reformulate the stationary value problem of the functional

in Eq. (3.20) as the minimum value of the following functional

ΠΩ =
1
Ω

∫

Ω
εT DεdΩ (3.24)

under the following constraints

χ+j
i = χ−j

i , ζe
+j = ζe

−j , and ζm
+j = ζm

−j for j = 1, 2, 3 (3.25)

The constraints in Eqs. (3.19) do not affect the minimum values of ΠΩ but help uniquely

determine χi, ζe, and ζm. In practice, we can constrain the fluctuation function at an arbi-

trary node to be zero and later use this constraint to recover the unique fluctuation functions.

It is fine to use penalty function method to introduce the constraints in Eqs. (3.25). How-

ever, this method introduces additional approximation and the robustness of the solution

depends on the choice of large penalty numbers. Here, we choose to make the nodes on

the positive boundary surface (i.e., yi = di/2) slave to the nodes on the opposite negative

boundary surface (i.e., yi = −di/2). By assembling all the independent active degrees of

freedom (DOFs), we can implicitly and exactly incorporate the constraints in Eqs. (3.25).
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Introduce the following matrix notation

ε1 =




∂
∂y1

0 0 0 0

∂
∂y2

∂
∂y1

0 0 0

0 ∂
∂y2

0 0 0

∂
∂y3

0 ∂
∂y1

0 0

0 ∂
∂y3

∂
∂y2

0 0

0 0 ∂
∂y3

0 0

0 0 0 − ∂
∂y1

0

0 0 0 − ∂
∂y2

0

0 0 0 − ∂
∂y3

0

0 0 0 0 − ∂
∂y1

0 0 0 0 − ∂
∂y2

0 0 0 0 − ∂
∂y3








χ1

χ2

χ3

ζe

ζm





≡ Γhχ (3.26)

where Γh is an operator matrix. If we discretize χ using the finite elements as

χ(xi; yi) = S(yi)X (xi) (3.27)

with S representing the shape functions and X a column matrix of the nodal values of

the mechanical, electric, and magnetic fluctuation functions. Substituting Eqs. (3.26) and

(3.27) into Eq. (3.24), we obtain a discretized version of the functional as

ΠΩ =
1
Ω

(X T EX + 2X T Dhεε̄ + ε̄T Dεεε̄) (3.28)

where

E =
∫

Ω
(ΓhS)T D(ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T DdΩ Dεε =

∫

Ω
DdΩ (3.29)

Minimizing ΠΩ in Eq. (3.28), we obtain the following linear system

EX = −Dhεε̄ (3.30)
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It is clear from Eq. (3.30) that the fluctuation function X is linearly proportional to ε̄, which

means the solution can be written symbolically as

X = X0ε̄ (3.31)

Substituting Eq. (3.31) into Eq. (3.28), we can calculate the density of electromagnetic

enthalpy of the UC as

ΠΩ =
1
Ω

ε̄T
(X T

0 Dhε + Dεε

)
ε̄ ≡ ε̄T D̄ε̄ (3.32)

It can be seen that ε̄ is a column matrix containing the global strains, global electric fields,

and global magnetic fields, and D̄ in Eq. (3.32) is a 12× 12 matrix containing the effective

material properties which can be expressed as

D̄ =




C∗ −e∗ −q∗

−e∗T −k∗ −a∗

−q∗T −a∗ −µ∗




(3.33)

If the local fields within UC are of interest, we can recover those fields, such as local

displacements, electric potential, magnetic potential, stresses, electric displacements, and

magnetic flux density in terms of the macroscopic behavior including the global displace-

ments vi, the global electric potential ψe, the global magnetic potential φm, the global field

variables contained in ε̄, and the fluctuation functions contained in χ. First, we need to

uniquely determine the fluctuation functions, which can be simply achieved using the con-

straints in Eq. (3.19). Then, we can recover the local displacements, electric potential, and

magnetic potential using Eqs. (3.16), (3.17), and (3.18) as





u1

u2

u3

φe

φm





=





v1

v2

v3

ψe

ψm





+




∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

∂ψe

∂x1

∂ψe

∂x2

∂ψe

∂x3

∂ψm

∂x1

∂ψm

∂x2

∂ψm

∂x3








y1

y2

y3





+ S̄X̄ (3.34)

Here S̄ is different from S due to the recovery of slave nodes and the constrained node. The

local strain field, the electric field, and the magnetic field can be recovered using Eq. (3.21)
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along with Eq. (3.26) as

ε = ε̄ + ΓhS̄X̄ (3.35)

Finally, the local stress and electric displacement field can be recovered straightforwardly

using the 3D constitutive relations for the constituent material as

σ = Dε (3.36)

with σ as a column matrix containing 3D stresses, electric displacements, and magnetic flux

density such that

σ = bσ11 σ12 σ22 σ13 σ23 σ33 − T1 − T2 − T3 −B1 −B2 −B3cT (3.37)

where σij , Ti, and Bi denote the stress tensor, the electric flux density vector, and the

magnetic flux density vector, respectively.

The present formulation is implemented in the computer program VAMUCH, a general-

purpose mircomechanics analysis code. VAMUCH provides a unified analysis for periodic

microstructures which are normally modeled using 1D, 2D, or 3D UCs. First, the same code

VAMUCH can be used to homogenize binary composites (modeled using 1D UCs), fiber

reinforced composites (modeled using 2D UCs), and particle reinforced composites (modeled

using 3D UCs). Second, VAMUCH can reproduce the results for lower-dimensional UCs

using higher-dimensional UCs. That is, VAMUCH predicts the same results for binary

composites using 1D, 2D, or 3D UCs, and for fiber reinforced composites using 2D or 3D

UCs.

3.4 Numerical Examples

In this section, we will use several examples to demonstrate the application and ac-

curacy of the present theory and the companion code. The effective properties will be

predicted and compared with available results in the literature. Furthermore, the local

fields are also recovered to show the capability of VAMUCH.
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Table 3.1: Material properties of the composite constituents (BaTiO3, CoFe2O4, and epoxy)

BaTiO3(piezoelectric) CoFe2O4(piezomagnetic) Epoxy
C11(GPa) 162 269.5 5.53
C12(GPa) 78 170 2.97
C23(GPa) 77 173 2.97
C22(GPa) 166 286 5.53
C55(GPa) 43 45.3 1.28

k11(C/Vm) 12.6× 10−9 0.093× 10−9 0.1× 10−9

k33(C/Vm) 11.2× 10−9 0.08× 10−9 0.1× 10−9

µ11(Ns2/C2) 0.1× 10−4 1.57× 10−4 0.01× 10−4

µ33(Ns2/C2) 0.05× 10−4 −5.9× 10−4 0.01× 10−4

e11(C/m2) 18.6 0 0
e21(C/m2) -4.4 0 0
e51(C/m2) 11.6 0 0
q11(N/Am) 0 699.7 0
q21(N/Am) 0 580.3 0
q51(N/Am) 0 550 0

3.4.1 Two-phase Electromagnetoelastic Composites

Following [8], we first consider a two-phase composite consisting of a CoFe2O4 piezo-

magnetic matrix reinforced by BaTiO3 piezoelectric fibers. The piezoelectric fibers are of

circular shape and arranged in a square array. Both constituents are transversely isotropic

with the axis of symmetry oriented in the 1-direction. The independent material con-

stants of constituents are given in Table 3.1. Note that the electromagnetic coefficients in

both constituents are zero, i.e., aij = 0. The composites also exhibit transverse isotropy,

characterized by 17 independent material constants including five elastic constants, three

piezoelectric coefficients, three piezomagnetic coefficients, two dielectric coefficients, two

electromagnetic coefficients, two magnetic permeability coefficients, which are expressed in

the corresponding matrices as follows:

C =




C∗
11 0 C∗

12 0 0 C∗
12

0 C∗
55 0 0 0 0

C∗
12 0 C∗

22 0 0 C∗
23

0 0 0 C∗
55 0 0

0 0 0 0 C∗22−C∗23
2 0

C∗
12 0 C∗

23 0 0 C∗
22




e =




e∗11 0 0

0 e∗51 0

e∗21 0 0

0 0 e∗51

0 0 0

e∗21 0 0




q =




q∗11 0 0

0 q∗51 0

q∗21 0 0

0 0 q∗51

0 0 0

q∗21 0 0




(3.38)
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k =




k∗11 0 0

0 k∗33 0

0 0 k∗33




a =




a∗11 0 0

0 a∗33 0

0 0 a∗33




µ =




µ∗11 0 0

0 µ∗33 0

0 0 µ∗33




(3.39)

To compare with available results in the literature, we use VAMUCH to calculate these

effective coefficients with the volume fraction of fibers varying between 0.1 and 0.7. For

a square array with a circular fiber, the maximum achievable volume fraction of fibers is

around 0.785. It is noted that we chose a square array with circular fiber for convenience

to compare with available results in the literature. The present theory and VAMUCH can

handle other periodic structures with arbitrarily-shaped and positioned inclusions, even

voids [16]. In Figs. 3.2−3.8, we compared the results predicted by VAMUCH with those

reported in [8] using the Mori-Tanaka method, where VAMUCH results are denoted using

and Mori-Tanaka results are denoted as solid lines. It is clear from these plots that both

VAMUCH and the Mori-Tanaka method predict almost the same set of effective material

properties for this two-phase electromagnetoelastic composite. As reported previously, the

electromagnetic coupling effect is present in the composite, although it is not in either of

the individual phases. It is also observed in Fig. 3.6 that VAMUCH prediction for q∗51 is

slightly different from that of the Mori-Tanaka method when the volume fraction of fibers

is big. This might be due to the differences in choosing a specific microstructure (square

array with circular fibers) for VAMUCH yet the information of this specific microstructure

is not rigorously captured in [8].

3.4.2 Three-phase Electromagnetoelastic Composites

To show the versatility of the present model, we also consider a three-phase electro-

magnetoelastic composite consisting of an elastic epoxy matrix reinforced with piezoelectric

(BaTiO3) and piezomagnetic fibers (CoFe2O4) which is an example extensively studied in

[14]. The piezomagnetic fiber is at the center of the unit cell while the piezoelectric fibers

in the shape of quarter circles are located at the four corners of unit cell. A picture showing

this microstructure can be found in Fig. 2 of [14]. The material properties of the three con-

stituents are listed in Table 3.1. We investigate the effect of varying the volume fractions of

piezomagnetic fibers (BaTiO3) with the matrix volume fraction fixed at 0.4. Effective mate-
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rial properties including elastic constants dielectric coefficients, magnetic permeability coef-

ficients, piezoelectric coefficients, piezomagnetic coefficients and electromagnetic coefficients

are predicted for the volume fractions of piezomagnetic fibers (CoFe2O4) between 0.1 and

0.5 using VAMUCH. Only the results predicted by VAMUCH are plotted in Figs. 3.9−3.14

because these results are almost the same as those reported in [14] except that there is a

slight deviation for the electromagnetic coefficient (a∗33) as shown in Fig. 3.15. The effective

elastic modulus C∗
23 is very close to C∗

12 and the values are not presented in Fig. 3.9 for clar-

ity. Theoretically, the present theory is very different from that of [14] because in [14] the

effective properties are calculated through averaging the electromagnetoelastic fields which

are obtained using a series of finite element analyses of the microstructure subjected to

periodic boundary conditions and various loading conditions, while no boundary conditions

on the global field variables and loading conditions are necessary for VAMUCH calculations.

Furthermore, VAMUCH obtains the complete set of effective properties directly within one

analysis and does not require the process of averaging the electromagnetoelastic fields.

A unique capability of VAMUCH is that it can accurately predict the local fields within
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Fig. 3.16: von Mises stress (GPa) contour of BaTiO3/CoFe2O4/Epoxy composites.
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Fig. 3.17: Shear stress σ12(GPa) contour of BaTiO3/CoFe2O4/Epoxy composites.

Fig. 3.18: Electric flux density T2 (nC/Vm) contour of BaTiO3/CoFe2O4/Epoxy compos-
ites.
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Fig. 3.19: Electric flux density T3 (nC/Vm) contour of BaTiO3/CoFe2O4/Epoxy compos-
ites.

Fig. 3.20: Magnetic flux density B2 (×103NA−1m−1) contour of BaTiO3/CoFe2O4/ Epoxy
composites.
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Fig. 3.21: Magnetic flux density B3 (×103NA−1m−1) contour of BaTiO3/CoFe2O4/ Epoxy
composites.

the microstructure. To this end, let us assume that the global electric field from the macro-

scopic analysis of the homogenized material made of the three-phase electromagnetoelastic

composites are E2 = 100V/m while all mechanical strains and all other electric and mag-

netic fields are zero. Figs. 3.16−3.21 show the distributions of Von Mises stress, shear stress

σ12, electric flux density, magnetic flux density within the microstructure of the three-phase

electromagnetoelastic composites predicted by VAMUCH. It can be seen that all the de-

tailed distribution of the local fields including concentrations at the interface between fibers

and matrix are well captured by VAMUCH. Such information will be very helpful for design

and integrity evaluation of the electromagnetoelastic composites.

3.5 Conclusion

The variational asymptotic method for unit cell homogenization (VAMUCH) has been

applied to construct a general-purpose micromechanics model for predicting effective proper-

ties and local fields of periodic electromagnetoelastic composites. In comparison to existing

models, the present model has the following unique features:

1. It adopts the variational asymptotic method as its mathematical foundation. It in-

vokes only essential assumptions inherent in the concept of micromechanics.
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2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward.

3. It handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem is

determined by the periodicity of the microstructure.

The present theory is implemented in the computer program, VAMUCH. Examples

have been used to demonstrate its application and accuracy as a general-purpose microme-

chanical analysis tool for electromagnetoelastic composites. Although for the examples we

have studied, VAMUCH results are almost the same as the results obtained by the finite

element-based micromechanics analysis [14], VAMUCH has the following unique advantages:

1. VAMUCH can obtain the complete set of material properties within one analysis,

which is more efficient than those approaches requiring multiple runs under different

boundary and load conditions. Furthermore, it is not a trivial issue to apply the

right boundary conditions to obtain a correct finite element-based micromechanical

analysis.

2. VAMUCH calculates effective properties and local fields directly with the same ac-

curacy as the fluctuation functions. No postprocessing calculations which introduces

more approximations, such as averaging stress and electromagnetic displacement field,

are needed, which are indispensable for the finite element-based micromechanical anal-

ysis.

3. VAMUCH can deal with general anisotropy for effective materials which means VA-

MUCH can calculate 21 constants for the effective elastic constants, 18 constants for

the effective piezoelectric coefficient, 18 for the effective piezomagnetic coeffiicents, 6

for the effective dielectric constants 6 for the magnetic permeability coefficients, 6 for

electromagnetic coefficients, while the finite element-based micromechanical analyses

have difficult to predict effective material having constants more than orthotropic

materials.
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Chapter 4

Variational Asymptotic Micromechanics Modeling of

Heterogeneous Piezoelectric Materials

1

This chapter is a journal paper published in the Mechanics of Materials, Vol. 40, 2008,

pp. 812-824.

Abstract

In this paper, a new micromechanics model is developed to predict the effective proper-

ties and local fields of heterogeneous piezoelectric materials using the variational asymptotic

method for unit cell homogenization (VAMUCH), a recently developed micromechanics

modeling technique. Starting from the total electric enthalpy of the heterogenous contin-

uum, we formulate the micromechanics model as a constrained minimization problem using

the variational asymptotic method. To handle realistic microstructures in engineering ap-

plications, we implement this new model using the finite element method. For validation, a

few examples are used to demonstrate the application and accuracy of this theory and the

companion computer program–VAMUCH.

4.1 Introduction

Piezoelectric materials such as PZT (Lead, Zirconium, Titanate) are widely used in

sensors and actuators due to their property of converting electric energy into mechani-

cal energy, and vice versa. However, bulk piezoelectric materials have several drawbacks

for instance their weight, disadvantage of shape control, and acoustic impedance, there-

fore composite piezoelectric materials are usually a better technical solution in the case of

many applications such as ultrasonic imaging, sensors, actuators and damping. Recently,

piezoelectric composites are developed by combining piezoelectric materials with passive
1Coauthored by: Tian Tang and Wenbin Yu.
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materials to form a variety of types of piezoelectric composite systems. To facilitate the de-

sign of these piezoelectric composites, convenient and accurate analysis tools are apparently

indispensable.

In the past several decades, numerous approaches have been proposed to predict the

effective properties of piezoelectric composites from known constituent information. Simple

analytical approaches based on Voigt or Reuss hypothesis have been applied to predict the

behavior of a limited class of composite geometries (Newnham et al., 1978; Banno, 1983;

Chan and Unsworth, 1989; Smith and Auld, 1991). Variational bounds have been obtained

for describing the complete overall behavior which are useful tools for theoretical consider-

ation (Bisegna and Luciano, 1996, 1997; Li and Dunn, 2001). However the range between

bounds can be very large for certain effective properties. Eshelby’s solutions (Eshelby,

1957) have been extended to include piezoelectric constituents (Wang, 1992; Benveniste,

1992; Dunn and Taya, 1993b; Chen, 1993). Such mean field-type methods are capable of

predicting the entire behavior under arbitrary loads. However, they use averaged represen-

tations of the electric and mechanical field within the constituents of the composite, i.e.,

they do not account for the local fluctuations of the field quantities. This restriction can

be overcome by a finite element method-based micromechanical analysis (Gaudenzi, 1997;

Poizat and Sester, 1999). In such models the representative unit cell and the boundary

conditions are designed to capture a few special load cases which are connected to specific

deformation patterns. This allows the prediction of only a few key material parameters.

The finite element unit cell models which can capture the entire behavior have recently

appeared (Lenglet et al., 2003; Sun et al., 2001; Pettermann and Suresh, 2000; Li, 2000;

Pastor, 1997; Berger et al., 2006). Other studies (Dunn and Taya, 1993a, 1994; Huang and

Kuo, 1996; Fakri et al., 2003) have focused on the classical extensions of Eshelby’s solution

for finite inclusion volume fractions, i.e., the Mori-Tanaka (Mori and Tanaka, 1973; Ben-

veniste, 1987) self-consistent approach (Hill, 1965; Budiansky, 1965), differential approaches

(McLaughlin, 1977; Norris, 1985), and models based on the generalized Mori-Tanako and

the self-consistent approaches (Odegard, 2004).

In this paper, a novel micromechanics model based on the framework of variational

asymptotic method for unit cell homogenization (VAMUCH) has been developed to predict

the effective properties and local fields of piezoelectric composites. This model invokes

two essential assumptions within the concept of micromechanics for composites with an
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identifiable unit cell (UC):

• Assumption 1 The exact field variables have volume average over the UC. For exam-

ple, if ui and φ are respectively the exact displacements and electric potential within

the UC, there exist vi and ψ such that

vi =
1
Ω

∫

Ω
ui dΩ ≡ 〈ui〉 (4.1)

ψ =
1
Ω

∫

Ω
φ dΩ ≡ 〈φ〉 (4.2)

where Ω denotes the domain occupied by the UC and its volume.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective properties

are assumed to be the intrinsic properties of the material when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field variables can be integrated over the

domain of UC, which is true almost all the time. The second assumption implies that we

will neglect the size effects of the material properties in the macroscopic analysis, which

is an assumption often made in the conventional continuum mechanics. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with h

as the characteristic size of the UC and l as the characteristic wavelength of the deformation

of the structure. Other assumptions such as particular geometry shape and arrangement of

the constituents, specific boundary conditions applied to the UC, and prescribed relations

between local fields and global fields are not necessary for the present study.

This new micromechanical modeling approach has been successfully used to predict the

effective thermoelastic properties including elastic constants, specific heats, and coefficients

of thermal expansions, and effective thermal conductivity and associated local fields (Yu

and Tang, 2007a,b; Tang and Yu, 2007a). It is also applied to accurately predict the

initial yielding surface and elastoplastic behavior of metal matrix composites (Tang and

Yu, 2007b).
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4.2 Piezoelectricity and Piezoelectric Composites

The elastic and the dielectric responses are coupled in piezoelectric materials where the

mechanical variables of stress, and strain are related to each other as well as to the elec-

tric variables of electric field and electric displacement. The coupling between mechanical

and electric fields is described by piezoelectric coefficients. Using the conventional indicial

notation, the linear coupled constitutive equations are expressed as:

σij = Cijklεkl − eijkEk

Ti = eiklεkl + kijEj (4.3)

where σij , εij , Ei and Ti are the stress tensor, strain tensor, electric field vector, and the

electric displacement vector, respectively. Cijkl denotes fourth-order elasticity tensor at

constant electric field, kij is the second-order dielectric tensor at constant strain field, eijk

is the third-order piezoelectric coupling tensor. To avoid the difficulty associated with

heterogeneity, we can use the micromechanics approach to homogenize the material and

obtain an effective constitutive model, such that

σ̄ij = C∗
ijklε̄kl − e∗ijkĒk

T̄i = e∗ijk ε̄kl + k∗ijĒj (4.4)

where “over-bar” means variables which are used in the macroscopic analysis of homoge-

nized materials, and superscripts “*” denote the effective properties whose calculation are

determined by the micromechanics model one employs.

4.3 Theoretical Formulation

VAMUCH formulation uses three coordinates systems: two cartesian coordinates x =

(x1, x2, x3) and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3) (see

Fig. 4.1). We use xi as the global coordinates to describe the macroscopic structure and

yi parallel to xi as the local coordinates to describe the UC (Here and throughout the

paper, Latin indices assume 1, 2, and 3 and repeated indices are summed over their range

except where explicitly indicated). We choose the origin of the local coordinates yi to be
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Fig. 4.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

the geometric center of UC. For example, if the UC is a cube with dimensions as di, then

yi ∈ [−di
2 , di

2 ]. To uniquely locate a UC in the heterogeneous material we also introduce

integer coordinates ni. The integer coordinates are related to the global coordinates in such

a way that ni = xi/di (no summation over i). It is emphasized although only square array

is sketched in Fig. 4.1, the present theory has no such limitations.

As implied by Assumption 2, we can obtain the same effective properties from an

imaginary, unbounded, and unloaded heterogeneous material with the same microstrucutre

as the real, loaded, and bounded one. Hence we could derive the micromechanics model

from an imaginary, unloaded, heterogeneous material which completely occupies the three-

dimensional (3D) space R and composes of infinite many repeating UCs. For piezoelectric

composites, the total electric enthalpy is equal to the summation of the electric enthalpy

stored in all the UCs, which is

Π =
∞∑

n=−∞

∫

Ω
2HdΩ (4.5)
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where 2H is twice the electric enthalpy, given by

2H = εT Dε (4.6)

where

ε = bε11 2ε12 ε22 2ε13 2ε23 ε33 E1 E2 E3cT (4.7)

containing both the 3D strain field εij and the 3D electric field Ei, which are defined for a

linear theory as:

εij(n;y) =
1
2

[
∂ui(n;y)

∂yj
+

∂uj(n;y)
∂yi

]
(4.8)

Ei(n;y) = −∂φ(n;y)
∂yi

(4.9)

and D is a 9× 9 matrix including the elastic, piezoelectric, and dielectric properties and is

expressed as

D =




C −e

−eT −k


 (4.10)

In view of the fact that the infinite many UCs form a continuous heterogenous material, we

need to enforce the continuity of the displacement field ui and the electric potential field φ

on the interface between adjacent UCs, which are:

ui(n1, n2, n3; d1/2, y2, y3) = ui(n1 + 1, n2, n3;−d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3) = ui(n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2) = ui(n1, n2, n3 + 1; y1, y2,−d3/2) (4.11)

φ(n1, n2, n3; d1/2, y2, y3) = φ(n1 + 1, n2, n3;−d1/2, y2, y3)

φ(n1, n2, n3; y1, d2/2, y3) = φ(n1, n2 + 1, n3; y1,−d2/2, y3)

φ(n1, n2, n3; y1, y2, d3/2) = φ(n1, n2, n3 + 1; y1, y2,−d3/2) (4.12)

The exact solution of the present problem will minimize the summation of electric enthalpy

in Eq. (4.5) under the constraints in Eqs. (4.1), Eqs. (4.2), (4.11), and (4.12). Due to discrete

integer arguments, the problem is very difficult to solve. To avoid the difficulty associated

with discrete integer arguments, we can reformulate the problem, including Eqs. (4.5), (4.8),
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(4.9), (4.11) and (4.12), in terms of continuous functions using the idea of quasicontinuum

(Kunin, 1982). The corresponding formulas are listed below.

Π =
∫

R

〈
εT Dε

〉
dR (4.13)

εij(x;y) =
1
2

[
∂ui(x;y)

∂yj
+

∂uj(x;y)
∂yi

]
≡ u(i|j) (4.14)

Ei(x;y) = −∂φ(x;y)
∂yi

(4.15)

and

ui(x1, x2, x3; d1/2, y2, y3) = ui(x1 + d1, x2, x3;−d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3) = ui(x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2) = ui(x1, x2, x3 + d3; y1, y2,−d3/2) (4.16)

φ(x1, x2, x3; d1/2, y2, y3) = φ(x1 + d1, x2, x3;−d1/2, y2, y3)

φ(x1, x2, x3; y1, d2/2, y3) = φ(x1, x2 + d2, x3; y1,−d2/2, y3)

φ(x1, x2, x3; y1, y2, d3/2) = φ(x1, x2, x3 + d3; y1, y2,−d3/2) (4.17)
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Introducing Lagrange multipliers, we can pose the variational statement of the microme-

chanical analysis of UC as a stationary value problem of the following functional:

J =
∫

R

{〈
εT Dε

〉
+ λi(〈ui〉 − vi) + λ(〈φ〉 − ψ)

+
∫

S1

γi1 [ui(xj ; d1/2, y2, y3)− ui(xj + d1;−d1/2, y2, y3)] dS1

+
∫

S2

γi2 [ui(xj ; y1, d2/2, y3)− ui(xj + d2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3 [ui(xj ; y1, y2, d3/2)− ui(xj + d3; y1, y2,−d3/2)] dS3

+
∫

S1

β1 [φ(xj ; d1/2, y2, y3)− φ(xj + d1;−d1/2, y2, y3)] dS1

+
∫

S2

β2 [φ(xj ; y1, d2/2, y3)− φ(xj + d2; y1,−d2/2, y3)] dS2

+
∫

S3

β3 [φ(xj ; y1, y2, d3/2)− φ(xj + d3; y1, y2,−d3/2)] dS3

}
dR

(4.18)

where λi, λ, γij , and βi are Lagrange multipliers introduced to enforce the constraints in

Eqs. (4.1), (4.2), (4.16) and (4.17), respectively, Si are the surfaces with ni = 1, xj represents

the triplet of x1, x2, x3, and δij is the Kronecker delta. Following the general procedure of

VAMUCH, we can obtain the following change of variables for ui and φ:

ui(x;y) = vi(x) + yj
∂vi

∂xj
+ χi(x;y) (4.19)

φ(x;y) = ψ(x) + yi
∂ψ

∂xi
+ ζ(x;y) (4.20)

where χi and ζ are the fluctuation functions, satisfying the following constraints in view of

Eqs. (4.1), (4.19), and Eqs. (4.2), (4.20) when the origin of the local coordinate system is

chosen to be the center of UC:

〈χi〉 = 0 (4.21)

〈ζ〉 = 0 (4.22)

Substituting Eqs. (4.19) and (4.20) into Eq. (4.18), we obtain a stationary value problem

defined over UC for χi and ζ according to the variational asymptotic method (Berdichevsky,
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1977), such that:

JΩ =
〈
εT Dε

〉
+ λi 〈χi〉+ λ 〈ζ〉+

3∑

j=1

∫

Sj

γij(χ
+j
i − χ−j

i )dSj

+
3∑

j=1

∫

Sj

βj(ζ+j − ζ−j)dSj

(4.23)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

ζ+j = ζ|yj=dj/2, ζ−j = ζ|yj=−dj/2 for j = 1, 2, 3

Matrix ε can be expressed as

ε = ε̄ + ε1 (4.24)

with

ε̄ = b∂v1

∂x1
,
∂v1

∂x2
+

∂v2

∂x1
,
∂v2

∂x2
,
∂v1

∂x3
+

∂v3

∂x1
,
∂v2

∂x3
+

∂v3

∂x2
,
∂v3

∂x3
,−∂ψ

∂x1
− ∂ψ

∂x2
,−∂ψ

∂x3
cT (4.25)

which will be shown later to be the global variables containing both the strain field and the

electric field for the material with homogenized effective material properties, and

ε1 =b∂χ1

∂y1
,
∂χ1

∂y2
+

∂χ2

∂y1
,
∂χ2

∂y2
,
∂χ1

∂y3
+

∂χ3

∂y1
,
∂χ2

∂y3
+

∂χ3

∂y2
,
∂χ3

∂y3
,−∂ζ

∂y1
,−∂ζ

∂y2
,−∂ζ

∂y3
cT (4.26)

The functional JΩ in Eq. (4.23) forms the backbone of the present theory. This varia-

tional statement can be solved analytically for very simple cases such as binary composites,

however, for general cases we need to use numerical techniques such as the finite element

method (FEM) to seek numerical solutions.

4.4 Finite Element Implementation

It is possible to formulate the FEM solution based on Eq. (4.23), however, it is not the

most convenient and efficient way because Lagrange multipliers will increase the number of

unknowns. To this end, we can reformulate the variational statement in Eq. (4.23) as the

minimum value of the following functional

ΠΩ =
1
Ω

∫

Ω
εT DεdΩ (4.27)
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under the following constraints

χ+j
i = χ−j

i and ζ+j = ζ−j for j = 1, 2, 3 (4.28)

The constraint in Eqs. (4.21) and (4.22) does not affect the minimum values of ΠΩ but

help uniquely determine χi and ζ. In practice, we can constrain the fluctuation function

at an arbitrary node to be zero and later use this constraint to recover the unique fluctu-

ation function. It is fine to use penalty function method to introduce the constraints in

Eqs. (4.28). However, this method introduces additional approximation and the robustness

of the solution depends on the choice of large penalty numbers. Here, we make the nodes on

the positive boundary surface (i.e., yi = di/2) slave to the nodes on the opposite negative

boundary surface (i.e., yi = −di/2). By assembling all the independent active degrees of

freedom (DOFs), we can implicitly and exactly incorporate the constraints in Eqs. (4.28).

Introduce the following matrix notation

ε1 =




∂
∂y1

0 0 0

∂
∂y2

∂
∂y1

0 0

0 ∂
∂y2

0 0

∂
∂y3

0 ∂
∂y1

0

0 ∂
∂y3

∂
∂y2

0

0 0 ∂
∂y3

0

0 0 0 − ∂
∂y1

0 0 0 − ∂
∂y2

0 0 0 − ∂
∂y3








χ1

χ2

χ3

ζ





≡ Γhχ (4.29)

where Γh is an operator matrix. If we discretize χ using the finite elements as

χ(xi; yi) = S(yi)X (xi) (4.30)

where S representing the shape functions and X a column matrix of the nodal values of

both the mechanical and electric fluctuation functions. Substituting Eqs. (4.29) and (4.30)
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into Eq. (4.27), we obtain a discretized version of the functional as

ΠΩ =
1
Ω

(X T EX + 2X T Dhεε̄ + ε̄T Dεεε̄) (4.31)

where

E =
∫

Ω
(ΓhS)T D(ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T DdΩ Dεε =

∫

Ω
DdΩ (4.32)

Minimizing ΠΩ in Eq. (4.31), we obtain the following linear system

EX = −Dhεε̄ (4.33)

It is clear from Eq. (4.33) that the fluctuation function X is linearly proportional to ε̄, which

means the solution can be written symbolically as

X = X0ε̄ (4.34)

Substituting Eq. (4.34) into Eq. (4.31), we can calculate the electric enthalpy of the UC as

ΠΩ =
1
Ω

ε̄T
(X T

0 Dhε + Dεε

)
ε̄ ≡ ε̄T D̄ε̄ (4.35)

It can be seen that D̄ in Eq. (4.35) is the effective piezoelectric material properties which

can be expressed using a 9× 9 matrix as

D̄ =




C∗ −e∗

−e∗T −k∗


 (4.36)

and ε̄ is a column matrix containing both the global strains and global electric fields.

If the local fields within UC are of interest, the present VAMUCH can recover those

fields, such as local displacements, electric potential, stresses, and electric displacements, in

terms of the macroscopic behavior including the global displacements vi, the global electric

potential ψ, the global strain and electric field ε̄, and the fluctuation function χ. First,

we need to uniquely determine the fluctuation functions. Considering the fact that we

fixed an arbitrary node and made nodes on the positive boundary surfaces slave to the
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corresponding negative boundary surfaces, we need to construct a new array X̃0 from X0 by

assigning the values for slave nodes according to the corresponding active nodes and assign

zero to the fixed node. Obviously, X̃0 still yield the minimum value of ΠΩ in Eq. (4.27)

under constrains in Eqs. (4.28). However, X̃0 may not satisfy Eqs. (4.21) and (4.22). The

real solution, denoted as X̄0 can be found trivially by adding a constant corresponding to

each DOF to each node so that Eqs. (4.21) and (4.22) are satisfied.

After having determined the fluctuation functions uniquely, we can recover the local

displacements and electric potential using Eqs. (4.19) and (4.20) as





u1

u2

u3

φ





=





v1

v2

v3

ψ





+




∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

∂ψ
∂x1

∂ψ
∂x2

∂ψ
∂x3








y1

y2

y3





+ S̄X̄ (4.37)

Here S̄ is different from S due to the recovery of slave nodes and the constrained node. The

local strain field and electric field can be recovered using Eqs. (4.14), (4.15), (4.19), (4.20)

and (4.29) as

ε = ε̄ + ΓhS̄X̄ (4.38)

Finally, the local stress and electric displacement field can be recovered straightforwardly

using the 3D constitutive relations for the constituent material as

σ = Dε (4.39)

with σ as a column matrix containing both 3D stresses and electric displacements such that

σ = bσ11, σ12, σ22, σ13, σ23, σ33,−T1,−T2,−T3cT (4.40)

We have implemented this formulation in the computer program VAMUCH. To demon-

strate the application, accuracy, and efficiency of this theory and the companion code, we

will analyze several examples using VAMUCH in the next section.

4.5 Numerical Examples

VAMUCH provides a unified analysis for general 1D, 2D, or 3D UCs. First, the same
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Table 4.1: Material properties of the composite constituents (PZT-7A, Epoxy, SiC, LaRC-
SI, and PVDF)

PZT-7A Epoxy SiC LaRC-SI PVDF
C11 131.39 8.0 483.7 8.1 1.2
C12 82.712 4.4 99.1 5.4 1.0
C23 83.237 4.4 99.1 5.4 1.9
C22 154.837 8.0 483.7 8.1 3.8
C44 35.8 1.8 192.3 1.4 0.7
C55 25.696 1.8 192.3 1.4 0.9
C66 25.696 1.8 192.3 1.4 0.9
e11 9.52183 − − − -0.027
e21 -2.12058 − − − 0.024
e31 -2.12058 − − − 0.001
e51 9.34959 − − − 0.000
k11 2.079 0.0372 0.085 0.025 0.067
k22 4.065 0.0372 0.085 0.025 0.065
k33 4.065 0.0372 0.085 0.025 0.082

code VAMUCH can be used to homogenize binary composites (modeled using 1D UCs), fiber

reinforced composites (modeled using 2D UCs), and particle reinforced composites (modeled

using 3D UCs). Second, VAMUCH can reproduce the results for lower-dimensional UCs

using higher-dimensional UCs. That is, VAMUCH predicts the same results for binary

composites using 1D, 2D, or 3D UCs, and for fiber reinforced composites using 2D or 3D

UCs.

In this section, several examples will be used to demonstrate the accuracy of VAMUCH

for predicting the effective properties and calculating the local stress and electric displace-

ment fields within UC.

4.5.1 Predict Effective Properties of Composites

At first the piezoelectric composite considered is composed of piezoceramic (PZT)

fibers embedded in soft non-piezoelectric materials (epoxy) in which the fibers are of circular

shape. The epoxy matrix is isotropic while the fibers are transversely isotropic. The material

properties of both constituents are taken from (Pettermann and Suresh, 2000) and shown

in Table 4.1. The units of the elastic constants, piezoelectric constants, and dielectric

constants are given in GPa, Cm−2, and nCV−1m−1, respectively. For transversely isotropic

piezoelectric materials, there are 11 independent coefficients remained in the total material
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matrix and the matrix form of constitutive equation can be written as





σ11

σ12

σ22

σ13

σ23

σ33

−T1

−T2

−T3





=




C11 0 C12 0 0 C12 −e11 0 0

0 C66 0 0 0 0 0 −e51 0

C12 0 C22 0 0 C23 −e21 0 0

0 0 0 C55 0 0 0 0 −e51

0 0 0 0 C44 0 0 0 0

C12 0 C23 0 0 C22 −e21 0 0

−e11 0 −e21 0 0 −e21 −k11 0 0

0 −e51 0 0 0 0 0 −k22 0

0 0 0 −e51 0 0 0 0 −k22








ε11

ε12

ε22

ε13

ε23

ε33

E1

E2

E3





(4.41)

All effective coefficients were calculated for the volume fraction of fibers in a range

between 0.1 and 0.7 using VAMUCH and ANSYS, a commercial finite element package

capable of multiphysics simulation. The constituents of unit cell were meshed using three-

dimensional 8-node brick elements with three displacement DOFs and an additional electric

potential DOF when using ANSYS. The ANSYS FEM model was set up following the pro-

cedure described in Berger et al. (2006). The results of different approaches were evaluated

for composites with periodic square (SQU) or periodic hexagonal (HEX) piezoelectric fiber

arrangements. The effective coefficients of composites are shown in Figs. 4.2, 4.3, 4.4, 4.5,

and 4.6. We found out that the predictions of all effective coefficients from VAMUCH have

excellent agreement with those using ANSYS following Berger et al. (2006).

To provide a more extensive validation for VAMUCH, we considered a composite body

reinforced by parallel square fibers with a square arrangement, which is the same example

as in Bisegna and Luciano (1997). The matrix and the fibers are isotropic epoxy polymer

and piezoelectric ceramic PZT-7A, respectively. The volume fraction of fibers is 60%. To

facilitate the comparison, the effective coefficients calculated by VAMUCH are transformed
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Fig. 4.2: Effective stiffness constants C11 and C22

according to the following formulas as listed in Berger et al. (2006):

βeff
11 = 1/εeff11 βeff

22 = 1/εeff22

CeffD
11 = Ceff

11 + (eeff11 )2βeff
11 CeffD

12 = Ceff
12 + eeff21 eeff11 βeff

11

CeffD
22 = Ceff

22 + (eeff21 )2βeff
11 CeffD

23 = Ceff
23 + (eeff21 )2βeff

11

CeffD
44 = Ceff

44 CeffD
55 = Ceff

55 + (eeff51 )2βeff
11

heffD
11 = eeff11 βeff

11 heffD
21 = eeff21 βeff

11

heffD
51 = eeff51 βeff

22 (4.42)

In Table 4.2, VAMUCH results are compared with ANSYS following the micromechan-

ical analysis of Berger et al. (2006) (denoted as Berger), the results in Pettermann and

Suresh (2000) (denoted as Pettermann), Bisegna-Luciano bounds in Bisegna and Luciano

(1997) (denoted as BL), and Hashin-Shtrikman bounds for piezoelectric materials derived

in Bisegna and Luciano (1997) (denoted as HS). From Table 4.2 one can observe that the

predictions of VAMUCH agree very well with those of FEM-based micromechanical analy-

ses (Pettermann and Suresh, 2000; Berger et al., 2006) and nicely fall in the between the
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Fig. 4.3: Effective stiffness constants C12 and C23.

tightest BL bounds.

To further demonstrate the reliability and accuracy of present model for more realistic

heterogeneous materials, we choose a more complex microstructure as shown in Fig. 4.7.

There are four different materials within one UC. The reinforcements are PZT-7A square

fiber and a thin-wall circular SiC frame around the square fiber. The matrix between

reinforcements is LaRC-SI, while the matrix outside thin-wall frame is PVDF. The material

properties of the four constituents are shown in Table 4.1. There are no analytical solutions

for this kind of microstructure. Here, we use ANSYS to calculate all the effective properties

following the approach described in Berger et al. (2006). Table 4.3 lists the effective

properties predicted by VAMUCH and ANSYS. Both methods produce almost identical

results.

4.5.2 Predict Local Fields

VAMUCH can accurately recover the local stresses and the electric displacement dis-

tribution within the UC. In this study, we will use the direct multiphysics simulation in

ANSYS as benchmark to verify the prediction of VAMUCH. The first example is PZT-
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Table 4.2: Comparison of the effective properties for 60% volume fraction of fibers

VAMUCH Berger Pettermann BL HS
CeffD

11 (GPa) 86.982 86.982 86.98 76.1/87.0 79.0/87.8
CeffD

12 (GPa) 10.630 10.631 10.64 8.89/12.3 6.12/16.5
CeffD

22 (GPa) 25.322 25.322 25.42 25.2/25.5 24.9/28.7
CeffD

23 (GPa) 7.931 7.930 7.86 7.72/8.15 5.00/12.0
CeffD

44 (GPa) 4.39 4.39 4.41 4.39/4.41 4.37/4.92
CeffD

55 (GPa) 6.481 6.477 6.51 6.45/6.52 6.40/7.67
βeff

11 (GVm/C) 0.780 0.780 0.780 0.730/0.844 0.742/0.951
βeff

22 (GVm/C) 6.614 6.60 6.572 6.57/6.66 2.54/6.73
heff

11 (GV/m) 5.039 5.039 5.037 3.91/5.42 3.63/5.85
heff

21 (GV/m) -0.1524 -0.1524 -0.153 -0.337/0.024 -1.03/0.719
heff

51 (GV/m) 0.3068 0.3063 0.311 0.229/0.384 -1.92/2.67

Table 4.3: Effective coefficients of piezoelectric composite with a complex microstructure

Ceff
11 (GPa) Ceff

12 (GPa) Ceff
23 (GPa) Ceff

22 (GPa) Ceff
44 (GPa) Ceff

55 (GPa)
VAMUCH 75.51 3.33 5.173 10.916 1.871 3.86
ANSYS 75.51 3.33 5.167 10.920 1.871 3.82

eeff11 (C/m2) eeff21 (C/m2) eeff51 (C/m2) keff
11 (nC/Vm) keff

22 (nC/Vm) keff
33 (nC/Vm)

VAMUCH 1.7387 0.009275 0.000735 0.3827 0.06011 0.06555
ANSYS 1.7387 0.009291 0.000753 0.3827 0.06013 0.06558
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7A/epoxy fiber reinforced composites with fiber volume fraction as 0.2. The boundary

conditions applied to the UC are ε22 = 1.0% and E2 = 100V/m and all other mechanical

strains and gradients of electric potential are set to zero. Due to the difference of material

properties of two constituents, the distribution of local stresses is not uniform within the

UC. Figs. 4.8 and 4.9 show the contour plots of the distributions of σ22 and σ23. All sudden

changes of local stresses at the interface between fibers and matrix are well captured by

VAMUCH. For quantitative comparison, we also plot σ22 predicted by VAMUCH and the

direct multiphysics simulation of ANSYS along the lines y3 = 0 and y2 = 0 in Figs. 4.10 and

4.11, respectively. It is obvious that the predictions of VAMUCH have excellent agreement

with those of ANSYS.

The second example is the composite with complex microstructure as shown in Fig. 4.7.

The mechanical strains on all surfaces of UC are constrained. The contours of local electric

displacement distribution T3 and T2 resulting from 100V/m in the y3 direction predicted

by VAMUCH is shown in Fig. 4.12 and 4.13. For a quantitative comparison, we also plot

the local electric displacement distribution T3 along y3 = 0 predicted by VAMUCH and

ANSYS as shown in Fig. 4.14. It can be observed that there is excellent agreement between
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these two sets of results.

It is emphasized here that ANSYS results are obtained through the direct multiphysics

simulation of the unit cell using piezoelectric elements under specified loading without

using a micromechanics approach to obtain the effective properties first, while VAMUCH

calculates the effective material properties first and use these effective properties to carry

out a macroscopic analysis of the homogenized microstructure to obtain the global fields

and then recover the local fields within the original heterogeneous microstructure.

4.6 Conclusion

The variational asymptotic method for unit cell homogenization (VAMUCH) has been

applied to construct a micromechanics model for predicting the effective properties and

local fields of piezoelectric composites. In comparison to existing models, the present model

has the following unique features:

1. It adopts the variational asymptotic method as its mathematical foundation. It in-

vokes only essential assumptions inherent in the concept of micromechanics.
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2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward.

3. It handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem is

determined by the periodicity of the unit cell.

The present theory is implemented in the computer program, VAMUCH. Numerous

examples have clearly demonstrated its application and accuracy as a general-purpose mi-

cromechanical analysis tool. Although for the examples we have studied, VAMUCH results

are almost identical to the results obtained by some FEM-based micromechanics analysis

(Pettermann and Suresh, 2000; Berger et al., 2006), VAMUCH has the following advantages:

1. VAMUCH can obtain the complete set of material properties within one analysis,

which is more efficient than those approaches requiring multiple runs under different

boundary and load conditions. Furthermore, it is not a trivial issue to apply the right

boundary conditions to obtain a correct FEM-based micromechanical analysis.

2. VAMUCH calculates effective properties and local fields directly with the same ac-

curacy as the fluctuation functions. No postprocessing calculations which introduces
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Fig. 4.7: Piezoelectric composite with a complex microstructure.

more approximations, such as averaging stress and electric displacement field, are

needed, which are indispensable for FEM-based micromechanical analysis.

3. VAMUCH can deal with general anisotropy for effective materials which means VA-

MUCH can calculate 21 constants for the effective elastic constants, 18 constants

for the effective piezoelectric constants, 6 for the effective dielectric constants, while

FEM-based micromechanical analyses have difficult to predict the effective material

having constants more than orthotropic materials.
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Fig. 4.8: Contour plot of σ22 (Pa) within UC.

Fig. 4.9: Contour plot of σ23 (Pa) within UC.
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Fig. 4.12: Contour plot of electric flux density T3 (nC/Vm) in a piezoelectric composite
with complex microstructure.

Fig. 4.13: Contour plot of electric flux density T2 (nC/Vm) in a piezoelectric composite
with complex microstructure.
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Chapter 5

A Variational Asymptotic Micromechanics Model for

Predicting Conductivity of Composite Materials

1

This chapter is a journal paper published in the Journal of Mechanics of Materials and

Structures, Vol. 2, No. 9, 2007, pp. 1813-1830.

Abstract

The focus of this paper is to extend the variational asymptotic method for unit cell

homogenization (VAMUCH) to predict the effective thermal conductivity and local distribu-

tion of temperature field of heterogeneous materials. Starting from a variational statement

of the conduction problem of the heterogenous continuum, we formulate the micromechan-

ics model as a constrained minimization problem using the variational asymptotic method.

To handle realistic microstructures in applications, we implement this new model using the

finite element method. For validation, a few examples are used to demonstrate the applica-

tion and accuracy of this theory and companion code. Since heat conduction is mathemat-

ically analogous to electrostatics, magnetostatics, and diffusion, the present model can also

be used to predict effective dielectric, magnetic, and diffusion properties of heterogeneous

materials.

5.1 Introduction

Along with increased knowledge and manufacturing techniques for materials, more and

more materials are made with engineered microstructures to achieve better performance.

To successfully design and fabricate these materials, we need efficient high-fidelity analysis

tools to predict their effective properties. Many composites are applied in temperature sen-

sitive environments such as electronic packaging and thermal protection systems. Accurate

prediction of thermal properties such as the specific heat, coefficients of thermal expansion,
1Coauthored by: Tian Tang and Wenbin Yu.
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and thermal conductivity becomes important for such applications. In this paper, we fo-

cus on developing a model to predict effective thermal conductivity and associated local

temperature and heat flux distribution within the heterogeneous materials.

The effective thermal conductivity of composites is strongly affected by many param-

eters including the properties, volume fractions, distributions, and orientations of con-

stituents. Numerous models have been proposed to predict the effective thermal conductiv-

ity (Progelhof et al., 1976). These models include simple rules of mixtures, self consistent

scheme (Hashin, 1968), generalized self consistent scheme (Lee et al., 2006), finite element

method (Islam and Pramila, 1999; Ramani and Vaidyanathan, 1995; Xu and Yagi, 2004;

Kumlutas and Tavman, 2006), effective unit cell approach (Ganapathy et al., 2005) and

variational bounds (Hashin and Shtrikman, 1962). Very recently, a new framework for mi-

cromechanics modeling, namely variational asymptotic method for unit cell homogenization

(VAMUCH) (Yu and Tang, 2007a), has been introduced using two essential assumptions in

the context of micromechanics for composites with an identifiable unit cell (UC):

• Assumption 1 The exact field variable has volume average over the UC. For example,

if φ is the exact temperature within the UC, there exist ψ such that

ψ =
1
Ω

∫

Ω
φ dΩ ≡ 〈φ〉 (5.1)

where Ω denotes the domain occupied by the UC and its volume, and symbol ≡
denotes a definition.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective properties

are assumed to be the intrinsic properties of the material when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field are integrable over the domain of UC,

which is true almost all the time. The second assumption implies that we will neglect the size

effects of the material properties in the macroscopic analysis, which is an assumption often

made in the conventional continuum mechanics. Of course, the micromechanical analysis
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Fig. 5.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) square
array UC is drawn for clarity).

of the UC is only needed and appropriate if η = h/l ¿ 1, with h as the characteristic size

of the UC and l as the macroscopic size of the macroscopic material.

This new micromechanical modeling approach has been successfully applied to predict

thermo-mechanical properties including elastic properties, coefficients of thermal expansion,

and specific heats (Yu and Tang, 2007a,b). In this work, we will use this approach to

construct micromechanics models for effective thermal conductivity and the corresponding

local fields such as temperature and heat flux within UC.

5.2 Theoretical Formulation

VAMUCH formulation uses three coordinates systems: two Cartesian coordinates x =

(x1, x2, x3) and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3) (see

Fig. 5.1). We use xi as the global coordinates to describe the macroscopic structure and

yi parallel to xi as the local coordinates to describe the UC (Here and throughout the

paper, Latin indices assume 1, 2, and 3 and repeated indices are summed over their range

except where explicitly indicated). We choose the origin of the local coordinates yi to be

the geometric center of UC. For example, if the UC is a cube with edge lengths di, then
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yi ∈ [−di
2 , di

2 ]. To uniquely locate a UC in the heterogeneous material we also introduce

integer coordinates ni. The integer coordinates are related to the global coordinates in such

a way that ni = xi/di (no summation over i). It is emphasized although only square array

is sketched in Fig. 5.1, the present theory has not such limitations.

As implied by Assumption 2, we can obtain the same effective properties from an

imaginary, unbounded, and unloaded heterogeneous material with the same microstrucutre

as the real, loaded, and bounded one. Hence we could derive the micromechanics model

from an imaginary, unloaded, heterogeneous material which completely occupies the three-

dimensional (3D) space R and composes of infinitely many repeating UCs. The solution

of steady-state conduction problem, which is sufficient for us to find the effective thermal

conductivity, can be obtained by the stationary value problem of the summation of “energy”

integral of all the UCs (Hashin, 1968; Berdichevsky, 1977), which is:

Π =
∞∑

n=−∞

1
2

∫

Ω
Kij φ,i φ,jdΩ (5.2)

where Kij are components of the second-order thermal conductivity tensor, and

φ,i(n;y) =
∂φ(n;y)

∂yi
(5.3)

with (),i ≡ ∂( )
∂yi

. Here φ is a function of the integer coordinates and the local coordinates for

each UC. In view of the fact that the infinite many UCs form a continuous heterogeneous

material, we need to enforce the continuity of the temperature field φ on the interface

between adjacent UCs, which is:

φ(n1, n2, n3; d1/2, y2, y3) = φ(n1 + 1, n2, n3;−d1/2, y2, y3)

φ(n1, n2, n3; y1, d2/2, y3) = φ(n1, n2 + 1, n3; y1,−d2/2, y3)

φ(n1, n2, n3; y1, y2, d3/2) = φ(n1, n2, n3 + 1; y1, y2,−d3/2) (5.4)

The exact solution of steady heat conduction problem will minimize the summation of

“energy” integral in Eq. (5.2) under the constraints in Eqs. (5.1), (5.4). To avoid the diffi-

culty associated with discrete integer arguments, we can reformulate the problem, including
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Eqs. (5.2), (5.3), and (5.4), in terms of continuous functions using the idea of quasicontin-

uum (Kunin, 1982). The corresponding formulas are listed below.

Π =
1
2

∫

R
〈Kij φ,i φ,j〉dR (5.5)

φ,i(x;y) =
∂φ(x;y)

∂yi
(5.6)

and

φ(x1, x2, x3; d1/2, y2, y3) = φ(x1 + d1, x2, x3;−d1/2, y2, y3)

φ(x1, x2, x3; y1, d2/2, y3) = φ(x1, x2 + d2, x3; y1,−d2/2, y3)

φ(x1, x2, x3; y1, y2, d3/2) = φ(x1, x2, x3 + d3; y1, y2,−d3/2) (5.7)

Using the technique of Lagrange multipliers, we can pose the thermal conduction problem

as a stationary value problem of the following functional:

J =
∫

R

{〈
1
2
Kij φ,i φ,j

〉
+ λ(〈φ〉 − ψ)

+
∫

S1

γ1 [φ(x1, x2, x3; d1/2, y2, y3)− φ(x1 + d1, x2, x3;−d1/2, y2, y3)] dS1

+
∫

S2

γ2 [φ(x1, x2, x3; y1, d2/2, y3)− φ(x1, x2 + d2, x3; y1,−d2/2, y3)] dS2

+
∫

S3

γ3 [φ(x1, x2, x3; y1, y2, d3/2)− φ(x1, x2, x3 + d3; y1, y2,−d3/2)] dS3

}
dR

(5.8)

where λ and γi are Lagrange multipliers introduced to enforce the constraints in Eqs. (5.1)

and (5.7), respectively, and Si are the surfaces with ni = 1. The main objective of microme-

chanics is to find the real temperature field φ in terms of ψ, which is a very difficult problem

because we have to solve this stationary problem for each point in the global system xi as

in Eq. (5.8). It will be desirable if we can formulate the variational statement posed over a

single UC only. In view of Eq. (5.1), it is natural to express the exact solution φ as a sum

of the volume average ψ plus the difference, such that

φ(x;y) = ψ(x) + w(x;y) (5.9)

where 〈w〉 = 0 according to Eq. (5.1). The very reason that the heterogenous material
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can be homogenized leads us to believe that w should be asymptotically smaller than ψ,

i.e., w ∼ η ψ. Substituting Eq. (5.9) into Eq. (5.8) and making use of Eq. (5.6), we can

obtain the leading terms of the functional according to the variational asymptotic method

(Berdichevsky, 1977) as:

J1 =
∫

R

{〈
1
2
Kij w,i w,j

〉
+ λ 〈w〉

+
∫

S1

γ1 [w(x; d1/2, y2, y3)− w(x;−d1/2, y2, y3)− ψ;1d1] dS1

+
∫

S2

γ2 [w(x; y1, d2/2, y3)− w(x; y1,−d2/2, y3)− ψ;2d2] dS2

+
∫

S3

γ3 [w(x; y1, y2, d3/2)− w(x; y1, y2,−d3/2)− ψ;3d3] dS3

}
dR

(5.10)

where ();i ≡ ∂( )
∂xi

. Although it is possible to carry out the variation of J1 and find the Euler-

Lagrange equtions and associated boundary conditions for w, which results in inhomoge-

neous boundary conditions, it is more convenient to use change of variables to reformulate

the same problem so that the boundary conditions are homogeneous. Considering the last

three terms in Eq. (5.10), we use the following change of variables to express w as:

w(x;y) = yiψ;i + ζ(x;y) (5.11)

with ζ normally termed as fluctuation functions. We are free to choose the origin of the

local coordinate system to be the center of UC, which implies the following constraints on

ζ:

〈ζ〉 = 0 (5.12)

Substituting Eq. (5.11) into Eq. (5.10), we obtain a stationary value problem defined over

UC for ζ, such that

JΩ =
1
2
〈Kij (ψ;i + ζ,i) (ψ;j + ζ,j)〉+ λ 〈ζ〉

+
∫

S1

γ1(ζ+1 − ζ−1)dS1 +
∫

S2

γ2(ζ+2 − ζ−2)dS2

+
∫

S3

γ3(ζ+3 − ζ−3)dS3

(5.13)

with

ζ+i = ζ|yi=di/2 ζ−i = ζ|yi=−di/2 for i = 1, 2, 3 (5.14)
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Fig. 5.2: Sketch of a binary composite.

where ψ;i will be shown later to be the components of the global temperature gradient

vector for the effective material with homogenized material properties. The functional JΩ

in Eq. (5.13) forms the backbone of the present theory. This stationary problem can be

solved analytically for very simple cases such as binary composites, however, for general

cases we need to use numerical techniques such as the finite element method (FEM) to seek

numerical solutions.

5.3 An Illustrative Example

To illustrate the solution procedure of the stationary problem of the functional in

Eq. (5.13), we will consider a periodic binary composite made of anisotropic layers and the

material axes are the same as the global coordinate xi so that the material is uniform in

the x1− x2 plane and periodic along x3 direction. A typical UC can be identified as shown

in Fig. 5.2, with the dimension along y3 as h and dimensions along y1 and y2 arbitrary. Let

φ1 and φ2 denote the volume fraction of the first layer and the second layer, respectively,

and we have φ1 + φ2 = 1.

Because of the uniformity of the structure in the x1−x2 plane, we know that the solution

of ζ will be independent of y1 and y2, and is a function of y3 only. Taking advantage of the

this fact, we can specialize the functional in Eq. (5.13) for this particular case in a matrix
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form as:

J∗Ω =
∫

S3

{∫ (φ1− 1
2
)h

−h
2

[
1
2
Ψ(1)T K(1)Ψ(1) + λζ(1)

]
dy3

+
∫ h

2

(φ1− 1
2
)h

[
1
2
Ψ(2)T K(2)Ψ(2) + λζ(2)

]
dy3

+ γ3

[
ζ(2)(

h

2
)− ζ(1)(−h

2
)
]}

dS

(5.15)

with Ψ(α) = bψ;1 ψ;2 ψ;3 + ζ
(α)
,3 cT for α = 1, 2, and ζ(α) as the fluctuation functions of

the temperature for each layer. The thermal conductivity matrix K(α) is a fully populated

symmetric matrix for a general anisotropic material, such that

K(α) =




K
(α)
11 K

(α)
12 K

(α)
13

K
(α)
12 K

(α)
22 K

(α)
23

K
(α)
13 K

(α)
23 K

(α)
33




(5.16)

The corresponding differential statement of the variational statement in Eq. (5.15) can be

obtained following normal procedures of the calculus of variations, as follows:

K
(α)
33 ζ

(α)
,33 = λ (5.17)

∫ (φ1− 1
2
)h

−h
2

ζ(1) dy3 +
∫ h

2

( 1
2
−φ2)h

ζ(2) dy3 = 0 (5.18)

ζ(1)(−h

2
) = ζ(2)(

h

2
) (5.19)

ζ(1)(φ1h− h/2) = ζ(2)(φ1h− h/2) (5.20)

K
(1)
13 ψ;1 + K

(1)
23 ψ;2 + K

(1)
33

[
ψ;3 + ζ

(1)
,3

]
|y3=−h

2

=K
(2)
13 ψ;1 + K

(2)
23 ψ;2 + K

(2)
33

[
ψ;3 + ζ

(2)
,3

]
|y3=h

2

(5.21)

K
(1)
13 ψ;1 + K

(1)
23 ψ;2 + K

(1)
33

[
ψ;3 + ζ

(1)
,3

]
|y3=(φ1− 1

2
)h

=K
(2)
13 ψ;1 + K

(2)
23 ψ;2 + K

(2)
33

[
ψ;3 + ζ

(2)
,3

]
|y3=(φ1− 1

2
)h

(5.22)

Clearly this differential statement contains two second-order ordinary differential equations

in Eq. (5.17) and five constrains to solve for ζ(α) and λ. The solution of λ is found to be

zero and ζ(α) are linear functions of y3. Having solved the fluctuation functions, ζ(α), the



115

density of “energy” integral of this effective materials can be trivially obtained as:

ΠΩ =
1
2





ψ;1

ψ;2

ψ;3





T 


K∗
11 K∗

12 K∗
13

K∗
12 K∗

22 K∗
23

K∗
13 K∗

23 K∗
33








ψ;1

ψ;2

ψ;3





(5.23)

with the effective thermal conductivity coefficients K∗
ij as:

K∗
11 = 〈K11〉 − (K(1)

13 −K
(2)
13 )2φ1φ2

K
(2)
33 φ1 + K

(1)
33 φ2

(5.24)

K∗
22 = 〈K22〉 − (K(1)

23 −K
(2)
23 )2φ1φ2

K
(2)
33 φ1 + K

(1)
33 φ2

(5.25)

K∗
33 =

K
(1)
33 K

(2)
33

φ2K
(1)
33 + φ1K

(2)
33

(5.26)

K∗
12 = 〈K12〉 − (K(1)

13 −K
(2)
13 )(K(1)

23 −K
(2)
23 )φ1φ2

φ2K
(1)
33 + φ1K

(2)
33

(5.27)

K∗
13 =

K
(1)
13 K

(2)
33 φ1 + K

(2)
13 K

(1)
33 φ2

φ2K
(1)
33 + φ1K

(2)
33

(5.28)

K∗
23 =

K
(1)
23 K

(2)
33 φ1 + K

(2)
23 K

(1)
33 φ2

φ2K
(1)
33 + φ1K

(2)
33

(5.29)

It is interesting to note that K∗
33 is the same as the rule of mixtures based on Reuss’s

hypothesis for this special case. If K
(1)
13 = K

(2)
13 and K

(1)
23 = K

(2)
23 , then K∗

11,K
∗
22, and K∗

12

are the same as the rule of mixtures based on Voigt’s hypothesis, and K∗
13 and K∗

23 are the

same as the constituent properties.

5.4 Finite Element Implementation

For more general cases, we need to rely on numerical solutions. Here, we will implement

the variational statement in Eq. (5.13) using the well-established FEM. It is possible to

formulate the FEM solution based on Eq. (5.13), however, it is not the most convenient and

efficient way because Lagrange multipliers will increase the number of unknowns. To this

end, we can reformulate the variational statement in Eq. (5.13) as the stationary value of

the following functional

ΠΩ =
1

2Ω

∫

Ω
Kij (ψ;i + ζ,i) (ψ;j + ζ,j) dΩ (5.30)
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under the following three constraints

ζ+i = ζ−i for i = 1, 2, 3 (5.31)

The constraint in Eq. (5.12) does not affect the minimum value of ΠΩ but help uniquely

determine ζ. In practice, we can constrain the fluctuation function at an arbitrary node to

be zero and later use this constraint to recover the unique fluctuation function. It is fine

to use penalty function method to introduce the constraints in Eqs. (5.31). However, this

method introduces additional approximation and the robustness of the solution depends on

the choice of large penalty numbers. Here, we choose to make the nodes on the positive

boundary surface (i.e., yi = di/2) slave to the nodes on the opposite negative boundary

surface (i.e., yi = −di/2). By assembling all the independent active degrees of freedom,

we can implicitly and exactly incorporate the constraints in Eqs. (5.31). In this way, we

also reduce the total number of unknowns in the linear system which will be formulated as

follows.

Introduce the following matrix notations

Φ = bψ;1 ψ;2 ψ;3cT (5.32)

Φ1 =





∂ζ
∂y1

∂ζ
∂y2

∂ζ
∂y3





=





∂
∂y1

∂
∂y2

∂
∂y3





ζ ≡ Γhζ (5.33)

where Γh is an operator matrix. If we discretize ζ using the finite elements as:

ζ(xi; yi) = G(yi)ξ(xi) (5.34)

where G representing the shape functions and ξ a column matrix of the nodal values of the

fluctuation function. Substituting Eqs. (5.32), (5.33), and (5.34) into Eq. (5.30), we obtain

a discretized version of the functional as:

ΠΩ =
1

2Ω
(ξT Fξ + 2ξT KhΦΦ + ΦT KΦΦΦ) (5.35)
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where

F =
∫

Ω
(ΓhG)T K(ΓhG)dΩ KhΦ =

∫

Ω
(ΓhG)T KdΩ KΦΦ =

∫

Ω
KdΩ (5.36)

with K as the 3 × 3 matrix of Kij . Minimizing ΠΩ in Eq. (5.35), we obtain the following

linear system

Fξ = −KhΦΦ (5.37)

It is clear from Eq. (5.37) that the fluctuation function ξ is linearly proportional to Φ, which

means the solution can be written symbolically as:

ξ = ξ0Φ (5.38)

Substituting Eq. (5.38) into Eq. (5.35), we can calculate the density of “energy” integral of

the UC as:

ΠΩ =
1

2Ω
ΦT

(
ξT
0 KhΦ + KΦΦ

)
Φ ≡ 1

2
ΦT K∗Φ (5.39)

It can be seen that K∗ in Eq. (5.39) is the effective thermal conductivity matrix and Φ is

the global temperature gradient.

If the local fields within UC are of interest, we can recover those fields including lo-

cal temperature and heat flux in terms of the macroscopic behavior including the global

temperature ψ and the corresponding gradient ψ;i, and the fluctuation function ζ. First,

we need to uniquely determine the fluctuation function. Otherwise, we could not uniquely

determine the local temperature field. Because we have fixed an arbitrary node and made

nodes on the positive boundary surfaces (i.e., yi = +di/2) slave to the corresponding nega-

tive boundary surfaces (i.e., yi = −di/2) in forming the linear system in Eq. (5.37), we need

to construct a new array ξ̃0 from ξ0 by assigning the values for slave nodes according to the

corresponding active nodes and assign zero to the fixed node. Clearly, ξ̃0 corresponds to

the stationary value of ΠΩ in Eq. (5.35) under constrains in Eqs. (5.31). However, ξ̃0 may

not satisfy Eq. (5.12). The real solution, denoted as ξ̄0 can be found trivially by adding a

constant to each node so that Eq. (5.12) is satisfied.
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After having determined the fluctuation functions uniquely, we can recover the local

temperature using Eqs. (5.9) and (5.11) as:

φ = ψ + yiψ;i + Ḡξ̄0Φ (5.40)

where Ḡ is different from G due to the recovery of slave nodes and the constrained node.

The local temperature gradient field can be recovered using Eqs. (5.6) and (5.33) as:

bφ,1 φ,2 φ,3cT = Φ + ΓhḠξ̄0Φ (5.41)

Finally, the local heat flux field can be recovered straightforwardly using the 3D Fourier

law for the constituent materials as:

qi = −Kijφ,j (5.42)

We have implemented this formulation in the computer program VAMUCH. In the next

section, we will use a few numerical examples to demonstrate the application and accuracy

of this theory and code.

5.5 Numerical Examples

VAMUCH provides a unified analysis for general 1D, 2D, or 3D UCs. First, the same

code VAMUCH can be used to homogenize binary composites (modeled using 1D UCs), fiber

reinforced composites (modeled using 2D UCs), and particle reinforced composites (modeled

using 3D UCs). Second, VAMUCH can reproduce the results for lower-dimensional UCs

using higher-dimensional UCs. That is, VAMUCH predicts the same results for binary

composites using 1D, 2D or 3D UCs, and for fiber reinforced composites using 2D or 3D

UCs.

In this section, several examples will be used to demonstrate the accuracy of VAMUCH

for predicting the effective thermal conductivity and calculating the local heat flux field

within UC due to temperature gradients. To facilitate comparison with existing models in

the literature, we only consider composites with isotropic constituents although the present

method and code can handle general anisotropic constituents.
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Fig. 5.3: Effective transverse thermal conductivity of the carbon/Al composite.

5.5.1 Effective Thermal Conductivity of Fiber Reinforced Composites

The first example is a carbon fiber reinforced aluminum matrix composite. Both con-

stituents are isotropic with thermal conductivity K = 129 W/(m ·K) for the carbon fiber,

and K = 237 W/(m ·K) for aluminum matrix. The fiber is of circular shape and arranged

in a square array. The prediction of VAMUCH for the effective thermal conductivity along

the fiber direction exactly obeys the rule of mixtures, which has been generally accepted as

the exact solution for the longitudinal thermal conductivity for fiber reinforced composites

with isotropic constituents (Hashin, 1968).

However, the effective thermal conductivity coefficients in the transverse directions (K∗
22

and K∗
33) do not in general obey the rule of mixtures. To validate the present theory, we

compare VAMUCH prediction with other models in the literature (Donea, 1972; Behrens,

1968; Hatta and Taya, 1986; Hashin, 1983; Springer and Tsai, 1967). As shown in Fig. 5.3,

VAMUCH results are perfectly located between the variational bounds of Donea (1972),

while the Springer-Tsai model (Springer and Tsai, 1967) and the lower bound of Hashin

(1983) underpredict the results. We have also found out that VAMUCH results are on the

top of those obtained by Behrens (1968), Hatta and Taya (1986), and the upper bound of
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Fig. 5.4: Effective transverse thermal conductivity of the boron/Al composite.

Hashin (1983) and these results are not shown in the plot for clarity.

The second example is a boron fiber reinforced aluminum composite with constituents

as isotropic with thermal conductivity K = 27.4 W/(m · K) for the boron fiber, and K =

237 W/(m·K) for aluminum matrix. The fiber is still circular and arranged in a square array.

The effective thermal conductivity computed by different models are plotted in Fig. 5.4. We

found out that the results of Hashin upper bound (Hashin, 1983) are the same as those of

Behrens (1968) and Hatta1 and Taya (1986). Hence only Hashin upper bound is plotted in

the figure. It can be observed that the predictions of Hashin upper bound are slightly higher

than those of VAMUCH when the fiber volume fraction is higher than 40%. We also observe

that the difference between Hashin upper and lower bounds (Hashin, 1983) is significant

for this case which means they are not very useful for composites with constituents having

relatively high contrast ratio in thermal conductivity properties. VAMUCH results are

also nicely located in the much narrower bounds of Donea (1972), while the prediction of

Springer and Tsai (1967) is not accurate for this case because it is even significantly lower

than the lower bound of Donea (1972).

In the two examples we just studied, the thermal conductivity of matrix is higher than
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Fig. 5.5: Effective transverse thermal conductivity of the glass/polypropylene composite.

that of the fiber. Now, let us consider a glass/polypropylene composite with the thermal

conductivity K = 1.05 W/(m · K) for the glass fiber, and K = 0.2 W/(m · K) for the

polypropylene matrix. We plot the change of effective transverse thermal conductivity of

composites with respect to volume fraction of fibers in Fig. 5.5. Again, we find out that

VAMUCH results lie between the variational bounds of Donea (1972). And the results

of Hashin lower bound (Hashin, 1983), Behrens (1968), and Hatta and Taya (1986) are

identical but slightly lower than VAMUCH results when the volume fraction of fibers is

higher than 40%. Similarly, as in the previous case, we can observe that Donea (1972)

provides much narrower bounds than Hashin (1983) for this case.

We also use ANSYS, a commercial FEM package, to calculate the effective thermal

conductivities of these three fiber reinforced composites. According to Islam and Pramila

(1999), we apply isothermal conditions to the edges perpendicular to the direction we want

to evaluate the thermal conductivity and apply adiabatic conditions to the edges parallel

to this direction. The effective thermal conductivity is obtained by the ratio between the

average heat flux and average temperature gradient. We found out that VAMUCH results

are almost the same as the ANSYS results for similar discretization schemes.
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Fig. 5.6: Effective transverse thermal conductivity with respect to varying contrast ratios.

To verify whether VAMUCH can deal with composites with very high contrast ratio

and high volume fraction, we choose a composite formed by circular fibers arranged in

square array. The volume fraction of fibers is 65%. We fix the thermal conductivity of

matrix at 1 W/(m · K), while the thermal conductivity of the fiber varies from 10 to 104.

We plot the effective thermal conductivity computed using different approaches at different

contrast ratio in Fig. 5.6. It can be seen that VAMUCH results are on the top of ANSYS

results and lie between Donea variational bounds. And the results of Hashin lower bound

(Hashin, 1983) are identical to those obtained from Behrens (1968), Halpin-Tsai (Progelhof

et al., 1976), and Hatta and Taya (1986). It is obvious that these approaches underpredict

the results. At different contrast ratio, the Hashin upper bounds are too large to be nicely

plotted in the same figure.

5.5.2 Effective Thermal Conductivity of Particle Reinforced Composites

Due to special arrangements of constituents of particle reinforced composites, 3D UCs

are required to accurately model the microstructures. In this section, we will use VAMUCH

to analyze two typical particle reinforced composites to validate the 3D predictive capability
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Fig. 5.7: Effective thermal conductivity of the Sic/Al composite.

of VAMUCH.

The first example is a SiC particle reinforced aluminum composite. The spherical SiC

particles are embedded in a triply periodic cubic array. Both constituents are isotropic

with thermal conductivity K = 120 W/(m · K) for SiC particles, and K = 237 W/(m · K)

for aluminum matrix. The change of effective thermal conductivity of composites with

respect to volume fraction of particles are plotted in Fig. 5.7. VAMUCH results have an

excellent agreement with Hashin upper bound (Hashin, 1983), Budiansky (1970), and Cheng

and Vachon (1970), although Budiansky (1970) and Cheng and Vachon (1970) slightly

underpredict the results when the volume fraction of particles are higher than 20%. It was

also found out that VAMUCH results are on the top of those calculated by McPhedran

and Mckenzie (1978). All these predictions are perfectly located between the variational

bounds of Donea (1972). It can be obviously observed that the results of Lewis and Nielsen

(2003) significantly underpredict the effective thermal conductivity in comparison to other

approaches.

Another example is an alumina (Al2O3) particle reinforced polyethylene composite.

This composite has the same microstructure as the previous example. Both components
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Fig. 5.8: Effective thermal conductivity of the Al2O3/polyethylene composite.

are also isotropic with thermal conductivity K = 31 W/(m · K) for alumina particles,

and K = 0.545 W/(m · K) for the polyethylene matrix. The contrast ratio of thermal

conductivity of two components is as high as 56.88. The predictions of different approaches

are shown in Fig. 5.8. VAMUCH results agree with McPhedran and Mckenzie (1978) at

different volume fraction and with the lower bound of Hashin (1983) very well if the volume

fraction of particles is smaller than 25%. The prediction of Lewis and Nielsen (1970) is

also very close to that of VAMUCH if the volume fraction of particles is very small. The

difference between the variational bounds of Donea (1972) becomes too large to be useful

for high volume fraction of particles. The prediction of Cheng and Vachon (1970) for this

case cannot be considered as accurate because it is even not located between and lower and

upper bounds of Donea (1972). We also need to point out that for this case, the results of

Hashin upper bound are too different from the lower bound and cannot nicely plotted in

the same figure.

We also analyzed these two examples of particle reinforced composites using ANSYS

following the approach of Kumlutas and Tavman (2006). Again, we found out VAMUCH

results are identical to ANSYS results if similar meshes are used for both approaches.
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Fig. 5.9: Contour plot of heat flux q2 in the glass/polypropylene composite.

It is noted that Hashin bounds are known to be the best possible bounds for statis-

tically isotropic or transversely isotropic composites, when the only available geometrical

information is the phase volume fractions (Hashin and Shtrikman, 1962). However, such

bounds can be improved if additional information such as shape of inclusions, geometry of

microstructure added into the formulation (Hashin, 1983). It has been shown that Hashin

lower bound or upper bound is the exact solution for composite spheres assemblage (CSA)

(Hashin, 1968), which explains why one of Hashin bounds agrees with VAMUCH very well

if the inclusion volume fraction is not very large. Donea bounds (Donea, 1972) are not

rigorous variational bounds. Rather the material is considered as a composition of CSA

within the largest possible circle/sphere and matrix. The Voigt rule of mixtures is used to

obtain the Donea upper bound and the Ruess rule of mixtures is used to obtain the Donea

lower bound. The effective properties of CSA use those of Hashin (1968), which is also one

of the Hashin bounds. Therefore, Donea bounds will fall outside at least one of Hashin

bounds, as consistently shown in these examples. The gap between Donea bounds could be

smaller that that of Hashin bounds because more information has been used in obtaining

Donea bounds.
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Fig. 5.10: Contour plot of heat flux q3 in the glass/polypropylene composite.

5.5.3 Recovery of Local Heat Flux

VAMUCH can accurately recover the local heat flux distribution within the UC due to

temperature gradients. We will use ANSYS results as benchmark to verify the prediction of

VAMUCH. Firstly, we consider the glass/polypropylene fiber reinforced composite with fiber

volume fraction as 0.2. Due to the difference of thermal conductivity of two components, the

local heat flux distribution resulting from 100 K/m in the y2 direction is not uniform within

UC. The distribution contours of q2 and q3 are plotted in Figs. 5.9 and 5.10, respectively.

The sudden changes of local heat flux around the interface between the fibers and the matrix

are well captured by VAMUCH. For quantitative comparison, we also plot the local heat

flux distribution q2 along y2 = 0 predicted by VAMUCH and ANSYS in Fig. 5.11. It can

be seen that there are an excellent match between these two sets of results.

Secondly, we choose a special example which is a composite having an X-shape mi-

crostructure. The local heat flux distribution predicted by VAMUCH is shown in Fig. 5.12.

There are narrow necks at corner contacts between the reinforcements which exhibit signif-

icant fluctuation of the local heat flux. The local heat flux distributions along the diagonal

line predicted by VAMUCH and ANSYS are plotted in Fig. 5.13. Excellent match between

these two approaches is clear from this plot.
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Fig. 5.11: Heat flux q2 distribution along y2 = 0 in the glass/polypropylene composite.

5.6 Conclusion

The variational asymptotic method for unit cell homogenization (VAMUCH) has been

extended to predict effective thermal conductivity coefficients of composites. In comparison

to existing models, the present theory has the following unique features:

1. It adopts the variational asymptotic method as its mathematical foundation. It in-

vokes only essential assumptions inherent in the concept of micromechanics.

2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward.

3. It handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem is

determined by that of the periodicity of the unit cell.

The present theory is implemented in the computer program, VAMUCH. Numerous

examples have clearly demonstrated its application and accuracy as a general-purpose mi-

cromechanical analysis tool. Although for the examples we have studied, VAMUCH results

are almost identical to ANSYS results, VAMUCH has the following advantages over ANSYS

for micromechanical analysis:
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Fig. 5.12: Contour plot of heat flux of an X-shape composite.

1. VAMUCH can obtain different material properties in different directions simultane-

ously, which is more efficient than those approaches requiring multiple runs under

different temperature conditions.

2. VAMUCH can model general anisotropic heterogeneous materials with constituents

having full anisotropy (with six material constants for thermal conductivity), while

ANSYS and other FEM package can only handle constituents up to orthotropic (with

three material constants for thermal conductivity). The current FEM approaches for

predicting thermal conductivity (Islam and Pramila, 1999; Kumlutas and Tavman,

2006) are restricted to be at most macroscopically orthotropic, which is an unnecessary

restriction.

3. VAMUCH calculates effective properties and local fields directly with the same accu-

racy as the fluctuation functions. No postprocessing calculations which introduces

more approximations, such as averaging temperature gradient and heat flux, are

needed.

As a byproduct of validating VAMUCH, we also provided a brief assessment of existing

models for predicting effective thermal conductivity.
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Fig. 5.13: Heat flux of of the X-shape composite along the diagonal line.

Due to the mathematical analogy of heat conduction, electrostatics, magnetostatics,

and diffusion, the present theory and the companion code can also be used to predict

effective dielectric, magnetic, and diffusion properties of heterogeneous materials.
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Chapter 6

Asymptotical Approach to Initial Yielding Surface and

Elastoplasticity of Metal Matrix Composites

1

Abstract

The focus of this paper is to develop a micromechanics model based on the variational

asymptotic method for unit cell homogenization (VAMUCH) for predicting of the initial

yielding surface, overall instantaneous moduli, and elastoplastic behavior of metal matrix

composites. Considering the size of the microstructure as a small parameter, we can formu-

late a variational statement of the unit cell through an asymptotic expansion of the energy

functional. To handle realistic microstructures, we implement this new model using the

finite element method. For model validation, we used a few examples to demonstrate the

application and accuracy of this theory and the companion code.

6.1 Introduction

Metal matrix composites (MMC) are widely used in structural components due to their

primary advantages of high stiffness, high strength, better fatigue resistance, and better

elevated temperature properties. To successfully design and fabricate these materials, we

need efficient high-fidelity analysis tools to predict their effective properties. Accurate

prediction of initial yielding surface and uniaxial tension behavior is the major research of

interest for MMC.

It is well known that the mechanical behavior of MMC is determined by many factors

including the failure of fiber, interface debonding, and failure of matrix or yielding of ma-

trix. The yielding strength and work-hardening modulus of composite system are greatly

increased by the high stiffness reinforcements due to double reductions of stress and plastic

strain experienced by matrix. Firstly, the hard reinforcements are main load-carrying com-

ponents which sustain a higher stress so that the magnitude of stress undertaken by matrix
1Coauthored by: Tian Tang and Wenbin Yu.
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is significantly reduced. Secondly, the plastic strain only contributed by metal matrix is

further reduced due to the volume fraction of this phase. In addition, the yielding in matrix

is a highly localized phenomenon due to the heterogeneity of composite system. Therefore,

accurate stress prediction within the microstructure is obviously required.

Numerous models have been proposed to predict the initial yielding surface and elasto-

plastic behavior of MMC. These models include the simplest vanishing fiber diameter (VFD)

model [1], self consistent scheme [2,3], finite element micromechanics modeling [4-7], method

of cell and its variants [8-12], and many others. A detailed review on inelastic microme-

chanics models is provided by [13]. Very recently, a general-purpose framework for mi-

cromechanics modeling, namely variational asymptotic method for unit cell homogenization

(VAMUCH) [14], has been developed. VAMUCH adopts two essential assumptions in the

context of micromechanics for composites with an identifiable unit cell (UC):

• Assumption 1 The exact field variable has volume average over the UC. For example,

if ∆ui are the exact displacement increments within the UC, there exist ∆vi such that

∆vi =
1
Ω

∫

Ω
∆ui dΩ ≡ 〈∆ui〉 (6.1)

where Ω denotes the domain occupied by the UC and its volume.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective properties

are assumed to be the intrinsic properties of the material when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field are integrable over the domain of UC,

which is true almost all the time. The second assumption implies that we will neglect the

size effects of the material properties in the macroscopic analysis, which is an assumption

often made in the conventional continuum mechanics. For clarification, it is worthwhile

to point out that for nonlinear materials, the material properties is directly related with

the stress state at the point we want to evaluate the material properties. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with
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h as the characteristic size of the UC and l as the macroscopic size of the macroscopic

material.

This new micromechanical modeling approach has been successfully applied to predict

linear thermal and mechanical properties including elastic properties, coefficients of thermal

expansion, specific heats, and conductivity [14-16]. In this work, we will use this approach to

construct micromechanics models for predicting the initial yielding surface and elastoplastic

behavior of MMCs.

6.2 Theoretical Formulation

VAMUCH formulation uses three coordinates systems: two Cartesian coordinates x =

(x1, x2, x3) and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3) (see

Figure 6.1). We use xi as the global coordinates to describe the macroscopic structure

and yi parallel to xi as the local coordinates to describe the UC (Here and throughout the

paper, Latin indices assume 1, 2, and 3 and repeated indices are summed over their range

except where explicitly indicated). We choose the origin of the local coordinates yi to be

the geometric center of UC. For example, if the UC is a cube with the edge lengths di, then

yi ∈ [−di
2 , di

2 ]. To uniquely locate a UC in the heterogeneous material we also introduce

integer coordinates ni. The integer coordinates are related to the global coordinates in such

a way that ni = xi/di (no summation over i). It is emphasized although only square array

is sketched in Fig. 6.1, the present theory has not such limitations.

As implied by Assumption 2, we can obtain the same effective properties from an

imaginary, unbounded, and unloaded heterogeneous material with the same microstrucutre

as the real, loaded, and bounded one. Hence we could derive the micromechanics model

from an imaginary, unloaded, heterogeneous material which completely occupies the three-

dimensional (3D) space R and composes of infinitely many repeating UCs. In the case of

plastic loading, the total energy changes is equal to the summation of the energy changes

of all the UCs [17], which is:

Π =
∞∑

n=−∞

∫

Ω
dσij dεijdΩ =

∞∑
n=−∞

1
2

∫

Ω
Cijkldεij dεkldΩ (6.2)

where Cijkl are the components of the fourth-order instantaneous tangent stiffness tensor

and can be expressed as follows:
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Fig. 6.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

Cijkl =





Ce
ijkl (elastic stiffness) if in elastic loading

Cep
ijkl (elastic-plastic tangent stiffness) if in plastic loading

and

dεij(n;y) =
1
2

[
∂∆ui(n;y)

∂yj
+

∂∆uj(n;y)
∂yi

]
(6.3)

Here ∆ui(n;y) is a function of the integer coordinates and the local coordinates for each UC.

In view of the fact that the infinite many UCs form a continuous heterogeneous material,

we need to enforce the continuity of the displacement changes ∆ui on the interface between

adjacent UCs, which can be written as follows for a UC with integer coordinates (n1, n2, n3):

∆ui(n1, n2, n3; d1/2, y2, y3) = ∆ui(n1 + 1, n2, n3;−d1/2, y2, y3)

∆ui(n1, n2, n3; y1, d2/2, y3) = ∆ui(n1, n2 + 1, n3; y1,−d2/2, y3)

∆ui(n1, n2, n3; y1, y2, d3/2) = ∆ui(n1, n2, n3 + 1; y1, y2,−d3/2) (6.4)

According to the principle of minimum energy rate [17], the exact solution will minimize
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the summation of energy changes in Eq. (6.2) under the constraints in Eqs. (6.1), (6.4).

To avoid the difficulty associated with discrete integer arguments, we can reformulate the

problem, including Eqs. (6.2), (6.3), and (6.4), in terms of continuous functions using the

idea of quasicontinuum [18]. The basic idea is to associate a function of integer arguments

defined in the integer space with a continuous function defined in R. The corresponding

formulas are listed below.

Π =
1
2

∫

R
〈Cijkl dεij dεkl〉dR (6.5)

dεij(x;y) =
1
2

[
∂∆ui(x;y)

∂yj
+

∂∆uj(x;y)
∂yi

]
≡ ∆u(i|j) (6.6)

and

∆ui(xj ; d1/2, y2, y3) = ∆ui(xj + d1δj1;−d1/2, y2, y3)

∆ui(xj ; y1, d2/2, y3) = ∆ui(xj + d2δj2; y1,−d2/2, y3)

∆ui(xj ; y1, y2, d3/2) = ∆ui(xj + d3δj3; y1, y2,−d3/2) (6.7)

where δij is the Kronecker symbol. Using the technique of Lagrange multipliers, we can

pose the variational statement of the micromechanics analysis of UC as a stationary value

problem of the following functional:

J =
∫

R

{〈
1
2
Cijkl ∆u(i|j) ∆u(k|l)

〉
+ λi(〈∆ui〉 −∆vi)

+
∫

S1

γi1 [∆ui(xj ; d1/2, y2, y3)−∆ui(xj + d1δj1;−d1/2, y2, y3)] dS1

+
∫

S2

γi2 [∆ui(xj ; y1, d2/2, y3)−∆ui(xj + d2δj2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3 [∆ui(xj ; y1, y2, d3/2)−∆ui(xj + d3δj3; y1, y2,−d3/2)] dS3

}
dR

(6.8)

where λi and γij are Lagrange multipliers introduced in Eqs. (6.1) and (6.4), respectively,

and Si is the surface normal to the corresponding yi axis. The main objective of microme-

chanics is to find the real displacement change field ∆ui in terms of ∆vi, which is a very

difficult problem because we have to solve this stationary problem for each point in the

global system xi as in Eq. (6.8). It will be desirable if we can formulate the variational

statement posed over a single UC only. In view of Eq. (6.1), it is natural to express the
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exact solution ∆ui as a sum of the volume average ∆vi plus the difference, such that

∆ui(x;y) = ∆vi(x) + wi(x;y) (6.9)

where 〈wi〉 = 0 according to Eq. (6.1). The very reason that the heterogenous material

can be homogenized leads us to believe that wi should be asymptotically smaller than ∆vi,

i.e., wi ∼ η ∆vi. Substituting Eq. (6.9) into Eq. (6.8) and making use of Eq. (6.3), we can

obtain the leading terms of the functional according to the variational asymptotic method

[19] as:

J1 =
∫

R

{〈
1
2
Cijkl w(i|j) w(k|l)

〉
+ λ 〈wi〉

+
∫

S1

γi1

[
wi(x; d1/2, y2, y3)− wi(x;−d1/2, y2, y3)−∆vi,1d1

]
dS1

+
∫

S2

γi2

[
wi(x; y1, d2/2, y3)− wi(x; y1,−d2/2, y3)−∆vi,2d2

]
dS2

+
∫

S3

γi3

[
wi(x; y1, y2, d3/2)− wi(x; y1, y2,−d3/2)−∆vi,3d3

]
dS3

}
dR

(6.10)

where (),i ≡ ∂( )
∂xi

. Although it is possible to carry out the variation of J1 and find the Euler-

Lagrange equtions and associated boundary conditions for wi, which results in inhomoge-

neous boundary conditions, it is more convenient to use change of variables to reformulate

the same problem so that the boundary conditions are homogeneous. Considering the last

three terms in Eq. (6.10), we use the following change of variables to express wi as:

wi(x;y) = yi∆vi,j + χi(x;y) (6.11)

with χ termed as fluctuation functions for displacement changes. We are free to choose the

origin of the local coordinate system to be the center of UC, which implies the following

constraints on χi:

〈χi〉 = 0 (6.12)
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Now, our problem becomes to solve χi in terms of ∆vi, which can be posed as the stationary

value problem of the following functional defined over UC:

JΩ =
1
2

〈
Cijkl

[
dε̄ij + χ(i|j)

] [
dε̄kl + χ(k|l)

]〉
+ λi 〈χi〉

+
∫

S1

γi1(χ+1
i − χ−1

i )dS1 +
∫

S2

γi2(χ+2
i − χ−2

i )dS2

+
∫

S3

γi3(χ+3
i − χ−3

i )dS3

(6.13)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

where dε̄ij ≡ 1
2(∆vi,j + ∆vj,i) will be shown later to be the components of the global

strain increment tensor for the effective material with homogenized material properties.

The functional JΩ in Eq. (6.13) forms the backbone of the present theory. This stationary

problem can be solved analytically for very simple cases such as binary composites, however,

for general cases we need to use numerical techniques such as the finite element method

(FEM) to seek numerical solutions.

6.3 Finite Element Implementation

It is possible to formulate the FEM solution based on Eq. (6.13), however, it is not the

most convenient and efficient way because Lagrange multipliers will increase the number of

unknowns. To this end, we can reformulate the variational statement in Eq. (6.13) as the

stationary value of the following functional

ΠΩ =
1

2Ω

∫

Ω
Cep

ijkl

[
dε̄ij + χ(i|j)

] [
dε̄kl + χ(k|l)

]
dΩ (6.14)

under the following nine constraints

χ+j
i = χ−j

i for i, j = 1, 2, 3 (6.15)

The constraint in Eq. (6.12) does not affect the minimum value of ΠΩ but help uniquely

determine χi. In practice, we can constrain the fluctuation function at an arbitrary node

to be zero and later use this constraint to recover the unique fluctuation function. It is fine

to use penalty function method to introduce the constraints in Eqs. (6.15). However, this
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method introduces additional approximation and the robustness of the solution depends on

the choice of large penalty numbers. Here, we choose to make the nodes on the positive

boundary surface (i.e., yi = di/2) slave to the nodes on the opposite negative boundary

surface (i.e., yi = −di/2). By assembling all the independent active degrees of freedom, we

can implicitly and exactly incorporate the constraints in Eqs. (6.15). In this way, we also

reduce the total number of unknowns in our finite element formulation.

Introduce the following matrix notations

dε̄ = bdε̄11 2dε̄12 dε̄22 2dε̄13 2dε̄23 dε̄33cT (6.16)

ε1 =





∂χ1

∂y1

∂χ1

∂y2
+ ∂χ2

∂y1

∂χ2

∂y2

∂χ1

∂y3
+ ∂χ3

∂y1

∂χ2

∂y3
+ ∂χ3

∂y2

∂χ3

∂y3





=




∂
∂y1

0 0

∂
∂y2

∂
∂y1

0

0 ∂
∂y2

0

∂
∂y3

0 ∂
∂y1

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3








χ1

χ2

χ3




≡ Γhχ (6.17)

where Γh is an operator matrix. If we discretize χ using the finite elements as

χ(xi; yi) = G(yi)X (xi) (6.18)

where G representing the shape functions and X a column matrix of the nodal values of the

fluctuation function. Substituting Eqs. (6.16), (6.17), and (6.18) into Eq. (6.14), we obtain

a discretized version of the functional as

ΠΩ =
1

2Ω
(X T FX T + 2X T Dhεdε̄ + dε̄T Dεεdε̄) (6.19)

where

F =
∫

Ω
(ΓhG)T D(ΓhG)dΩ

Dhε =
∫

Ω
(ΓhG)T DdΩ

Dεε =
∫

Ω
DdΩ (6.20)

with D as the 6× 6 tangent stiffness matrix condensed from the fourth order elastoplastic
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tangent stiffness tensor Cep
ijkl. Minimizing ΠΩ in Eq. (6.19), we obtain the following linear

system

FX = −Dhεdε̄ (6.21)

It is clear from Eq. (6.21) that the fluctuation function X is linearly proportional to dε̄,

which means the solution can be written symbolically as

X = X0 dε̄ (6.22)

Substituting Eq. (6.22) into Eq. (6.19), we can calculate the energy change density of the

UC as

ΠΩ =
1

2Ω
dε̄T

(X T
0 Dhε + Dεε

)
dε̄ ≡ 1

2
dε̄T D∗dε̄ (6.23)

It can be seen that D∗ in Eq. (6.23) is the effective elastoplastic tangent stiffness matrix

and dε̄ global strain increments.

The increments of the local fields can be recovered in terms of the macroscopic behavior

including the increments of the global displacements ∆vi and the global strain dεij , and

the fluctuation function χ. First, we need to uniquely determine the fluctuation functions.

Considering the fact that we fixed an arbitrary node and made nodes on the positive bound-

ary surfaces slave to the corresponding negative boundary surfaces, we need to construct a

new array X̃0 from X0 by assigning the values for slave nodes according to the correspond-

ing active nodes and assign zero to the fixed node. Obviously, X̃0 still yield the minimum

value of ΠΩ in Eq. (6.14) under constraints in Eqs. (6.15). However, X̃0 may not satisfy

Eqs. (6.12). The real solution, denoted as X̄0 can be found trivially by adding a constant

corresponding to each DOF to each node so that Eqs. (6.12) are satisfied.

The increments of the local displacements can be recovered using the uniquely deter-

mined fluctuation function and Eqs. (6.9) and (6.11) as





∆u1

∆u2

∆u3





=





∆v1

∆v2

∆v3





+




∂∆v1
∂x1

∂∆v1
∂x2

∂∆v1
∂x3

∂∆v2
∂x1

∂∆v2
∂x2

∂∆v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3








y1

y2

y3





+ S̄X̄ (6.24)

where S̄ is different from S due to the recovery of slave nodes and the constrained node.

The local strain field and electric field can be recovered using (6.6), (6.9), (6.11), and
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(6.17) as

dε = dε̄ + ΓhS̄X̄ (6.25)

The increments of the local stresses can be recovered straightforwardly using the 3D con-

stitutive relations for the constituent material as

dσ = D∗dε (6.26)

6.4 VAMUCH Prediction of Initial Yielding Surface

The excellent stress recover capability of VAMUCH [15] can be used to predict the

initial yielding surface of MMCs under various loading conditions. If the fibers are assumed

to be completely elastic, the initial yielding within matrix will occur when the most heavily

loaded point reaches yielding stress. We choose the Von Mises yielding criterion given by:

f(σij) =
{

1
2

[
(σ11 − σ22)

2 + (σ11 − σ33)
2 + (σ22 − σ33)

2
]

+ 3
(
σ2

12 + σ2
13 + σ2

23

)} 1
2

−Y

(6.27)

wheref(σij) and Y are the yielding function and the yielding strength of matrix in simple

tension, respectively. In practice, the initial yielding point was determined by finding the

first Gauss point within matrix at which f(σij) = 0. The composites exhibit linear elastic

behavior before initial yielding. For some situations, such as the binary composites and

the stress-strain curve along the fiber direction for fiber reinforced composites, the uniaxial

stress-strain curve can be described in terms of the initial yielding point and tangent moduli.

6.5 VAMUCH for the Simulation of the Elastoplastic Behavior of the Com-

posite

The simulation of the nonlinear elastic-plastic behavior of composite materials of VA-

MUCH is performed in terms of incremental procedure, which is similar to those used by

Aboudi [20-24] and [25] and can be described as the following steps:

1. Input the material properties of constituents to calculate the initial effective instan-

taneous stiffness D∗
ijkl of composite materials.
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2. Input the given overall stress increment, evaluate the corresponding overall strain

increment using dεij = S∗ijkldσkl, where S∗ijkl = D∗−1
ijkl .

3. Update the ovarall stresses, strains, and instantaneous stiffness of the composite at

the end of the increment:

σ̄ij = σ̄ij |previous + dσ̄ij (6.28)

ε̄ij = ε̄ij |previous + dε̄ij (6.29)

4. Recover the distribution of the local fields, i.e., local stresses and local strains within

UC at the end of the increment using the increments of the global field variables.

5. Evaluate the von Mises stress of material points within UC. If the material yields, the

instantaneous tangent stiffness tensor is Cep
ijkl. Otherwise, it is Ce

ijkl. Then calculate

the effective instantaneous tangent stiffness D∗
ijkl of composite materials.

Step (2) to (5) are repeated in the next increment. The present approach has the same

advantage as that of GMC and HFGMC developed by Aboudi. It does not need to impose

different boundary conditions as well as symmetry conditions as is carried out in finite

element unit cell procedure [26]. It also has the advantage of finite element method, namely,

geometrical versatility.

6.6 Validation Examples

In this section, several examples will be used to demonstrate the accuracy of VAMUCH

for predicting the initial yielding surface, effective elastoplastic tangent moduli, and uniaxial

tension stress-strain curve of MMCs. In all the examples, the material of metal matrix is

described by bilinear work-hardening model, but the extension of present theory to other

nonlinear models is straightforward.

6.6.1 Material Properties

For simplicity, we assume the reinforcements are isotropic and perfectly elastic. The

inelastic behavior of isotropic matrix is described by the classical theory of plasticity and
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Fig. 6.2: Sketch of a binary composite.

the incremental stress-strain relation of matrix is given by:

dσij =


Cijkl −

Cijmn
∂f

∂σmn

∂f
∂σpq

Cpqkl

∂f
∂σrs

Crstu
∂f

∂σtu
− ∂f

p

√
2
3

∂f
∂σdw

∂f
∂σdw


 dεkl (6.30)

or

dσ = Cepdε (6.31)

where Cep is called the elastoplastic tensor of tangent moduli; f and p in Eq. (6.30) are

yielding function and effective plastic strain, respectively; Cijkl is the fourth-order elastic

tensor.

6.6.2 Binary Composites

Firstly, we will consider a periodic binary composite made of isotropic layers and the

material axes are the same as the global coordinate xi so that the material is uniform in the

x1 − x2 plane and periodic along x3 direction. A typical UC can be identified as shown in

Figure 6.2, with the dimension along y3 as h and dimensions along y1 and y2 arbitrary. Let

φ1 and φ2 denote the volume fraction of the first layer and the second layer, respectively,

and we have φ1 + φ2 = 1.

For the sake of comparison, we also use ANSYS, a commercial FEM package, to calcu-

late the effective tangential moduli and uniaxial stress-strain curve. To this end, we assign

material properties with Young’modulus E = 800GPa and Poisson’ratio ν = 0.1 for layer
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Fig. 6.3: Stress-strain curve of a binary composite.

1, and Young’modulus E = 100GPa, Poisson’ratio ν = 0.35, tangent modulus Et = 2GPa,

and yielding strength σ0 = 0.4GPa for layer 2. The volume fraction of layer 1 is 20%.

Figure 6.3 shows the uniaxial stress-strain curve obtained from VAMUCH and ANSYS. It

can be seen that the predictions of VAMUCH are right on the top of ANSYS results. In

this special case, the global yielding point of composites is identical to that of matrix which

means once the matrix reaches yielding the stress-strain curve of composites begin to occur

non-linearity. VAMUCH can precisely predict this yielding point and the tangent moduli

after yielding.

6.6.3 Fiber Reinforced Composites

To show the predictive capability of VAMUCH for unidirectional fiber reinforced com-

posites, the example chosen is boron fiber reinforced aluminum matrix composites. The

fiber is of circular shape and arranged in square array. Both constituents are isotropic with

with Young’modulus E = 379.3GPa, Poisson’ratio ν = 0.1, and CTE α = 8.1 10−6/K for

boron fiber, and Young’modulus E = 68.3GPa, Poisson’ratio ν = 0.3, tangent modulus

Et = 2GPa, yielding strength σ0 = 0.4GPa, and CTE α = 23.0 10−6/K for aluminum
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Fig. 6.4: Stress-strain curve of a Boron/Aluminum composite.

matrix.

The axial stress-strain curves of composites with three different volume fraction (VOF

20, VOF 40, and VOF 60) are plotted in Figure 6.4. Similarly as the previous binary

composite example, the stress-strain curve of the effective material is simply described by

the initial yielding point and tangent modulus. VAMUCH results have excellent agreement

with ANSYS, although ANSYS has to trace the curve pointwisely because it has no direct

means to obtain the initial yielding point and tangent modulus. The global yielding point

of fiber reinforced composites in the axial direction is the same as that of matrix.

To investigate the initial yielding surface, we choose the composite with VOF 20. The

initial yielding surfaces under a bi-axial loading along both transverse directions are shown

in Figure 6.5. Both predictions of VAMUCH and ANSYS are plotted. The stresses are

normalized with respect to the yielding strength, σ0, of matrix which is common practice

in most literature. It can be seen that the initial yielding surface is symmetric about 45◦

line corresponding to equal transverse stresses. Figure 6.6 depicts the yielding surfaces

obtained from VAMUCH and ANSYS under axial and transverse normal loading. It can

be clearly observed that VAMUCH results are exactly on the top of ANSYS results for
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these two loading conditions. The predictions of initial yielding surface of VAMUCH for

other loading conditions including transverse normal and shear loading, axial normal and

transverse shear loading, and axial shear loading in two directions are shown in Figures 6.7,

6.8, and 6.9, respectively. VAMUCH can also predict the initial yielding surfaces under

different temperature changes of the material as shown in Figure 6.10, where the composite

undergoes bi-axial external loading and unform temperature change. It can be seen that the

presence of thermal stresses resulted from temperature change shifts the yielding surface

along the direction corresponding to equal normal stresses. It is noted that the curve

corresponding to “0 K”, i.e., temperature remains the same, is the same as that in Figure 6.5.

6.7 Conclusion

VAMUCH, a general-purpose micromechanics modeling framework, has been general-

ized to predict initial yielding surfaces, elastoplastic tangent moduli, and uniaxial stress-

strain curve of composites. In comparison to existing models, the present theory has the

following unique features:
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1. It adopts the variational asymptotic method as its mathematical foundation. It in-

vokes only essential assumptions inherent in the concept of micromechanics.

2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward.

3. It handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem is

determined by that of the periodicity of the unit cell.

The present theory is implemented in the computer program, VAMUCH. Several ex-

amples have been used to demonstrate its application and accuracy as a general-purpose

micromechanical analysis tool for nonlinear composites.
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Chapter 7

Micromechanics Modeling of the Nonlinear Behavior of

Electrostrictive Multiphase Composites

1

Abstract

The micromechanics modeling of the nonlinear behavior of the electrostrictive multi-

phase composites is developed using an incremental formulation based on the variational

asymptotic method for unit cell homogenization (VAMUCH), a recently developed microme-

chanics modeling scheme. The microstructure of composites is assumed to be periodic.

Taking advantage of the small size of the microstructure, we formulate a variational state-

ment of energy change of the unit cell through an asymptotic analysis of the functional by

invoking only two essential assumptions within the concept of micromechanics. Finally, the

expression of the effective instantaneous tangential electromechanical matrix of the compos-

ites are established. Several numerical examples will be used to demonstrate the capability

of the present theory.

7.1 Introduction

Electrostriction is a higher-order electro-mechanical coupling in all dielectric materials

in which the strain induced by the application of the external electrical field depends on the

polarization or electric field quadratically [1]. However, the electrostrictive strain generated

in most dielectric materials is too small to be of practical use, while certain dielectric materi-

als such as PMN ceramics exhibit sufficiently large electrostrictive strain in the order of 0.1%

[2] that can be used in actuator applications. A detailed review on electrostrictive materials

is given in [3]. Hom and Shankar [4] established a three-dimensional, electromechanical con-

stitutive equation for electrostrictive ceramic materials. This constitutive relation depends

on a manageable number of material constants instead of polynomial expansions. They

[5] later incorporated the electrostrictive constitutive model into a nonlinear finite element
1Coauthored by: Tian Tang and Wenbin Yu.
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code to analyze the performance of electrostrictive devices in composite structures. Li and

Rao [6] developed a nonlinear micromechanics model that links the macroscopic behavior

of ferroelectric polymer-based electrostrictive composites with their microstructural details.

Aboudi [7] employed GMC for the prediction of the nonlinear behavior of electrostrictive

multiphase composites of which the nonlinear electrostrictive constitutive equations were

constructed by Hom and Shankar [4].

In this paper, a micromechanics model is developed for the prediction of macroscopic

behavior of electrostrictive multiphase composites. This model is based on the framework

of the variational asymptotic method for unit cell homogenization (VAMUCH) [8-13], which

is build upon the variational asymptotic method [14] along with two essential assumptions

within the concept of micromechanics for composites with an identifiable unit cell (UC):

• Assumption 1 The exact solutions of the increments of the field variables have

volume averages over the UC. For example, if ∆ui and ∆φ are the exact increments

of the displacement and electric potential within the UC, respectively, there exist ∆vi

and ∆ψ such that

∆vi =
1
Ω

∫

Ω
∆ui dΩ ≡ 〈∆ui〉 (7.1)

∆ψ =
1
Ω

∫

Ω
∆φ dΩ ≡ 〈∆φ〉 (7.2)

• Assumption 2 The effective nonlinear material behavior obtained from the microme-

chanical analysis of the UC are independent of the geometry, the boundary conditions,

and loading conditions of the macroscopic structure, which means that the effective

nonlinear behavior are assumed to be the intrinsic properties of the material when

viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field variables can be integrated over the domain

of UC, which is true almost all the time. For the second assumption, it is worthwhile to point

out that for materials with nonlinear behavior, the effective tangent properties is directly

related with the local micro fields such as the stress, strain, and electrical state at the point

we want to evaluate the material properties. Of course, the micromechanical analysis of

the UC is only needed and appropriate if η = h/l ¿ 1, with h as the characteristic size of

the UC and l as the macroscopic size of the material. Other assumptions such as particular
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geometry shape and arrangement of the constituents, specific boundary conditions applied

to the UC, and prescribed relations between local fields and global fields are not necessary

for this study.

7.2 Basic Equations

The nonlinearly coupled electromechanical constitutive equations of electrostrictive ma-

terials considered here can be given by [15]:

σij = Cijklεkl −BijklEkEl

Di = κijEj + 2MklijσklEj

(7.3)

where σij and εkl are the stress tensor and strain tensor, respectively; Di and Ej are

the vectors of electric displacement and electric field respectively; Cijkl, κij , and Mklij

are the elastic stiffness, dielectric constant, and electrostrictive constant, respectively; and

Bijkl = CijmnMmnkl.

Since the constitutive equations are nonlinear, we can transform these equations into

an incremental form as:

dσ = Y dε (7.4)

where

dσ = bdσ11, dσ12, dσ22, dσ13, dσ23, dσ33,−dD1,−dD2,−dD3cT

dε = bdε11, 2dε12, dε22, 2dε13, 2dε23, dε33, dE1, dE2, dE3cT
(7.5)

and the instantaneous tangent electromechanical coupling matrix is symmetric and given

by:

Y =




Y1 Y2

Y3 Y4


 (7.6)

where Y1 is a 6× 6 elastic stiffness matrix; Y2 is a 6× 3 electromechanical coupling matrix;

Y3 is the transpose matrix of Y2; and Y4 is a 3 × 3 square matrix representing the electric

behavior of the material. The elements of Y2 and Y3 are the function of the local electric

fields, while the elements of Y4 are the functions of the local strains and the local electric

fields.
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Fig. 7.1: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

For multiphase electrostrictive composite materials, the effective tangential constitutive

equation is given by:

dσ̄ = Y ∗dε̄ (7.7)

where “overbar” means the volume averaged value, and superscript “*” stands for the

effective tangent properties.

7.3 Theoretical Formulation

Three coordinates systems are used in our formulation: two cartesian coordinates x =

(x1, x2, x3) and y = (y1, y2, y3), and an integer-valued coordinates n = (n1, n2, n3) (see

Fig. 7.1). We use xi as the global coordinates to describe the macroscopic structure and

yi parallel to xi as the local coordinates to describe the UC (Here and throughout the

paper, Latin indices assume 1, 2, and 3 and repeated indices are summed over their range

except where explicitly indicated). We choose the origin of the local coordinates yi to be

the geometric center of UC. For example, if the UC is a cube with dimensions as di, then
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yi ∈ [−di
2 , di

2 ]. To uniquely locate a UC in the heterogeneous material we also introduce

integer coordinates ni. The integer coordinates are related to the global coordinates in such

a way that ni = xi/di (no summation over i). It is emphasized although only square array

is sketched in Fig. 7.1, the present theory has no such limitations.

According to the essential Assumption 2, the effective instantaneous electromechanical

matrix can be obtained from an imaginary, unbounded, and unloaded heterogeneous ma-

terial with the same microstrucutre as the real, loaded, and bounded one. Hence we could

derive the micromechanics model from an imaginary, unloaded, heterogeneous material

which completely occupies the three-dimensional (3D) space R and composes of infinitely

many repeating UCs. The total energy changes within an electrostrictive material is equal

to the summation of the energy changes of all the UCs, which is:

Π =
∞∑

n=−∞

∫

Ω

1
2
dσ dεdΩ =

∞∑
n=−∞

1
2

∫

Ω
dεT Y dεdΩ (7.8)

where dε is given in Eq. (7.5) and contains both the 3D increments of strain field dεij and

the 3D increments of electric field dEi, which are defined as:

dεij(n;y) =
1
2

[
∂∆ui(n;y)

∂yj
+

∂∆uj(n;y)
∂yi

]
(7.9)

dEi(n;y) = −∂∆φ(n;y)
∂yi

(7.10)

Here ∆ui(n;y) and ∆φ(n;y) are the functions of the integer coordinates and the local

coordinates for each UC, respectively. Since the infinite many UCs form a continuous

heterogeneous material, the displacement changes ∆ui and the electric potential change on

the interface between adjacent UCs should be continuous and can be written as follows for

a UC with integer coordinates (n1, n2, n3):

∆ui(n1, n2, n3; d1/2, y2, y3) = ∆ui(n1 + 1, n2, n3;−d1/2, y2, y3)

∆ui(n1, n2, n3; y1, d2/2, y3) = ∆ui(n1, n2 + 1, n3; y1,−d2/2, y3)

∆ui(n1, n2, n3; y1, y2, d3/2) = ∆ui(n1, n2, n3 + 1; y1, y2,−d3/2) (7.11)
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∆φ(n1, n2, n3; d1/2, y2, y3) = ∆φ(n1 + 1, n2, n3;−d1/2, y2, y3)

∆φ(n1, n2, n3; y1, d2/2, y3) = ∆φ(n1, n2 + 1, n3; y1,−d2/2, y3)

∆φ(n1, n2, n3; y1, y2, d3/2) = ∆φ(n1, n2, n3 + 1; y1, y2,−d3/2) (7.12)

The exact solution of the present problem will minimize the summation of energy changes

in Eq. (7.8) under the constraints in Eqs. (7.1), (7.2), (7.11), and (7.12). To avoid the diffi-

culty associated with discrete integer arguments, we can reformulate the problem, including

Eqs. (7.8), (7.9), (7.10), (7.11), and (7.12), in terms of continuous functions using the idea of

quasicontinuum [16]. The basic idea is to associate a function of integer arguments defined

in the integer space with a continuous function defined in R. The corresponding formulas

are listed below.

Π =
1
2

∫

R

〈
dεT Y dε

〉
dR (7.13)

dεij(x;y) =
1
2

[
∂∆ui(x;y)

∂yj
+

∂∆uj(x;y)
∂yi

]
≡ ∆u(i|j) (7.14)

dEi(x;y) = −∂∆φ(x;y)
∂yi

(7.15)

and

∆ui(x1, x2, x3; d1/2, y2, y3) = ∆ui(x1 + d1, x2, x3;−d1/2, y2, y3)

∆ui(x1, x2, x3; y1, d2/2, y3) = ∆ui(x1, x2 + d2, x3; y1,−d2/2, y3)

∆ui(x1, x2, x3; y1, y2, d3/2) = ∆ui(x1, x2, x3 + d3; y1, y2,−d3/2) (7.16)

∆φ(x1, x2, x3; d1/2, y2, y3) = ∆φ(x1 + d1, x2, x3;−d1/2, y2, y3)

∆φ(x1, x2, x3; y1, d2/2, y3) = ∆φ(x1, x2 + d2, x3; y1,−d2/2, y3)

∆φ(x1, x2, x3; y1, y2, d3/2) = ∆φ(x1, x2, x3 + d3; y1, y2,−d3/2) (7.17)
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Using the technique of Lagrange multipliers, we can pose the variational statement of the

micromechanics analysis of UC as a stationary value problem of the following functional:

J =
∫

R

{〈
1
2
dεT Y dε

〉
+ λi(〈∆ui〉 −∆vi) + +λ(〈∆φ〉 −∆ψ)

+
∫

S1

γi1 [∆ui(xj ; d1/2, y2, y3)−∆ui(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

γi2 [∆ui(xj ; y1, d2/2, y3)−∆ui(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3 [∆ui(xj ; y1, y2, d3/2)−∆ui(xj + δj3d3; y1, y2,−d3/2)] dS3

+
∫

S1

β1 [∆φ(xj ; d1/2, y2, y3)−∆φ(xj + δj1d1;−d1/2, y2, y3)] dS1

+
∫

S2

β2 [∆φ(xj ; y1, d2/2, y3)−∆φ(xj + δj2d2; y1,−d2/2, y3)] dS2

+
∫

S3

β3 [∆φ(xj ; y1, y2, d3/2)−∆φ(xj + δj3d3; y1, y2,−d3/2)] dS3

}
dR

(7.18)

where λi, λ, γij , and βi are Lagrange multipliers introduced to enforce the constraints

in Eqs. (7.1), (7.2), (7.16) and (7.17), respectively, Si are the surfaces with ni = 1, xj

represents the triplet of x1, x2, x3, and δij is the Kronecker delta. Following the general

procedure of VAMUCH, we can obtain the following change of variables for ∆ui and ∆φ:

∆ui(x;y) = ∆vi(x) + yj
∂∆vi

∂xj
+ χi(x;y) (7.19)

∆φ(x;y) = ∆ψ(x) + yi
∂∆ψ

∂xi
+ ζ(x;y) (7.20)

where χi and ζ are the fluctuation functions for the displacement changes and electric

potential changes, satisfying the following constraints in view of Eqs. (7.1), (7.19), and

Eqs. (7.2), (7.20) when the origin of the local coordinate system is chosen to be the center

of UC:

〈χi〉 = 0 (7.21)

〈ζ〉 = 0 (7.22)

Substituting Eqs. (7.19) and (7.20) into Eq. (7.18), we obtain a stationary value problem

defined over UC for χi and ζ according to the variational asymptotic method [16], such
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that:

JΩ =
〈

1
2
dεT Y dε

〉
+ λi 〈χi〉+ λ 〈ζ〉+

3∑

j=1

∫

Sj

γij(χ
+j
i − χ−j

i )dSj

+
3∑

j=1

∫

Sj

βj(ζ+j − ζ−j)dSj

(7.23)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

ζ+j = ζ|yj=dj/2, ζ−j = ζ|yj=−dj/2 for j = 1, 2, 3

Matrix dε can be expressed as:

dε = dε̄ + dε̂ (7.24)

dε̄ has a similar expression as Eq. (7.5):

dε̄ = bdε̄11 2dε̄12 dε̄22 2dε̄13 2dε̄23 dε̄33 dĒ1 dĒ2 dĒ3cT (7.25)

where dε̄ij ≡ 1
2(∆vi,j + ∆vj,i), the components of the global strain increment tensor and

dĒi ≡ ∆ψ,i, the components of the global electric field increment vector. dε̂ are the strain

and electric field rates due to the fluctuation functions, which is expressed as:

dε̂ = bdε̂11 2dε̂12 dε̂22 2dε̂13 2dε̂23 dε̂33 dÊ1 dÊ2 dÊ3cT (7.26)

with dε̂ij ≡ 1
2(χi,j + χj,i) and dÊi = ζ,i.

7.4 Finite Element Implementation

Although the FEM solutions can be possibly obtained based on Eq. (7.23), the Lagrange

multipliers will increase the number of unknowns. In practice, we minimize the following

functional

ΠΩ =
1
Ω

∫

Ω

1
2
dεT Y dεdΩ (7.27)

under the following constraints

χ+j
i = χ−j

i and ζ+j = ζ−j for j = 1, 2, 3 (7.28)
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Following the general procedure of finite element implementation of VAMUCH, the

fluctuation functions at an arbitrary node are restrained to be zero and later use this

constraint to recover the unique fluctuation function. The nodes on the positive boundary

surface (i.e., yi = di/2) are made slave to the nodes on the opposite negative boundary

surface (i.e., yi = −di/2). By assembling all the independent active degrees of freedom

(DOFs), we can implicitly and exactly incorporate the constraints in Eqs. (7.28).

The matrix form of dε̂ in Eq. (7.26) can be expressed as:

dε̂ =




∂
∂y1

0 0 0

∂
∂y2

∂
∂y1

0 0

0 ∂
∂y2

0 0

∂
∂y3

0 ∂
∂y1

0

0 ∂
∂y3

∂
∂y2

0

0 0 ∂
∂y3

0

0 0 0 − ∂
∂y1

0 0 0 − ∂
∂y2

0 0 0 − ∂
∂y3








χ1

χ2

χ3

ζ





≡ Γhχ (7.29)

where Γh is an operator matrix. χ is discretized as:

χ(xi; yi) = S(yi)X (xi) (7.30)

where S denote the shape functions and X is the column matrix of the nodal values of both

the mechanical and electric fluctuation functions. Substituting Eqs. (7.29), and (7.30) into

Eq. (7.27), we obtain a discretized version of the functional as:

ΠΩ =
1
Ω

(X T EX + 2X T Dhεdε̄ + dε̄T Dεεdε̄) (7.31)

where

E =
∫

Ω
(ΓhS)T Y (ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T Y dΩ Dεε =

∫

Ω
Y dΩ (7.32)
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Minimizing ΠΩ in Eq. (7.31), the following linear system is obtained as:

EX = −Dhεdε̄ (7.33)

The fluctuation function X in Eq. (7.33) is linearly proportional to dε̄ so that the solution

can be written symbolically as:

X = X0dε̄ (7.34)

Substituting Eq. (7.34) into Eq. (7.31), we can calculate the electric enthalpy of the UC as:

ΠΩ =
1
Ω

dε̄T
(X T

0 Dhε + Dεε

)
dε̄ ≡ dε̄T Y ∗dε̄ (7.35)

It can be seen that Y ∗ in Eq. (7.35) is the 9× 9 effective tangent electromechanical matrix

and dε̄ is a column matrix containing both the increments of the global strains and global

electric fields.

The increments of the local fields, such as the increments of the local displacements,

electric potential, stresses, and electric displacements, can be recovered in terms of the

macroscopic behavior including the increments of the global displacements ∆vi, the global

electric potential ∆ψ, the global strain and electric field dε̄, and the fluctuation function χ.

First, we need to uniquely determine the fluctuation functions. Considering the fact that

we fixed an arbitrary node and made nodes on the positive boundary surfaces slave to the

corresponding negative boundary surfaces, we need to construct a new array X̃0 from X0 by

assigning the values for slave nodes according to the corresponding active nodes and assign

zero to the fixed node. Obviously, X̃0 still yield the minimum value of ΠΩ in Eq. (7.27)

under constraints in Eqs. (7.28). However, X̃0 may not satisfy Eqs. (7.21) and (7.22). The

real solution, denoted as X̄0 can be found trivially by adding a constant corresponding to

each DOF to each node so that Eqs. (7.21) and (7.22) are satisfied.
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Table 7.1: Material properties of the composite constituents (P(VDF-TrFE) polymer and
PZT)

P(VDF-TrFE) PZT
C11(GPa) 1.8056 124.201
C12(GPa) 0.764 96.24
C13(GPa) 0.764 96.24
C22(GPa) 1.8056 151.351
C23(GPa) 0.764 98.3
C33(GPa) 1.8056 151.351
C44(GPa) 0.521 26.525
C55(GPa) 0.521 22.989
C66(GPa) 0.521 22.989

M11(m2/V2) −2.4× 10−18 0
M12(m2/V2) 1.20× 10−18 0
κ11(C/Vm) 0.606× 10−9 13.0× 10−9

κ33(C/Vm) 0.606× 10−9 15.045× 10−9

The increments of the local displacements and electric potential can be recovered using

the uniquely determined fluctuation function and Eqs. (7.19) and (7.20) as:





∆u1

∆u2

∆u3

∆φ





=





∆v1

∆v2

∆v3

∆ψ





+




∂∆v1
∂x1

∂∆v1
∂x2

∂∆v1
∂x3

∂∆v2
∂x1

∂∆v2
∂x2

∂∆v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

∂∆ψ
∂x1

∂∆ψ
∂x2

∂∆ψ
∂x3








y1

y2

y3





+ S̄X̄ (7.36)

where S̄ is different from S due to the recovery of slave nodes and the constrained node.

The increments of the local strain field and electric field can be recovered using Eqs. (7.14),

(7.15), (7.19), (7.20) and (7.29) as:

dε = dε̄ + ΓhS̄X̄ (7.37)

The increments of the local stress and electric displacement field can be recovered straight-

forwardly using the 3D constitutive relations for the constituent material as:

dσ = Y dε (7.38)

In the first increment of the nonlinear behavior of the electrostrictive composites, the

effective tangent electromechanical matrix X∗ is calculated with all local field variables in
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the electromechanical matrix of constituents are set to zero. The current overall stress

tensor σ̄ij and the current electric displacement D̄i are determined from the previous values

and the increments as:

σ̄ij = σ̄ij |previous + dσ̄ij (7.39)

and

D̄i = D̄i|previous + dD̄i (7.40)

In the next increment, the above process are repeated with the local field variables in

the electromechanical matrix of the constituents are not zero. These local field variables can

be recovered in terms of the fluctuation function and the increments of the global behavior

obtained from the previous stage.

7.5 Numerical Examples

In this section, the example considered is the P(VDF-TrFE) polymer matrix reinforced

by Pb(ZrxTi1−x)O3 (PZT) ceramics fibers which is extensively investigated in [6, 17]. The

properties of both constituents are shown in Table 7.1 which are directly converted from

Table 1 in [6]. The P(VDF-TrFE) polymer is isotropic and the PZT is transversely isotropic.

The fiber is of circular shape and arranged in a square array. Firstly, consider the composite

that is subjected to electric field Ē1 in 1-direction which is the axial direction of the fiber

and all other electric field and mechanical strains are set to zero. Fig. 7.2 and 7.3 show the

variation of the induced axial and transverse stresses σ̄11 and σ̄22 of the composites (with

four different volume fraction of the fiber, namely, VOF0.0, VOF0.2, VOF0.4, VOF0.6) with

respect to the applied electric field Ē1. It can be seen that the electromechanical coupling

effects increase with the applied electric field. In this case, the resulted transverse stresses

σ̄22 of four different volume fraction are very close.

Secondly, we consider the composite which is subjected to the traction free boundary

conditions, namely, σ̄ij = 0 and the external electric field Ē1 in 1-direction. In this situation,

the strains at the current stage are given by:

ε̄ij = ε̄ij |previous + dε̄ij (7.41)
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Fig. 7.2: The global stress σ̄11 versus the applied electric field.
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Fig. 7.3: The global stress σ̄22 versus the applied electric field.
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Fig. 7.4: The global strain ε̄11 versus the applied electric field.
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Fig. 7.5: The global stress ε̄22 versus the applied electric field.
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where:

dε̄ij = 2M∗
ijklĒkdĒl (7.42)

The variation of the induced axial and transverse strains ε̄11 and ε̄22 with respect to the

volume fraction of the applied electric field are illustrated in Fig. 7.4 and 7.5. Both figures

also show the effects of the volume fraction of the fiber. Again, it can be observed that

the electromechanical coupling effects increase with the volume fractions of the fiber which

impose strong effects on the resulted global strains.

7.6 Conclusions

This paper has focused on developing a micromechanics approach for the investiga-

tion of the nonlinear behavior of multiphase electrostrictive composites. The formulation

of the effective instantaneous tangent electromechanical matrix is established on the basis

of the variational asymptotic method. The algorithm for the nonlinear response of multi-

phase electrostrictive composites was constructed. The framework of this approach can be

straightforwardly extended to any other nonlinear problems.
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Chapter 8

Conclusions and Recommendations of Future Work

8.1 Conclusions

A series of new micromechanics models based on the framework of the variational

asymptotic method for unit cell homogenization (VAMUCH) have been developed for ho-

mogenizing composite materials. In comparison with other existing models, the major

advantages of VAMUCH are as follows:

1. It invokes only two essential assumptions within the concept of micromechanics for

heterogeneous material with identifiable unit cells;

2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward;

3. It calculates the different material properties in different directions simultaneously,

which is more efficient than those approaches requiring multiple runs under different

loading conditions;

4. It calculates effective properties and local fields directly with the same accuracy as

the fluctuation functions. No postprocessing calculations such as stress averaging and

strain averaging are needed.

Although VAMUCH is as versatile as FEA-based approaches, VAMUCH is dramatically

different from FEA-based approaches, both from the view point of theoreticians and from

the view point of practicing engineers.

8.1.1 Differences from the View Point of Theoreticians

Taking advantage of the smallness of the microstructure of heterogeneous materials,

VAMUCH formulates a variational statement of the unit cell through an asymptotic analysis

of the energy functional by invoking only two essential assumptions within the concept of

micromechanics of heterogeneous materials with identifiable UCs.
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• Assumption 1 The exact solutions of the field variables have volume averages over

the UC.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective material

properties are assumed to be the intrinsic properties of the material when viewed

macroscopically.

Please note these assumptions are not restrictive. The mathematical meaning of the first

assumption is that the exact solutions of the field variables are integrable over the domain of

UC, which is true almost all the time. For the second assumption, it is worthwhile to point

out that for nonlinear materials, the material properties is directly related with the stress

state at the point we want to evaluate the material properties. All the other assumptions

such as particular shape and arrangement of the constituents, specific boundary conditions,

and prescribed relations between local fields and global fields are convenient but not essential.

It has shown that the governing differential equations of Mathematical Homogenization

Theory (MHT), which achieves the best available accuracy for periodic composites, can

be derived from the variational statement of VAMUCH. The main differences between

VAMUCH and MHT are:

• The periodic boundary conditions are derived in VAMUCH, while they are assumed

a priori in MHT. MHT also assumes periodic functions, which is shown to be unnec-

essary in VAMUCH.

• The fluctuation functions are determined uniquely in VAMUCH, while they can only

be determined up to a constant in MHT.

• VAMUCH has an inherent variational nature which is convenient for numerical im-

plementation, while virtual quantities should be carefully chosen to make MHT vari-

ational as shown in [1].

Although the theory of VAMUCH can be compactly written as the variation of a

functional, it is easier to look at the corresponding differential statement derivable from

the variational statement to find out the theoretical differences between VAMUCH and
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FEA-based approaches. The corresponding differential statement of VAMUCH for elas-

tic materials includes the following governing differential equation (GDE) and boundary

conditions.

∂

∂yl
Cijkl

(
ε̄ij + χ(i|j)

)
= 0 in Ω (8.1)

χi(x; d1/2, y2, y3) = χi(x;−d1/2, y2, y3) (8.2)

χi(x; y1, d2/2, y3) = χi(x; y1,−d2/2, y3) (8.3)

χi(x; y1, y2, d3/2) = χi(x; y1, y2,−d3/2) (8.4)

Cijkl

(
ε̄ij + χ(i|j)

) |y1=d1/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y1=−d1/2 (8.5)

Cijkl

(
ε̄ij + χ(i|j)

) |y2=d2/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y2=−d2/2 (8.6)

Cijkl

(
ε̄ij + χ(i|j)

) |y3=d3/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y3=−d3/2 (8.7)

〈χi〉 = 0 (8.8)

where Eq. (8.1) is the governing differential equations, Eqs. (8.2)-(8.4) are the periodic

boundary conditions for fluctuation functions, and Eqs. (8.5)-(8.7) are the periodic boundary

conditions for local stresses. All these equations are identical to those of MHT, as listed in

[2] except Eq. (8.8) which ensures a unique solution for the fluctuation functions χi.

The GDE of FEA-based approaches for elastic properties is the 3D equilibrium equation

without body force
∂

∂yl
Cijkl (ui,j + uj,i) = 0 in Ω (8.9)

Comparing this equation with the VAMUCH GDE in Eq. (8.1), one clearly observes that

the fundamental variables of VAMUCH are fluctuation functions while those of FEA-based

approaches are the macroscopic displacements. Furthermore, the boundary conditions for

FEA-based approaches are applied on the macroscopic variables such as displacements. Dif-

ferent sets of displacement boundary conditions are needed for calculating different proper-

ties. Since these boundary conditions are applied a priori based on engineering intuition, it

is not surprising to find out that different researchers introduced different boundary condi-

tions for calculating the same property, see Ref. 3 for a detailed discussion on the boundary

conditions for RVE. It is known that the predicted effective properties are very sensitive to

boundary conditions. Another theoretical difference is that the dimensionality of VAMUCH
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analysis is based on the periodicity of the microstructure. For example, we can use 1D UC

to model binary composites, 2D UC to model fiber reinforced composites, and 3D UC to

model particle reinforced composites. No special treatment is necessary for these different

types of microstructures. However, it is not the case with FEA-based approaches, to get the

complete set of 3D material properties, one has to use 3D UCs, let it be a binary composite,

fiber reinforced composite, or particle reinforced composite. For example, according to the

author’s understanding, Sun and Vaidya [3] derived the most rigorous FEA-based approach

for elastic properties, which requires 3D RVE for fiber reinforced composites.

8.1.2 Differences from the View Point of Practicing Engineers

Although there are significant theoretical difference between VAMUCH and FEA-based

approaches, practicing engineers are usually more concerned with the convenience and ef-

ficiency. To use a FEA-based approach, one has to carry out multiple runs with different

sets of boundary conditions and external loads for predicting different material properties.

And postprocessing steps such as averaging stresses or averaging strains are needed for

calculating the effective properties. If one is also interested in the local fields within the

microstructure, one more run is necessary to predict local stress/strain field if the global

stress/strain state is different from that used to obtain the effective properties. Comparing

to FEA-based approaches, VAMUCH has the following advantages:

1. VAMUCH can obtain the complete set of material properties within one analysis

without applying any load and any boundary conditions, which is far more efficient

and less labor intensive than those approaches requiring multiple runs under different

boundary and load conditions. It is also noted that VAMUCH can even obtain the

complete set of 3D material properties using a one-dimensional analysis of the 1D UC

for binary composites. It is impossible for FEA-based approaches.

2. VAMUCH calculates effective properties and local fields directly with the same ac-

curacy as the fluctuation functions. No postprocessing calculations which introduce

more approximations, such as averaging stress and electric displacement field, are

needed, which are indispensable for FEM-based approaches.

3. VAMUCH can recover the local fields using a set of algebraic relations obtained in the

process of calculating the effective properties. Another analysis of the microstructures
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which is needed for FEA-based approaches is not necessary for VAMUCH.

It is also emphasized here that VAMUCH calculation is conceptually different from au-

tomating the multiple runs including postprocessing steps of FEA-based approaches using

a macro language such as APDL of ANSYS. VAMUCH is not just a different postprocessing

approach.

At this stage, we are confident to claim that VAMUCH achieves the most mathematical

rigor and consequently the best available accuracy with invoking only the very essential

assumptions within the micromechanics concept. VAMUCH is as versatile as FEA-based

approaches because it can deal with arbitrary UC with arbitrary number of inclusions with

arbitrary shape made of general anisotropic material. VAMUCH is much more convenient

and efficient than FEA-based approaches. In fact, one just needs to provide a mesh with

corresponding constituent properties, VAMUCH will produce the complete set of material

properties with one run, which takes just a very small faction of both the model preparation

time and the computational time of a FEA-based approach. Also to obtain the complete

set of properties of fiber reinforced composites or binary composites, FEA-based approaches

need to use 3D UC, while VAMUCH will only need to use 2D UC and 1D UC, respectively.

The time saving in this dimensionality reduction is dramatic.

8.2 Recommendations of Future Work

The following topics are recommended for the future work:

• Modeling the effects of the properties of the interfaces. The mechanical properties

of composite materials depend on the interface properties as well as the properties

of constituents. The load transfer between the reinforcement and the matrix rely

principally on the strength of interfaces. Strong interfaces result in good transverse

strength but reduced fracture toughness. On the contrary, weak interfaces led high

fracture toughness with low transverse strength. The investigation of the effects of

the interfaces is absolutely significant.

• The influences of the thermal residual stress on the overall properties of composite

materials The thermal residual stress is induced due to the differences of CTEs of

the constituents during fabrication and heat treatment of the composite materials. It
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imposes strong effects on the overall properties of composite materials and, therefore,

is an important topic worthy to be studied.

• Micromechanics modeling of composite materials with randomly distributed reinforce-

ments. In real composite materials, almost no periodic microstructure exists. Hence,

the determination of effective properties of composite materials composed of statisti-

cally random distribution of reinforcements is a potentially future task.
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Appendix A

Variational Asymptotic Method for Unit Cell

Homogenization of Periodically Heterogeneous Materials

1

This appendix is a journal paper published in the International Journal of Solids and

Structures, Vol. 44, 2007, pp. 3738-3755.

Abstract

A new micromechanics model, namely, the variational asymptotic method for unit cell

homogenization (VAMUCH), is developed to predict the effective properties of periodically

heterogeneous materials and recover the local fields. Considering the periodicity as a small

parameter, we can formulate a variational statement of the unit cell through an asymptotic

expansion of the energy functional. It is shown that the governing differential equations

and periodic boundary conditions of mathematical homogenization theories (MHT) can be

reproduced from this variational statement. In comparison to other approaches, VAMUCH

does not rely on ad hoc assumptions, has the same rigor as MHT, has a straightforward

numerical implementation, and can calculate the complete set of properties simultaneously

without using multiple loadings. This theory is implemented using the finite element method

and an engineering program, VAMUCH, is developed for micromechanical analysis of unit

cells. Many examples of binary composites, fiber reinforced composites, and particle re-

inforced composites are used to demonstrate the application, power, and accuracy of the

theory and the code of VAMUCH.

A.1 Introduction

Along with the increased knowledge and fabrication techniques for materials, more and

more structures are made with heterogeneous materials with engineered microstructures

to achieve the ever-increasing performance requirements. The increased complexity at the

microlevel greatly complicates the analysis of the structural behavior, which is indispensable
1Coauthored by: Wenbin Yu and Tian Tang.
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Fig. A.1: Periodic heterogeneous materials and the corresponding unit cell.

for rational designs of these structures. Although it is logically sound to use the well-

established finite element method (FEM) to analyze such structures by meshing all the

details of constituent materials, the size of the finite element model will easily overpower

most of the computers we can access in the foreseeable future because the macroscopic

structural dimensions are usually several orders of magnitude larger than the characteristic

size of constituent materials.

If the structure can be idealized as a periodic assembly of many unit cells (UCs, see

Fig. A.1), it is possible to homogenize the heterogeneous UC with a set of effective material

properties obtained by a micromechanical analysis of the UC. As illustrated in Fig. A.2,

the concept of UC essentially simplifies the original expensive analysis of structures made

with heterogeneous materials using the following three steps:

• Identify the UC and carry out a micromechanical analysis of the UC to obtain effective

material properties;

• Analyze the structure with homogenized material properties to study the macroscopic

structural behavior;

• Feedback the macroscopic behavior to the micromechanical analysis to calculate local

fields such as displacements, strains, and stresses within the UC, which are only needed

for detailed analysis of some critical zones.

In the past several decades, numerous approaches have been proposed for the microme-

chanical analysis of UCs (see Hashin (1983) and references cited therein). These includes

the earliest rules of mixture approaches based on Voigt and Reuss hypotheses. Hill (1952)

has shown that Voigt and Reuss assumptions predict the upper and lower bounds, respec-

tively, for the effective elastic properties of the homogenized UC. For general heterogeneous
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Fig. A.2: The basic steps of structure analysis with heterogeneous microstructures using
the concept of unit cell.

materials, the difference between these two bounds could be too large to be of practical use.

Researchers have proposed various techniques to either reduce the difference between the

upper and lower bounds, or find an approximate value between the upper and lower bounds.

Typical approaches are the self-consistent model (Hill, 1965) and its generalizations (Dvo-

rak and Bahei-El-Dini, 1979; Accorsi and Nemat-Nasser, 1986), the variational approach

of Hashin and Shtrikman (1962), third-order bounds (Milton, 1981), the method of cells

(MOC) (Aboudi, 1982, 1989) and its variants (Paley and Aboudi, 1992; Aboudi et al., 2001;

Williams, 2005b), recursive cell method (Banerjee and Adams, 2004), mathematical homog-

enization theories (MHT) (Bensoussan et al., 1978; Murakami and Toledano, 1990), finite

element approaches using conventional stress analysis of a representative volume element

(RVE) (Sun and Vaidya, 1996), and many others. Hollister and Kikuchi (1992) compared

different approaches and concluded that MHT is preferable over other approaches for pe-

riodic composites even when the material is only locally periodic with a finite periodicity.

Although MOC is not compared in Hollister and Kikuchi (1992), MOC expands the local

displacements in terms of global displacements using the Legendre polynomial of different

orders according to the required accuracy. The accuracy of MOC could be comparable to

MHT if sufficient terms are used in the polynomial expansion although the asymptotical
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correctness cannot be guaranteed. It is interesting to notice that the author of MOC re-

cently developed a new micromechanical analysis (Aboudi et al., 2001) based on MHT with

the solution procedure borrowed from MOC.

Although different approaches adopt different assumptions in the literature, there are

only two essential assumptions associated with the micromechanical analysis of heteroge-

neous materials with identifiable UCs.

• Assumption 1 The exact solutions of the field variables have volume averages over

the UC. For example, if ui are the exact displacements within the UC, there exist vi

such that

vi =
1
Ω

∫

Ω
ui dΩ ≡ 〈ui〉 (A.1)

where Ω denotes the domain occupied by the UC and its volume.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective material

properties are assumed to be the intrinsic properties of the material when viewed

macroscopically.

Of course, the micromechanical analysis of the UC is only needed and appropriate if η =

h/l ¿ 1, with h as the characteristic size of the UC and l as the the characteristic wavelength

of the deformation of the structure. All the others assumptions such as particular geometry

shape and arrangement of the constituents, specific boundary conditions, and prescribed

relations between local fields and global fields are convenient but not essential.

In this study, the variational asymptotic method (VAM) of Berdichevsky (1979) will

be used to develop a new unit cell homogenization technique invoking these two essential

assumptions. VAM simplifies the procedure of solving physical problems that can be for-

mulated in terms of a variational statement involving one or more small parameters. In

contrast to conventional asymptotic methods, VAM carries out asymptotic analysis of the

variational statement, synthesizing both merits of variational methods (viz., systematic,

simple, and easy to be implemented numerically) and asymptotic methods (viz., without ad

hoc assumptions). VAM has been used extensively to construct efficient high-fidelity struc-

ture models for composite beams (Yu et al., 2002c), composite and smart plates (Yu et al.,
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2002a; Yu and Hodges, 2004a,b), and composite and smart shells (Yu et al., 2002b, 2005),

achieving an excellent compromise between accuracy and efficiency. VAM has also been

used to homogenize isotropic material with periodic cavities (Berdichevsky, 1977), which

laid a foundation for the present work.

First, we extend the work of Berdichevsky (1977) to extract a variational statement for

the micromechanical analysis of the UC from the three-dimensional (3D) continuum formu-

lation of the periodically heterogeneous, anisotropic materials. This variational statement

can be solved using VAM asymptotically to find the relation between the local displace-

ments and global displacements for the purpose to predict effective material properties

and local fields. Then we will implement this theory using FEM to develop an engineer-

ing code, VAMUCH, to uniformly handle general heterogeneous microstructures including

one-dimensional (1D), two-dimensional (2D), or 3D UCs. Finally, many examples includ-

ing binary composites, fiber reinforced composites, and particle reinforced composites, are

used to demonstrate the application, power, and accuracy of the present theory and the

companion code VAMUCH.

A.2 A Variational Statement for Unit Cells
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Fig. A.3: Coordinate systems for 2D heterogeneous materials.



182

As shown in Fig. A.3, to facilitate our formulation, we need to setup three coordinate

systems: two cartesian coordinates x = (x1, x2, x3) and y = (y1, y2, y3), and an integer-

valued coordinate n = (n1, n2, n3). We use xi as the global coordinates to describe the

macroscopic structure and yi parallel to xi as the local coordinates to describe the UC

(Here and throughout the paper, Latin indices assume 1, 2, and 3 and repeated indices

are summed over their range except where explicitly indicated). If the UC is a cube with

dimensions as di, we chose the local coordinates yi in such a way that yi ∈ [−di
2 , di

2 ].

Since the heterogeneous material composes of many countable UCs, it is also convenient to

introduce integer coordinates ni to locate each individual UC. The integer coordinates are

related to the global coordinates in such a way that ni = xi/di (no summation over i). If

the material is uniform in one of the directions, such as the fiber reinforced composites in

the fiber direction, the dimension of that direction can be chosen to be an arbitrary length

different from zero.

To formulate a variational statement for UCs, we need to use one of the energy prin-

ciples, such as the principle of minimum total potential energy. The second assumption

implies that we could obtain the same effective material properties from an imaginary un-

bounded and unloaded heterogeneous material with the same microstrucutre as the loaded

and bounded one. Hence we could derive the micromechanical analysis from a heteroge-

neous material which could completely occupy the 3D space R and composes of infinite

many UCs. For elastic material,2 the total potential energy is equal to the summation of

the strain energy stored in all the UCs, which is:

Π =
∞∑

n=−∞

∫

Ω

1
2
Cijkl(y1, y2, y3) εij εkldΩ (A.2)

where Cijkl are the components of the periodically varying fourth-order elasticity tensor

and εij are the components of the 3D strain tensor defined for linear theory as

εij(n;y) =
1
2

[
∂ui(n;y)

∂yj
+

∂uj(n;y)
∂yi

]
(A.3)

Here ui(n;y) are functions of the integer coordinates and the local coordinates for each UC.

In view of the fact that the infinite many UCs form a continuous heterogeneous material, we
2Although it is possible to use the present methodology to obtain inelastic properties of heterogeneous

materials, we will focus on elastic properties in this study.
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need to enforce the continuity of the displacement field ui on the interface between adjacent

UCs, which can be written as follows for a UC with integer coordinates (n1, n2, n3):

ui(n1, n2, n3; d1/2, y2, y3) = ui(n1 + 1, n2, n3;−d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3) = ui(n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2) = ui(n1, n2, n3 + 1; y1, y2,−d3/2) (A.4)

According to the principle of minimum total potential energy, the exact solution will mini-

mize the energy in Eq. (A.2) under the constraints in Eq. (A.1) and Eqs. (A.4). Although

correctly formulated, this problem is very difficult to solve due to discrete integer arguments.

To take advantage of well-developed analytical techniques for continuous functions, we need

to transform the formulation into a more convenient format using the idea of quasicontin-

uum (Kunin, 1982). The basic idea is to associate a function of integer arguments defined in

the integer space with a continuous function defined in R. Following the procedures spelled

out in Berdichevsky (1977), we can reformulate Eqns. (A.2), (A.3), and (A.4) respectively

as:

Π =
∫

R

〈
1
2
Cijkl εij εkl

〉
dR (A.5)

εij(x;y) =
1
2

[
∂ui(x;y)

∂yj
+

∂uj(x;y)
∂yi

]
≡ u(i|j) (A.6)

and

ui(x1, x2, x3; d1/2, y2, y3) = ui(x1 + d1, x2, x3;−d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3) = ui(x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2) = ui(x1, x2, x3 + d3; y1, y2,−d3/2) (A.7)

Using the technique of Lagrange multipliers, we can pose the variational statement of
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the micromechanical analysis of UC as a stationary value problem of the following func-

tional:

J =
1
2

∫

R

[〈
Cijkl u(i|j) u(k|l)

〉
+ λi(〈ui〉 − vi)

]
dR

+
∫

R

∫

S1

βi1 [ui(x1, x2, x3; d1/2, y2, y3)− ui(x1 + d1, x2, x3;−d1/2, y2, y3)] dS1dR

+
∫

R

∫

S2

βi2 [ui(x1, x2, x3; y1, d2/2, y3)− ui(x1, x2 + d2, x3; y1,−d2/2, y3)] dS2dR

+
∫

R

∫

S3

βi3 [ui(x1, x2, x3; y1, y2, d3/2)− ui(x1, x2, x3 + d3; y1, y2,−d3/2)] dS3dR

(A.8)

where λi and βij are Lagrange multipliers introducing constraints in Eqs. (A.1) and (A.7),

respectively, and Si are the surfaces with ni = 1. Because vi is unvarying for the UC, our

problem is to find the displacement field ui vanishing the first variation of J , which is solved

asymptotically using VAM in the following section.

A.3 Variational Asymptotic Method For Unit Cell Homogenization

In view of Eq. (A.1), it is natural to express the exact solution ui as a sum of the

volume average vi plus the difference, such that

ui(x;y) = vi(x) + wi(x;y) (A.9)

where 〈wi〉 = 0 according to Eq. (A.1). The very reason that the heterogeneous material

can be homogenized leads us to believe that wi should be asymptotically smaller than vi,

i.e.

wi ∼ η vi (A.10)

Substituting Eq. (A.9) into Eq. (A.8) and making use of Eqs. (A.6) and (A.10), we can

obtain the leading terms of the functional as:

J1 =
1
2

∫

R

[〈
Cijkl w(i|j) w(k|l)

〉
+ λi 〈wi〉

]
dR

+
∫

R

∫

S1

βi1

[
wi(x; d1/2, y2, y3)− wi(x;−d1/2, y2, y3)− ∂vi

∂x1
d1

]
dS1dR

+
∫

R

∫

S2

βi2

[
wi(x; y1, d2/2, y3)− wi(x; y1,−d2/2, y3)− ∂vi

∂x2
d2

]
dS2dR

+
∫

R

∫

S3

βi3

[
wi(x; y1, y2, d3/2)− wi(x; y1, y2,−d3/2)− ∂vi

∂x3
d3

]
dS3dR

(A.11)

Although it is possible to carry out the variation of J1 and find the Euler-Lagrange equations
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and associated boundary conditions for wi, which corresponds to homogenous governing dif-

ferential equations along with inhomogeneous boundary conditions. It is more convenient

to use change of variables to reformulate the same problem so that inhomogeneous govern-

ing differential equations along with homogeneous boundary conditions can be obtained.

Considering the last three terms in Eq. (A.11), we use the following change of variables:

wi(x;y) = yj
∂vi

∂xj
+ χi(x;y) (A.12)

with χ termed as fluctuation functions. Notice, we still have 〈χi〉 = 0 if the origin of the

local system is chosen to be the center of UC. Then from the functional J1 in Eq. (A.11),

we can obtain the following functional defined over a UC:

J∗1 =
1
2

〈
Cijkl

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]〉
+ λi 〈χi〉

+
∫

S1

βi1 [χi(x; d1/2, y2, y3)− χi(x;−d1/2, y2, y3)] dS1

+
∫

S2

βi2 [χi(x; y1, d2/2, y3)− χi(x; y1,−d2/2, y3)] dS2

+
∫

S3

βi3 [χi(x; y1, y2, d3/2)− χi(x; y1, y2,−d3/2)] dS3

(A.13)

where ε̄ij = v(i,j) will be shown later to be the components of the global strain tensor

for the structure with homogenized effective material properties. The functional J∗1 in

Eq. (A.13) forms the backbone of the present theory, variational asymptotic method for

unit cell homogenization (VAMUCH). Performing the variation, we can obtain conditions

for J∗1 to be stationary as:

∂

∂yl
Cijkl

(
ε̄ij + χ(i|j)

)
= 0 in Ω (A.14)

χi(x; d1/2, y2, y3) = χi(x;−d1/2, y2, y3) (A.15)

χi(x; y1, d2/2, y3) = χi(x; y1,−d2/2, y3) (A.16)

χi(x; y1, y2, d3/2) = χi(x; y1, y2,−d3/2) (A.17)

Cijkl

(
ε̄ij + χ(i|j)

) |y1=d1/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y1=−d1/2 (A.18)

Cijkl

(
ε̄ij + χ(i|j)

) |y2=d2/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y2=−d2/2 (A.19)

Cijkl

(
ε̄ij + χ(i|j)

) |y3=d3/2 = Cijkl

(
ε̄ij + χ(i|j)

) |y3=−d3/2 (A.20)

〈χi〉 = 0 (A.21)



186

where Eq. (A.14) is the governing differential equations, Eqs. (A.15)-(A.17) are the peri-

odic boundary conditions for fluctuation functions, and Eqs. (A.18)-(A.20) are the periodic

boundary conditions for local stresses. All these equations are identical to those of MHT,

as listed in Manevitch et al. (2002). Although VAMUCH can reproduce the results of MHT

as expected, VAMUCH is different from MHT in the following aspects:

• The periodic boundary conditions are derived in VAMUCH, while they are assumed

a priori in MHT.

• The fluctuation functions are determined uniquely in VAMUCH due to Eq. (8.8),

while they can only be determined up to a constant in MHT.

• VAMUCH has an inherent variational nature which is convenient for numerical im-

plementation, while virtual quantities should be carefully chosen to make MHT vari-

ational as shown in Guedes and Kikuchi (1990).

The difficulty of solving the variational problem in Eq. (A.13) is tantamount to 3D

anisotropic elasticity problems. Closed-form solutions exist only for very simple cases.

For general cases we need to turn to numerical techniques such as FEM for approximate

solutions.

A.4 Finite Element Implementation of VAMUCH

It is possible to formulate the FEM solution based on Eq. (A.13), however, it is not

the most convenient and efficient way. First, Lagrange multipliers will increase the number

of unknowns. Second, the linear system will have zeros on the diagonal of the coefficient

matrix eluding the use of common LU decomposition technique. Considering the problem

governed by Eqs. (A.14)-(A.21), the last equation, Eq. (A.21), will not affect the solution

obtained by the rest of equations, which means the variational statement in Eq. (A.13) can

be reformulated as seeking the minimum value of the following functional ΠΩ

ΠΩ =
1

2Ω

∫

Ω
Cijkl

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]
dΩ (A.22)

under the constraints in Eqs. (A.15)-(A.17). The constraints in Eq. (A.21) do not affect

the minimum value of ΠΩ but help uniquely determine χi. In practice, we can constrain

the fluctuation functions at an arbitrary node to be zero and later use these constraints
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to recover the unique fluctuation functions. It is fine to use penalty function method to

introduce the periodic boundary conditions in Eqs. (A.15)-(A.17), as shown in Hollister

and Kikuchi (1992). However, this method introduces additional approximation and the

robustness of the solution depends on the choice of large penalty number. Here, we choose to

make the nodes on the positive boundary surface (i.e., yi = di/2) slave to the nodes on the

opposite negative boundary surface (i.e., yi = −di/2). By assembling all the independent

active degrees of freedom, we can implicitly and exactly incorporate the periodic boundary

conditions in Eqs. (A.15)-(A.17). In this way, we also reduce the total number of unknowns

in the linear system.

Introduce the following matrix notations

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33cT (A.23)





∂χ1

∂y1

∂χ1

∂y2
+ ∂χ2

∂y1

∂χ2

∂y2

∂χ1

∂y3
+ ∂χ3

∂y1

∂χ2

∂y3
+ ∂χ3

∂y2

∂χ3

∂y3





=




∂
∂y1

0 0

∂
∂y2

∂
∂y1

0

0 ∂
∂y2

0

∂
∂y3

0 ∂
∂y1

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3








χ1

χ2

χ3




≡ Γhχ (A.24)

where Γh is an operator matrix and χ is a column matrix containing the three components

of the fluctuation functions. If we discretize χ using the finite elements as

χ(xi; yi) = S(yi)X (xi) (A.25)

where S representing the shape functions (in the assembled sense disregarding the con-

strained node and slave nodes) and X a column matrix of the nodal values of the fluctuation

functions for all active nodes. Substituting Eqs. (A.23)-(A.25) into Eq. (A.22), we obtain a

discretized version of the functional as

ΠΩ =
1

2Ω
(X T EX + 2X T Dhεε̄ + ε̄T Dεεε̄) (A.26)
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where

E =
∫

Ω
(ΓhS)T D(ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T DdΩ Dεε =

∫

Ω
DdΩ (A.27)

with D as the 6 × 6 material matrix condensed from the fourth-order elasticity tensor

Cijkl. Since the periodic constraints have already been incorporated through assembly in

Eq. (A.25), our problem becomes to minimize ΠΩ in Eq. (A.26), which gives us the following

linear system

EX = −Dhεε̄ (A.28)

It is clear that X will linearly depend on ε̄, which means it is unnecessary to assign values

to ε̄ (even 1’s and 0’s as in common practice), and they can be treated as symbols without

entering the computation. The solution can be written as

X = X0ε̄ (A.29)

Substituting Eq. (2.33) into Eq. (A.26), we can calculate the energy storing in the UC

ΠΩ =
1

2Ω
ε̄T (X T

0 Dhε + Dεε)ε̄ ≡ 1
2
ε̄T D̄ε̄ (A.30)

Clearly D̄ is the so-called effective (or homogenized) material matrix and ε̄ the global strains.

The effective medium has an energy density ΠΩ, which can be used to carry out macroscopic

analyses.

If the local fields within the UC are of interest, we can recover those fields based on the

global displacements v, global strains ε̄, and the fluctuation functions χ. To this end, we

need to uniquely determine the fluctuation functions first, otherwise, we could not uniquely

determine the local displacement field. Recall, we fixed an arbitrary node and made nodes

on the positive boundary surfaces slave to facilitate the solution for the fluctuation functions.

First, we need to construct a new array X̃0 from X0 by assigning the values for slave nodes

according to the corresponding active nodes and assign zeros to the fixed node. Obviously,

X̃0 still yields the minimum value of ΠΩ in Eq. (A.22) under constrains in Eqs. (A.15)-

(A.17). However, X̃0 may not satisfy the constraints in Eq. (A.21) because it is different

from the real solution by a constant. To find the real solution, denoting as X̄0, we need to
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construct a discretized version of Eq. (A.21). Let us rewrite Eq. (A.21) as

∫

Ω
χT ψdΩ = 0 (A.31)

with ψ as the 3× 3 identity matrix. It can be easily verified that ψ is the kernel matrix of

Γh in Eq. (A.24). Both χ and ψ can discretized using the finite elements as

χ = S̄X̄ ψ = S̄Ψ (A.32)

with Ψ as the discretized kernel matrix. Substituting Eq. (A.32) to Eq. (A.31), we can

obtain the discretized version of the constraints as:

X̄ T HΨ = 0 (A.33)

with H =
∫
Ω S̄T SdΩ. Please note that we can always normalize the kernel matrix so that

ΨT HΨ = ψ.

The real solution X̄ can be expressed as

X̄ = X̃0ε̄ + Ψλ (A.34)

where λ are constants to be determined. Substituting the above relation into Eq. (A.33),

we can solve λ as

λ = −ΨT HX̃0ε̄ (A.35)

Then, the real solution is

X̄ = (I −ΨΨT H)X̃0ε̄ ≡ X̄0ε̄ (A.36)

with I as the n× n identity matrix and n is the total number of degrees of freedom.

After the fluctuation functions are determined uniquely, we can recover the local dis-

placement based on Eqs. (A.9), (A.12), and (A.32) as

u = v +




∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3








y1

y2

y3





+ S̄X̄0ε̄ (A.37)
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with u as the column matrix of ui and v as the column matrix of vi. The local strain field

can be recovered using Eqs. (A.6) and (A.24) as

ε = ε̄ + ΓhS̄X̄0ε̄ (A.38)

Finally, the local stress field can be recovered straightforwardly as

σ = Dε (A.39)

It can be easily verified that

〈σ〉 = D̄ε̄ (A.40)

which is expected because the effective material matrix can be equivalently defined through

the energy density of the UC or the relation between the average stress and average strain of

the UC. In comparison to common numerical micromechanical simulations in the literature,

the present implementation is unique in the following aspects:

• No external load is necessary to perform the simulation and the complete set of ma-

terial properties can be predicted within one analysis.

• The fluctuation functions and local displacements can be determined uniquely;

• The effective material properties and recovered local fields are calculated directly with

the same accuracy of the fluctuation functions. No postprocessing type calculations

which introduces more approximations are needed.

• The dimensionality of the problem is determined by that of the periodicity of the

UC. A complete set of 3D material properties can be obtained using a 1D analysis of

microstructures with 1D periodicity such as binary composites. It is noted that the

macroscopic analysis of a structure made with material having 1D periodicity could

be 3D, which requires the complete set of effective material properties.

We have coded the above formulation using Fortran 90/95 into a program named

VAMUCH. To demonstrate the application, accuracy, and efficiency of this theory and

code, we will analyze several material systems using VAMUCH in the next section.

A.5 Validation of VAMUCH
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Fig. A.4: Sketch of a binary composite.

VAMUCH provides a unified analysis for general 1D, 2D, or 3D UCs. First, the same

code VAMUCH can be used to homogenize binary composites (modeled using 1D UCs), fiber

reinforced composites (modeled using 2D UCs), and particle reinforced composites (modeled

using 3D UCs). Second, VAMUCH can reproduce the results for lower-dimensional UCs

using higher-dimensional UCs. That is, VAMUCH will predict the same results for binary

composites using 1D, 2D or 3D UCs, and for fiber reinforced composites using 2D or 3D

UCs.

A.5.1 Binary Composites

First, let us consider a periodic binary composite formed by orthotropic layers and the

material axes are the same as the global coordinates xi so that the material is uniform in the

x1 − x2 plane and periodic along x3 direction. A typical UC can be identified as shown in

Fig. A.4, the dimension along y3 is h and dimensions along y1 and y2 can be arbitrary. Let

φ1 and φ2 denote the volume fractions of the first phase and the second phase, respectively,

and we have φ1 + φ2 = 1. This problem has been solved analytically in Yu (2005). The



192

strain energy density of the effective material can be obtained as:

ΠΩ =
1
2





ε̄11

2ε̄12

ε̄22

2ε̄13

2ε̄23

ε̄33





T 


c∗11 0 c∗13 0 0 c∗16

0 c∗22 0 0 0 0

c∗13 0 c∗33 0 0 c∗36

0 0 0 c∗44 0 0

0 0 0 0 c∗55 0

c∗16 0 c∗36 0 0 c∗66






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ε̄11

2ε̄12
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2ε̄13
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



(A.41)

It can be observed that the homogenized material properties still have the same orthotropic

symmetry for this special case, although in general the homogenized material could be

anisotropic, which means a fully populated 6×6 stiffness matrix. The expressions of effective

material properties c∗ij are listed here.

c∗11 = 〈c11〉 − φ1φ2(c
(2)
16 − c

(1)
16 )2

φ1c
(2)
66 + φ2c

(1)
66

c∗13 = 〈c13〉 − φ1φ2(c
(2)
16 − c

(1)
16 )(c(2)

36 − c
(1)
36 )

φ1c
(2)
66 + φ2c

(1)
66

c∗16 =
φ1c

(1)
16 c

(2)
66 + φ2c

(2)
16 c

(1)
66

φ1c
(2)
66 + φ2c

(1)
66

c∗33 = 〈c33〉 − φ1φ2(c
(2)
36 − c

(1)
36 )2

φ1c
(2)
66 + φ2c

(1)
66
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φ1c

(1)
36 c

(2)
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(2)
36 c

(1)
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φ1c
(2)
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(1)
66

c∗66 = 1/

〈
1

c66

〉
c∗55 = 1/

〈
1

c55

〉
c∗44 = 1/

〈
1

c44

〉
c∗22 = 〈c22〉 (A.42)

where the superscripted quantities are those from each phase of the composite. It can be

observed that even for this simple case, only c∗22 is the same as the rule of mixture based

on the Voigt hypothesis, and c∗44, c
∗
55, c

∗
66 are the same as the rule of mixture based on the

Reuss hypothesis. All the other components are different from these two rules of mixture.

The effective material properties of the present theory reproduce those of a mathematical

homogenization theory in Manevitch et al. (2002). When both layers are made of isotropic

material, having Lamé properties λ1, µ1 for layer 1 and λ2, µ2 for layer 2, the formulas in

Eq. (A.42) reproduce the well-known exact expressions listed on Page 140 of Christensen
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Table A.1: Effective material properties of boron/aluminum composites

Models E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) ν12 ν23

VAMUCH 215.3 144.1 54.39 45.92 0.195 0.255
FEM 215 144 57.2 45.9 0.19 0.29
MOC 215 142.6 51.3 43.7 0.20 0.25
GMC 215.0 141.0 51.20 43.70 0.197 0.261

HFGMC 215.4 144.0 54.34 45.83 0.195 0.255
ECM 215 143.4 54.3 45.1 0.19 0.26

(1979) which was obtained by Postma (1955).

Yu (2005) shows that the fluctuation functions are piecewise linear functions for binary

composites, which means we can use 2-noded line elements for 1D UC in VAMUCH to

exactly, in the numerical sense, reproduce the analytical solution. We have also obtained

the same results using 2D and 3D UCs numerically. For the sake of saving space, such

results are not presented here. Suffice to state that the numerical results from VAMUCH

are exactly the same as the analytical solution within the machine precision.

A.5.2 Fiber Reinforced Composites

To show the predictive capability of VAMUCH for unidirectional fiber reinforced com-

posites, we choose a few examples extensively studied in the literature. For the first two

examples, comparisons are made between FEM (Sun and Vaidya, 1996), method of cell

(MOC) (Aboudi, 1982), generalized method of cell (GMC) (Paley and Aboudi, 1992), high-

fidelity generalized method of cell (HFGMC) (Aboudi et al., 2001), and elasticity-based

cell method (ECM) (Williams, 2005b). The FEM approach of Sun and Vaidya (1996)

is established on a rigorous mechanics foundation and 3D RVEs with periodic boundary

conditions are used for homogenization. The MOC and its variants (GMC, HFGMC, and

ECM) expand the local displacements in terms of global displacements using the Legendre

polynomials of different orders. ECM starts from this assumption and solve the equations

of continuum mechanics in a strong form. In contrast, MOC, GMC, and HFGMC invokes

additional ad hoc assumptions such as that the interfacial continuous conditions and peri-

odic boundary conditions are only satisfied in the integral sense. FEM results are directly

taken from Sun and Vaidya (1996), MOC and ECM results from Williams (2005b), GMC

and HFGMC results from Aboudi et al. (2001).
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Table A.2: Effective material properties of graphite/epoxy composites

Models E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) ν12 ν23

VAMUCH 142.9 9.61 6.10 3.12 0.252 0.350
FEM 142.6 9.60 6.00 3.10 0.25 0.35
MOC 143 9.6 5.47 3.08 0.25 0.35
GMC 143.0 9.47 5.68 3.03 0.253 0.358

HFGMC 142.9 9.61 6.09 3.10 0.252 0.350
ECM 143 9.6 5.85 3.07 0.25 0.35

The first example is a boron/aluminum composite. Both constituents are isotropic

with Young’s modulus E = 379.3 GPa and Poisson’s ratio ν = 0.1 for boron fibers, and

E = 68.3 GPa and ν = 0.3 for aluminum matrix. The fiber is of circular shape and arranged

in a square array (see the sketch in the middle of Fig. ??) and the fiber volume fraction

is 0.47. The effective material properties predicted by different approaches are listed in

Table B.1. It can be observed that MOC and GMC significantly underpredict the shear

moduli G12 and G23 while FEM overpredicts the longitudinal shear modulus G12. The

closest correlation for all the values is found between VAMUCH and HFGMC.

The second example is graphite/epoxy composites. Graphite fiber is transversely

isotropic with E11 = 235 GPa, E22 = 14 GPa, G12 = 28 GPa, ν12 = 0.2, and ν23 = 0.25.

Epoxy matrix is isotropic with Young’s modulus E = 4.8 GPa and Poisson’s ratio ν = 0.34.

The fiber is circular and arranged in a square array and the fiber volume fraction is 0.6.

The results from different approaches are listed in Table A.2. Again the closest correla-

tion is found between VAMUCH and HFGMC. Considering the fact that HFGMC uses the

governing equations of MHT and that VAMUCH can reproduce MHT, it is not surprising

to find out that HFGMC has an excellent agreement with VAMUCH. The FEM and ECM

predictions are also very close to VAMUCH results for this case. It is noted that the ECM

results listed in Tables B.1 and A.2 are obtained from the 3rd order model. If the 5th order

theory is used, the correlation between ECM and VAMUCH might be improved as shown

in the following two examples.

In the following two examples, VAMUCH is compared with MOC, ECM (both 3rd order

and 5th order), Green’s function based approach (G-F) (Walker et al., 1993) and FEM. The

results of MOC, ECM, and G-F are directly taken from Williams (2005b), while FEM

results are calculated using ANSYS following the approach proposed in Sun and Vaidya
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Table A.3: E22 (GPa) of W/Cu composites varying with fiber volume fraction

Models 0.0204 0.1837 0.5102 0.7511
VAMUCH 129.92 156.51 229.72 300.99

FEM 129.92 156.51 229.71 301.0
G-F 129.87 156.18 229.09 300.70
MOC 129.50 154.40 226.20 299.00

ECM (3rd order) 129.50 154.60 226.60 299.10
ECM (5th order) 129.80 156.50 229.50 300.80

VAMUCH (circular) 129.81 155.19 226.94 298.12
FEM (circular) 129.82 155.20 226.97 298.14

(1996). To be consistent with Williams (2005b), we use 2D UCs having square inclusions in

the center for VAMUCH. As pointed out in Williams (2005b), square inclusions provide a

stringent test of correct modeling the local and global behavior of heterogeneous materials

due to strong gradients in the local fields induced by the corners. The two material systems

we consider are tungsten/copper composite and void/copper composite. Both tungsten and

copper are assumed to be isotropic with E = 395.0 GPa and ν = 0.28 for tungsten, and

E = 127.0 GPa and ν = 0.34 for copper.

For both material systems, we calculate the effective transverse Young’s modulus at

different inclusion volume fractions of 0.0204, 0.1837, 0.5102, and 0.7511. The results are

listed in Table A.3 for tungsten/copper composite and Table A.4 for void/copper composite.

It is verified that the FEM approach of Sun and Vaidya has no size effects for E22, which

means this approach will provide the most accurate prediction of E22 with a converged

mesh. As one can observe from Tables A.3 and A.4, MOC and 3rd order ECM underpredict

this value up to 1.6% for tungsten/copper composite and 8.6% for void/copper composite.

VAMUCH, G-F, and 5th order ECM have excellent agreement with FEM, with VAMUCH

having the closest correlations.

To show the effect of shape of inclusions, we predict the effective transverse Young’s

modulus using UC with circular inclusions arranged in a square array. As shown in Ta-

bles A.3 and A.4, the shape effects of inclusions become more and more significant and

cannot be neglected with large volume fraction of inclusions, particularly for void/copper

composites. For example, E22 of void/copper composite with square holes is 80% larger

than the composite with circular holes when the void volume fraction reaches 0.7511. It is

interesting to note that E22 of the W/Cu composite with square inclusions is slightly larger
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Table A.4: E22 (GPa) of Void/Cu composites varying with void volume fraction

Models 0.0204 0.1837 0.5102 0.7511
VAMUCH 120.22 81.73 39.75 18.25

FEM 120.22 81.70 39.75 18.25
G-F 120.63 83.50 40.48 18.40
MOC 110.20 75.27 38.22 17.99

ECM (3rd) 110.20 75.38 38.23 17.99
ECM (5th) 118.90 80.97 39.64 18.20

VAMUCH (circular) 120.34 82.67 39.08 10.31
FEM (circular) 120.34 82.64 39.08 10.31

than that with circular inclusions, with the difference getting bigger with larger fiber volume

fraction. However, for the case of Void/Cu, material with square voids is slightly smaller

than that with circular voids for small void volume fractions. As the void volume fraction

getting bigger the trend is reversed. A parametric study is carried out to find out the point

where the trend is reversed. As observed from Fig. A.5, when the void volume fraction is

greater than zero and less than 0.45 (approximate), E22 of materials having square voids

are slightly smaller than those having circular voids. When the void volume fraction is

greater than 0.45 (approximate), materials with square voids have bigger E22 that those

with circular voids.

A.5.3 Particle Reinforced Composites

Due to special arrangements of constituents of particle reinforced composites, 3D UCs

are required to accurately model the microstructures. We are going to use VAMUCH to

analyze several particle reinforced composites to validate its 3D capability. In previous

section, we have shown that the prediction of MOC and GMC is not accurate for fiber

reinforced composites and one could infer that they can not provide very accurate prediction

for particle reinforced composites either. Although HFGMC and G-F provide excellent

prediction for fiber reinforced composites, we could not find 3D examples analyzed by

these two approaches. It is easy to verify that Sun and Vaidya’s FEM approach is equally

applicable to particle reinforced composites. Two other approaches we believe will provide

critical evaluations for VAMUCH are the 3D version of ECM (Williams, 2005a) and an

approach based on mathematical homogenization theory and finite element method (Banks-

Sills et al., 1997) (later we follow Williams (2005a) to name this approach as HFE).
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Fig. A.5: Change of Young’s modulus of material with square voids and circular voids with
respect to void volume fractions.

The first example is to predict the effective Young’s modulus for a glass/epoxy compos-

ite. The UC of this composite is composed of glass spheres embedded in a triply periodic

cubic array. Both constituents are isotropic with Young’s modulus E = 76.00 GPa and

Poisson’s ratio ν = 0.23 for glass, and Young’s modulus E = 3.01 GPa and Poisson’s ratio

ν = 0.394 for epoxy.3 We plot the change of effective Young’s modulus with respect to the

inclusion volume fraction in Fig. B.9. In comparison to HFE, VAMUCH outperforms ECM

(both 3rd order and 5th order). We are surprised to find out that it is counter intuitive that

the predictions of 5th order ECM are worse than 3rd order ECM for this particular case.

It is worthy to point out that the data of HFE and ECM are provided independently by

the author of Williams (2005a), where ECM data are calculated and HFE data are directly

picked out from the plots in Banks-Sills et al. (1997).

The second example is a Al2O3/Al composite with cubic inclusions in a cubic array.

Both constituents are isotropic with Young’s E = 350.00 GPa and Poisson’s ratio ν = 0.30

for aluminum oxide, and Young’s modulus E = 70.00 GPa and Poisson’s ratio ν = 0.30 for

aluminum. The effective Young’s modulus and Poisson’s ratio are plotted in Fig. A.7 and
3The isotropic assumption is convenient for comparing with available results in the literature. VA-

MUCH can deal with constituents with full anisotropy with material properties characterized as many as 21
independent constants.
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Fig. A.6: Effective Young’s modulus of glass/epoxy composite with spherical inclusions.

Fig. A.8, respectively. It can be observed that both VAMUCH and 5th order ECM have an

excellent agreement with HFE while the predictions of 3rd order ECM are not as accurate.

The last example is a Al2O3/Al composite having rectangular parallelepiped inclusions

with the ratio between the three dimensions as a1 : a2 : a3 = 2 : 1 : 2 where ai is the

dimension of the inclusion along the corresponding yi direction. The effective material

properties of this composite is not isotropic any more. For the sake of saving space, we

only plot the effective Young’s modulus E33 and effective Poisson’s ratio ν12 as functions of

inclusion volume fraction in Fig. A.9 and Fig. A.10, respectively. Again VAMUCH and 5th

order ECM have excellent agreements with HFE and outperform 3rd order ECM.

A.6 Conclusion

A new micromechanics model, the variational asymptotic method for unit cell ho-

mogenization (VAMUCH), has been developed to homogenize heterogeneous materials and

recover the local fields within the microstructure after obtaining the global responses of

the material. VAMUCH provides a uniform analysis for microstructures which can be de-

scribed using 1D, 2D, or 3D UCs, such as binary composites, fiber-reinforced composites,

and particle-reinforced composites. In comparison to existing micromechanics approaches,
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Fig. A.7: Effective Young’s modulus of Al2O3/Al composites with cubic inclusions.
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Fig. A.8: Effective Poisson’s ratio of Al2O3/Al composites with cubic inclusions.
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Fig. A.9: Effective Young’s modulus E33 of Al2O3/Al composites with rectangular paral-
lelepiped inclusions.
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Fig. A.10: Effective Poisson’s ratio ν12 of Al2O3/Al composites with rectangular paral-
lelepiped inclusions.
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VAMUCH has the following major advantages:

1. VAMUCH adopts the variational asymptotic method as its mathematical foundation.

It has the same rigor as MHT without even assuming periodic fluctuation functions

and boundary conditions. VAMUCH uses only assumptions inherent in micromechan-

ics without invoking any additional ad hoc assumptions.

2. VAMUCH has an inherent variational nature and its numerical implementation is

shown to be straightforward.

3. VAMUCH handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem

is determined by that of the periodicity of the unit cell.

4. VAMUCH can obtain different material properties in different directions simultane-

ously, which is more efficient than those approaches requiring multiple runs under

different loading conditions.

5. VAMUCH calculates effective properties and local fields directly with the same ac-

curacy as the fluctuation functions. No postprocessing calculations such as stress

averaging and strain averaging are needed.

The companion code, VAMUCH, is extensively validated using various examples in-

cluding binary composites, fiber reinforced composites, and particle reinforced composites.

We can confidently conclude that VAMUCH provides a versatile and convenient tool for

engineers to efficiently yet accurately design and analyze heterogeneous materials.
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Appendix B

A Variational Asymptotic Micromechanics Model for

Predicting Thermoelastic Properties of Heterogeneous

Materials

1

This appendix is a journal paper published in the International Journal of Solids and

Structures, Vol. 44, No. 22-23, 2007, pp. 7510-7525.

Abstract

A variational asymptotic micromechanics model has been developed for predicting ef-

fective thermoelastic properties of composite materials, and recover the local fields within

the unit cell. This theory adopts essential assumptions within the concept of micromechan-

ics, achieves an excellent accuracy, and provides a unified treatment for one-dimensional,

two-dimensional, and three-dimensional unit cells. This theory is implemented using the

finite element method into the computer program, VAMUCH, a general-purpose microme-

chanics analysis code. Several examples are used to validate the theory and the code.

The results are compared with those available in the literature and those produced by a

commercial finite element package.

B.1 Introduction

In recent years, more and more structures are made of composite materials with en-

gineered microstructure for better performance. Because the macroscopic structural di-

mensions are usually several orders of magnitude larger than the characteristic size of con-

stituents, it is not very practical to analyze such structures by meshing all the details of

constituent materials. Usually, the concept of unit cell (UC) is used to create a pseudo, “ef-

fective”, material with homogeneous properties from the original heterogeneous materials

with so-called micromechanics models; see Figure B.1.
1Coauthored by: Wenbin Yu and Tian Tang.
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Fig. B.1: Heterogenous material, unit cell, and effective material.

In the past several decades, numerous micromechanics models have been developed; see

Hashin (1983) and references cited therein. The simplest models are the rules of mixture

based on Voigt and Reuss hypotheses, which provides the upper and lower bounds, respec-

tively (Hill, 1952). The difference between these two bounds could be too large to be useful

for general composite materials. To this end, researchers have proposed various techniques

to either reduce the difference between the bounds, or find an approximate value between

the upper and lower bounds. Typical approaches are the self-consistent model (Hill, 1965)

and its generalizations (Dvorak and Bahei-El-Din, 1979; Accorsi and Nemat-Nasser, 1986),

the variational approach of Hashin and Shtrikman (Hashin and Shtrikman, 1962), third-

order bounds (Milton, 1981), the method of cells (MOC) (Aboudi, 1982) and its variants

(Aboudi, 1989; Paley and Aboudi, 1992; Aboudi et al., 2001; Williams, 2005b), recursive

cell method (Banerjee and Adams, 2004), mathematical homogenization theories (MHT)

(Bensoussan et al., 1978; Murakami and Toledano, 1990), finite element approaches using

conventional stress analysis of a representative volume element (RVE) (Sun and Vaidya,

1996), and many others. Although these approaches were originally introduced to predict

elastic properties, most of these approaches are also extended to predict thermomechanical

properties; see Schapery (1968), Rosen and Hashin (1970), and Aboudi (1984) for a few

examples.

Recently, a new technique for micromechanics modeling, namely variational asymptotic

method for unit cell homogenization (VAMUCH) (Yu and Tang, 2007), has been developed

based on the variational asymptotic method of Berdichevsky (1979). The technique invokes

two essential assumptions within the concept of micromechanics:

• Assumption 1 The exact solutions of the field variables have volume averages over

the UC. For example, if ui are the exact displacements within the UC, there exist vi
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such that

vi =
1
Ω

∫

Ω
ui dΩ ≡ 〈ui〉 (B.1)

where Ω denotes the domain occupied by the UC and its volume.

• Assumption 2 The effective material properties obtained from the micromechanical

analysis of the UC are independent of the geometry, the boundary conditions, and

loading conditions of the macroscopic structure, which means that effective material

properties are assumed to be the intrinsic properties of the material when viewed

macroscopically.

Please note these assumptions are not restrictive. The mathematical meaning of the

first assumption is that the exact solutions of the field variables are integrable over the

domain of UC, which is true almost all the time. The second assumption implies that we

can neglect the size effects of the material properties in the macroscopic analysis, which

is an assumption often made in the conventional continuum mechanics. Of course, the

micromechanical analysis of the UC is only needed and appropriate if η = h/l ¿ 1, with h

as the characteristic size of the UC and l as the characteristic wavelength of the deformation

of the macroscopic material.

In this paper, we will first use this modeling technique to construct a new microme-

chanics model for effective thermoelastic properties including elastic properties, coefficients

of thermal expansion (CTEs), and specific heat for heterogeneous materials. Then we will

implement the theory using the finite element method in the computer program VAMUCH

to provide engineers with a general-purpose micromechanics tool for thermoelastic microme-

chanical analysis of composite materials.

B.2 Theoretical Formulation

We need to use three coordinate systems: two cartesian coordinates x = (x1, x2, x3)

and y = (y1, y2, y3), and an integer-valued coordinate n = (n1, n2, n3); see Figure B.2.

We use xi as the global coordinates to describe the macroscopic material and yi parallel

to xi as the local coordinates to describe the UC. Here and throughout the paper, Latin

indices assume 1, 2, and 3 and repeated indices are summed over their range except where

explicitly indicated. We choose the origin of the local coordinates yi to be the geometric

center of UC. For example, if the UC is a cube with dimensions as di, then yi ∈ [−di
2 , di

2 ]. To
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Fig. B.2: Coordinate systems for heterogenous materials (only two-dimensional (2D) UC is
drawn for clarity).

uniquely locate a UC in the composite material, we also introduce integer coordinates ni.

The integer coordinates are related to the global coordinates in such a way that ni = xi/di

(no summation over i).

As implied by Assumption 2, we can obtain the same effective properties from an

imaginary, unbounded, and unloaded composite material with the same microstrucutre as

the real, loaded, and bounded one. Hence we could derive the micromechanics model from an

imaginary, unloaded, composite material which completely occupies the three-dimensional

(3D) space R and composes of infinite many repeating UCs. The total generalized potential

energy of this imaginary material is equal to the summation of the Helmholtz free energy

(Rosen and Hashin, 1970) stored in all the UCs, which is:

Π =
∞∑

n=−∞

1
2

∫

Ω
(Cijkl εij εkl + 2βij εij θ + cv

θ2

T0
)dΩ (B.2)

where Cijkl are components of the fourth-order elasticity tensor, βij are second-order tensor

of thermal stress coefficients, cv is the specific heat per unit volume at constant volume, T0

is the reference temperature at which the constituent material is stress free, θ denotes the
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difference between the actual temperature and the reference temperature, and εij are the

components of the 3D strain tensor defined for the linear theory as

εij(n;y) =
1
2

[
∂ui(n;y)

∂yj
+

∂uj(n;y)
∂yi

]
(B.3)

In view of the fact that these infinite many UCs form a continuous heterogenous material, we

need to enforce the continuity of the displacement field ui on the interface between adjacent

UCs, which can be written as follows for a UC with integer coordinates (n1, n2, n3):

ui(n1, n2, n3; d1/2, y2, y3) = ui(n1 + 1, n2, n3;−d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3) = ui(n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2) = ui(n1, n2, n3 + 1; y1, y2,−d3/2) (B.4)

For the purpose to obtain the effective CTEs and specific heat of composite materials, we

assume that θ is constant with respect to time and space coordinates, which is a common

practice in the literature; see Rosen and Hashin (1970) for example. Hence the continuity

condition for temperature field between adjacent UCs is automatically satisfied. Accord-

ing to the principle of minimum total potential energy, the exact solution will minimize

the energy in Eq. (B.2) under the constraints in Eq. (B.1) and Eqs. (B.4). To avoid the

difficulty associated with discrete integer arguments, we can reformulate the problem, in-

cluding Eqs. (B.2), (B.3), and (B.4), in terms of continuous functions using the idea of

quasicontinuum introduced in Kunin (1982) as:

Π =
1
2

∫

R

〈
Cijkl εij εkl + 2βij εij θ + cv

θ2

T0

〉
dR (B.5)

εij(x;y) =
1
2

[
∂ui(x;y)

∂yj
+

∂uj(x;y)
∂yi

]
≡ u(i|j) (B.6)

and

ui(x1, x2, x3; d1/2, y2, y3) = ui(x1 + d1, x2, x3;−d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3) = ui(x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2) = ui(x1, x2, x3 + d3; y1, y2,−d3/2) (B.7)
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Using the technique of Lagrange multipliers, we can pose the thermoelastic analysis as

a stationary value problem of the following functional:

J =
∫

R

{〈
1
2
Cijkl u(i|j) u(k|l) + βij u(i|j) θ +

1
2
cv

θ2

T0

〉

+ λi(〈ui〉 − vi) +
∫

S1

γi1(u+1
i − u−1

i )dS1

+
∫

S2

γi2(u+2
i − u−2

i )dS2 +
∫

S3

γi3(u+3
i − u−3

i )dS3

}
dR

(B.8)

with

u+j
i = ui|yj=dj/2, u−j

i = ui|xj=xj+dj ,yj=−dj/2 for j = 1, 2, 3

where λi and γij are Lagrange multipliers introducing constraints in Eqs. (B.1) and (B.7),

respectively, and Si are the surfaces with ni = 1. The main objective of micromechanics is

to find the real displacements ui in terms of vi, which is a very difficult problem because we

have to solve this stationary problem for each point in the global system xi as in Eq. (B.8).

It will be desirable if we can formulate the variational statement posed over a single UC

only. In view of Eq. (B.1), it is natural to express the exact solution ui as a sum of the

volume average vi plus the difference, such that

ui(x;y) = vi(x) + wi(x;y) (B.9)

where 〈wi〉 = 0 according to Eq. (B.1). The very reason that the heterogenous material

can be homogenized leads us to believe that wi should be asymptotically smaller than vi,

i.e., wi ∼ η vi. Substituting Eq. (B.9) into Eq. (B.8) and making use of Eqs (B.6), we can

obtain the leading terms of the functional as:

J1 =
∫

R

{〈
1
2
Cijkl w(i|j) w(k|l) + βij w(i|j) θ +

1
2
cv

θ2

T0

〉

+ λi 〈wi〉+
∫

S1

γi1(w+1
i − w−1

i − ∂vi

∂x1
d1)dS1

+
∫

S2

γi2(w+2
i − w−2

i − ∂vi

∂x2
d2)dS2

+
∫

S3

γi3(w+3
i − w−3

i − ∂vi

∂x3
d3)dS3

}
dR

(B.10)

with

w+j
i = wi|yj=dj/2, w−j

i = wi|yj=−dj/2 for j = 1, 2, 3
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Although it is possible to carry out the variation of J1 and find the Euler-Lagrange equa-

tions and associated boundary conditions for wi, which results in inhomogeneous boundary

conditions. It is more convenient to use change of variables to reformulate the same prob-

lem so that the boundary conditions are homogeneous. Considering the last three terms in

Eq. (B.10), we use the following change of variables to express wi as:

wi(x;y) = yj
∂vi

∂xj
+ χi(x;y) (B.11)

with χi termed as fluctuation functions. We are free to choose the origin of the local

coordinate system to be the center of UC, which implies the following constraints on χi:

〈χi〉 = 0 (B.12)

Finally, according to the variational asymptotic method (Berdichevsky, 1979), the first

approximation of the variational statement in Eq. (B.8) can be obtained from the following

functional defined over the UC:

JΩ =
1
2

〈
Cijkl

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]〉
+

1
2

〈
cv

θ2

T0

〉

+
〈
βij

[
ε̄ij + χ(i|j)

]
θ
〉

+ λi 〈χi〉

+
∫

S1

γi1(χ+1
i − χ−1

i )dS1 +
∫

S2

γi2(χ+2
i − χ−2

i )dS2

+
∫

S3

γi3(χ+3
i − χ−3

i )dS3

(B.13)

with

χ+j
i = χi|yj=dj/2, χ−j

i = χi|yj=−dj/2 for j = 1, 2, 3

where ε̄ij ≡ v(i,j) will be shown later to be components of the global strain tensor for

the structure with effective properties. The functional JΩ in Eq. (B.13) incorporates all the

information for the present thermoelastic micromechanics model. This variational statement

can be solved analytically for very simple cases such as binary composites (Yu and Tang,

2007), however, for general cases, we need to use computational techniques such as the finite

element method (FEM) to seek numerical solutions.
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B.3 Finite Element Implementation

It is possible to formulate the FEM solution based on Eq. (B.13), however, it is not the

most convenient way because Lagrange multipliers will increase the number of unknowns.

To this end, we can reformulate the variational statement in Eq. (B.13) as the minimum

value of the following functional

ΠΩ =
1

2Ω

∫

Ω

{
Cijkl

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]

+ 2βij

[
ε̄ij + χ(i|j)

]
θ + cv

θ2

T0

}
dΩ

(B.14)

under the following nine constraints

χ+j
i = χ−j

i for i, j = 1, 2, 3 (B.15)

It is noted that Eq. (B.15) represents the well-known periodic boundary conditions which

are assumed a priori in other models including MHT. while in the present model, they

are derived from the variational statement in Eq. (B.13). The constraints in Eq. (B.12)

do not affect the minimum value of ΠΩ but help uniquely determine χi. In practice, we

can constrain the fluctuation functions at an arbitrary node to be zero and later use these

constraints to recover the unique fluctuation functions. It is fine to use penalty function

method to introduce the constraints in Eqs. (B.15). However, this method introduces

additional approximation and the robustness of the solution depends on the choice of large

penalty numbers. Here, we choose to make the nodes on the positive boundary surface (i.e.,

yi = di/2) slave to the nodes on the opposite negative boundary surface (i.e., yi = −di/2).

By assembling all the independent active degrees of freedom, we can implicitly and exactly

incorporate the constraints in Eqs. (B.15). In this way, we also reduce the total number of

unknowns in the linear system which will be formulated in the following.

Introduce the following matrix notations

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33cT (B.16)
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ε1 =





∂χ1

∂y1

∂χ1

∂y2
+ ∂χ2

∂y1

∂χ2

∂y2

∂χ1

∂y3
+ ∂χ3

∂y1

∂χ2

∂y3
+ ∂χ3

∂y2

∂χ3

∂y3





=




∂
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0
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
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
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χ1

χ2

χ3




≡ Γhχ (B.17)

where Γh is an operator matrix and χ is a column matrix containing the three components

of the fluctuation functions. If we discretize χ using the finite elements as

χ(xi; yi) = S(yi)X (xi) (B.18)

where S representing the shape functions (in the assembled sense excluding the constrained

node and slave nodes) and X a column matrix of the nodal values of the fluctuation functions

for all active nodes. Substituting Eqs. (B.16), (B.17), and (B.18) into Eq. (B.14), we obtain

a discretized version of the functional as

ΠΩ =
1

2Ω
(X T EX + 2X T Dhεε̄ + ε̄T Dεεε̄

+ 2X T Dhθθ + 2ε̄T Dεθθ + Dθθ
θ2

T0
)

(B.19)

where

E =
∫

Ω
(ΓhS)T D(ΓhS)dΩ Dhε =

∫

Ω
(ΓhS)T DdΩ

Dεε =
∫

Ω
DdΩ Dhθ =

∫

Ω
(ΓhS)T βdΩ

Dεθ =
∫

Ω
βdΩ Dθθ =

∫

Ω
cvdΩ

with D as the 6×6 material matrix condensed from the fourth-order elasticity tensor Cijkl,

and β as the 6× 1 column condensed from βij . Minimizing ΠΩ in Eq. (B.19), we obtain the

following linear system

EX = −Dhεε̄−Dhθθ (B.20)
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It is clear from Eq. (B.20) that the fluctuation function X is linearly proportional to ε̄ and

θ, which means the solution can be written symbolically as

X = X0ε̄ + Xθθ (B.21)

Substituting Eq. (B.21) into Eq. (B.19), we can calculate the Helmholtz free energy density

of the UC as

ΠΩ =
1
2
ε̄T D̄ε̄ + ε̄T β̄θ +

1
2
c̄v

θ2

T0
(B.22)

with

D̄ =
1
Ω

(X T
0 Dhε + Dεε)

β̄ =
1
Ω

[
1
2
(DT

hεXθ + X T
0 Dhθ) + Dεθ

]

c̄v =
1
Ω

[X T
θ DhθT0 + Dθθ

]

Clearly D̄ is the effective elastic material matrix, β̄ contains the effective thermal stress

coefficients, c̄v is the effective specific heat, and ε̄ contains the global strains. It is easy

to infer that the effective coefficients of thermal expansion, ᾱ, can be obtained using the

following expression.

ᾱ = −D̄−1β̄ (B.23)

After obtained the effective free energy density in Eq. (B.22), we can use it as the constitutive

model of the effective medium to carry out various macroscopic analyses under different

loading and temperature conditions.

If the local fields within the UC are of interest, we can recover those fields after we

have obtained the macroscopic behavior which can be described by global displacements vi

and global temperature distribution θ.

To recover the local displacement field, we need to construct two new arrays X̃0 and

X̃θ from X0 and Xθ, respectively, by assigning the values for slave nodes according to the

corresponding active nodes and assign zeros to the constrained node. Obviously, X̃0 and X̃θ

still yield the minimum value of ΠΩ in Eq. (B.14) under constrains in Eqs. (B.15). However,

X̃0 and X̃θ may not satisfy the constraints in Eq. (B.12). The real solution, denoted as X̄0

and X̄θ, can be found trivially by adding a constant, which is equal to the average of the
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fluctuation functions, to each node so that Eq. (B.12) is satisfied. Then the real solution of

the fluctuation function is

X̄ = X̄0ε̄ + X̄θθ (B.24)

After having determined the fluctuation functions uniquely, we can recover the local

displacement using Eqs. (B.9), (B.11), and (B.24) as

u = v +




∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3








y1

y2

y3





+ S̄X̄ (B.25)

with u as the column matrix of ui and v as the column matrix of vi. Here S̄ is different

from S due to the recovery of slave nodes and the constrained node. The local strain field

can be recovered using Eqs. (B.6), (B.9), (B.11), (B.17), and (B.24) as

ε = ε̄ + ΓhS̄X̄ (B.26)

Finally, the local stress field can be recovered straightforwardly using the 3D constitutive

relations for the constituent material as

σ = Dε + βθ (B.27)

Both the theoretical formulation and finite element formulation can be reduced to be

those of Yu and Tang (2007) if one sets βij = 0 and cv = 0. It is worthy to point out that

the involved recovery procedure in Yu and Tang (2007) to obtain the unique fluctuation

functions in Eq. (B.24) is avoided by recognizing the fact the differences between X̃0 and

X̃θ and X̄0 and X̄θ are equal to the average of the fluctuation functions calculated from X̃0

and X̃θ.

We have implemented this formulation in the computer program VAMUCH. In the

next section, we will use a few examples to demonstrate the application and accuracy of

the theory and code.
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B.4 Numerical Examples

Numerous examples including binary composites, fiber reinforced composites, and par-

ticle reinforced composites in Yu and Tang (2007) have been used to demonstrate that

VAMUCH consistently achieves excellent accuracy for predicting effective elastic properties

in comparison to other existing approaches. In this paper, we will use some examples to

demonstrate the predictive capability of VAMUCH to recover the local stress field within

the UC, and predict effective coefficients of thermal expansions and specific heats, and

recover local stress field due to temperature changes.

B.4.1 Predict local stresses

A high-fidelity micromechanics model, such as VAMUCH, should not only provide an

accurate prediction for effective properties but also recover the local displacement, stress,

and strain fields within the UC, which are needed for detailed analysis.

To demonstrate the accuracy of VAMUCH in predicting the local fields, we consider

the classical problem of an isotropic circular fiber embedded in an infinite isotropic matrix

subjected to the uniform far-field stress σ∞22 (the so-called Eshelby problem). It is a plane

strain elasticity problem and can be solved exactly. The analytical formulas can be found

in Aboudi et al. (2001). To mimic this dilute case, we consider a UC with sufficiently small

fiber volume fraction (we choose 0.01 for this example) so that the interaction effects due

to the presence of adjacent cells are negligible. Except this restriction, the exact solution

provides a convenient basis to validate the accuracy of the local fields calculated using

VAMUCH.

For calculation, we choose the fiber to be glass with Young’s modulus E = 69.0 GPa

and Poisson’s ratio ν = 0.20, the matrix to be epoxy with Young’s modulus E = 4.80

GPa and Poisson’s ratio ν = 0.34. The choice of these materials produces a high elastic

moduli mismatch and thus a significant disturbance in the stress field along the interface

between fiber and matrix. To obtain the stress distribution within the UC, we need to run

VAMUCH first to calculate the effective properties of the composite materials. It is found

out that this material is transversely isotropic with E1 = 5.44 GPa, E2 = E3 = 4.93 GPa,

G12 = G13 = 1.82 GPa, ν12 = ν13=0.338, and ν23 = 0.357. Then we can use these properties

to solve the plane strain problem of the effective medium under the application of a far-field

stress σ∞22 = 5.5032 MPa, which will generate a macroscopic strain field ε̄22 = 0.1% and



217

Fig. B.3: Contour plot of σ22 (MPa) within the UC.

Fig. B.4: Contour plot of σ23 (MPa) within the UC.
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ε̄33 = −0.0514% within the effective medium. Such values can be fed back to VAMUCH to

recover the stress distribution within the material. Figures B.3 and B.4 show the contour

plots for the distributions of σ22 and σ23 within the UC generated by VAMUCH. The

contour plots of the exact solution in Aboudi et al. (2001) are not presented here for brevity

because they are almost the same as those in Figures B.3 and B.4. Both stress components

have sudden changes in the interface between fiber and matrix, which clearly demonstrates

that VAMUCH is capable of capturing stress concentrations. Although contour plots can

provide us some qualitative information, to rigorously assess the accuracy of VAMUCH,

we plot σ22 distributions predicted by VAMUCH and the exact solution along the lines

y2 = 0 and y3 = 0 in Figure B.5 and Figure B.6, respectively. It is evident that VAMUCH

has an excellent agreement with the exact solution. Both the continuous condition along

y3 = 0 and discontinuous condition along y2 = 0 are well captured by VAMUCH. The

slight differences along the edges are caused by the interaction effects due to presence of

adjacent cells because our far-field stress σ∞22 is not really uniform along the edges which

can be observed form the contour plot in Figure B.3. It has been verified that if the fiber

volume fraction is as low as 0.0025, σ∞22 will be uniform along the edges and the prediction of

VAMUCH is indistinguishable from the exact solutions. The discontinuity on the interface

along y2 = 0 in Figure B.5 can be captured better if one refines the mesh in the vicinity.

The results calculated using ANSYS following the approach in Sun and Vaidya (1996) are

also plotted in the figures. All three sets of results are almost on the top of each other and

ANSYS results are almost identical to VAMUCH results.

It is worthy to point out that local stress distribution is a critical assessment of mi-

cromechanics models and most of existing models cannot accurately predict the local stresses

even though they may have excellent predictions for effective properties (Williams, 2005a).

The fact that VAMUCH achieves an excellent agreement with the exact solution for lo-

cal stresses clearly demonstrated the high-fidelity predictive capabilities of VAMUCH for

micromechanical analysis of heterogeneous materials.

B.4.2 Predict effective CTEs

As reviewed by Rosen and Hashin (1970), Levin (1968) provides analytical expressions

relating effective CTEs and effective elastic moduli for two phase isotropic or transversely

isotropic composites having isotropic constituents. Since there are no exact formulas existing
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Table B.1: Effective CTEs of boron/aluminum composites

Models α11(10−6/K) α22(10−6/K)
Exact Solution (Rosen and Hashin, 1970) 10.99 16.69

VAMUCH 10.99 16.69
HFGMC (Aboudi et al., 2001) 11.00 16.70

GMC (Paley and Aboudi, 1992) 10.91 16.94
Tamma and Avila (Tamma and Avila, 1999) 10.77 17.34

for effective elastic moduli for general UCs and VAMUCH achieves excellent accuracy for

predicting such properties (Yu and Tang, 2007), we will consider the elastic properties

predicted by VAMUCH as exact and use them to calculate the effective CTEs following the

analytical expressions given in Rosen and Hashin (1970). It is noted that these analytical

expressions provide exact predictions for effective CTEs only if the corresponding elastic

moduli are exact. Nevertheless, they are labeled as “exact solution” to indicate that the

relations are given in exact closed-form expressions.

The first example is a boron/aluminum composite. Both constituents are isotropic

with Young’s modulus E = 379.3 GPa, Poisson’s ratio ν = 0.1, and CTE α = 8.1 10−6/K

for boron fibers, and E = 68.3 GPa, Poisson’s ratio ν = 0.3, and CTE α = 23.0 10−6/K

for aluminum matrix. The fiber is of circular shape and arranged in a square array (see the

sketch in the middle of Figure B.1). The example of fiber volume fraction 0.47 is studied in

several places (Aboudi et al., 2001; Tamma and Avila, 1999; Paley and Aboudi, 1992). The

effective CTEs predicted by different approaches are listed in Table B.1. It can be observed

that VAMUCH has a perfect match with the exact solution up to the fourth significant

digit. HFGMC also has an excellent agreement with the exact solution while GMC and

Tamma and Avila’s results are not so accurate. To show the trend of change of effective

CTEs with respect to change of the fiber volume fraction, we plot the effective CTEs for the

same composite with different fiber volume fractions in Figure B.7 and Figure B.8. As it is

expected, both axial CTEs and transverse CTEs are decreasing with increasing fiber volume

fractions. Again the perfect match between exact solution and VAMUCH for various fiber

volume fraction is observed.

The second example is to predict the effective CTE for a glass/epoxy particle reinforced

composite. The UC of this composite is composed of glass spheres embedded in a triply

periodic cubic array. Both constituents are isotropic with Young’s modulus E = 72.38 GPa,
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Fig. B.9: Change of effective CTEs of the glass/epoxy composite with respect to spherical
inclusion volume fractions.

Poisson’s ratio ν = 0.2, and CTE α = 5.0 10−6/K for glass, and Young’s modulus E =

2.75 GPa, Poisson’s ratio ν = 0.35, and CTE α = 54.0 10−6/K for epoxy. It is noticed that

the properties are directly taken from Aboudi (1984) and different from those in Section

B.4.1. We plot the change of effective CTE with respect to the particle volume fractions

in Figure B.9. It is found out that VAMUCH results are right on the top of the exact

solution, which demonstrates VAMUCH provides accurate predictions for CTEs for particle

reinforced composites.

To demonstrate the application and accuracy of the present model for more realistic

heterogeneous materials, we choose a more complex microstructure as shown in Figure B.10.

Within one UC, the reinforcements are a square fiber and a thin-wall frame around the

square fiber. Both matrix and reinforcements are isotropic with Young’s modulus E =

100000 MPa, Poisson’s ratio ν = 0.32, and CTE α = 10.0 10−12/K for reinforcements,

while the Young’s modulus of matrix takes different values from 10 MPa, 100 MPa, 1000

MPa, 10000MPa, and 50000MPa and its Poisson’sratio and CTE are fixed at 0.49 and

α = 4.0 10−6/K, respectively. The contrast ratio of CTEs of two constituents is as high as
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Fig. B.10: Sketch of a complex microstructure.

Table B.2: Effective CTEs of frame shape composites

Matrix
Modulus

α11 (10−9/K) α22 (10−6/K)
VAMUCH ANSYS VAMUCH ANSYS

Em = 10 MPa 3.92 3.90 2.22 2.23
Em = 100 MPa 14.6 14.6 3.12 3.28
Em = 1000 MPa 97.1 97.0 3.12 3.28
Em = 10000 MPa 637 637 3.23 3.23
Em = 50000 MPa 1886 1886 2.886 2.886

4 × 105. There are no analytical solution for composites with this kind of microstructure.

To validate the present model, we use ANSYS, a commercial finite element code, to carry

out a thermoelastic micromechanics analysis following the approach of Sun and Vaidya

(1996). Table B.2 shows the effective CTEs of composites of different matrix predicted by

VAMUCH and ANSYS. It can be seen that the predictions of VAMUCH are almost the

same as those obtained from ANSYS at different contrast ratios of Young’s modulus of the

constituents.

B.4.3 Predict effective specific heat

Rosen and Hashin (1970) derived closed-form expressions for macroscopically isotropic
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Fig. B.11: Effective specific heat cv of steel/aluminum composite varies with particle volume
fraction.

composites having two isotropic phases and bounds for macroscopically anisotropic compos-

ites relating effective specific heat and elastic moduli. Again, although those relations are

in closed-form, they can predict the exact effective specific heat only if the elastic moduli

predictions are exact. Here we use the elastic properties predicted by VAMUCH in these

relations and label them as “exact solution” only to reflect the fact that the effective specific

heats are obtained from closed-form expressions.

First, we use a steel/aluminum particle reinforced composite which can be considered

as macroscopically isotropic. Both constituents are isotropic with E = 200 GPa, ν = 0.3,

α = 12 10−6/K, and cv = 3609.6 kJ/(m3·K) for steel particles, and E = 68.3 GPa, ν = 0.3,

α = 23.0 10−6/K, and cv = 2619.1 kJ/(m3·K) for aluminum matrix. To examine the

agreement of VAMUCH with respect to the exact relations (Rosen and Hashin, 1970), we

plot the effective specific heat cv with different steel volume fraction as shown in Figure B.11.

It can be seen that the VAMUCH results have an excellent match with the exact relations

(Rosen and Hashin, 1970).

To show that VAMUCH can also predict the effective specific heat for macroscopically
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Fig. B.12: Effective specific heat cv of SiC/Cu composite varies with particle volume frac-
tion.

anisotropic composites, we chose the silicon carbide fiber reinforced copper matrix (SiC/Cu)

composite as an example. Both constituents are also isotropic with E = 410 GPa, ν = 0.14,

α = 4.0 10−6/K, and cv = 2327.73 kJ/(m3·K) for silicon carbide fibers, and E = 117 GPa,

ν = 0.34, α = 22.0 10−6/K, and cv = 3485.09 kJ/(m3·K) for copper matrix. Only bounds

are available for this type of composites. We plot the VAMUCH results along with the

upper and lower bounds provided in Rosen and Hashin (1970) in Figure B.12. It can be

observed that for this composite the lower and upper bounds are very close to each other

and VAMUCH results are nicely located between the bounds.

B.4.4 Predict local thermal stresses

Finally, we can use VAMUCH to recover the stress distribution within the UC due to

macroscopic temperature change. Consider the boron/aluminum composite with fiber vol-

ume fraction as 0.2. We use the effective thermoelastic properties to carry out a macroscopic

thermoelastic analysis of the homogenized material. Suppose we know for a certain UC, it is

stress free, yet the temperature is increased by 100 K. Due to the mismatch of CTEs of the
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Fig. B.13: Contour plot of σ22 (MPa) within the UC of a boron/aluminum composite due
to temperature increase of 100 K.

constituents, thermal stresses will be generated within the UC. The distributions of σ22 and

σ23 are plotted in Figures B.13 and B.14, respectively. All the sudden changes of stress dis-

tributions along the fiber-matrix interface have been well captured by VAMUCH. We have

also carried out a thermoelastic micromechanics analysis following the approach of Sun and

Vaidya (1996) to analyze 3D RVEs using ANSYS. The local thermal stress distributions

along y3 = 0 and y2 = 0 are plotted in Figures B.15 and B.16, respectively. Excellent match

between these two approaches can be clearly observed from the plots. However, only 2D

UCs are needed for VAMUCH to obtain these results. Such a capability of VAMUCH is

useful for predicting residual stresses caused by temperature changes during manufacturing

or operating processes.

B.5 Conclusions

A variational asymptotic model has been developed for thermoelastic micromechanical

analysis of heterogeneous materials. This model can homogenize the composite materials

to find effective thermoelastic properties including elastic properties, coefficients of thermal

expansion, and specific heat and recover the local fields within the microstructure in terms

of the global responses of the material. This model provides a uniform treatment for mi-

crostructures which can be described using 1D, 2D, or 3D UCs, such as binary composites,
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Fig. B.14: Contour plot of σ23 (MPa) within the UC of a boron/aluminum composite due
to temperature increase of 100 K.
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Fig. B.15: Comparison of thermal stress σ22 distribution along y2 = 0.
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fiber-reinforced composites, and particle-reinforced composites. In comparison to existing

micromechanics models, this model has the following unique features:

1. It adopts the variational asymptotic method as its mathematical foundation. It has

the same rigor as MHT without even assuming periodic fluctuation functions and

boundary conditions.

2. It has an inherent variational nature and its numerical implementation is shown to be

straightforward.

3. It handles 1D/2D/3D unit cells uniformly. The dimensionality of the problem is

determined by that of the periodicity of the unit cell.

The present theory is implemented in the computer code, VAMUCH, which has the

following advantages in comparison to FEM using conventional stress analysis of RVE Sun

and Vaidya (1996):

1. VAMUCH can obtain different material properties in different directions simultane-

ously, which is more efficient than those approaches requiring multiple runs under

different loading conditions.
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2. VAMUCH calculates effective properties and local fields directly with the same ac-

curacy as the fluctuation functions. No postprocessing calculations which introduces

more approximations, such as averaging stresses and averaging strains, are needed.

3. VAMUCH can model composite materials with full anisotropy, while FEM can only

handle at most macroscopically orthotropic material, which is an unnecessary restric-

tion.

The application and accuracy of VAMUCH for predicting effective thermoelastic properties

and local fields have been demonstrated through various examples.
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Appendix C

A Critical Evaluation of the Predictive Capabilities of

Various Advanced Micromechanics Models

C.1 Introduction

As structural applications become more demanding it is becoming increasingly im-

portant that the fundamental response mechanisms controlling both the microscopic and

macroscopic behavior of structural materials be well understood. Properly quantified in a

material model such understanding can be used to improve structural designs, make more

accurate estimates of a given structure’s capabilities, or engineer a material’s microstructure

in order to enhance desirable performance characteristics.

The fundamental response mechanisms in all heterogeneous materials are driven by the

localization processes induced by the presence of the heterogeneities (the microstructures)

that exist in these materials. Micromechanical theories are particularly well suited to mod-

eling localization processes and how they influence the micro- and macroscopic material

behavior since these theories predict the multiscale material response based directly on a

knowledge of the behavior of the individual component materials and of the heterogeneous

microstructure.

There are a number of different types of homogenization tools available. The simplest

such models [1,2] which are based on strength of materials assumptions, can only be con-

sidered to give very rough estimates for a material’s response characteristics. Mean field

theories, such as the Mori-Tanaka theory [3,4] can provide reasonable estimates for a mate-

rial’s bulk elastic response but typically fail to provide good estimates for the local responses

and the history-dependent responses of the material. In order to correctly predict the local

and bulk response characteristics in the elastic and inelastic domains it is necessary to utilize

micromechanical theories that consider both the average fields within phases as well as the

fluctuating fields within the phases [5]. A set of relatively simple micromechanical models

that have attempted to develop such capabilities are the so-call “Method of Cells” (MOC)
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[6] and the “Generalized Method of Cells” (GMC) [7,8]. These approaches are based on the

use of average strain and stress fields within discrete subvolumes of the microstructure. A

review of some of the published work using these models is given in Ref.9. One shortcoming

of the MOC/GMC models is the lack of coupling between the local shearing and normal

responses for composites composed of phases with at least orthotropic symmetry. This

lack of coupling has significant implications for predicting the history-dependent behavior

of such materials. In order to overcome this lack of coupling in the local fields it is neces-

sary to utilize theories with more accurate representations of the local fields. There are a

number of such theories currently available. Two very different approaches that have been

developed in an attempt to directly address the lack of coupling in the MOC/GMC set of

models are the so-called “High Fidelity Generalized Method of Cells” (HFGMC) model [10]

and the so-called “Elasticity-based Cell Model” [5,11,12]. Obviously, various other models

that exhibit (potentially) accurate representations of the microfields in the composite exist

which have no connection to the original MOC/GMC methodologies. Examples of such the-

ories are Green’s function based analyses [13] and asymptotic homogenization approaches

[14]. A recently developed variant of the asymptotic homogenization approach is the Vari-

ational Asymptotic Method for Unit Cell Homogenization (VAMUCH) [15-17]. In contrast

to conventional asymptotic methods, VAMUCH carries out an asymptotic analysis of the

variational statement, synthesizing the merits of both variational methods and asymptotic

methods. Finally, there are a number of purely numerical approaches, such as finite ele-

ment analyses [18,19], and particle-in-cell methods [20], that have been used to model the

micromechanical response of heterogeneous materials.

Obviously, significant effort has been expended to develop a number of approaches that

can be used to consider the micromechanical responses of composite systems. However, there

has been relatively little work done that compares the predictive capabilities of different

approaches. One such study, carried out by Lissenden and Herakovich [21], considered the

ability of various simplified micromechanical theories to predict the bulk elastic properties

of continuous fiber composites. However, in today’s environment of advanced applications

it is no longer sufficient to consider only the predictions for the bulk characteristics. It is

now necessary to consider the predictive capabilities for the local fields within the material

system.

The focus of the current work is the comparison of the predictive capabilities of several
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advanced micromechanical theories; the GMC theory, the HFGMC theory, the ECM theory,

and VAMUCH, with each other as well as with established analytical solutions and finite

element predictions. The work will consider both the local and global responses. Since

accurate predictions for the elastic fields within the composite are a necessary prerequisite

for accurately predicting the history-dependent behavior of heterogeneous materials the

current comparisons focus on the elastic predictions.

C.2 Case Studies

These micromechanics models will be used to predict the bulk and local elastic re-

sponses of various types of fiber reinforced composites. The resulting predictions will be

compared to assess the accuracy with which the different models are capable of predicting

the local fields as well as the effective bulk properties of different composite systems. For

the purpose of comparison, we also use a finite element based micromechanics approach

(which is denoted as FEM) proposed by Sun and Vaidya [18]. This method performs the

conventional stress analysis of a representative volume element by applying periodic and

symmetric boundary conditions. In this work, we used ANSYS to perform all the needed

finite element analysis. Using this approach, only the transverse shear moduli G23 can be

calculated using 2D analysis, and all the other effective properties are calculated using 3D

analysis. However, all the other micromechanics models reviewed in the previous section

only require a 2D analysis for fiber reinforced composites.

C.2.1 Case 1: Eshelby problem

The first case is the Eshelby problem [22] which deals with an isotropic circular fiber

embedded in an infinite isotropic matrix subjected to the uniform far-field stress σ∞22. It

is a plane strain elasticity problem and can be solved exactly. Although this is not a

micromechanics problem because no repeating UCs can be identified in the material, we

can consider a material with repeating UCs which have sufficiently small fiber volume

fraction (we choose 1% for this example) so that the interaction effects due to the presence

of adjacent cells are negligible. Except for this restriction, the exact solution provides an

excellent benchmark for validation of the accuracy of the local fields predicted by different

micromechanics models.

For calculation, we choose the fiber to be boron with Young’s modulus E = 400.0



235

Table C.1: Effective properties of boron/epoxy composites for Eshelby problem

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7465 3785 1311 1309 0.3484 0.4435
HFGMC 7466 3801 1322 1317 0.3481 0.4424

ECM (5th order) 7466 3793 1315 1313 0.3482 0.4431
VAMUCH 7466 3801 1322 1317 0.3481 0.4424

FEM 7466 3801 1322 1317 0.3481 0.4424

S22 contour plot of Eshelby solution: Ansys results

2y

3y

S22 contour plot of Eshelby solution: Ansys results

2y

3y

Fig. C.1: Contour plot of σ22 (MPa).

GPa and Poisson’s ratio ν = 0.20, the matrix to be epoxy with Young’s modulus E =

3.50 GPa and Poisson’s ratio ν = 0.35. The choice of these materials produces a high

elastic moduli mismatch and thus a significant disturbance in the stress field along the

interface between fiber and matrix. To obtain the stress distribution within the UC using

micromechanics approaches, we need to calculate the effective properties first, which are

listed in Table C.1. It can be observed that except for GMC, which slightly under predicts

the moduli (E22, G12, G23) and over predicts the Poisson’s ratios, all the other approaches

obtain the same results up to the fourth significant figure.

Next we can use these properties to solve the plane strain problem of the effective,

homogenized medium under the application of a far-field stress σ∞22, which will generate a

macroscopic strain field ε̄22 = 0.1% and corresponding ε̄33 due to Possion’s effect. Such val-
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Fig. C.2: Contour plot of σ23 (MPa).

ues can be fed back to the micromechanics models to recover the stress distribution within

the material. Figures C.1 and C.2 show the contour plots for the distributions of σ22 and

σ23 directly obtained using the exact solution, in which the stress concentrations along the

interface between fiber and matrix can be clearly observed. Although contour plots can

provide us some qualitative information, to rigorously assess the accuracy of micromechan-

ics approaches, we plot σ22 distributions predicted by micromechanics approaches (GMC,

HFGMC, and VAMUCH) and the exact solution along the lines y2 = 0 and y3 = 0 in

Figure C.3 and Figure C.4, respectively. It is evident that GMC is not predictive for the

local field, yet HFGMC and VAMUCH have excellent agreements with the exact solution

except that the predictions of HFGMC for the stress field inside the fiber and adjacent to

the interface are slightly different from the exact solution. Both the continuous condition

along y3 = 0 and discontinuous condition along y2 = 0 are well captured by HFGMC and

VAMUCH. The slight differences along the edges are caused by the interaction effects due

to presence of adjacent cells because our far-field stress σ∞22 is not really uniform along the

edges which can be observed form the contour plot in Figure C.1. It has been verified that

if one chose a fiber volume fraction so low that σ∞22 is uniform along the edges and the

prediction of HFGMC and VAMUCH will be further improved. The discontinuity on the

interface along y2 = 0 in Figure C.3 can be captured better if one refines the mesh in the
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Fig. C.3: Comparison of normal stress σ22 distribution along y2 = 0.

vicinity. Although the effective properties are not sensitive to the discretization schemes,

the local fields are. In this case, we used 100 × 100 subcells grid for GMC and HFGMC,

and a mesh of 4834 8-noded quadrilateral elements is used for VAMUCH, and the same

mesh is used for ANSYS to calculate G23, and the corresponding 3D mesh is extruded from

this mesh with two elements along the fiber direction to calculate all the other effective

properties.

C.2.2 Case 2: MOC microstructure

Next, we study a microstructure which is a square array with a square fiber in the center

(Figure C.5). We called it the MOC microstructure because it is typically used by MOC,

GMC and HFGMC [6]. We use the same boron fiber and epoxy matrix as the previous case.

However, the fiber volume fraction is changed to be 60% so that the effective properties can

be strongly affected by the fibers and their interactions with the matrix and with each other.

The effective properties predicted by different approaches are listed in Table C.2. A 64×64

subcell grid is used for GMC and HFGMC, a 2 × 2 subcell grid is used for ECM, a mesh
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Fig. C.5: A sketch of the MOC microstructure.
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Table C.2: Effective properties of boron/epoxy composites for MOC microstructure

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 241422 17440 4631 3203 0.2522 0.2673
HFGMC 241428 19803 5216 3390 0.2501 0.2000

ECM (7th order) 241426 19793 5161 3368 0.2502 0.1994
VAMUCH 241426 19864 5223 3391 0.2501 0.1978

FEM 241426 19864 5223 3391 0.2501 0.1978

of 3763 8-noded elements is used for VAMUCH and the same mesh and its corresponding

3D mesh is used for FEM. It can be observed that only VAMUCH and FEM have the same

predictions for all the effective properties, although all the approaches predict almost the

same value for E11, and HFGMC’s predictions are very close to those of VAMUCH and

FEM. Overall, GMC under predicts E22, G12, G23 and over predicts the Poisson’s ratios.

Except E11, the predictions of ECM are located between GMC and HFGMC and close to

those of HFGMC.

To evaluate the accuracy of the local stress field predicted by the different approaches,

we use a plane strain problem by applying a biaxial loading such that σ22 = −10 MPa and

σ33 = 100 MPa to the microstructure. We plot σ33 along y3 = 0 predicted by different

approaches in Figure C.6, where ANSYS results are obtained by directly solving the plane

strain problem without using the effective properties. It can be clearly observed that VA-

MUCH and HFGMC have excellent agreements with the direct finite element analysis of

ANSYS, although the predictions of HFGMC are slightly off at the interface between fiber

and matrix. It is also observed that the local field obtained using GMC, although much

improved compared to those of case 1, are only predictive in an average sense. We have also

compared other stress components and tested with other types of loading such as transverse

shear and longitudinal shear, and similar trends have been found. Those results are not

reported here for conciseness.

C.2.3 Case 3: X microstructure

The last case we study is an X shaped microstructure, which is sketched in Figure C.7,

where each quadrant has two square fibers of the same size and equally spaced along the

diagonal. The square fibers are perfectly connected with each other through the corners.
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The composite system considered is polymer-bonded explosives (PBXs) with an explosive

crystal inclusion of Young’s modulus E = 15300 MPa and Possion’s ratio ν = 0.32 embedded

in a binding matrix with Poisson’s ratio ν = 0.49. To investigate the predictions from

different approaches for different ratios of elastic moduli mismatches, we choose varying

binding matrix material so that its Young’s modulus Em takes different values from 0.7

MPa, 7 MPa, 70 MPa, 700 MPa, and 7000 MPa. The fiber volume fraction is fixed at 50%.

Because of the special construction of this microstructure, singularities exist at all

the connecting corners of the fibers. Even the calculation of effective properties becomes

sensitive to the discretization schemes used by different methods. For this case, we used a

64 × 64 subcell grid for GMC and HFGMC, a 3× 3 subcell grid is used for ECM, a mesh

of 5712 8-noded elements is used for VAMUCH and the same mesh and its corresponding

3D mesh is used for the FEM. The effective properties with different Young’s modulus for

the binder predicted by different approaches are listed in Tables C.3-C.7. We can observe

the following from these tables:

• When Em = 7000, all the approaches except GMC have excellent predictions for the

effective properties. As shown in Table C.3, GMC significantly under predicts G12

and G23, slightly under predicts E11, E22 and ν12, and over predicts ν23.

• For other values of Em, the general trend is that when the contrast ratio of the Young’s

moduli of fiber and matrix becomes larger, the differences among the predictions from

different approaches becomes larger, although all the approaches still predict a similar

value for E11, which approximately obeys the Voigt rule of mixture for fiber reinforce

composites.

• For other values of Em, VAMUCH and FEM also predict the same or similar value

for E22 and Poisson’s ratios. VAMUCH predictions for G23 are slightly larger than

those of FEM predictions, while VAMUCH predictions for G12 are smaller than FEM

and the difference become quite significant as the contrast ratio becomes large.

• For other values of Em, the predictions of GMC, HFGMC, and ECM for E22, G12,

G23, although very different among themselves, are significantly lower than those of

VAMUCH and FEM, while Poisson’s ratios predicted from GMC, HFGMC, and ECM

are bigger than those from VAMUCH and FEM. As the contrast ratio becomes larger,

the difference between these two sets of results become much bigger.
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Table C.3: Effective properties of PBX 9501 composites for X microstructure (Em = 7000
MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 11150 10170 3343 3343 0.405 0.5212
HFGMC 11246 10530 3688 3794 0.4126 0.508

ECM (7th order) 11247 10546 3679 3804 0.4126 0.5072
VAMUCH 11247 10531 3690 3795 0.4126 0.5078

FEM 11246 10531 3690 3795 0.4126 0.5078

Table C.4: Effective properties of PBX 9501 composites for X microstructure (Em = 700
MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 8000 1687 451.5 451.5 0.405 0.8687
HFGMC 8032 2544 1025 1406 0.4039 0.8032

ECM (7th order) 8024 2089 885.3 1314 0.4042 0.8382
VAMUCH 8041 2693 1207 1525 0.4036 0.7919

FEM 8040 2694 1213 1522 0.4036 0.7919

• It is interesting to find out the GMC always predicts the same value for G12 and G23

for this microstructure for each value of Em.

• The predictions of ECM are located between those of GMC and HFGMC for Em = 700

MPa, 70 MPa and 7 MPa. However, such a trend is not present for Em = 7000 MPa

and 0.7 MPa. Particularly, for Em = 0.7 MPa, the predictions of ECM for E22 and

G23 are the lowest, while the method predicts the highest value for ν23.

At this stage, we believe it is premature to conclude which sets of predictions are

more reliable than others. First of all, it is impractical to connect two fibers through one

Table C.5: Effective properties of PBX 9501 composites for X microstructure (Em = 70
MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7685 182.5 46.79 46.79 0.405 0.9505
HFGMC 7690 376.2 153.2 277.3 0.3991 0.9037

ECM (7th order) 7688 233.7 112.1 214.4 0.4015 0.9387
VAMUCH 7701 798 553 715 0.3854 0.8232

FEM 7704 799 664 711 0.3853 0.8229
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Table C.6: Effective properties of PBX 9501 composites for X microstructure (Em = 7
MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7654 18.41 4.696 4.696 0.405 0.9597
HFGMC 7654 40.16 18.43 33.96 0.3976 0.9197

ECM (7th order) 7654 23.67 11.53 23.00 0.4014 0.9503
VAMUCH 7658 502 468 569 0.3428 0.6839

FEM 7660 502 597 563 0.3425 0.6839

Table C.7: Effective properties of PBX 9501 composites for X microstructure (Em = 0.7
MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7650 1.842 0.4698 0.4698 0.405 0.9607
HFGMC 7650 4.058 4.123 6.367 0.3909 0.9277

ECM (7th order) 7650 0.3535 1.146 0.3178 0.4044 0.9925
VAMUCH 7651 460 459 553 0.3228 0.6223

FEM 7651 460 590 546 0.3228 0.6223

material point (the corner). It is a mathematical idealization of small contacting areas.

The singularity due to the stress bridging through the connecting corners creates difficult

for all numerical approaches. Second, we are limited by resources to perform convergence

studies for FEM results because its calculations except G23 requires 3D analysis. Although

one would tend to blindly believe that the FEM results are the most reliable, this is not

necessarily true. The reason is that even if all the results are converged, we have strong

reasons to believe the assumed boundary conditions, particularly those applied for trans-

verse shear and longitudinal shear, will significantly affect the results because of the extreme

microstructural construction and contrast ratio of constituent properties.

Nevertheless, the aforementioned points by no means diminish the value of this case

and the significance of the presented results. Due to its special construction and high

contrast ratio, this case provides a great challenge to all micromechanics approaches. It

clearly discloses the fallacy about micromechanics that every model “works” as far as ef-

fective properties concerned. This is a case worthy of the attention of the micromechanics

community and more extensive research on issues such as convergence studies, size effects

of the contacting areas, and even physical experiments, which are needed to make more

authoritative conclusions.
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Fig. C.8: Comparison of von Mises stress distribution along y2 = 0.

Although the different approaches predict different effective properties, it is interesting

to observe what happens in the predictions of local fields. Here we take the moderate case

with Em = 700 MPa to study a plane strain problem by applying a biaxial loading such that

σ22 = −10 MPa and σ33 = 100 MPa to the microstructure. We plot the von Mises stress

along y2 = 0 predicted by different approaches in Figure C.8, where ANSYS results are

obtained by directly solving the plane strain problem without using the effective properties.

It can be clearly observed that VAMUCH results are almost on the top of ANSYS results.

HFGMC also has an excellent agreement with ANSYS although slight deviations have been

found along the edges, fiber-matrix interfaces and the middle part of the microstructure.

GMC predicts a uniform distribution which only provides an average prediction. To display

the severe stress concentration around the connecting corner between inclusions, we provide

a detailed contour plot around one corner in Figure C.9. Indeed, stress concentration only

happens in a very small area around the connecting point.

C.3 Conclusions

For the first time, several state-of-the art micromechanics models have been critically
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Fig. C.9: Contour plot of von Mises stress (MPa) distribution around a connecting corner.

evaluated as a joint effort among the developers of these models. Such a comparison is

valuable to researchers working to adopting a model to their particular applications or to

understand what the current state of the art is in predictive capabilities in the field of

micromechanics. Additionally the presented results (especially the local field predictions)

will represent test cases for researchers seeking to determine the accuracy of the predictive

capabilities of new micromechanics models. The X shape microstructure provides a very

challenging test case for all micromechanics approaches, and more research is needed to pin-

point the real limits of the micromechanics approach in general, and various micromechanics

models in particular.
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Appendix D

Finite Element Method for the Effective Properties of

Piezoelectric Composite Materials in Chapter 4

This Appendix presents a brief introduction to the finite element method (FEM) de-

veloped by Berger et al., (2006) for calculating the effective properties of piezoelectric

composite materials. The results of this FEM were compared with those of VAMUCH in

Chapter 4.

Constitutive equation

The matrix form of constitutive equation for a transversely isotropic piezoelectric com-

posite can be expressed as:





σ̄11

σ̄22

σ̄33

σ̄23

σ̄31

σ̄12

T̄1

T̄2

T̄3





=




C∗
11 C∗

12 C∗
13 0 0 0 0 0 −e∗13

C∗
12 C∗

11 C∗
13 0 0 0 0 0 −e∗13

C∗
13 C∗

13 C∗
33 0 0 0 0 0 −e∗33

0 0 0 C∗
44 0 0 0 −e∗15 0

0 0 0 0 C∗
44 0 −e∗15 0 0

0 0 0 0 0 C∗
66 0 0 0

0 0 0 0 e∗15 0 k∗11 0 0

0 0 0 e∗15 0 0 0 k∗11 0

e∗13 e∗13 e∗33 0 0 0 0 0 k∗33








ε̄11

ε̄22

ε̄33

ε̄23

ε̄31

ε̄12

Ē1

Ē2

Ē3





(D.1)

Periodic boundary conditions for the unit cell

Composite materials are assumed to have periodic microstructure, which means that

composite materials can be idealized as a periodic assembly of many unit cells. The periodic

boundary conditions on the unit cell surfaces described in Cartesian coordinates can be

written as:

ui = ε̄ijxj + vi (D.2)
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Surface B+

Surface A-

Surface C+

Surface C-

Surface A+

Surface B-

x2

x3

x1Surface B+

Surface A-

Surface C+

Surface C-

Surface A+

Surface B-

x2

x3

x1

Fig. D.1: Notation for different surfaces of the unit cell.

where ε̄ij are the average strains; and vi is the periodic part of the displacement components

(local fluctuation) on the boundary surfaces. For the unit cell shown in Fig. D.1, the

displacements on the opposite boundary surfaces are:

uK+

i = ε̄ijx
K+

j + vK+

i (D.3)

uK−
i = ε̄ijx

K−
j + vK−

i (D.4)

where the index K+ means along the positive xj direction and K− means along the negative

xj direction on the corresponding surfaces A−/A+, B−/B+, and C−/C+. The local fluctu-

ations vK+

i and vK−
i are identical on two opposing faces. Therefore the periodic boundary

conditions for the displacements and the electric potential are given by:

uK+

i − uK−
i = ε̄ij(xK+

j − xK−
j ) (D.5)

φK+ − φK−
= Ēi(xK+

i − xK−
i ) (D.6)

The average stresses and strains in a unit cell are defined by:

σ̄ij =
1
V

∫

V
σij dV (D.7)

ε̄ij =
1
V

∫

V
εij dV (D.8)
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Table D.1: Boundary conditions and equations for calculation of the effective properties of
transversely isotropic composite materials

Eff. Coeff. A− A+ B− B+ C− C+ Formula
ui/φ ui/φ ui/φ ui/φ ui/φ ui/φ

C∗
11 0/– ũ1/– 0/– 0/– 0/0 0/0 σ̄11/ε̄11

C∗
12 0/– ũ1/– 0/– 0/– 0/0 0/0 σ̄22/ε̄11

C∗
13 0/– 0/– 0/– 0/– 0/0 ũ3/– σ̄11/ε̄33

C∗
33 0/– 0/– 0/– 0/– 0/0 ũ3/– σ̄33/ε̄33

C∗
44 (ũ3)/0 (ũ3)/0 0/– 0/– (ũ1)/0 (ũ1)/0 σ̄13/ε̄31

C∗
66 (ũ2)/– (ũ1)/– (ũ1)/– (ũ2)/– 0/0 0/0 σ̄12/ε̄12

e∗13 0/– 0/– 0/– 0/– 0/0 0/φ̃ −σ̄11/Ē3

e∗33 0/– 0/– 0/– 0/– 0/0 0/φ̃ −σ̄33/Ē3

e∗15 (ũ3)/0 (ũ3)/0 0/– 0/– 0/– 0/– T̄1/ε̄31

k∗11 0/0 0/φ̃ 0/– 0/– 0/– 0/– T̄1/Ē1

k∗33 0/– 0/– 0/– 0/– 0/0 0/φ̃ −T̄3/Ē3

Finite element models and boundary conditions for evaluation of the different

effective coefficients

FE package ANSYS is employed to calculate all of the effective properties. Three di-

mensional multi-field eight-node brick elements with three displacement degrees of freedom

and an electrical potential (voltage) degree of freedom were used. To obtain the effective

properties the periodic boundary conditions (equations (D.5) and (D.6)) were applied in

the unit cell by coupling opposite nodes on the opposite boundary surfaces. To this end,

the meshes on the opposite boundary surfaces are identical. For the computation of the

effective coefficients the boundary conditions are applied to the unit cell in such a way that,

except one component of the strain and electric field in Eq. (D.1), all other components are

set to zero. Hence each effective coefficient is determined by multiplying the corresponding

row of the material matrix by the strain and electric field. The calculation can be performed

by imposing the appropriate boundary conditions and constraint equations to the different

surfaces of the unit cell as shown in Table D.1. In this Table, ‘0’ denotes a prescribed zero

displacement or electric potential; ‘−’ denotes a non-prescribed electric potential; ũi stands

for a non-zero prescribed displacement for the component of ui; φ̃ denotes a non-zero pre-

scribed electric potential φ; (ũi) denotes a constraint of coupling with the opposite surface

for displacement component ui.

As an example of the application of the algorithm, the calculation of the effective

coefficients Ceff
13 and Ceff

33 is shown. The boundary conditions have to be applied to the
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unit cell in such a way that, except the strain in the x3 direction (ε33), all other mechanical

strains and the electric field (Ēi) are set to zero. This can be achieved by constraining the

normal displacements on all the surfaces to be equal to zero except for those on the surfaces

C+ (see Fig. D.1). The periodic boundary conditions (Eq. D.5) for the opposite surfaces

A−/A+ and B−/B+ are automatically satisfied since the prescribed normal displacements

are zero. Due to the applied zero displacements on the surfaces C− in the x3 direction

(uC−
3 ) the periodic boundary condition in this direction according to Eq. D.5 simplifies to:

uC+

3 = ε̄33(xC+

3 − xC−
3 ) (D.9)

Since this equation is now independent of uC−
3 , instead of using the constraint equations,

an arbitrary constant prescribed displacement can be applied on the surface C+ to produce

a strain in the x3 direction. In order to make the electric field Ē3 zero, the voltage degree

of freedom φ on the surfaces C−/C+ is set to zero.

For the calculation of the total average values ε̄33, σ̄11, and σ̄33 according to Eqs. D.7

and D.8, the integral was replaced by a sum over averaged element values multiplied by the

respective element volume. Using these total average values the coefficients Ceff
13 and Ceff

33

can be calculated from the matrix equation D.1. Due to the strains and electric fields being

zero, except ε̄33, the first row becomes σ̄11 = Ceff
13 ε̄33. Then the Ceff

13 can be calculated

as the ratio σ̄11/ε̄33. Similarly Ceff
33 can be evaluated as the ratio σ̄33/ε̄33 from the third

row of matrix equation D.1. All other coefficients whose formulae are based on the average

normal strain can be calculated using Table. D.1.

Special attention must be paid to the coefficients which are based on the averaged shear

strains, i.e., Ceff
44 , Ceff

66 , and eeff
15 . Here constraint equations (coupling constraints) on two

pairs of the opposite surfaces must be defined. For example, for Ceff
66 which is based on

the pure in-plane (x1−x2 plane) shear state, the constraint equation for a pair of nodes on

the opposite surfaces A−/A+ (see the notation ũ2 in Table. D.1) can be written according

to Eq. D.5 as uA+

2 = uA−
2 + ε̄12(xA+

1 − xA−
1 ). The fluctuation function ε̄12(xA+

1 − xA−
1 ) can

be set to an arbitrary value. The analogous constraint equations have to be defined for

the opposite surfaces B−/B+. To avoid rigid body motion the intersection edge between

surfaces B− and A− is fixed in the x1 and x2 directions. Analogously, the coefficients Ceff
44 ,

eeff
15 , which is based on the pure out-of-plane (x1− x3 or x2− x3 plane) shear state, can be
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Table D.2: Boundary conditions and equations for calculation of the effective properties of
transversely isotropic composite materials

1 2 3 4 5 6
Group C∗

11, C∗
12 C∗

13, C∗
33 C∗

44, e∗15 C∗
66 e∗13, e∗33, k∗33 k∗11

calculated. Actually, the boundary conditions for Ceff
44 , Ceff

66 , and eeff
15 are similar to those

used in Sun and Vaidya (1996) for the calculation of shear modulus.

Differences between FEM and VAMUCH

Considering the boundary conditions listed in Table. D.1, it can be seen that six groups

of boundary conditions and 11 averaging processes are needed to get all 11 effective coeffi-

cients of transversely isotropic composite materials. Table. D.2 shows the groups of bound-

ary conditions needed for calculation of the effective properties of transversely isotropic

composite materials. Therefore, more groups of boundary conditions and more times of

averaging processes are necessary to obtain all of the effective coefficients, if the composite

is orthotropic or general anisotropic. However, VAMUCH only needs one step of calcu-

lation to get the complete set of coefficients without imposing boundary conditions and

averaging processes. In addition, for unidirectional fiber composites, VAMCUH only needs

two-dimensional model. Hence, it is more efficient and accurate than finite element method.

That is the major difference between VAMUCH and finite element unit cell procedure.
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Appendix E

Example of practical applications of VAMUCH

VAMUCH is a new micromechanics tool used for homogenizing composite materials.

In this section, an example is employed to demonstrate how VAMUCH would be utilized in

practical applications. The example is a composite block made of boron fibers reinforced

aluminum matrix as shown in Fig. E.1, where we use (X1, X2, X3) as the global coordinates

to describe the macroscopic structure and (Y1,Y2, Y3) parallel to (X1, X2, X3) as the local

coordinates to describe the unit cell. Both constituents are isotropic with Young’s modulus

E = 379.3GPa and Poisson’s ratio ν = 0.1 for the boron fibers, and Young’s modulus

E = 68.3GPa and Poisson’s ratio ν = 0.3 for the aluminum matrix. The boron fiber is

arranged in a square array and the volume fraction of the fibers is 0.4. The axial direction

of the disk is along X1 direction. Uniform displacement 0.078323mm is applied at the right

free boundary surface of the block. The X2-component displacement of the left boundary

surface of the block is set to zero, namely, uX2 = 0. Fig. E.2 illustrates how VAMUCH can

be used to solve this problem.

Unit cell 

Boron fiber

Al matrix

100x100x200mm

Composite Block

X3

X2
uX2= 0

Y3

Y2

X1

uX2= 0.078323mm

Y1

Unit cell 

Boron fiber

Al matrix

100x100x200mm

Composite Block

X3

X2
uX2= 0

Y3

Y2

X1

uX2= 0.078323mm

Y1

Fig. E.1: Composite plate subjected to uniform tensile displacement at the free boundary
surface
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Table E.1: Effective properties of the B/Al composite

E∗
X E∗

Y E∗
Z

127676.32 (MPa) 127676.32 (MPa) 193530.45 (MPa)
ν∗XY ν∗Y Z ν∗XZ

0.27776785 0.20901172 0.20901172
G∗

XY G∗
Y Z G∗

XZ

41702.828(MPa) 48303.982 (MPa) 48303.982 (MPa)

1. Firstly, a unit cell (UC) should be identified as shown in Fig. E.3 and meshed. In this

example, only a two dimensional model is needed because the material properties are

uniform along X1 direction.

2. Calculate the effective properties of the composite as shown Table E.1.

3. In this example, we used ANSYS to study the global response of the block with the

effective properties. Fig. E.4 shows the contour plot of X2-component of displacement

of the homogenized materials.

4. If the local fields are of interest, we can recover those fields based on the global

response obtained from step 3. For instance, Fig. E.5 is the contour plot of von Mises

stress at a arbitrary macro material point.

We also used ANSYS to directly calculate the strain energy and averaged value of

X2-component of stress σX2 of the composite block having 1UC, 36UCs, and 81UCs, re-

spectively. Table E.2 shows the strain engery, averaged value of X2-component of stress

σX2 , and computing time of the equivalent homogeneous materials and block having dif-

ferent number of UCs, respectively. It can be observed that the strain engergy and the

averaged value of X2-component of stress σX2 of the block is getting close to that of equiv-

alent homogeneous materials as the number of unit cells increases, which means that the

accuracy of micromechanics increases with the ratio of the size of RVE to that of the macro-

scopic structure decreasing. It can also be seen that the computational cost of equivalent

homogeneous materials is much lower than that of nonhomogeneous materials. In general,

VAMUCH can accurately reproduce the results of direct analysis. The saving of compu-

tational cost is much more when there are more unit cells and the microstructure of the

composite is more complex.
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Table E.2: Strain energy, averaged value of X2-component stress (σX2), and computing
time of free boundary surface of the composite block having different number of UCs and
equivalent homogeneous materials

Number of UCs 1UC 36UCs 81UCs Equiv. Hom.
strain energy (×104 J) 7.483 7.769 7.8 7.83

averaged value of σX2 (MPa) 95.54 99.2 99.44 100
computing time (s) 20 140 320 2

One limitation of micromechanics approaches based on periodic microstructure is that

they are not able to accurately recover the local fields at the boundary layer near the external

surface when the composite is subjected to uniform transverse tension or compression stress.

Fig. E.6 shows the distribution of von Mises stress along the X3 axis calculated by ANSYS

and VAMUCH, when the block has 81 unit cells. The results of VAMUCH are calculated

from the global response of the equivalent homogeneous materials, while ANSYS results

are obtained by directly solving the real problem in which the composite block contains 81

unit cells. From Figs. E.6, we can see that in real composite the actual distribution of von

Mises stress (predicted by ANSYS) do not keep periodic at the boundary layer, while the

predictions of VAMUCH are periodic even at the boundary layer.
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Identify the unit cell

Calculate the effective 

properties of composite 

materials using VAMUCH

Study the macroscopic behavior of composite 

structure using the effective properties

Replace the heterogeneous composite structure 

with equivalent homogeneous materials having 

the calculated effective properties

If needed, recover the distribution of the local 

fields such as stresses and strains using 

VAMUCH

Identify the unit cell

Calculate the effective 

properties of composite 

materials using VAMUCH

Study the macroscopic behavior of composite 

structure using the effective properties

Replace the heterogeneous composite structure 

with equivalent homogeneous materials having 

the calculated effective properties

If needed, recover the distribution of the local 

fields such as stresses and strains using 

VAMUCH

Fig. E.2: Flow chart of application of VAMUCH.

Fig. E.3: Unit cell of B/Al composites.
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Fig. E.4: Contour plot of X2-component displacement (mm) of the equivalent homogeneous
materials.

Fig. E.5: Contour plot of von Mises stress (MPa) at an arbitrary macro material point.
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Fig. E.6: The distribution of von Mises stress along the X3 axis.
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