

ATMS and CrIS Geolocation

- Mark Esplin, Kris Robinson, Ben Esplin, Nephi Grant, Deron Scott, and Likun Wang*
- * University of Maryland

Contents

- Summary of Suomi NPP sensors CrIS, ATMS, and VIIRS
- Geolocation methods
- Software optimization
- CrIS geolocation results
- ATMS geolocation results
- Conclusions

CrIS/ATMS Instrument Suite (CrIMSS)

ATMS & CrIS work together to provide soundings in cloudy and clear conditions

Spectral Bands Used for Geolocation

VIIRS Instrument Overview

Multispectral, cross-track-scanning, imaging instrument

22 spectral bands 0.4 – 12.5 μm

- Single ~20 cm diameter, rotating, all-reflective telescope
- Day-night band, VisNIR, S/MWIR, & LWIR focal plane assemblies
- Solar reflective and IR emissive on-board calibration sources
- 5 imagery bands at ~375 m nadir resolution
- 16 radiometric quality bands ~750 m nadir resolution
- 1 day / night band 750 m resolution

Three Geolocation Methods

- Cross Comparison Method (*Likun Wang NOAA/STAR)
 - Cross compare low spatial resolution sensor with high spatial resolution sensor
 - Shift high spatial resolution image to achieve best match with low resolution image
 - Requires availability of well calibrated, high spatial resolution sensor
- Shoreline Crossing Method
 - Fit a cubic polynomial to shoreline crossing points
 - Relies on contrast in radiance between land and sea
 - Inflection point is taken as shoreline crossing point
- Land-Sea Fraction Method
 - Determine fraction of land and sea in each pixel footprint using digital shoreline map
 - Model expected radiance from land/sea fraction in each sensor pixel
 - Use simple radiance model with a single temperature and emissivity for land and for sea

*Geolocation assessment for CrIS sensor data records by Likun Wang, et al., Journal of Geophysical Research: Atmospheres 11/2013; 118(22)

Cross Comparison Method

Shoreline Crossing Method

- Method Summary
 - Fit a cubic polynomial through four point in the in-track or cross-track direction
 - The inflection point is taken as the shore crossing point
 - Least-squares-fit to coastlines to minimize total error for scene

Land-Sea Fraction Method

- Method Summary
 - Place a rectangle around each CrIS FOV footprint
 - Divide the rectangle into a grid of equally spaced points
 - Points are represented by the small blue circles in the right hand panel (grid point spacing < 1 km)
 - Shift shoreline position used in calculation in x and y directions until differences between observed and modeled radiances are minimized

Land-Sea Fraction Method Details

$$\chi^2 = \sum_{FOVs} (R_{CrISFOV} - R_{calFOV})^2$$

Minimize chi-squared for best fit

 $R_{calFOV} = (R_{land} - R_{sea}) lfrac + R_{sea}$ Linear radiance model

Where:

 $R_{CrISFOV}$ = Observed CrIS FOV radiance R_{calFOV} = Calculated CrIS FOV radiance *lfrac* = Land fraction in a CrIS FOV R_{land} = Land radiance R_{sea} = Sea radiance

Note: Shorelines from GSHHG (A Global Self-consistent, Hierarchical, High-resolution Geography Database) **Reference**: Wessel, P., and W. H. F. Smith, A Global Self-consistent, Hierarchical, High-resolution Shoreline Database, J. Geophys. Res., 101, #B4, pp. 8741-8743, 1996.

Coordinate System Convention

- North/east coordinate system used to measure error
- Geolocation errors expected to be constant in in-track/cross-track coordinate system
- Measured error rotated to in-track/cross-track coordinates through a rotation matrix
- Used for both shoreline crossing and land fraction method

Land-Sea Fraction Method Example

- Measurement Details
 - 900 cm⁻¹ (11 μ m)
 - June 17, 2012 orbit 03307 IDPS SDRs
 - Coastlines from GSHHS (1 km) used to model shoreline
 - Improved coastline accuracy with more sensor pixels

Difference [K]

Method Comparison

- Cross comparison method
 - Results in highest accuracy
 - Can use any scene with spatial structure, not just coastlines
 - Not adversely affected by atmospherics effects (clouds, temperature gradients, indistinct coastlines, etc.)
 - Relies on other high spatial resolution sensor with matching bandwidth
 - Only applied to near nadir measurements
 - 30 degree off-nadir angle due to VIIRS imaging model (CrIS FORs 7 24)
- Shoreline crossing method
 - Doesn't depend on details of footprint
 - Subject to problems with excessive coastline structure
 - Nearest coastline is not necessarily the correct coastline
- Land-sea fraction method
 - Works well on complex coastlines
 - Can be used off nadir
 - Depends on accuracy of land/sea model

Oct 22, 2012 CrIS Example

- Box shows section used for geolocation case
- Box centered on approximately FOR 25 (FOR range 1 30)
- A ~4 km north and east shift required for consistent results between truth (GHHS) and reported (CrIS) results

Software Optimization to Improve Efficiency

- Algorithm optimization
 - Optimize coastline gridding
 - Efficiently determine if given point is inside or outside a polynomial representing coastlines
 - Optimize regions of interest to keep sampling as small as possible
- Implemented selected function in C++
 - Optimized several functions using mex interface
 - Execution times dropped from hours to minutes per geolocation case
- Programming language efficiency
 - Marginal additional improvement in speed
 - Total C++ implementation vs. MATLAB (original implementation)

Execution times dropped from hours to minutes per geolocation case

Example of Poor Choice of Sampling Region

- Vertical shoreline determination not well defined in this test
- Coastlines need structure for unambiguous fits
- Not easy to automate sampling regions

Location of CrIS Geolocation Scenes

• Coastlines by hot dry deserts generally work well

Effects of CrIS Geolocation Patch Detectable

- In October 2012 a bug was fixed in the CrIS SDR geolocation software
- Results are clearly seen

CrIS Results After Geolocation Patch

- Consistent results between organizations (SDL and NOAA/STAR)
- Opposite sign convention for cross-track error
- FORs 7-24

CrIS Geolocation Summary

- Land-sea fraction method works better than shoreline crossing method for CrIS because of unequal ground footprint spacing
- Patch to geolocation software provides opportunities to verify software
 - Average cross-track location increased by nearly 4 km
 - Average in-track location increased by slightly more than 2 km
- Atmospheric window regions used for geolocation analysis
 - LWIR (907- 915 cm⁻¹)
 - SWIR (2498 2535 cm⁻¹)
 - No significant difference between results from the two bands
- Results consistent between different organization
 - Geolocation results consistent with NOAA/STAR results

ATMS Geolocation

- ATMS has five bands with separate geolocation
 - K band channel 1 beam diameter 5.2 degrees
 - Ka band channel 2 beam diameter 5.2 degrees
 - V band channels 3-15 beam diameter 2.2 degrees
 - W band channel 16 beam diameter 2.2 degrees
 - G band channel 17-22 beam diameter 1.2 degrees
- Geolocation analysis performed for bands 1, 2, 3, 16, 17
- Bands 1, 2, 3, 16 are window bands
- Bands 17 is sensitive to water vapor but under dry conditions, shorelines are visible
- Accuracy specifications: 5.2° beams < 0.3 degrees, 2.2° beams < 0.2 degrees, and 1.2° beams < 0.1 degrees

Test for Consistency

- Two channels that should give the same results were compared
- Both are V band window channels
- Land fraction method 185 cases

Land-Sea Fraction vs. Shoreline Crossing Method Comparison

- Two methods in general give similar results
- Land fraction method shows larger geolocation error
- Land fraction method seems more consistent

Channel 1 Land-Sea Fraction Results

- Number of cases: 183
- In-track mean: -3.4 km, std: 3.8 km
- Cross-track mean: -0.6 km, std: 3.3 km

Channel 2 Land-Sea Fraction Results

- Number of cases: 185
- In-track mean: -5.8 km, std: 3.1 km
- Cross-track mean: 1.6 km, std: 2.6 km

Channel 3 Land-Sea Fraction Results

- Number of cases: 185
- In-track mean: -2.8 km, std: 2.2 km
- Cross-track mean: -3.1 km, std: 2.2 km

Channel 16 Land-Sea Fraction Results

- Number of cases: 185
- In-track mean: 1.1 km, std: 2.2 km
- Cross-track mean: -1.2 km, std: 2.7 km

Channel 17 Land-Sea Fraction Results

- Only using cases with greater than12 K land/sea brightness temperature difference
- Number of cases: 84
- In-track mean: 1.1 km, std: 2.7 km
- Cross-track mean: 0.4 km, std: 2.6 km

Simulated Effects of Sensor Alignment Error

- Geolocation error simulation created from spacecraft and earth viewing geometry
- Yaw error affects in-track geolocation
- WGS 84 earth model

Simulated Roll and Pitch Error Sensitivity

- Roll error affects cross-track geolocation
- Pitch error affects in-track geolocation
- Observed geolocation errors don't correspond to simple sensor rotations

Conclusions

- Results consistent between multiple organizations
 - SDL CrIS results consistent with NOAA/STAR except for crosstrack sign convention
- Geolocation results consistent between similar window bands
 - Scatter in geolocation results not due to sensor noise
- Shoreline crossing method produces smaller error than landsea fraction method
 - Probably due to initial guess being zero
 - Additional analysis is needed
- Some adjustments to the ATMS pointing coefficients may be warranted
- More work needed on correlating ATMS geolocation errors with sensor alignment angles

BACKUP

Channel 4 Land Fraction

- Number of cases: 185
- In-track mean: -2.8 km, std: 2.4 km
- Cross-track mean: -3.2 km, std: 2.3 km

Channel 1 Shoreline Crossing

- Number of cases: 184
- In-track mean: -1.9 km, std: 2.3 km
- Cross-track mean: -0.3 km, std: 2.6 km

Channel 2 Shoreline Crossing

- Number of cases: 184
- In-track mean: -2.2 km, std: 2.6 km
- Cross-track mean: 0.8 km, std: 2.5 km

Channel 3 Shoreline Crossing

- Number of cases: 185
- In-track mean: -2.2 km, std: 1.7 km
- Cross-track mean: -2.7 km, std: 1.6 km

Channel 4 Shoreline Crossing

- Number of cases: 185
- In-track mean: -2.4 km, std: 1.6 km
- Cross-track mean: -2.9 km, std: 1.6 km

Channel 16 Shoreline Crossing

- Number of cases: 185
- In-track mean: 0.7 km, std: 1.3 km
- Cross-track mean: -1.0 km, std: 1.6 km

