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ABSTRACT 

 
 

Testing the Functional Equivalence of Retention Intervals and  

Sample-Stimulus Disparity in Conditional Discrimination 

 
by 
 
 

Ryan D. Ward, Doctor of Philosophy 
 

Utah State University, 2008 
 
 

Major Professor: Dr. Amy L. Odum 
Department: Psychology 
 
 

Memory-trace theories of remembering suggest that performance in delayed 

matching-to-sample (DMTS) procedures depends on a memory trace that degrades with 

time. By contrast, the theory of direct remembering suggests that increasing the delay 

between sample and comparison stimuli in DMTS procedures is functionally equivalent 

to decreasing the disparity between sample stimuli. The present dissertation tested this 

assumption by assessing the degree to which changes in the frequency of reinforcement 

for correct choices biased the distribution of choice responses in a conditional-

discrimination procedure. Seven pigeons responded under a temporal-discrimination 

procedure in which temporal sample-stimuli were categorized as being of either short or 

long duration by a response to a corresponding comparison key. In the sample-stimulus 

disparity condition, the disparity between the sample stimuli (difference between the 

short and long samples) was manipulated. In the retention-interval condition, the delay 

between sample offset and presentation of the comparison stimuli was manipulated. 
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Importantly, the same general procedure was used across conditions, facilitating 

conclusions regarding functional equivalence of the two manipulations. The theory of 

direct remembering suggests that the relation between sensitivity of behavior to changes 

in reinforcer frequency and discriminability (accuracy) should be similar in the sample-

stimulus disparity and retention-interval condition. The results showed that 

discriminability decreased with both the sample-stimulus disparity and retention-interval 

manipulations. Overall estimates of sensitivity were similar to those obtained previously. 

There was, however, no difference in the estimates of sensitivity as a function of 

discriminability during either the sample-stimulus disparity or retention-interval 

conditions; sensitivity was independent of discriminability. These results are in contrast 

to most previous reports, and are interpreted in terms of the use of temporal-sample 

stimuli in the current experiment. Further analyses of the choice-response data showed 

that the effects of variation in reinforcer ratios differed across conditions as a function of 

trial type and trial difficulty. These results suggest the need for careful consideration of 

behavioral outcomes at several levels of analysis when assessing functional equivalence 

of experimental manipulations. The potential benefits and hindrances of characterization 

of behavioral outcomes in terms of functional equivalence are discussed. 

(104 pages) 
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INTRODUCTION 

 
 

Accurate discrimination of environmental stimuli is important. For example, birds 

must be able to distinguish between subtle color variations of poisonous and edible 

berries and insects. For humans, failure to accurately discriminate the color of a stoplight 

and respond appropriately can have serious consequences. Accordingly, considerable 

laboratory research has focused on the basic processes underlying discrimination of 

environmental stimuli. In the most common procedure used with nonhumans, termed 

conditional discrimination, subjects are presented with a sample stimulus. Following 

sample termination, choice comparisons are presented. Choice responses to the 

comparison that matches the presented sample stimulus produce food (see Davison & 

Nevin, 1999, for a review). In delayed matching-to-sample (DMTS; Blough, 1959) 

procedures, a delay (retention) interval occurs between presentation of the sample and 

comparison stimuli. Delayed matching-to-sample procedures have been widely used to 

study variables that influence remembering. 

While traditional accounts of memory in nonhumans conceptualize remembering 

as a complex cognitive process (e.g., Grant, 1981), recent theoretical treatments suggest 

that performance in DMTS experiments can be conceptualized as discriminative behavior 

under delayed stimulus control (White, 1985, 1991). This theory, known as direct 

remembering, does not postulate a memorial representation that mediates accuracy of 

choice responding at a given retention interval. Rather, performance at one retention 

interval is suggested to be independent of performance at other retention intervals. Such 

independence has been empirically demonstrated (White, 2001; White & Cooney, 1996). 
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A theory of direct remembering suggests that remembering is the same as other 

discriminative behavior. Because of this conceptualization, manipulations that affect 

discrimination performance, such as varying retention intervals in DMTS (increasing the 

difficulty of remembering) or manipulating sample-stimulus disparity in 0-s delay 

conditional discrimination (making the stimuli more difficult to tell apart), are suggested 

to be functionally equivalent (see White, 1991). Such functional equivalence, however, 

has not been empirically demonstrated. 

One point of comparison between the effects of manipulating retention intervals 

and sample-stimulus disparity comes from studies that have varied aspects of the 

reinforcement for correct choices. Extant quantitative models of conditional 

discrimination provide methods to assess the sensitivity of changes in comparison-choice 

responding to changes in the frequency or magnitude of reinforcers arranged for correct 

choices (see Baum, 1974; Baum & Rachlin, 1969; Davison & Tustin, 1978). According 

to these models, the ratio of choice responses on either comparison stimulus should 

approximate the ratio of reinforcer frequencies allocated for these responses. If varying 

retention intervals and sample-stimulus disparity are functionally equivalent 

manipulations, sensitivity to variations in the reinforcer frequency ratio should be similar 

during both manipulations. In studies that have varied the disparity of sample stimuli, 

however, sensitivity to reinforcer-frequency ratios generally increases with increases in 

sample-stimulus disparity (e.g., Davison & McCarthy, 1987, 1989; McCarthy & Davison, 

1984; Nevin, Cate, & Alsop, 1993; White, 1986; White, Pipe, & McLean, 1985), while 

studies that have varied retention intervals have reported both increasing (Jones & White, 

1992; White & Wixted, 1999) and decreasing (e.g., McCarthy & Davison, 1991; 
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McCarthy & Voss, 1995) sensitivity to reinforcer-frequency ratios as a function of 

increasing retention interval. 

Before conclusions can be reached with regard to the functional equivalence of 

manipulating retention intervals and sample-stimulus disparity, reasons for the conflicting 

results from DMTS procedures must be specified. White and Wixted (1999) interpreted 

these differences as resulting from proactive interference generated by the short intertrial 

interval (ITI) durations used in previous experiments. They showed that sensitivity to 

reinforcer frequency ratios increased with increasing retention interval in a long ITI 

condition, while in a short ITI condition, the opposite relation was observed.  

While some evidence suggests that manipulation of retention intervals and 

sample-stimulus disparity may be functionally equivalent in their effects on 

discrimination (Jones & White, 1992; White & Wixted, 1999), these results are not 

definitive. Multiple differences across procedures that have varied retention intervals and 

those that have varied sample-stimulus disparity make comparison across studies 

difficult. Manipulation of both variables within the same general procedure is therefore 

needed before conclusions can be reached regarding the functional equivalence of both 

sample-stimulus disparity and retention intervals.  

 The present experiment tested the functional equivalence of sample-stimulus 

disparity and retention intervals by assessing sensitivity to variations in reinforcer 

frequency as a function of both retention intervals and sample-stimulus disparity. Both 

variables were manipulated within the same procedure to facilitate direct comparison. If 

varying retention intervals and sample-stimulus disparity are functionally equivalent 

manipulations, as a theory of direct remembering asserts (e.g., White, 1991), the relation 
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between sensitivity to reinforcer frequency ratios as a function of both sample-stimulus 

disparity and retention interval should be similar. In addition, the present experiment used 

temporal-sample stimuli, thus assessing the generality of results reported with sample 

stimuli of other dimensions.  
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REVIEW OF THE LITERATURE 

 
 

 One area of interest in the experimental analysis of behavior is discovering the 

basic processes involved in accurate discrimination of environmental stimuli. Although 

various experimental preparations may be employed to this end, the most common is the 

conditional-discrimination procedure. Conditional-discrimination research is often 

conducted with pigeons as subjects due to their consistent behavior across experimental 

conditions, their long experimental life, and the similarities between pigeon and human 

visual acuity. In addition, studies conducted with a wide variety of species have 

established the generality of results obtained using pigeons (see White, Ruske, & 

Columbo, 1996, for discussion). 

 
Conditional Discrimination 

 
 
 In a typical conditional-discrimination experiment, pigeons are placed in an 

experimental chamber equipped with 3 plastic response keys that can be illuminated from 

behind with various stimuli. In one common variant of this procedure, matching-to-

sample (MTS), one of two sample stimuli (S1 or S2) is presented on the center key. 

Following a specified amount of time or number of responses, the sample is extinguished. 

The side keys are then lit, each key with a different stimulus (B1 or B2). One key is lit 

with the same stimulus as the sample, while the other key is lit with another stimulus. A 

peck to the key lit with the stimulus that matches the sample is reinforced (produces 

food) with some probability and a peck to the other key is not reinforced (does not 

produce food). Symbolic matching-to-sample (SMTS) procedures are similar to MTS 
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procedures, with the exception that the sample and comparison stimuli are not identical. 

For example, a sample may consist of a key being lit red for a given duration. Following 

sample presentation, the side keys may be lit blue and white. If the sample duration is 

shorter than a criterion duration (e.g., 6 s), pecks to the blue key are reinforced. If the 

sample is longer than 6 s, pecks to the white key are reinforced. Considerable research on 

the basic processes involved in discrimination has been conducted using both MTS and 

SMTS experimental paradigms (see Davison & Nevin, 1999, for a review). 

 In addition to lending itself well to exploration of the basic processes involved in 

discrimination, the conditional-discrimination procedure can be adapted to study 

processes that are involved in memory. Blough (1959) inserted a delay (0, 2, 5, or 10 s) 

between sample presentation and presentation of the comparisons. As the delay between 

the sample and comparisons increased, accuracy of matching decreased. Since its 

introduction, this procedure, termed delayed matching-to-sample (DMTS), has been used 

extensively to study variables that influence remembering (see White, 1985, for review). 

Remembering is implicated in accurate DMTS performance because to make a correct 

choice response when presented with the comparisons, the pigeons must presumably 

remember the presented sample (or an encoded instruction) for the duration of the 

retention interval. Many studies have shown that variables that are typically thought to 

affect memory influence performance in DMTS procedures. For example, increasing the 

opportunity for “rehearsal” by increasing the number of times a pigeon is required to 

peck the sample stimulus or the number of times the sample is repeated at the beginning 

of the trial increases accuracy (e.g., Grant, 1981; Roberts, 1972). In addition, research has 

also demonstrated both retroactive (e.g., Cook, 1980) and proactive (e.g., Endhouse & 
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White, 1988; Grant, 1975) interference effects on DMTS performance. For example, 

Cook (1980) found decreases in accuracy when he illuminated the houselight during a 

normally dark retention interval in a DMTS procedure, suggesting a retroactive 

interference effect of houselight illumination. Proactive interference is evidenced by a 

decrease in overall accuracy when the ITI is shortened and has been interpreted as 

resulting from decreased attention to the sample (e.g., Endhouse & White). Thus, the 

results from a number of studies suggest that performance in DMTS procedures reflects 

remembering. 

 
Current Theories of Memory in Nonhumans 

 
 
Many theoretical treatments of memory in nonhumans have been offered. One 

early theory, proposed by Roberts (1972), suggests that accuracy of performance at a 

given retention interval in DMTS procedures is dependent on the strength of a memory 

trace established at the time of sample presentation. Specifically, the theory states that an 

isomorphic representation (memory trace) of the sample stimulus is formed at sample 

presentation. The strength of the memory trace increases as a negatively accelerated 

function of time exposed to the sample. Thus, the longer a sample is presented, or the 

more times in succession it is presented, the greater the strength of the memory trace. 

Once the sample presentation is terminated, the strength of the memory trace decays as a 

negatively accelerated function of time since sample presentation. Thus, according to this 

theory, the decreasing accuracy as a function of increasing retention interval often seen in 

DMTS procedures results from the decrease in the strength of the memory trace at 

progressively longer retention intervals.  
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Throughout the years, the initial iteration of trace-strength theory was revised to 

include the notions that different stimulus events form separate and independent memory 

traces, and that the strength of the memory trace for both the correct and incorrect 

matching comparisons compete with one another in determining the probability of a 

correct choice response (Roberts & Grant, 1976). Although the theory of trace strength 

has not survived in its initial form, many current theories have retained the notion that 

performance in DMTS procedures is mediated by a representation of the sample (or an 

encoded instruction) that decays as a function of time since sample presentation (see 

Grant, Spetch, & Kelly, 1997, for discussion). 

 

The Theory of Direct Remembering 
 
 
In contrast to complex theories of memory, recent theoretical treatments suggest 

that performance in DMTS procedures reflects discriminative behavior under delayed 

stimulus control. White (1985, 1991) first proposed this theory of direct remembering 

based on a number of empirical results showing that the initial level of discriminability 

(accuracy at a 0-s delay) and the rate of forgetting, (slope of the retention function) 

appeared to be separable aspects of DMTS performance. In contrast to other current 

theoretical conceptualizations of memory in nonhumans, in which accurate performance 

at a given retention interval in DMTS experiments is dependent on the strength of a 

memorial representation of the presented sample stimulus, the theory of direct 

remembering suggests that performance at any given retention interval is, in effect, a 

separate discrimination. According to this interpretation, retention intervals do not 

degrade the strength of a memory trace or representation (such memory traces are not 
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postulated). Instead, each retention interval becomes part of the stimulus context for the 

discrimination at that retention interval.  

Because performance at each retention interval is considered a separate 

discrimination, a theory of direct remembering suggests that variables that influence 

performance at a given retention interval will not necessarily influence performance at 

other retention intervals, a concept known as temporal independence. Several 

experiments have demonstrated such independence. For example, White (2001) trained 

pigeons on a DMTS procedure. Across conditions, reinforcers for correct choices at one 

retention interval were eliminated, but correct choices at all other retention intervals were 

reinforced. For example, in one condition all reinforcers for correct choice responses at 

the 2-s retention interval were eliminated, but correct choices at the 0.1-, 4-, and 16-s 

retention intervals were reinforced. In this condition, accuracy at the 2-s retention interval 

decreased, but accuracy at other retention intervals was unaffected. This result held 

across conditions when reinforcers for correct choices at other retention intervals were 

eliminated. In another experiment, White and Cooney (1996) varied the ratio of 

reinforcers for correct red and green color matches at one retention interval, while 

keeping this ratio constant at another retention interval. Choice responses were biased by 

the reinforcer differential only at the retention interval at which the reinforcer ratio was 

varied. In both of these experiments, performance at one retention interval was 

independent of factors that affected performance at another retention interval, supporting 

a theory of direct remembering.  

These results suggest that remembering may be conceptualized as any other 

discrimination. Accordingly, the theory suggests that the diminution in accuracy as a 



   10
function of increasing retention interval in DMTS procedures does not reflect the 

decay of a memory trace or the decreasing strength of a representation. Rather, increased 

temporal distance of the comparison stimuli from sample presentation is thought to 

decrease performance in the same way as increasing the spatial distance between the 

subject and the sample. This conceptualization, then, suggests that decreases in accuracy 

in conditional-discrimination procedures, whether they are produced by increasing 

retention intervals in DMTS or decreasing the physical disparity of sample stimuli in a  

0-s delay discrimination, reflect decreased discriminative control. Thus, according to the 

theory, manipulation of retention interval and manipulation of sample-stimulus disparity 

should have functionally equivalent effects on discrimination performance (see White, 

1991). 

Although functional equivalence of retention intervals and sample-stimulus 

disparity is a principal tenet of a theory of direct remembering, to date, there have been 

no studies that have directly assessed such functional equivalence. The majority of 

relevant studies were conducted to test the assumptions of several quantitative models of 

conditional discrimination. The most influential of these models was proposed by 

Davison and Tustin (1978). Because the theoretical assumptions and quantitative 

predictions of this model are central to the design of the proposed research, the model 

will be discussed in some detail. 

 

The Davison-Tustin Model of Conditional Discrimination 
 
 
Davison and Tustin (1978) proposed a model of conditional-discrimination 

performance in which the ratio of choice responses following different sample stimuli is 
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governed jointly by which sample stimulus (S1 or S2) is presented on a given trial and 

by the ratio of reinforcers obtained for correct comparison-choice responses following 

presentation of each sample stimulus. The ratio of choice responses is influenced by the ratio 

of reinforcers for correct choice responses following both samples according to the 

generalized matching law. 

The Matching Law  

The matching law (Herrnstein, 1961, 1970) was formulated to describe the 

distribution of behavior during concurrent schedules of reinforcement. During a 

concurrent schedule of reinforcement, two response options are available. Responses to 

each option are reinforced according to a separate schedule of reinforcement. For 

example, responses to the left key might be reinforced on a variable interval (VI) 1-min 

schedule, while responses to the right key are reinforced on a VI 3-min schedule. Across 

conditions, the schedules associated with the two choice options can be varied (e.g., VI 1-

min on both keys, etc.). By varying the rate of reinforcement associated with each key 

over several conditions, one can determine the steady-state response ratio associated with 

each pair of concurrent schedule values. The general finding is that, once performance is 

stable, the ratio of responses on each option matches the ratio of reinforcers obtained for 

responding on those options according to Equation 1,  

                                         
B

B

R

R

1

2

1

2

=                                                                  (1) 

where B1 and B2 are the number of responses on each respective choice option and R1 and 

R2 are the number of reinforcers obtained for those responses. Baum (1974) formulated 

the generalized matching law to account for systematic deviations from matching as 
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described by Equation 1 in the empirical literature. The generalized matching law 

states that the ratio of behavior allocated to each response option is a power function of 

the reinforcer ratio obtained for responding on those options according to Equation 2,  

                                              
B

B
c

R

R

a

1

2

1

2

=









                                                 (2) 

where B1, B2, R1, and R2 are as defined above. The relation between the behavior ratio and 

the reinforcer ratio can be modified by a bias toward one choice option over the other (c), 

possibly resulting from unprogrammed asymmetries in the response requirements (e.g., 

more force required to close the switch on the left key than on the right), and by the 

degree to which changes in the reinforcer ratio produce concomitant changes in the 

behavior ratio, termed sensitivity (a). 

Estimates of the c and a parameters are generally obtained by plotting obtained 

behavior ratios as a function of obtained reinforcer ratios and fitting the logarithmic form 

of Equation 2, 

                                                     log log log
B

B
a

R

R
c

1

2

1

2









 =









 +                                      (3) 

where all notation is as above. The logarithmic transformation is preferred because it 

yields a straight line when fitted. Bias (log c) is estimated as the intercept of the straight 

line, while sensitivity (a) is estimated by the slope of the line relating the behavior ratio 

to the reinforcer ratio. The left panel of Figure 1 shows matching. The function is a line 

with an intercept of 0 and a slope of 1. Matching occurs when there is no bias toward 

either respective alternative, meaning the value of log c is 0, and changes in the reinforcer 

ratio produce equal changes in the behavior ratio, meaning the value of a is 1. In this  
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Figure 1. Hypothetical data showing matching (left panel), and the effects of changes 
 in bias (center panel), and sensitivity (right panel) on the form of the matching 
 function. 
 

case, Equation 2 reduces to Equation 1. If responding is biased toward one or the other 

choice alternative, but there is a one-to-one correspondence between the behavior ratio 

and the reinforcer ratio, as shown in the center panel of Figure 1, the intercept of the line 

is shifted in the direction of that alternative, but the slope remains 1. Finally, if changes in  

the behavior ratio are not as extreme as the variation in the reinforcer ratio, as is usually 

the case, and there is no bias, the intercept of the line will not change but the slope will be  

less than 1, as shown in the right panel of Figure 1. Different values of both the a and log 

c parameters result in varying slopes and intercepts of the matching function.  

 

The Generalized Matching Law Applied 

 to Conditional Discrimination 

  
The model of conditional discrimination proposed by Davison and Tustin (1978) 

treats the choice point (presentation of the comparison stimuli) in conditional- 

discrimination procedures as two concurrent reinforcement-extinction schedules each 

signaled by a different stimulus. The schedule associated with each comparison stimulus 
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g
 (
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2
)

a = 1, log c = 0 a = 1, log c > 0 a < 1, log c = 0
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Figure 2. Possible sample-stimulus presentations, choice-response combinations (w, 
x, y, z), and outcomes in a conditional-discrimination procedure. 

 

depends on which sample stimulus (S1 or S2) is presented at the beginning of the trial. 

The possible combinations of the events in a given conditional-discrimination procedure 

are presented in Figure 2. On trials in which S1 is presented, responses to B1 are 

reinforced (w) and responses to B2 are not reinforced (x). On trials in which S2 is Thus, 

according to the model, the ratio of responses to each comparison stimulus is governed 

by the reinforcer ratio according to the generalized matching law (Equation 3).  

According to Equation 3, the ratio of responses to B1 and B2 should equal the ratio 

of reinforcers (R1/R2) obtained for responding on those alternatives, modified according 

to the parameters log c and a. An additional consideration in conditional-discrimination 

experiments is the degree to which the sample stimuli are discriminable from one 

another. For example, a procedure in which S1 is green and S2 is red will result in more 

differential responding than a procedure in which S1 is green and S2 is blue. This 

differential responding results from the greater difference in wavelength between green 

w x

y zS
ti
m

u
li

Responses

S1

S2

B1 B2

(correct) (incorrect)

(incorrect) (correct)
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and red as opposed to green and blue. The degree of discriminability between the 

sample stimuli is reflected in the parameter log d of the Davison-Tustin model. This 

parameter is essentially a biasing term in the same way as log c. However, whereas log c 

reflects inherent bias, log d reflects the biasing effect of the presented sample stimulus. 

On trials in which S1 is presented, behavior will be biased toward B1, and vice versa. The 

more discriminable S1 is from S2, the greater will be the bias to choose B1 or B2 when the 

comparisons are presented. Thus, the response ratio following S1 presentations is 

governed by the reinforcer ratio according to  
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and the relation between response and reinforcer ratios following S2 presentations is 

described by 
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where w, x, y, and z are the cells in the matrix depicted in Figure 2, and other terms are as 

above. Note that because the numerators in both Equations 4a and 4b are B1 responses, 

log d is positive in Equation 4a and negative in Equation 4b. These two equations show 

that the ratio of choice responses following each stimulus presentation is a function of the 

ratio of reinforcers for those responses modified according to the sensitivity to variations 

in reinforcer ratios (a), bias for one choice comparison over the other (log c), and the 

biasing effect of the presented sample stimulus (log d). Parameter estimates of a, log c, 

and log d are obtained by plotting the obtained choice response ratios as a function of the 

obtained reinforcer ratios following both S1 and S2 presentations and fitting Equations 4a 
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(for S1 presentations) and 4b (for S2 presentations) to these data. The estimates of a and 

log c are the slope and intercept of the straight lines, respectively, and an estimate of 

stimulus discriminability (log d) can be obtained by multiplying the difference between 

the intercepts of Equations 4a and 4b by 0.5.   

 

Point Estimates of Discriminability and Bias 

 
Accuracy in conditional-discrimination experiments has traditionally been 

characterized by calculating the proportion of correct responses (correct/(correct + 

incorrect)). There are several properties of the proportion correct measure, however, that 

make its use problematic. First, the measure is bounded by 0.5 (chance accuracy) and 1.0 

(perfect accuracy). Because of this restricted range, changes in accuracy at the lower and 

upper bounds of proportion correct are constrained by ceiling and floor effects and are 

therefore less sensitive to changes in discrimination performance. Second, the calculation 

of proportion correct does not take into account bias for one comparison stimulus over 

the other, making conclusions as to the reasons for poor discrimination performance 

difficult. For example, the same value of .5 would result if choice responding was 

completely undifferentiated or if one choice comparison was responded to exclusively, 

perhaps as a result of a color or side bias. For these reasons, proportion correct is not a 

sufficient measure of discrimination performance in some cases. 

A bias free measure of accuracy can be obtained from the Davison-Tustin model 

by subtracting Equation 4b from Equation 4a. With some rearrangement, this gives  
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where all notation is as above. Log d (discriminability) is a measure of accuracy that 

reflects the discriminability between S1 and S2 and is free of bias for one comparison 

stimulus over the other or for any biasing effects of the reinforcer differential. This 

measure is equivalent to the discriminability index proposed by Luce (1963) and has 

similar properties as d’ from classic detection theory (Green & Swets, 1966). Because it 

is a bias free measure, log d is preferred over proportion correct in some situations. In 

addition, log d is not bounded by .5 and 1, rather it has a range of 0 (no discrimination) to 

infinity (perfect accuracy on an infinitely large number of trials). Representative values 

of log d, and corresponding estimates of proportion correct are presented in Table 1.  

An estimate of bias can be calculated by adding Equation 4b to Equation 4a. With 

some rearrangement, this gives 
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where all notation is as above. Thus, log b (overall response bias) is a function of the  

 
Table 1 
 
Representative Values of Proportion Correct and Corresponding Values of log d 

 
 

S 1 Corr S 1 Incorr S 2 Corr S 2 Incorr Prop Corr log d

  995     5   995     5 .99 2.30

  950   50   950   50 .90 1.28

  800 200   800 200 .80 0.60

  700 300   700 300 .70 0.37

  600 400   600 400 .60 0.18

  500 500   500 500 .50 0.00

Note.  All calculations are based on 1000 trials with each sample stimulus (S 1 and S 2).
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reinforcer differential and inherent bias. Equation 6 can be applied to conditional- 

discrimination data in the same way as Equation 3 is applied to concurrent-schedule data. 

The left side of Equation 6 is independent of the discriminability of the sample stimuli 

(log d). Equation 5 and the left side of Equation 6 are point estimates, and do not require 

the parametric variation of reinforcer ratios required to obtain estimates of 

discriminability and bias when using Equations 4a and 4b. 

 

Sensitivity to Variation of Reinforcer Frequency  
 

in Conditional Discrimination 
 

In the theoretical treatment of conditional discrimination above, Equations 4a and 

4b suggest that the effects of changes in the reinforcer-frequency ratio (Rw/Rz) and 

changes in the discriminability of the sample stimuli (log d) are additive and therefore, 

independent. This independence suggests that sensitivity to variations in the reinforcer-

frequency ratio (a) should not be affected by changes in discriminability (log d). 

Empirical tests of this independence were supported at first. For example, McCarthy and 

Davison (1980) arranged a temporal-discrimination procedure with a relatively easy (5 s 

vs. 30 s) and a relatively difficult (20 s vs. 30 s) condition. They then varied the 

reinforcer frequency for correct choice responses during both conditions to obtain 

estimates of sensitivity. They found that discriminability (log d) was lower during the 

difficult-discrimination condition. In addition, in accordance with the Davison-Tustin 

formulation, the estimates of sensitivity were independent of the level of discriminability, 

indicated by no significant differences in the slopes of the functions (Equations 4a and 

4b) relating the ratio of choice responses to the ratio of reinforcers. 
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 Although initial experiments reported independence of sensitivity and 

discriminability (e.g., McCarthy & Davison, 1979, 1980), subsequent experiments did not 

confirm such independence. For example Davison and McCarthy (1987) employed a 

complex temporal-discrimination procedure in which trials consisted of presentation of 

either a fixed or variable stimulus duration. The fixed duration remained the same 

throughout each experimental condition, but was varied across two conditions (5 s vs.  

20 s). The variable stimulus duration was varied within session across 12 values, ranging 

from 2.5 to 57.5 s. Responses to one key were reinforced following the fixed duration and 

responses to the other key were reinforced following other durations. The reinforcer 

frequency for correct responses was varied during both conditions. Discriminability was 

highest when the disparity (difference between the fixed and variable duration stimuli) 

was greatest, similar to the results of McCarthy and Davison (1980). Contrary to the 

results of McCarthy and Davison, sensitivity to variations in the reinforcer-frequency 

ratio increased with decreases in discriminability, indicating that these two parameters 

were not independent. This inverse relation between stimulus discriminability and 

sensitivity to reinforcer frequency has been confirmed when sample-stimulus disparity 

has been varied across conditions (McCarthy & Davison, 1984; White, 1986), as well as 

when a range of color (Davison & McCarthy, 1989), and line orientation (White et al., 

1985) sample stimuli varying in disparity were presented within session.  

Several investigations have assessed sensitivity to reinforcer-frequency ratios as a 

function of increasing retention interval in DMTS experiments. Similar to the results of 

studies that have varied sample-stimulus disparity, increasing the retention interval in 

DMTS experiments decreases discriminability as measured by log d (see White, 1985, for 
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review). Initial research suggested independence of sensitivity and discriminability. 

For example, Harnett, McCarthy, and Davison (1984; Experiment 2) varied the duration 

of the retention interval from 0.06 s to 10.36 s across three conditions in a DMTS 

procedure. During each condition, they varied the reinforcer frequency ratio for correct S1 

and S2 responses. Similar to the results from studies that varied sample-stimulus disparity, 

discriminability (log d) decreased with increasing retention interval. In addition, 

sensitivity to changes in the reinforcer-frequency ratio remained similar across the three 

retention interval conditions, thus demonstrating independence of sensitivity and 

discriminability in accordance with the Davison-Tustin model. 

 Although the results of Harnett and colleagues suggested independence of 

sensitivity and discriminability in DMTS, later studies reported conflicting results. For 

example, McCarthy and Davison (1991) varied retention-interval duration from 0.5 s to 

30 s across conditions in a delayed symbolic matching-to-sample procedure. Within each 

condition, they varied the relative frequency of reinforcers for correct responses. 

Discriminability decreased as a function of increasing retention interval, consistent with 

the results of previous studies. Sensitivity to variations in the reinforcer-frequency ratio, 

however, also decreased with increasing retention interval, rather than remaining similar 

across retention intervals as reported by Harnett and colleagues. Yet another result was 

reported by Jones and White (1992). They varied retention-interval duration across four 

values (0.01-, 1-, 4-, 12-s) within session and varied relative reinforcer frequency across 

conditions. Discriminability decreased with increasing retention interval, as previous 

studies had reported. Sensitivity to reinforcer-frequency ratios, however, increased with 

decreasing discriminability, contrary to the results of Harnett and colleagues and 



   21
McCarthy and Davison (see also White & Wixted, 1999). Jones and White suggested 

that the different results between studies might have been due to varying retention 

intervals within session instead of across conditions, as well as to the development of 

extreme side biases in the McCarthy and Davison study. This interpretation was tested by 

McCarthy and Voss (1995). They varied retention intervals within session and reinforcer 

frequency across conditions, similarly to the procedure used by Jones and White. 

Discriminability decreased with increasing retention interval. In addition, sensitivity to 

reinforcer-frequency ratios also decreased with decreasing discriminability, consistent 

with the results of McCarthy and Davison. Thus, variation of retention intervals within 

session vs. across conditions cannot account for the different results. Moreover, the 

different results cannot be due to the development of extreme side biases, as no 

systematic biases were evident in the McCarthy and Voss data. 

 Although the specific reasons for the different results from procedures that have 

varied retention intervals and reinforcer frequency are unclear, McCarthy and Voss 

(1995) noted one potentially important difference between procedures. To date, the 

studies that have reported decreasing sensitivity to reinforcer-frequency ratios with 

increasing retention intervals have reported much lower levels of discriminability (log d) 

than those that have reported increasing sensitivity as a function of increasing retention 

interval. Although discriminability typically drops to low levels at longer retention 

intervals in all DMTS studies, there are large differences in discriminability at shorter 

retention intervals between studies. McCarthy and Davison (1991) generally reported 0-s 

delay log d values of less than 1.2, and McCarthy and Voss reported average 0.5-s delay 

log d values of less than 1.0. By contrast, Jones and White (1992) reported 0.01-s delay 
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log d values of around 2.0 and White and Wixted (1999) reported 0.2-s delay log d 

values of around 2.0 as well. Thus, the different results reported across studies are 

confounded by the overall level of discriminability generated by the procedure. 

 White and Wixted (1999) conducted a study that directly assessed the role of 

overall discriminability in sensitivity to reinforcer-frequency ratios in DMTS procedures. 

In Experiment 2, overall discriminability was varied by manipulating the sample-stimulus 

response requirement from fixed ratio (FR) 5 to FR1 across two conditions. The relative 

reinforcer frequency for correct choices was varied during both conditions. 

Discriminability (log d) was higher during the FR5 condition than during the FR1 

condition. Sensitivity to reinforcer-frequency ratios increased as a function of retention 

interval in both conditions, although overall sensitivity was higher during the FR1 

condition. In Experiment 3 the duration of the ITI was manipulated. Short ITI durations 

have been shown to decrease discriminability in conditional-discrimination procedures 

(e.g., Endhouse & White, 1988; Roberts, 1972; White, 1985), and the experiments by 

McCarthy and Davison (1991) and McCarthy and Voss (1995) employed extremely short 

ITI durations (0-5 s). Within each condition, White and Wixted varied the reinforcer 

frequency for correct choices. They found that during the 15-s ITI condition, 

discriminability was overall higher than during the 1-s ITI condition. In addition, 

sensitivity to reinforcer-frequency ratios (a) increased with increasing retention interval 

during the 15-s ITI condition and decreased with increasing retention interval during the 

1-s ITI condition. Given the results of Experiment 2, in which the FR requirement was 

varied, these results do not appear to be accounted for by the overall level of 

discriminability. White and Wixted suggested that short ITI durations may increase the 
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proactive effect of previously reinforced responses, thus resulting in higher 

sensitivities at short retention intervals, and decreasing sensitivity at longer retention 

intervals. Thus, according to White and Wixted, decreasing sensitivity to relative 

reinforcer ratios as a function of increasing retention interval may be due to short ITI 

durations. 

 The results of Jones and White (1992) and White and Wixted (1999) suggest that 

manipulation of sample-stimulus disparity and retention intervals may be functionally 

equivalent. Specifically, these studies, in which retention intervals were varied in a 

DMTS procedure, found similar relations between discriminability and sensitivity to 

reinforcer-frequency ratios as studies that have varied sample-stimulus disparity: 

sensitivity increased as discriminability decreased. Definitive conclusions as to the 

functional equivalence of both manipulations, however, are not possible, as procedural 

differences across studies that have varied sample-stimulus disparity and retention 

intervals make direct comparison difficult. Table 2 summarizes the studies conducted to 

date that have assessed the relation between sensitivity to reinforcer frequency and 

discriminability. Examination of the table shows that in addition to ITI duration, other 

differences, such as type of procedure used, the manner in which reinforcers are 

scheduled for correct choices (more on this below; see Methods), whether disparity or 

delay was varied within session or across conditions, among others, have varied between 

studies. Thus, it is necessary to manipulate both retention interval and sample-stimulus 

disparity within the same general procedure if meaningful comparisons are to be made. 

The present study accomplished this goal. 



 

Table 2 
 
Summary of Previous Investigations of the Relation Between Sensitivity and Discriminability in Conditional Discrimination 

Study Manipulation 

# of delays 
or 

disparities 
arranged 

Varied within 
session or 

across 
conditions SR scheduling Procedure ITI duration 

Sensitivity as a 
function of 
decreasing 

discriminability 

McCarthy & Davison (1980) disparity 2 across uncontrolled SMTS 3 s independent  

Harnett, McCarthy, & Davison 
(1984) 

delay 3 across controlled SMTS 0 s independent 

McCarthy & Davison (1984) disparity 5 across both SMTS 0 s 
independent and 

increase 

White, Pipe, & McLean (1985) disparity 5 within controlled Multiple schedule NA increase 

White (1986) disparity 2 within uncontrolled Multiple schedule NA increase 

Davison & McCarthy (1987) disparity 13 within controlled SMTS 3 s increase 

Davison & McCarthy (1989) disparity 8 within controlled SMTS 5 s increase 

Alsop & Davison (1991) disparity 7 across controlled SMTS 3 s inverted U shape 

McCarthy & Davison (1991) delay 13 across controlled SMTS 3 s decrease 

Jones & White (1992) delay 4 within uncontrolled MTS 10 s increase 

Nevin, Cate, & Alsop (1993) disparity 2 across controlled SMTS 6 s increase 

McCarthy & Voss (1995) delay 4 within controlled MTS 5 s decrease 

White & Wixted (1999) delay 4 within uncontrolled MTS 1, 15 s increase and decrease 

Sargisson & White (2007) delay 5 within uncontrolled MTS 15 s increase 
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STATEMENT OF THE PROBLEM 

 
 

Although contemporary behavioral theories of remembering in nonhumans 

suggest that degrading discriminability by manipulating retention-interval duration is 

functionally equivalent to degrading discriminability by decreasing sample-stimulus 

disparity, such functional equivalence has not been conclusively demonstrated. Studies 

that have manipulated sample-stimulus disparity have generally reported an inverse 

relation between sensitivity discriminability, while those that have manipulated retention-

interval duration have reported varying relations. Procedural differences between 

experiments make comparison of the results of studies that have manipulated sample-

stimulus disparity and those that have manipulated retention-interval duration difficult. 

Therefore, the present experiment assessed sensitivity of conditional-discrimination 

performance to variations in relative reinforcer frequency as a function of 

discriminability in both a retention-interval and a sample-stimulus disparity condition. 

Both variables were manipulated across conditions within the same general procedure to 

facilitate direct comparison. In addition, the present experiment used temporal-sample 

stimuli, thus assessing the generality of previous results obtained using sample stimuli 

from other dimensions 
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METHOD 

 
 

    Design 
  

 
This experiment used a small-N “single-subject” design in which each animal 

experiences all experimental conditions. The animal’s behavior in one condition serves as 

the control or comparison for its behavior under other conditions (Sidman, 1960). Large 

quantities of data are gathered from a relatively small number of animals and conditions 

are run for extended periods of time. Multiple replications are performed, minimizing the 

number of animals used and intersubject variability. Judgments about stability of data are 

typically made by visual inspection and descriptive, rather than inferential, statistics. 

 
Subjects 

 

 

Eight experimentally naïve adult pigeons served as subjects. One pigeon stopped 

key-pecking for unknown reasons during the initial condition of the experiment and data 

from this pigeon are not included. Pigeons were maintained at 80% (+/- 15g) of free-

feeding weights by postsession feeding as needed. Between sessions, pigeons were 

individually housed in a temperature-controlled colony under 12:12 hr light/dark cycle 

and had free access to water and digestive grit. This experiment was approved by the 

Utah State University Institutional Animal Care and Use Committee. 

 
Apparatus 

  
 

Four BRS/LVE sound-attenuating chambers were used. Chambers were 

constructed of painted metal with aluminum front panels. The chambers measured 35 cm 
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across, 30.7 cm deep, and 35.8 cm high. Each front panel had three translucent plastic 

keys that could be lit from behind with white, green, red, and blue light and required a 

force of at least 0.10 N to record a response. Keys were 2.6 cm in diameter and 24.6 cm 

from the floor. A lamp (28 V 1.1 W) mounted 4.4 cm above the center key served as a 

houselight. A rectangular opening 9 cm below the center key provided access to a 

solenoid-operated hopper filled with pelleted pigeon chow. During hopper presentations, 

the opening was lit with white light and the houselight and keylight were extinguished. 

Extraneous noise was masked by white noise and chamber ventilation fans. 

Contingencies were programmed and data collected by a microcomputer using Med 

Associates® interfacing and software. 

 
Procedure 

 
Pretraining 

  
The pigeons were exposed to an autoshaping procedure (e.g., Brown & Jenkins, 

1968) in which key colors were paired with food delivery. During this procedure, all key 

colors were presented in the key locations in which they would appear during the 

experiment. Once pigeons reliably pecked all key colors in all locations, the experiment 

began. 

 The experiment was conducted in two conditions, a sample-stimulus disparity 

condition and a retention-interval condition. Within each condition, sensitivity to 

variations in the reinforcer frequency ratio (a in Equation 6) was assessed. The order of 

conditions was counterbalanced across subjects to minimize the influence of any order 

effects. Pigeons 373, 597, 46, and 49876 experienced the sample-stimulus disparity 
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condition first, while pigeons 289, 49807, and 49864 experienced the retention-interval 

condition first. Sessions were conducted 7 days per week at approximately the same time. 

 
Sample-Stimulus Disparity Condition 

During this condition, sensitivity to variations in reinforcer ratios was assessed as 

a function of sample-stimulus disparity. The final procedure consisted of a temporal-

discrimination procedure in which samples of varying duration were presented within 

session. The retention interval was fixed at 0.1 s for the duration of the condition. Trials 

began with the illumination of the houselight and center key green. This key served as a 

trial-ready stimulus to ensure that the pigeon was attending to the sample. A peck to the 

center key extinguished it and lit the center key red for the sample duration. For the 

purposes of this experiment, durations shorter than 6 s were considered short (S1), and 

those longer than 6 s were considered long (S2). Sample durations of 1 and 11 s were 

considered easy and sample durations of 5 and 7 s were considered difficult.  

Sample durations were randomly selected each trial with the constraint that each 

sample duration was presented an equal number of times during the session and that each 

sample duration was presented twice in each block of eight trials. Following sample 

presentation, the left and right keys were lit blue and white. The location of each color 

(left or right key) was randomly determined from trial to trial (e.g., Stubbs, 1968). A peck 

to the key lit one color following short sample durations and to the key lit the other color 

following long sample durations sometimes (see below) resulted in 2.5 s access to food. 

Key colors corresponding to short and long sample durations were counterbalanced. 

Nonreinforced correct choices and incorrect choice responses resulted in a 2.5 s blackout. 
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There was a limited hold on the trial-ready and comparison stimuli, such that if a 

response was not made after 20 s, the stimuli were extinguished and the next 

experimental event took place (sample presentation or blackout). Trials were separated by 

a 20-s ITI during which all keylights and the houselight were extinguished. Sessions 

ended after 80 trials. Thus, each sample duration was presented 20 times per session.  

During initial training, only sample durations of 1 and 11 s were presented, the 

probability of reinforcement for correct choices was 1.0, and sessions lasted for 40 trials. 

For the first 5 sessions, a correction procedure was implemented. During this procedure, 

incorrect choice responses extinguished the comparison keys and produced a 2.5 s 

blackout. Following the blackout, the entire trial was repeated, with the same sample 

duration and comparison colors in the same key locations. This process continued until a 

correct choice response terminated the trial in food. Once accuracy appeared stable (21-

30 sessions, across pigeons) difficult samples were introduced and the number of trials 

per session was increased to 80.  

Initially, difficult samples of 5 and 7 s were introduced. In some cases, accuracy 

with these sample durations was extremely low. Thus, the samples were adjusted to be 

more discriminable (e.g., to 4 and 8 s) until accuracy appeared stable. Sample duration 

was titrated on an individual pigeon basis until stable performance was established with 

samples of 5 and 7 s. Once accuracy with easy and difficult samples was established 

within the criterion ranges (see description below), the probability of reinforcement for 

correct choice responses was decreased from 1.0 to .5 across several consecutive sessions 

(6-8 sessions, across pigeons).  
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Retention-Interval Condition 

During this condition, sensitivity to variations in reinforcer frequency ratios was 

assessed as a function of retention interval duration. The final procedure used in this 

condition was identical to that used in the sample-stimulus disparity condition except that 

sample-stimulus disparity was fixed and the duration of the retention interval was varied. 

Retention intervals of two durations were presented within session. Trials began with the 

illumination of the houselight and center key green. This key served as a trial-ready 

stimulus to ensure that the pigeon was attending to the sample. A single peck on the 

center key extinguished it and lit the key red for the duration of the presented sample. 

Sample durations used during this condition were 1 (S1) and 11 (S2) s. Following sample 

presentation, the center key was extinguished and a retention-interval was initiated. The 

duration of the retention interval was randomly selected on each trial with the constraint 

that each retention interval occurred an equal number of times throughout the session and 

that each retention interval was presented twice following each sample duration in each 

block of four trials. Following the retention interval, the side keys were lit, one blue, one 

white. As in the disparity condition, the location of each color was randomized across 

trials. A peck to the key lit one color following a 1-s sample duration and to the key lit 

the other color following a 11-s sample duration sometimes resulted in 2.5 s access to 

food. Key colors corresponding to short and long samples were counterbalanced. 

Nonreinforced correct choices and incorrect choices resulted in a 2.5 s blackout. The 20-s 

limited hold described above was in place during this condition. Trials were separated by 

a 20-s ITI during which all key lights and the houselight were extinguished. Sessions 
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ended after 80 trials. Thus, each retention interval was presented 20 times following 

both S1 and S2 presentations. 

Initial training was identical to that of the sample-stimulus disparity condition 

described above. Midway during initial training, however, the pigeons that experienced 

this condition first were switched to different experimental chambers (for reasons not 

relevant to this study). This move necessitated several more sessions of correction in the 

new chambers before accuracy with the short delay stabilized and the long delay was 

introduced.  

Similarly to the sample-stimulus disparity condition, retention intervals were 

titrated on an individual pigeon basis until accuracy was stable and within the criterion 

ranges (described below). This individual titration resulted in terminal retention intervals 

differing between pigeons (4 to 10 s, across pigeons). Once accuracy was stable on both 

short- and long-retention interval trials, the probability of reinforcement for correct 

choice responses was decreased from 1.0 to .5 (a reinforcer ratio of 1:1, see Table 3 

below). This took 7-11 sessions, across pigeons. 

 

Scheduling of Reinforcers 

 During both conditions, reinforcement for correct choices was scheduled as 

follows. At session onset and following each reinforcer presentation, the next reinforcer 

was assigned to a correct S1 or S2 response with a fixed probability. No other reinforcers 

were arranged until the scheduled reinforcer was collected. This way of scheduling 

reinforcers is a controlled reinforcer ratio procedure and ensures that the programmed  
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Table 3 

Conditions, Reinforcer-Frequency Ratios, and Reinforcer Probabilities  

During All Experimental Conditions 

  
reinforcer ratios are similar to the obtained reinforcer ratios (e.g., McCarthy & Davison, 

1991). 

 

Equating Disparity and Delay 

The goal of the present research was to test the functional equivalence of 

manipulating sample-stimulus disparity and retention intervals. As demonstrated by 

White and Wixted (1999), the level of discriminability can affect the relation between 

sensitivity to variations in reinforcer frequency and discriminability. It is therefore 

important that discriminability across the sample-stimulus disparity and retention interval 

conditions be equated. To this end, two overall levels of baseline discriminability were 

established in each condition. Values of log d greater than 1.5 comprised the high 

discriminability range, and values below 1.5 comprised the low discriminability range. 

Frequency

Condition ratio S 1 S 2

Reinforcer probability                                                                             

Sample-stimulus disparity

          1 1:1 0.5 0.5

          2 1:9 0.9 0.1

          3 9:1 0.1 0.9

          4 1:3   0.25   0.75

Retention interval

          1 1:1 0.5 0.5

          2 1:9 0.9 0.1

          3 9:1 0.1 0.9

          4 1:3   0.25   0.75

Note.  Within each condition, the 1:9 and 9:1 reinforcer ratio conditions were 

counterbalanced across pigeons.
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The sample durations used in the sample-stimulus disparity condition were 1 and 11 s 

(high discriminability), and 5 and 7 s (low discriminability). These sample durations were 

chosen based on several months of preliminary exploration with the procedure, and 

produced values of log d within the criterion ranges. In the retention-interval condition, 

the duration of the short retention interval was 0.1 s and the duration of the long retention 

interval was adjusted on an individual pigeon basis to produce the criterion 

discriminability ranges (4-10 s, across pigeons). In this way, discriminability was roughly 

equated before reinforcer frequency was varied, thus strengthening conclusions regarding 

functional equivalence of sample-stimulus disparity and retention intervals. 

Discriminability was equated at the beginning of the sample-stimulus disparity and 

retention interval conditions (1:1 reinforcer ratio), but was allowed to vary during 

conditions in which reinforcer frequency was varied. 

 
Data Collection 

During both conditions, the data collected were the number of correct and 

incorrect choice responses on the blue and white keys, and the number of reinforcers 

collected from the blue and white keys. In addition, the number of responses to and the 

number of reinforcers collected from the left and right keys was collected to assess any 

side biases. 

 
Measures 

 
Data from the last 10 sessions of each condition were pooled. To obtain measures 

of discriminability, accuracy was calculated both as proportion correct and as log d 

(Equation 5). Log d is incalculable if the subject does not make at least one error 
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following each sample during the session. Even pooled over 10 sessions, such 

discrimination performance is not uncommon (see Alsop, 2004). Thus, it is customary to 

add a small number (in this case 0.25; cf. Odum, Shahan, & Nevin, 2005; see Brown & 

White, 2005 for discussion) to each of the cells in the log d equation. With this correction 

in place, the maximum value of log d at each stimulus-disparity pair in the sample-

stimulus disparity condition was 2.90. Likewise, the maximum value of log d at each 

delay in the retention-interval condition was also 2.90. Log b (left side of Equation 6) 

was calculated to obtain a measure of overall response bias. 

 
Assessing Sensitivity to Variations in the  

Reinforcer-Frequency Ratio 

 
By changing the probability of reinforcement for correct S1 and S2 responses, the 

reinforcer frequency ratio was varied across three or four ratios. Each reinforcer ratio was 

fixed for at least 25 sessions and until the estimates of log d and log b appeared stable as 

judged by visual inspection (no unusual variability or trends over the last several 

sessions). The conditions, reinforcer-frequency ratios and probability of reinforcement 

for correct S1 and S2 choices are presented in Table 3. The number of sessions in each 

experimental condition for all pigeons is presented in the Appendix.  

Sensitivity to variations in the reinforcer ratio was assessed by plotting the 

measure of response bias (log b) as a function of the log reinforcer ratio and fitting 

Equation 6 to these data. As discussed above, sensitivity to variations in the reinforcer- 

frequency ratio is estimated as the slope of the fitted lines. The slope estimates were 

plotted as a function of discriminability during both the sample stimulus disparity and 
 

retention interval conditions to assess the relation between discriminability and sensitivity  
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to reinforcer ratios. Separate regressions were conducted for easy and difficult trials 

 

during the sample-stimulus disparity and retention interval conditions. The biasing effects 

of the reinforcer differential on S1 and S2 trials was assessed by plotting the obtained 

short/long response ratio as a function of the obtained short/long reinforcer ratio 

following both S1 and S2 presentations and fitting Equations 4a and 4b to these data.  

 

Statistical Analysis 

 

Paired-samples t tests were used to assess differences in accuracy between the 

high and low discriminability ranges. Paired-samples t tests were also used to assess 

changes in sensitivity as a function of discriminability during both the retention interval 

and sample-stimulus disparity conditions and to compare estimates of sensitivity and 

accuracy across conditions.  
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RESULTS 

 
 

Because the goal of the present experiment was to assess sensitivity to variations 

in reinforcer frequency as a function of discriminability, it is important to demonstrate 

that different levels of discriminability were established by the sample-stimulus disparity 

and retention interval manipulations before reinforcer ratios were varied. Figure 3 shows 

accuracy calculated as both proportion correct and log d (Equation 5) from the sample-

stimulus disparity and retention-interval conditions for all pigeons. The data are from the 

1:1 reinforcer ratio condition (before reinforcer ratios were varied).  

The upper panels show that proportion correct was high during easy trials in both 

the sample-stimulus disparity and retention-interval conditions and decreased during 

difficult trials in both conditions. The mean estimates of accuracy (standard error in 

parenthesis) on easy and difficult trials during the sample-stimulus disparity condition 

were 0.98 (0.00) and 0.76 (0.03), respectively. During the retention interval condition, the 

mean accuracy on easy and difficult trials was 0.99 (0.00) and 0.91 (0.01). The 

differences between easy and difficult trial accuracy were significant when assessed by 

paired-samples t tests during both the sample-stimulus disparity, t(6) = 7.90; p = 0.0002, 

and retention-interval, t(6) = 8.58; p = 0.0001, conditions. In addition, the difference in 

accuracy during easy trials in the sample-stimulus disparity and retention-interval 

conditions was not significant, t(6) = 1.12; p = 0.31. The difference between accuracy 

during difficult trials across the two conditions was statistically significant, t(6) = 4.46;  

p = 0.0043. 
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Figure 3. Estimates of accuracy on easy and difficult trials, calculated both as 
proportion correct (upper panels) and log d (lower panels; Equation 5) obtained 
from the 1:1 reinforcer ratio condition (before reinforcer ratios were varied) for all 
pigeons. The left panels show accuracy during the sample-stimulus disparity 
condition. The right panels show accuracy during the retention-interval condition. 
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The lower left panel shows that during the sample-stimulus disparity condition, 

log d for all pigeons was higher during easy sample (1 and 11 s) trials than during 

difficult sample (5 and 7 s) trials. The mean estimates of log d on easy and difficult trials  

 (standard error in parenthesis) were 2.00 (0.11) and 0.60 (0.09), respectively. This 

difference was statistically significant when compared using paired samples t tests,  

t(6) = 10.88; p < 0.0001. The lower right panel shows that estimates of log d for all 

pigeons were higher during easy (short retention interval) trials than on difficult (long 

retention interval) trials, with mean accuracy estimates (standard error in parenthesis) of 

1.92 (0.12) and 1.0 (0.06) during easy and difficult trials, respectively. These differences 

were statistically significant when compared using paired samples t tests, t(6) = 10.05; p 

< 0.0001. In addition, the difference between accuracy on easy trials across the sample-

stimulus disparity and retention interval conditions was not significant, t(6) = 0.24; p = 

0.82, while the difference between accuracy on difficult trials across conditions was 

significant, t(6) = 3.51; p = 0.01. These results show that the sample-stimulus disparity 

and retention-interval manipulations were successful in producing different accuracy 

ranges in both the sample-stimulus disparity and retention-interval conditions (as 

measured both by proportion correct and log d). In addition, there were not differences in 

accuracy levels as a function of which condition was experienced first (pigeons 289, 

48807, and 49864 experienced the retention-interval condition first, while pigeons 373, 

597, 46, and 49876 experienced the sample-stimulus disparity condition first).  

Figures 4 and 5 show accuracy (calculated as proportion correct) plotted as a 

function of the log reinforcer ratio (which was manipulated across conditions) for all 

pigeons during easy and difficult trials during both the sample-stimulus disparity and  



   39
 

 

 

 

 

Figure 4. Proportion correct as a function of the log reinforcer ratio for all 
pigeons during the sample-stimulus disparity condition for both easy (closed 
symbols) and difficult (open symbols) trial types. Different symbols indicate data 
from different pigeons. The top panel shows data from short-sample trials and the 
bottom panel shows data from long sample trials. 
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Figure 5. Proportion correct as a function of the log reinforcer ratio for all 
pigeons during the retention-interval condition. Other details as in Figure 4. 
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retention-interval conditions of the experiment. Proportion correct on both short (S1) 

and long (S2) sample trials was calculated separately. Figure 4 shows the results from the 

sample-stimulus disparity condition. The top panel shows that proportion correct for short 

samples during easy trials was high across all reinforcer ratios (0.95-1.0, across pigeons).  

During difficult trials, proportion correct was an increasing function of the 

reinforcer ratio. When the reinforcer ratio was negative, indicating a probability of 

reinforcement favoring correct long (S2) choices, proportion correct was low (note that 

because accuracy at the low end of proportion correct is bounded at .5, values less than .5 

indicate bias for the comparison option corresponding to the long sample duration). As 

the reinforcer ratio increased, proportion correct also increased. The bottom panel shows 

the results from long (S2) sample-trials. In general the results were similar to those from 

S1 trials, although there was somewhat more variability in proportion correct across 

reinforcer ratios during easy trials (particularly during the 9:1 reinforcer ratio). During  

difficult trials, as the reinforcer ratio increased (from negative to positive, indicating 

increasing probability of reinforcement for correct short choices), proportion correct for 

long samples decreased. 

Figure 5 shows the analysis conducted on the data from the retention-interval 

condition. The upper panel shows that during easy trials proportion correct for short 

samples was high across reinforcer ratios (although not as high as during the sample 

stimulus disparity condition; 0.84-1.0 across pigeons). During difficult trials, proportion 

correct was somewhat lower for a few birds (particularly at the more extreme negative 

reinforcer ratios), but aside from these pigeons, overall, proportion correct appeared 

similar to that observed during easy trials. Performance during long-sample trials (bottom 
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panel) appeared similar for the most part during easy and difficult trials, with the 

exception of a decrease in proportion correct for some pigeons. Together, these results 

indicate that variation in reinforcer ratios had less of an effect on proportion correct 

during the retention-interval condition than during the sample-stimulus disparity 

condition. In addition, during both conditions, variation in reinforcer ratios had effects  

only during difficult sample trials; proportion correct during easy trials was relatively 

unaffected by variations in the reinforcer ratio.   

The next two figures show accuracy across reinforcer ratios calculated as log d 

(Equation 5) for easy and difficult trials. Note that because of the equation used to 

calculate log d, data from short and long trials cannot be considered separately. Figure 6 

shows the data from the sample-stimulus disparity condition. There are two notable 

features of the data displayed in this figure. First, the range of the data points along the  

x-axis in the lower panel (difficult trials) is somewhat greater than in the upper panel 

(easy trials), mostly so for 2 pigeons. This result indicates that, for these pigeons, the log 

reinforcer ratio was more extreme during difficult trials than during easy trials. This 

result will be discussed in more detail below. The second notable feature of these data is 

that across pigeons and trial types, log d did not change systematically across reinforcer 

ratios.  

Figure 7 shows that during the retention interval condition, in general, the range 

of the data points along the x-axis was more similar during easy (0.1 s retention interval; 

upper panel) and difficult (4-10 s retention interval; lower panel) trials, although for some 

pigeons (373 in particular) the spread of the difficult-trial data points was greater than the 

spread of the easy-trial data points (this result is revisited below). Similarly to the results  



   43
 

 

 

 

Figure 6. Estimates of log d (Equation 5) as a function of the log reinforcer ratio 
for all pigeons during the sample-stimulus disparity condition of the experiment. 
Data in the upper and lower panels are log d estimates calculated during easy and 
difficult trials, respectively (see text for details). 
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Figure 7. Estimates of log d (Equation 5) as a function of the log reinforcer ratio 
for all pigeons during the retention-interval condition of the experiment. Other 
details as in Figure 6. 
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from the disparity condition, across pigeons and conditions, there was no systematic 

relation between accuracy and the reinforcer ratio.  

To more clearly display the relation between accuracy and trial difficulty, Figure 

8 plots log d (averaged across reinforcer ratios) during both the sample-stimulus disparity 

(upper panel) and retention-interval (lower panel) conditions for all pigeons on both easy 

and difficult trials. Log d was lower during difficult trials than during easy trials for all 

pigeons in both conditions of the experiment (see also Figures 6 and 7), although the 

difference between log d during difficult and easy trials was somewhat less for some 

pigeons during the retention-interval condition than during the sample-stimulus disparity 

condition. The mean estimates of log d (standard error in parenthesis) for easy and 

difficult trials during the sample-stimulus disparity condition were 2.00 (0.09) and 0.50 

(0.06), respectively. This difference was statistically significant when compared using 

paired-samples t tests, t(6) = 16.00; p < 0.0001. The mean estimates of log d (standard 

error in parenthesis) for easy and difficult trials during the retention interval condition 

were 1.81 (0.08) and 1.01 (0.11), respectively. This difference was statistically significant 

when compared using paired samples t tests, t(6) = 6.91; p = 0.0005. Taken together, 

these results indicate that, across reinforcer ratios, accuracy was higher during easy trials 

than during difficult trials in both the disparity and retention-interval conditions. Thus, 

the differences in accuracy established at the beginning of the experiment were 

maintained across variation of reinforcer ratios. 

Figures 9 and 10 show estimates of response bias (log b; left side of Equation 6) 

plotted as a function of the log reinforcer-frequency ratio during easy and difficult trials 

during both the sample-stimulus disparity and retention-interval conditions, respectively. 
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Figure 8. Estimates of log d (averaged across reinforcer ratios) for all pigeons 
during easy and difficult trials during the sample-stimulus disparity (upper panel) 
and retention-interval conditions (lower panel). 
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Figure 9. Estimates of response bias (log b; left side of Equation 6) as a function 
of the log reinforcer ratio for all pigeons during easy (filled data points) and 
difficult (unfilled data points) trials during the sample-stimulus disparity 
condition. Straight lines through the data points show the best fits of Equation 6 to 
the data (see Appendix for individual parameter estimates). 

 

 

 

 

 

-1

0

1

log reinforcer ratio

lo
g

b
 (

re
s
p

o
n

s
e
 b

ia
s
)

Easy

Difficult

-2 0 2

-1

0

1

-2 0 2 -2 0 2 -2 0 2

289 49807 49864 373

597 46 49876 Mean



   48
 

 

 

 

 

 
Figure 10. Estimates of response bias (log b; left side of Equation 6) as a function 
of the log reinforcer ratio for all pigeons during the retention-interval condition. 
Other details as in Figure 9. 
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The straight lines through the data points show the best fitting regressions of Equation 

6 (parameter estimates and variance accounted for are presented in the Appendix). First, 

it should be noted that for some pigeons, the spread of the bias functions (distance along 

the x-axis) during difficult trials was greater (and in some cases, much greater) than 

during easy trials (as noted above), indicating more extreme obtained reinforcer ratios 

during difficult trials than during easy trials. In all cases where this result is apparent, the 

extremity occurs in the 1:9 reinforcer-ratio condition (left most data point on the bias 

function).  

This result may seem puzzling in light of the fact that a controlled reinforcer-ratio 

procedure was used in the present experiment, and this procedure is used specifically to 

keep the obtained reinforcer ratios similar to the programmed reinforcer ratios (and 

therefore similar during easy and difficult trials). Inspection of the choice response and 

reinforcer data in the Appendix shows that this result was due to the development of 

extreme biases by some pigeons during difficult trials in the 1:9 reinforcer-ratio 

condition. Specifically, all pigeons that showed this effect developed an extreme bias for 

B2 (long sample) comparison-choice responding regardless of the presented sample 

duration. Given that the reinforcer ratio in this condition was 1:9 in favor of correct B2 

responding, it is not surprising (and indeed, was expected) that some bias for B2 would 

develop. The extreme bias developed by these pigeons, however, resulted in there being 

no (or very few) reinforcers obtained for correct B1 choice responses during the last 10 

sessions of this condition. Thus, when reinforcer ratios were calculated for these pigeons, 

the obtained reinforcer ratio under this condition was much more extreme than for 

pigeons that developed a more moderate bias.  
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Figure 9 shows that for all pigeons during both easy and difficult trials in the 

sample-stimulus disparity condition, choice responding was biased by variations in the 

reinforcer ratio for correct choices (indicated by changes in the measure of response bias 

across log reinforcer ratios). As discussed above, sensitivity to variations in relative 

reinforcer frequency is calculated as the slope of the best-fitting regression line. Tests of 

these slopes indicated they were significantly greater than 0 for both easy, t(6) = 4.87; p = 

.0028, and difficult, t(6) = 19.93; p < .001, trials. In addition, the slopes of the regressions 

were similar during easy and difficult trials, with the exception of pigeons 289 and 49807 

(individual parameter estimates and variance accounted for are presented in the 

Appendix). Finally, there was no systematic difference in the measure of inherent bias 

(log c) across pigeons. 

Figure 10 shows that for all pigeons during both easy and difficult trials in the 

retention-interval condition, choice responding was biased by variations in the reinforcer 

ratio for correct choices, with the biasing effects being smallest for pigeons 373 and 597. 

Tests of these slopes indicated that they were significantly greater than 0 for both easy, 

t(6) = 6.68; p = .0005, and difficult, t(6) = 6.32; p = .0007, trials. In addition, the slopes 

of the regressions were similar during easy and difficult trials for all pigeons (more on 

this result below). Finally, there was no systematic difference in the measure of inherent 

bias (log c; see Appendix) across pigeons.  

To more clearly display differences in sensitivity between easy and difficult trials, 

Figure 11 shows estimates of sensitivity (slopes) obtained from regression of Equation 6 

on the response-bias data in Figures 9 and 10 for each pigeon during easy and difficult 

trials for both the sample-stimulus disparity and retention-interval condition. The top  
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Figure 11. Estimates of sensitivity (slopes of regressions lines in Figures 9 and 
10) for all pigeons during easy and difficult trials during the sample-stimulus 
disparity (upper panel) and retention-interval conditions (lower panel). 
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panel shows the data from the sample-stimulus disparity condition. Although the 

estimates of sensitivity varied somewhat between pigeons, there was no systematic 

difference in the estimates of sensitivity during easy and difficult trials across pigeons. 

The mean estimate of sensitivity (standard error in parenthesis) during easy and difficult 

trials was 0.81 (0.17) and 0.63 (0.03), respectively. Note that the value of sensitivity for 

the easy trials is inflated by the high estimates of sensitivity for pigeons 289 and 49807. 

The difference in sensitivity between easy and difficult trials was not significant, t(6) = 

1.07; p = 0.33. 

The bottom panel (retention-interval condition) shows that although the estimates 

of sensitivity varied between pigeons, there was no systematic difference in the estimates 

of sensitivity during easy and difficult trials across pigeons. The mean estimate of 

sensitivity (standard error in parenthesis) during easy and difficult trials was 0.51 (0.08) 

and 0.52 (0.08), respectively. These values were not significantly different, t(6) = 0.28;  

p = 0.79. Together, these results indicate that although estimates of sensitivity were 

overall similar to those obtained in previous experiments (see Baum, 1983), they did not 

differ during easy and difficult trials during either the sample-stimulus disparity or 

retention-interval conditions.  

Recent assessments of sensitivity of conditional-discrimination performance to 

variations in reinforcer variables have stressed the importance of separately analyzing the 

data from S1 and S2 trials (Alsop & Porritt, 2006). This separate analysis is required 

because in some cases, variations in relative reinforcer frequency may bias choice 

responding following one sample stimulus more so than the other. If this is the case, 

overall estimates of sensitivity (obtained by regression of Equation 6) will reflect a 
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disproportionate biasing effect of the reinforcer differential on choice trials of one 

type. This is because the overall estimate of sensitivity is essentially an average of the 

biasing effects of the reinforcer differential on both S1 and S2 trials. For example, Alsop 

and Porritt assessed sensitivity to variations in reinforcer magnitude in a conditional-

discrimination procedure. They found that variation of reinforcer magnitude reliably 

biased choice responding (as measured by Equation 6). When the data from S1 and S2 

trials were considered separately, however, they found that the estimates of sensitivity 

were almost exclusively due to the biasing effect of reinforcer magnitude on S2 trials. 

Thus, separate analysis of performance on S1 and S2 trials allows for a more clear 

understanding of the biasing effects of the reinforcer differential. 

To more clearly assess the effects of reinforcer-ratio variation on choice 

responding in the present experiment, Figures 12 and 13 plot the log response ratio (a 

measure of response bias) as a function of the log reinforcer ratio on both S1 and S2 easy 

and difficult trials for all pigeons during the sample-stimulus disparity and retention-

interval conditions, respectively. Note that because the log reinforcer ratios against which 

the data on easy and difficult trials are plotted are the same as those calculated for the 

analyses presented above, the asymmetries apparent in the difficult-sample trial functions 

are also apparent here.  

Figure 12 shows the results of the analysis conducted on the data from S1 and S2 

trials during the sample-stimulus disparity condition. The straight lines through the data 

points are the best fitting regressions of Equation 4a for S1 trials, and 4b for S2 trials (raw 

data are presented in the Appendix). There are several aspects of the data to consider. 

First, during easy trials, variation of reinforcer ratios biased responding during S2 trials  
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Figure 12. Log response ratios for both S1 (filled points) and S2 (open points) 
trials as a function of the log reinforcer ratio (raw data in Appendix) during easy 
(circles) and difficult (triangles) trials for all pigeons during the sample-stimulus 
disparity condition. Straight lines through the data points are the best fitting 
regressions of Equations 4a and 4b (see text for details). 
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Figure 13. Log response ratios for both S1 and S2 trials as a function of the log 
reinforcer ratio during easy and difficult trials for all pigeons during the retention- 
interval condition. Other details as in Figure 12. 
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more than during S1 trials for most pigeons (with the exception of pigeon 49864 and 

46), indicating a greater biasing effect of reinforcer ratios on long sample easy trials. 

Second, variation of reinforcer ratios had a much more consistent effect on response bias 

during difficult trials than during easy trials. Third, for all pigeons, the response ratios 

during both S1 and S2 trials were more extreme during easy trials than during difficult 

trials, indicating that as disparity decreased (difficulty increased) the correct choice of B1 

and B2 on S1 and S2 trials, respectively, decreased. 

Figure 13 shows the results of the analysis conducted on the data from the 

retention-interval condition. There are several notable results. First, for most pigeons, 

variation of reinforcer ratios biased responding somewhat more during S1 trials than 

during S2 trials, indicating that choice responding was more biased by variation of 

reinforcer frequency on short-sample trials than on long-sample trials. The exceptions to 

this result were for pigeons 49807 and 49864. Second, in general, the response ratio was 

more extreme during easy S1 trials than during difficult S1 trials, indicating that as 

retention interval increased, the correct choice of B1 on S1 trials decreased. A similar 

result was observed during S2 trials. Together, these results show that choice responding 

was biased by reinforcer variation more on S1 trials than on S2 trials, and that increasing 

retention intervals decreased accuracy on both S1 and S2 trials. 

To facilitate comparison of the biasing effects of reinforcer-ratio variation within 

and across the sample-stimulus disparity and retention-interval conditions, Figure 14 

shows the estimates of sensitivity (slopes) obtained from regressions of Equation 4a (for 

S1 trials) and 4b (for S2 trials) on the response bias data from Figures 12 and 13. Consider  
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Figure 14. Slope estimates obtained from regression of Equations 4a and 4b on 
the response-bias data from S1 and S2 trials, respectively, during easy and difficult 
trials for the sample-stimulus disparity and retention-interval conditions. 
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first the data from the sample-stimulus disparity condition (top row). During easy 

trials, the slope estimates were higher for all pigeons (except 49864) during S2 trials than 

during S1 trials, indicating a greater biasing effect of the reinforcer ratio on long trials. 

This effect was confirmed by a paired-samples t test, t(6) = 2.79; p = .03. During difficult 

trials, slope estimates were not significantly different on S1 and S2 trials, t(6) = 1.53; p = 

.18. Slope estimates for S1 trials were not different on easy and difficult trials, t(6) = 1.16; 

p = .29, but were significantly greater during S2 trials on easy trials, t(6) = 3.46; p = .01, 

than on difficult trials. During the retention-interval condition, the slope estimates for S1 

and S2 trials were not significantly different during either easy, t(6) = .16; p = .88, or 

difficult, t(6) = 1.82; p = .82, trials. Across conditions, there was a significant difference 

on easy S1 trials, t(6) = 2.87; p = .03, but no other comparisons were significantly 

different (ps > .05). 

 Figure 15 summarizes the results of the entire experiment. The figure shows 

sensitivity as a function of discriminability (log d) for all pigeons during both the sample- 

stimulus disparity and retention-interval condition. In contemporary analyses of 

sensitivity as a function of discriminability, it is customary to fit a line via regression to 

the data from all subjects to assess the relation between sensitivity and discriminability. 

The significance of the relation is determined by how much variability the line accounts 

for (e.g., Alsop & Porritt, 2006). As is clear from the figure, the relation between 

sensitivity and discriminability in the present experiment was not statistically significant. 

Indeed, there seems to be little relation whatsoever. 
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Figure 14. Sensitivity (a; Equation 6) as a function of discriminability (Equation 
5) for all pigeons in the sample-stimulus disparity (left panel) and retention 
interval (right panel) conditions. Straight lines through the data points indicate the 
best fitting linear regression (see text for details). 
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DISCUSSION 

 
The theory of direct remembering (White, 2001), a contemporary behavioral 

account of remembering, suggests that performance in DMTS procedures is no different 

than in immediate discrimination procedures. Rather than relying on a declining memory 

trace to account for decreasing discrimination accuracy as a function of increasing 

retention interval, the theory of direct remembering suggests that performance in DMTS 

procedures reflects discriminative behavior under delayed stimulus control. Thus, 

according to the theory, decreasing sample-stimulus disparity and increasing retention-

interval duration (both ways of decreasing discrimination accuracy) should be 

functionally equivalent in their effects on DMTS performance.  

The present experiment provided a test of this functional equivalence by assessing 

sensitivity to variations in reinforcer frequency as a function of both sample-stimulus 

disparity and retention interval. While previous investigations have also attempted to 

characterize this relation, the results of these studies are difficult to interpret because of 

the many procedural differences across experiments. The present experiment, therefore, 

manipulated both sample-stimulus disparity and retention-interval duration while keeping 

as many procedural variables constant as possible to facilitate a direct comparison of the 

effects of sample-stimulus disparity and retention intervals on sensitivity to variation of 

relative reinforcer frequency.  

Four major results emerged from the present experiment. First, decreasing 

sample-stimulus disparity and increasing retention-interval duration decreased 

discrimination accuracy. Second, variation of reinforcer frequency ratios was effective in 
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biasing choice responding in both the sample-stimulus disparity and retention-interval 

conditions. Third, there was no difference between the estimates of sensitivity to relative 

reinforcer frequency as a function of discriminability in either the sample-stimulus 

disparity or retention-interval condition. Fourth, separate analysis of the data from S1 and 

S2 trials revealed different effects of reinforcer ratio variation on performance during easy 

and difficult S1 and S2 trials across the sample-stimulus disparity and retention-interval 

conditions. All of these results will be considered below.  

 
Discrimination Difficulty and Accuracy  

 
of Discrimination Performance 

 
 

Decreasing the physical disparity between the sample stimuli and increasing the 

retention-interval duration were both effective in decreasing discrimination accuracy. 

This result is in accord with numerous previous reports (e.g., Alsop & Davison, 1991; 

Alsop & Porritt, 2006; Davison & McCarthy, 1987; Jones & White, 1992; McCarthy & 

Davison, 1980; Sargisson & White, 2007; White, 2001). In addition, there was no 

systematic relation between log d and the reinforcer ratio (the relation between proportion 

correct and the reinforcer ratio in Figures 4 and 5 is due to the confounding influence of 

bias on the estimate of proportion correct; see Figures 12 and 13 for quantification of this 

bias). Such independence is consistent with the predictions of the Davison-Tustin model 

of conditional discrimination as well as with the results of numerous prior studies (e.g., 

McCarthy & Davison, 1980; Nevin et al., 1993).  

Although increasing retention-interval duration decreased overall discrimination 

accuracy, it did not produce selective decreases in accuracy on long-sample trials. This 
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result may seem peculiar to readers who are familiar with the results of other studies 

that have assessed the effects of retention intervals on performance during temporal-

discrimination procedures. For example, it has been well documented that when retention 

intervals are inserted between samples and comparisons in temporal-discrimination 

procedures, accuracy on long-sample trials declines sharply as a function of delay, 

whereas accuracy on short-sample trials remains high across delays, a phenomenon 

known as the choose-short effect (e.g., Fetterman, 1995; Spetch & Wilkie, 1982; 1983; 

see Spetch & Rusak, 1992, for review). A large empirical literature has been dedicated to 

theoretical characterization of this effect, and to delineating the conditions under which it 

will occur. Failure to find the choose-short effect in the present study may therefore seem 

puzzling.  

Although the choose-short effect is a robust phenomenon, and reports if it are 

pervasive in the DMTS literature, recent investigations have demonstrated that one can 

reduce the probability of obtaining the choose-short effect with a simple procedural 

manipulation. In many DMTS procedures, the delay and ITI are not differentiated (they 

both are dark). Under these conditions, the choose-short effect is common. Zentall and 

colleagues, however, have demonstrated that differentiating the ITI in some way by, for 

example, illuminating the houselight during trials (including the retention interval) and 

extinguishing it during the ITI, greatly reduces the occurrence of the choose-short effect 

(e.g., Sherburne, Zentall, & Kaiser, 1998; see Zentall, 2006, for discussion). The 

theoretical interpretation of this result is beyond the scope of this discussion. Of direct 

relevance, however, is the fact that in the present study, the retention interval and ITI 

were differentiated (in anticipation of the interpretive difficulties the occurrence of the 
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choose-short effect would introduce). Therefore, the fact that a choose-short effect was 

not observed is perhaps not surprising and further supports the effectiveness of 

differentially signaling the retention interval and ITI as a means of eliminating this effect. 

 

Sensitivity to Reinforcer Variation as a  
 

Function of Discriminability 
 
 
Although variation of reinforcer frequency effectively biased choice responding 

(estimates of sensitivity were similar to those obtained previously; see Baum, 1983), 

there was no difference in sensitivity as a function of discriminability in either the 

sample-stimulus disparity or retention-interval conditions (see Figure 14). Although this 

result was replicable across conditions and subjects, it appears problematic given the 

many reported results of a clear relation between sensitivity and discriminability 

discussed above. With regard to this result, one aspect of the data that merits discussion is 

that there was a significant difference between accuracy on difficult trials across the 

sample-stimulus disparity and retention-interval conditions (as calculated by both 

proportion correct and log d). While this difference is less desirable from an empirical 

standpoint, it is unlikely that it influenced the present results in a meaningful way. The 

reason is that the important comparison in the present study is between sensitivity on easy 

and difficult trials. Previous studies have shown clear relations between sensitivity and 

discriminability within the range of discriminability values reported here (e.g., Alsop, 

1991; Alsop & Davison, 1991; Jones & White, 1992; White & Wixted, 1999). Because 

the present study was not concerned with predicting exact values of sensitivity as a 

function of discriminability, but rather with predicting the overall relation (an ordinal 
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comparison), the fact that the absolute values of discriminability differed is likely not 

problematic. Furthermore, differences in values of discriminability would be most 

problematic had there been differing relations between sensitivity and discriminability 

obtained across conditions. Such was not the case; in both conditions, sensitivity was 

independent of discriminability. Thus, the difference in accuracy on difficult trials across 

conditions is likely not a problem here. There may be a previously overlooked difference 

between the present experiment and those conducted previously which may help to 

explain this seemingly incongruent result (independence of sensitivity and 

discriminability). 

The present experiment was conducted partly to assess the generality of results 

obtained with samples of other dimensions using temporal-sample stimuli. Only one 

other study has used a traditional temporal-discrimination procedure in the assessment of 

the relation between sensitivity and discriminability. That study was one of the initial 

empirical assessments of this relation (McCarthy & Davison, 1980). Recall that in that 

procedure, temporal-sample stimuli of either short or long duration were presented. The 

difference between the short and long sample durations was varied across two conditions 

(5 vs. 30 s and 20 vs. 30 s), and the reinforcer ratio for correct short and long choices was 

varied within these conditions to assess the relation between sensitivity and 

discriminability. Discrimination accuracy decreased with decreases in the difference 

between short and long samples. When the data were analyzed according to the Davison 

and Tustin (1978) model of conditional-discrimination performance, sensitivity was 

found to be independent of discriminability (it did not change as a function of changes in 

accuracy).  
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Thus, both McCarthy and Davison (1980) and the present study found 

independence between sensitivity and discriminability. Interestingly, both studies also 

used temporal-sample stimuli. The one other study that used temporal-sample stimuli was 

conducted by Davison and McCarthy (1987). They reported an inverse relation between 

sensitivity and discriminability. Their procedure, however, was an atypical temporal 

discrimination task. In traditional temporal-discrimination procedures, samples are 

presented and then the subject categorizes the presented sample as either short or long by 

making a choice response to the appropriate comparison option (e.g., Stubbs, 1968). In 

the Davison and McCarthy procedure, a sample was presented and the pigeon was 

required to discriminate whether the presented sample was the target duration (5 or 20 s, 

across conditions), or one of 12 other durations. Thus, choice of one comparison option 

was correct following presentation of one sample duration, while choice of the other was 

correct following presentation of 12 other sample durations. This procedural difference 

may be important in light of results showing that pigeons utilize different memory 

strategies (involving different types of memory codes) depending on the number of 

sample stimuli that are mapped onto a given comparison stimulus (e.g., Grant & Spetch, 

1993, 1994; Urciuoli, Zentall, Jackson-Smith, & Steirn, 1989; Zentall, Sherbourne, & 

Steirn, 1993). Thus, it is possible that this procedural difference may have influenced the 

obtained relation between sensitivity and discriminability in the Davison and McCarthy 

study.  

The one study that reported independence between sensitivity and discriminability 

as a function of retention-interval duration was Harnett and colleagues (1984). In their 

study, they did not use temporal samples, yet still obtained independence between 
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sensitivity and discriminability. The reasons for this obtained independence are 

unclear, as other studies have used similar sample stimuli and reported a clear relation 

between sensitivity and discriminability. 

 
Effects of Reinforcer Probability on Persistence 

 
of Temporal-Discrimination Accuracy 

 
 
Although it is unclear why differing relations between sensitivity and 

discriminability may be obtained depending on sample-stimulus modality, recent data 

from our laboratory suggest that the effects of other reinforcer manipulations may also 

differ depending on the modality of the sample stimuli used in the discrimination 

procedure. In a recent set of experiments, this author has assessed the relation between 

reinforcement probability and persistence of temporal-discrimination accuracy (Ward & 

Odum, 2008b). By way of background, considerable research indicates that behavior that 

is reinforced at a higher rate is more persistent in the face of disruption than behavior that 

is reinforced at a lower rate (see Nevin & Grace, 2000, for review and discussion). This 

relation between persistence and reinforcer rate holds for simple responding as well as for 

discrimination accuracy (e.g., Nevin, Milo, Odum & Shahan, 2003; Nevin, Ward, 

Jimenez-Gomez, Odum, & Shahan, 2008; Odum, Shahan, & Nevin, 2005).  

Previous assessments of the effects of reinforcer rate on the persistence of 

discrimination accuracy have used visual sample stimuli (key colors or line orientations). 

The experiments conducted by Ward and Odum (2008b) were designed to assess whether 

the same results would be obtained if temporal-sample stimuli were used in the 

discrimination procedure. Briefly, the design consisted of presenting pigeons with a 
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multiple schedule of discrimination procedures (two experimental contexts, signaled 

by different stimuli alternating within the same session). In one component, correct 

choices were reinforced with a high probability (0.8), and in the other, correct choices 

were reinforced with a low probability (0.2). Once accuracy was stable, performance was 

disrupted in some fashion (e.g., presession feeding, extinction), and the persistence of 

discrimination accuracy under disruption was assessed. The results of the experiments 

showed that the positive relation between reinforcer rate and persistence of 

discrimination accuracy held when color, but not when temporal, samples were used.  

These results, together with those of the present experiment, suggest that the 

effects of variations of reinforcer variables on both persistence of discrimination accuracy 

and sensitivity to reinforcement as a function of discriminability that have been 

previously demonstrated may not hold when the procedure involves discrimination 

between samples that vary in temporal duration. Future work will need to be done to 

clarify the generality of these results, and to elucidate the specific reasons for the 

different results between experiments that use visual, and those that use temporal sample 

stimuli. This work will entail identifying the important differences between temporal and 

other types of discrimination procedures and how (or if) they relate to differences in the 

effects of reinforcer variable on discrimination performance. 
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Differences Between Temporal and Other Types  

 
of Discrimination Procedures 

  
 

There may be differences between temporal and other types of discrimination 

procedures that could be of potential importance in explaining the differences in the 

effects of reinforcer variables obtained in the present experiment and described above. 

For example, temporal- discrimination procedures are symbolic in nature. In a traditional 

matching-to-sample experiment, a color sample is presented (red or green) and the 

subject receives food for choosing the comparison option that matches the sample (e.g., 

red or green side key). In temporal-discrimination procedures, the samples are 

environmental events that are presented for some duration, and each comparison option 

comes to be associated with a sample of a particular duration through a history of 

reinforcement. Thus, the symbolic nature of temporal-discrimination procedures is the 

first difference that may play a potential role in the differential results obtained in the 

present study and by Ward and Odum (2008b).  

 Although the symbolic nature of the discrimination procedure may affect results 

in some way, the results of a number of other studies that have used symbolic matching-

to-sample procedures have produced very clear relations between sensitivity and 

discriminability (see Table 2). Thus, it seems unlikely that this difference is responsible 

for the present results. An experiment is currently being conducted in our laboratory to 

assess whether persistence of discrimination accuracy as a function of reinforcer rate 

depends on the nature of the discrimination procedure (symbolic vs. matching-to-
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sample). Future research should attempt to identify other important difference (if any) 

between temporal and other types of sample stimuli. 

  
Different Effects of Reinforcer Ratio Variation 

 
Across Conditions as a Function of 

 
Trial Difficulty and Trial Type 

 

 

 When the effects of reinforcer-ratio variation were considered separately for S1 

and S2 trials, the data differed both within and across the sample-stimulus disparity and 

retention-interval conditions. While there were several differences, the most striking was 

that the response ratios on S2 (long) were more biased by variations in reinforcer ratios 

during the sample-stimulus disparity condition than during the retention-interval 

condition. This result is particularly interesting given the fact that the sample presented 

on S2 easy trials was the same across conditions; a 11-s sample, followed by a 0.1-s 

retention interval. Given that the present study was the first to vary sample-stimulus 

disparity and retention-interval within the same general procedural framework, this result 

seems without precedent. Although this sample was the same across conditions, the 

within-session context in which this sample was experienced was quite different. In the 

sample-stimulus disparity condition, this sample alternated with three others (1, 5, and  

7 s) while in the retention interval condition, the two short and long samples were always 

the same (1 and 11 s), and only the retention interval varied. Perhaps the context in which 

each sample was experienced across conditions influenced the biasing effect of the 

reinforcer ratio in some way. Future research could assess this possibility. 
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In the sample-stimulus disparity condition, the effects of decreasing difficulty 

differed between S1 and S2 trials. As noted above, Alsop and Porritt (2006) found  

differences in the effects of reinforcer ratio variation between S1 and S2 trials and as a 

 

function of discrimination difficulty using color stimuli that varied in brightness. 

Furthermore, they found an asymmetry in the effects of reinforcer ratio variation on S1 

and S2 trials after reanalyzing another previous dataset (Godfrey, 1997). Given these 

previous results, it is unclear whether the pattern of results observed during S1 and S2 

trials during the sample-stimulus disparity condition was due to the use of temporal 

samples, and future research could explore this possibility. Nevertheless, the present data 

further underscore the importance of considering performance on S1 and S2 trials 

separately in order to achieve a more complete understanding of the effects of variation 

of reinforcer frequency on conditional discrimination performance. 

 
Future Assessments of the Relation Between 

 
Sensitivity and Discriminability 

 

Although the data from the present experiment were clear and the results suggest 

some important considerations regarding temporal-sample stimuli in discrimination 

experiments, the question of the relation between sensitivity and discriminability remains 

to be satisfactorily answered. Future experiments should assess the relation between 

sensitivity and discriminability using a similar procedural design as the present 

experiment (keeping as many procedural variables invariant as possible) using visual 

sample stimuli.  



   71
These types of parametric studies take a great deal of time, and this can be a 

dissuading factor when deciding whether to undertake such a study. In typical 

assessments of sensitivity to reinforcer frequency in conditional discrimination, reinforcer 

ratios are varied across at least three, and in most cases, five conditions (e.g., 1:9, 1:3, 

1:1, 3:1, 9:1). Each reinforcer ratio is typically in place for at least 20 (and generally 30 

or more) sessions, for an entire experimental time frame of at least 100 sessions. In the 

present experiment, the reinforcer-ratio manipulations alone took at least 200 days to 

accomplish (in most cases more; see Appendix for individual subject experimental 

timelines). When initial training, preliminary training under each condition (sample-

stimulus disparity and retention interval), and successive approximations to the final 

procedure are taken into account, the present experiment will have taken 16 months 

(nearly a year and a half) to complete.  

Given the importance of parametric manipulation of reinforcer variables in 

developing and testing quantitative descriptions of discrimination performance, it would 

be useful to develop a more practical way to assess sensitivity to reinforcer variation in 

discrimination procedures. Recently, this author has developed a procedure in which 

sensitivity to reinforcer frequency can be assessed within session (Ward & Odum, 

2008a). The procedure was based on one developed by Davison and Baum (2000) to 

assess sensitivity to reinforcer variation in simple concurrent schedules. In their 

procedure, pigeons were exposed to a 7-component mixed schedule (components were 

separated by 10-s blackouts and were not differentially signaled) in which the ratio of 

reinforcers allocated to two concurrent-schedule response options was varied across 

components from 1:27 to 27:1. The distribution of choice responses in each component 
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eventually came to reflect the component reinforcer ratios, with estimates of sensitivity 

increasing as components progressed. Thus, their procedure generated reliable estimates 

of sensitivity within-session. These results have been replicated in numerous experiments 

(e.g., Aparicio & Baum, 2006; Davison & Baum, 2002, 2003, 2007; Krägeloh & 

Davison, 2003; Landon & Davison, 2001).  

In our procedure, pigeons are exposed to a 3-component multiple schedule of 

conditional-discrimination procedures in which the reinforcer ratio is varied across 

components from 1:9 to 9:1. The major difference between our procedure and that of 

Davison and Baum (2000; aside from the number of components) is that the component 

reinforcer ratios in effect in each component are signaled in our procedure, whereas in the 

Davison-Baum procedure they were unsignaled. This procedural difference has proven 

necessary to establish reliable within-session estimates of sensitivity to reinforcer 

variation.  

Using this procedure, we showed that stable estimates of sensitivity could be 

obtained in 20-30 sessions, thus greatly increasing efficiency and possibly decreasing 

variability that may occur across conditions. As noted above, all previous assessments of 

the relation between sensitivity and discriminability have used parametric variation of 

reinforcer ratios across conditions. This author suggests that this procedure may provide a 

practical alternative to this approach. In addition, assessing the relation between 

sensitivity and discriminability as a function of both sample-stimulus disparity and 

retention interval in this procedure, in which reinforcer ratios are varied within session, 

would help to establish the generality of results obtained from experiments that have 

varied reinforcer ratios across conditions. 
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Implications for Theoretical Models and 

 
Applied Treatment Protocols 

  
 
The present results have theoretical, as well as applied relevance. First, there are a 

number of extant theoretical models of conditional-discrimination performance (most of 

which are based on the original Davison-Tustin model; see Alsop & Davison, 1991; 

Davison & Nevin, 1999) that attempt to describe in quantitative terms the relation 

between reinforcer variables and discrimination performance. While the complexity of 

these models is ever increasing in an attempt to account for a variety of behavioral 

outcomes in DMTS procedures (see Nevin, Davison, Odum, & Shahan, 2007, for 

examples of some phenomena which are in need of being modeled), a core assumption of 

all of them is that the effects of reinforcer variables are the same across sample stimuli of 

different dimensions. If, as the results of the current experiment and Ward and Odum 

(2008b) suggest, the effects of reinforcer variables differ with sample stimuli of different 

dimensions, these models will have to be modified to take this into account. Such 

modification will likely involve changes to Equation 6 (or its counterpart in other 

theories). This author has no suggestions as to specific modifications, and conjecture at 

this point seems premature. Suffice it to say that such modifications would greatly 

increase the complexity of the already complex extant theoretical accounts of 

conditional-discrimination performance. Nevertheless, such modification and added 

complexity would be necessary to accurately and completely describe the relation 

between reinforcer variables and discrimination performance. 
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The applied relevance of these findings is perhaps more straightforward. Many 

applied interventions involve discrimination training, with visual, verbal, and other types 

of stimuli and cues (e.g., Carr, 2003; Dube, Iennaco, & McIlvane, 1993; Kelly, Green, & 

Sidman, 1998). If the effects of reinforcer variables on discrimination performance 

depend on the stimulus dimension to be discriminated, this information would be 

important to consider when constructing and implementing applied treatment protocols. 

In particular the results of Ward and Odum (2008b) suggest that the effects of reinforcer 

variables on persistence of discrimination accuracy may differ depending on the stimulus 

dimension to be discriminated. This result may potentially be important when considering 

issues of generalization of trained behavior outside of the training context (see Stokes & 

Baer, 1977; Dunlap, 1994, for reviews and discussion), an area of concern among applied 

practitioners. 
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CONCLUSION 

 
 

 So what of the question of functional equivalence, then? On the one hand, the 

present results support the notion that manipulation of sample-stimulus disparity and 

retention interval are functionally equivalent. Both manipulations decreased 

discrimination accuracy, and the relation between sensitivity as a function of 

discriminability was similar (albeit different than results from previous studies). These 

results could be taken as support for functional equivalence.  

 More detailed analysis, however, revealed that even the obtained independence 

between sensitivity and discriminability (similar slope estimates) came about as a result 

of different effects of reinforcer-ratio variation on S1 and S2 trials across conditions. 

Furthermore, effects of reinforcer-ratio variation on easy and difficult trials differed 

across conditions (see Figures 12 and 13). Thus, at one level of analysis, functional 

equivalence was supported, while at another, the effects of sample-stimulus disparity and 

retention-interval duration appeared to be quite different. 

 In some sense, the definition of functional equivalence is equipped to deal with 

such differences. After all, functional equivalence does not imply the same mechanism of 

action, only that the functional effect on the outcome of interest is the same. A claim of 

functional equivalence in the present case, however, seems problematic, particularly with 

regard to the sensitivity data. It seems suspect to claim functional equivalence as 

supported by the overall relation between sensitivity and discriminability when 

manipulation of sample-stimulus disparity and retention-interval duration had clearly 

different effects on the component parts of that relation (performance on S1 and S2 trials). 
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 It should be noted that the different effects of reinforcer-ratio variation 

observed here could be tied to the use of temporal samples in the present study, and 

further research should assess this possibility. Nevertheless, the results of the present 

study highlight the importance of considering similar behavioral outcomes at several 

levels of empirical analysis. Such careful consideration is warranted because there may 

be any number of different behavioral processes that could interact in such a way as to 

produce a functionally equivalent outcome from a different set of underlying 

mechanisms.  

The question then becomes what is the appropriate level of analysis at which to 

measure functional equivalence? Is it gross behavioral output, component parts of that 

behavioral output, or activity at the neural level (see Hineline, 2001)? These questions 

have yet to be answered, and the answers will almost certainly differ depending on how 

much is known about the underlying mechanisms of the behavior of interest. In some 

cases, appealing to functional equivalence as an explanation of the effects of some 

manipulation on behavior may be appropriate from a descriptive point of view, but may 

actually impede efforts to theoretically characterize important processes underlying 

behavioral outcomes. As more is learned about specific processes underlying different 

behavioral outcomes, perhaps the level of analysis used to justify claims of functional 

equivalence should also shift. 

With regard to the question of functional equivalence of sample-stimulus disparity 

and retention-interval duration on discrimination performance, such a claim would be 

better supported with similar results at several levels of analysis. Similar results at only 

one, somewhat general level of analysis may best be viewed with some skepticism. Given 
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the results of the present experiment, together with the discrepant results from other 

assessments of the relation between sensitivity and discriminability in the DMTS 

literature, the question of the functional equivalence of sample-stimulus disparity and 

retention-interval duration on discrimination performance remains open to debate. 
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APPENDIX 

 
 

The number of session per condition, the number of responses to each choice alternative 
and the number of reinforcers obtained for correct responses following S1 and S2 
presentations for all pigeons in all conditions of the experiment. Also shown are estimates 
of discriminability (log d), response bias (log b), sensitivity to reinforcer frequency (a), 
inherent bias (log c), and the proportion of variance accounted for by Equation 6.  

(table continues) 
 

Pigeon Condition SR ratio
# of 

sessions Trial type B w B x B z B y R w R z log d log b (a ) log c R
2

289 Sample-Stimulus 

Disparity 1:9 25 Easy 190 10 200 0 31 180 2.086 -0.82 1.42 0.32 0.99

Difficult 29 171 191 9 3 178 0.274 -1.04 0.58 0 1

1:3 Easy

Difficult

1:1 30 Easy 199 1 190 10 113 107 1.736 0.467

Difficult 147 53 130 70 85 72 0.355 0.087

9:1 25 Easy 200 0 125 75 172 30 1.562 1.341

Difficult 184 16 58 142 162 8 0.333 0.721

Retention-Interval 1:9 30 Easy 172 28 198 2 22 186 1.365 -0.58 0.47 -0.09 0.91

Difficult 79 121 174 26 6 98 0.319 -0.5 0.52 0.08 0.91

1:3 26 Easy 190 10 197 3 39 170 1.526 -0.26

Difficult 165 35 181 19 32 90 0.822 -0.15

1:1 27 Easy 192 8 198 2 90 147 1.656 -0.29

Difficult 168 32 182 18 66 98 0.858 -0.14

9:1 26 Easy 196 4 189 11 175 42 1.445 0.219

Difficult 191 9 165 35 170 90 0.993 0.322

49807 Sample-Stimulus 

Disparity 1:9 26 Easy 188 12 200 0 34 184 2.045 -0.86 1.44 0.29 0.98

Difficult 28 172 190 10 3 173 0.242 -1.03 0.59 -0.02 0.98

1:3 25 Easy 199 1 199 1 76 149 2.202 0

Difficult 89 111 173 27 30 133 0.354 -0.45

1:1 30 Easy 199 1 190 10 124 102 1.736 0.467

Difficult 141 59 160 40 86 81 0.489 -0.11

9:1 29 Easy 200 0 117 83 165 24 1.526 1.377

Difficult 191 9 63 137 147 16 0.49 0.826

Retention-Interval 1:9 30 Easy 187 13 198 2 28 185 1.548 -0.4 0.54 0 0.99

Difficult 170 30 198 2 11 189 1.348 -0.6 0.38 -0.04 0.9

1:3 27 Easy 193 7 198 2 61 164 1.685 -0.26

Difficult 193 7 195 5 50 175 1.498 -0.07

1:1 25 Easy 196 4 195 3 110 120 1.722 -0.06

Difficult 179 21 186 13 101 103 1.037 -0.11

9:1 28 Easy 199 1 186 14 189 20 1.659 0.543

Difficult 194 6 175 25 184 18 1.167 0.326

49864 Sample-Stimulus 

Disparity 1:9 25 Easy 196 4 200 0 33 186 2.284 -0.62 0.63 -0.02 0.89

Difficult 25 175 198 2 6 183 0.552 -1.39 0.68 -0.22 0.99

1:3 26 Easy 199 1 199 1 62 139 2.202 0

Difficult 78 122 190 10 26 145 0.537 -0.73

1:1 27 Easy 198 2 199 1 120 113 2.074 -0.13

Difficult 167 33 176 24 101 93 0.781 -0.08

9:1 28 Easy 200 0 196 4 190 18 2.284 0.62

Difficult 196 4 150 50 184 9 1.07 0.594

Retention-Interval 1:9 27 Easy 189 11 200 0 18 191 2.065 -0.84 0.67 -0.21 0.94

Difficult 176 24 200 0 15 192 1.883 -1.02 0.66 -0.19 0.97

1:3 26 Easy 195 5 200 0 65 164 2.237 -0.67

Difficult 168 32 193 7 59 161 1.072 -0.35

1:1 25 Easy 197 3 198 2 114 112 1.864 -0.08

Difficult 175 25 185 15 108 108 0.963 -0.12

9:1 26 Easy 199 1 193 7 188 23 1.814 0.388

Difficult 194 6 170 30 181 20 1.121 0.371
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49876 Sample-Stimulus 

Disparity 1:9 25 Easy 200 0 198 2 37 169 2.424 0.479 0.33 0.41 0.38

Difficult 8 192 197 3 0 170 0.208 -1.58 0.55 -0.19 0.94

1:3 26 Easy 200 0 200 0 75 145 2.904 0

Difficult 56 144 196 4 20 149 0.628 -1.04

1:1 30 Easy 200 0 199 1 126 113 2.553 0.351

Difficult 129 71 164 36 73 93 0.457 -0.2

9:1 25 Easy 196 4 108 92 164 26 0.867 0.797

Difficult 181 19 56 144 148 7 0.282 0.691

Retention-Interval 1:9 25 Easy 182 18 199 1 26 186 1.601 -0.6 0.77 0.13 0.99

Difficult 94 105 197 2 12 181 0.947 -1 0.86 0.08 0.99

1:3 30 Easy 198 2 199 1 65 167 2.074 -0.13

Difficult 181 19 195 5 43 154 1.272 -0.3

1:1 30 Easy 196 4 193 7 110 131 1.545 0.119

Difficult 177 23 180 20 92 118 0.916 -0.03

9:1 28 Easy 200 0 188 12 191 20 2.045 0.859

Difficult 200 0 174 26 192 14 1.863 1.041

Pigeon Condition SR ratio
# of 

sessions Trial type B w B x B z B y R w R z log d log b (a ) log c R
2

373 Sample-Stimulus 

Disparity 1:9 25 Easy 198 2 199 1 33 184 2.074 -0.13 0.77 0.39 0.7

Difficult 18 182 197 3 2 3 0.392 -1.39 0.77 -0.05 0.97

1:3 25 Easy 200 0 199 1 69 157 2.553 0.351

Difficult 97 103 195 5 32 151 0.772 -0.8

1:1 35 Easy 199 1 190 10 106 104 1.736 0.467

Difficult 136 64 128 72 72 63 0.288 0.039

9:1 25 Easy 200 0 153 47 180 28 1.707 1.196

Difficult 192 8 37 163 166 10 0.363 1.005

Retention-Interval 1:9 27 Easy 195 5 198 1 25 187 1.885 -0.31 0.38 0.07 0.69

Difficult 34 166 183 17 2 174 0.17 -0.86 0.39 -0.06 0.97

1:3 25 Easy 194 6 189 11 63 146 1.359 0.133

Difficult 136 64 155 42 39 123 0.446 -0.12

1:1 30 Easy 198 2 199 1 129 115 2.074 -0.13

Difficult 169 31 179 20 98 95 0.84 -0.11

9:1 33 Easy 199 1 192 8 187 33 1.785 0.418

Difficult 183 17 136 64 172 13 0.676 0.35

597 Sample-Stimulus 

Disparity 1:9 25 Easy 183 9 199 1 34 172 1.75 -0.45 0.69 0.03 0.97

Difficult 44 156 193 7 9 164 0.439 -0.99 0.7 -0.11 1

1:3 26 Easy 198 2 199 1 66 154 2.074 -0.13

Difficult 129 71 188 12 50 151 0.723 -0.46

1:1 32 Easy 197 3 198 2 116 108 1.864 -0.08

Difficult 169 31 181 19 100 113 0.854 -0.12

9:1 26 Easy 195 5 99 98 153 14 0.787 0.783

Difficult 180 20 76 123 136 14 0.37 0.579

Retention-Interval 1:9 26 Easy 196 4 199 1 12 194 1.933 -0.27 0.25 -0.01 0.6

Difficult 152 48 176 24 10 94 0.68 -0.18 0.21 0.06 0.77

1:3 25 Easy 199 1 200 0 48 183 2.553 -0.35

Difficult 174 26 170 30 32 106 0.786 0.036

1:1 26 Easy 199 1 198 2 89 146 2.074 0.129

Difficult 186 14 187 13 75 95 1.133 -0.02

9:1 48 Easy 199 1 198 2 177 38 2.074 0.129

Difficult 194 6 189 11 179 94 1.359 0.133

46 Sample-Stimulus 

Disparity 1:9 25 Easy 199 1 199 1 28 181 2.202 0 0.44 0.53 0.58

Difficult 71 129 194 6 14 177 0.617 -0.88 0.56 -0.04 0.86

1:3 26 Easy 200 0 199 1 64 154 2.553 0.351

Difficult 118 82 152 48 38 115 0.328 -0.17

1:1 30 Easy 200 0 188 12 106 123 2.045 0.859

Difficult 168 32 130 70 90 83 0.493 0.225

9:1 26 Easy 200 0 194 6 187 32 2.198 0.706

Difficult 187 13 118 82 173 10 0.654 0.496

Retention-Interval 1:9 35 Easy 180 20 199 1 19 191 1.576 -0.63 0.64 -0.01 0.96

Difficult 145 55 184 16 13 99 0.737 -0.32 0.65 0.21 0.97

1:3 25 Easy 185 15 199 1 44 175 1.643 -0.56

Difficult 158 42 188 12 20 114 0.88 -0.31

1:1 42 Easy 199 1 200 0 84 147 2.553 -0.35

Difficult 192 8 188 12 79 88 1.277 0.09

9:1 27 Easy 198 2 182 18 182 29 1.472 0.473

Difficult 197 3 176 24 177 92 1.322 0.461
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