A New Cubesat Mission for High-Resolution Earth Atmospheric Sensing Using Combined Microwave Radiometry and GNSS Radio Occultation

W. Blackwell, V. Leslie, M. DiLiberto, I. Osaretin K. Cahoy, P. Dave, B. Cohen (MIT Aero/Astro)

CALCON 12 August 2014

This work is sponsored by the National Oceanic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- Introduction/Motivation
- Radiometer + GPS-RO calibration simulation results
- MiRaTA cubesat development
- Summary

Need: All-Weather, High-Resolution, Persistent 3-D Observations of the Earth's Atmosphere

AMSU-A temperature sounding observations have the largest positive impact on forecast accuracy AMSU-B/MHS observations are currently underutilized due to poor cloud screening

MiRaTA CALCON14 - 4 WJB 8/12/14

Figure courtesy Carla Cardinali, ECMWF

From Monolithic to Distributed Systems

MiRaTA CALCON14 - 5 WJB 8/12/14 MicroMAS = Micro-sized Microwave Atmospheric Satellite Slide adapted from P. Eremenko, DARPA F6 presentation, Feb. 2010

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MicroMAS Mission

Launch a Single Satellite to Demonstrate the Core Element of a Transformative Sensing Architecture

- Synoptic sensing with focus on hurricanes and severe weather
- 51.6 deg. inclined orbit; ~400-km initial orbit⁴ altitude (released from ISS)
- One year mission lifetime objective
- Arrived at ISS on July 16th (Orb-2)
- Scheduled to be released on Sept. 5th, 2014
- MIT SSL building bus (2U)
- Lincoln providing single band sensor (1U)

- Blackbody calibration targets introduce packaging challenges (substantially reduces volume available for the antenna)
- Electronic calibration sources (diodes, transistors, amplifiers, etc.) are prone to instability and drift over long time scales
- Potential solution: Use limb measurements co-located to GPS-RO measurements to periodically calibrate the electronic calibration sources
 - GPS-RO is inherently very accurate and precise
 - Traceable to NIST standard
 - Antenna arrays can be accommodated on CubeSats to allow penetration down to mid/upper troposphere (to be confirmed by MiRaTA)

- MicroMAS senses temperature only
 - Need temperature + water vapor + cloud ice
- MicroMAS calibration is course (~1-2 K)
 - GPS-RO cross calibration offers 10X improvement
- MicroMAS calibration is not NIST-traceable
 - GPS-RO time reference is traceable to NIST standards

MiRaTA: Microwave Radiometer Technology Acceleration

- The <u>radiometer views the Earth's limb</u> at different observing angles and multiple passbands providing radiance measurements per angle and channel
- A near coincidental and <u>co-located GPS-RO refractivity profile is</u> <u>collected</u> when a GPS satellite enters the CubeSat's Field of View across the limb
- The radiometer's transfer function (counts to brightness temperature) is derived based on a <u>regression</u> on an ensemble of simulated <u>radiances and GPS-RO refractivity profiles</u>
- Frequent calibration utilize the onboard noise diode, which can drift over the mission lifetime, and the <u>GPS-RO calibration can</u> <u>periodically calibrate the noise source</u>

GPS Radio Occultation

MiRaTA CALCON14 - 10 WJB 8/12/14

GPS-RO + Radiometer

MiRaTA CALCON14 - 11 WJB 8/12/14

Outline

- Introduction/Motivation
- Simulation results
- MiRaTA cubesat development
- Summary

Block diagram of the GPS-RO microwave radiometer calibration procedure

BLACKWELL et al.: RADIOMETER CALIBRATION USING COLOCATED GPSRO MEASUREMENTS

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 10, OCTOBER 2014

- 400 km orbit altitude
- 5.0° FWHM (V-band); 1.25° FWHM (G-band)
- 0.1° angular spacing (~4 kHz radiometer sample rate at 60 RPM!!)
- 200 angles used for V-band (55 to 75 degree scan angle)
- 40 angles used for G-band (67 to 71 degree scan angle)
- "gain" (K/count) mean of 0.02 with 0.0012 standard deviation

RMS Calibration Error (Angle Offset Retrieved from Obs)

Angle Retrieval RMS Error

MiRaTA CALCON14 - 16 WJB 8/12/14 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Multichannel approaches possible if diode drift is correlated with frequency
- Method assumes that scan angle errors are constant over the scan (negligible jitter)
 - Appears to be valid based on testing of the MicroMAS scanning assembly
- Relatively high radiometer sample rates are required unless an onboard star tracker is used
 - 5 kHz used for MicroMAS (one channel) and MiRaTA (all channels)
 - Minimal impact on data rate, as only a small angular sector is needed

Outline

- Introduction/Motivation
- Simulation results
- MiRaTA cubesat development
- Summary

MiRaTA Bus

• Payload

- Tri-band microwave radiometer
- GPS radio occultation receiver with patch antenna array (on back)

• Bus

- L-3 Cadet UHF Nanosatellite Radio with spring tape antenna*
- Pumpkin PIC24F motherboard with Salvo RTOS*
- Clyde Space EPS, battery, and doublesided deployed solar panels*
- MAI-400 reaction wheels + Earth Horizon , Sensors*
- Custom interface boards

* MicroMAS heritage

MiRaTA Calibration Maneuver

Nominal Sci Ops for Coupled Atmospheric GPSRO & Microwave Radiometry

~ 20 minute maneuver 0.5° / sec rate

Spacecraft Requirements

Mission Success Criteria:

- At least 100 radiometer limb scans
- Radiometric precision consistent with T_R(V-band) = 500K and T_R(G-band) = 1500K
- Radiometric accuracy of 1.5 K (V-band) and 2.0 K (G-band)
- GPSRO temperature retrieval RMS error meeting JPSS requirements (approximately 1.5K RMS) [21] down to 20 km, threshold, and 10 km, goal).

Spacecraft Requirements:

Requirement	Rationale	
Pointing control of 2.5 degrees (1σ) thresho	ld, Required to ensure co-location of	ר <i>ו</i>
1.0 degree goal	radiometer and GPSRO measurements	
Pointing knowledge of 1.0 degrees (1 threshold, 0.5 degree goal	 σ) Required to permit geolocation of the observations to within approximately 	MAI-400 + IR EHS
Minimum pitch rate of 0.5 degrees/sec	10% of the footprint size Ensure radiometric stability over the ~30	Grarob
	system (the V-band system will use a	L-3 Cadet UHF
Minimum average data rate of approximate 5 kbps.	ely Required to transmit all observational and engineering data/metadata	NASA WFF 18 m dish
Power systems shall provide: 5.5W radiometer (10 min per orbit, 0.5W standb 3.2W to CTAGS (20 min per orbit, 0.5 standby), 4.15W to spacecraft (always), a 10W for comm transmit (<1 min per orbit)	to Power for technology validation y), demonstration and survival W nd	Clyde Space 20 Wh battery, EPS, double- sided deployed panels
Minimum 90 day mission lifetime from 30 390 km orbit at 52° inclination	0- Time needed to fulfill objectives with >100% margin	-

Radiometer (UMass-Amherst & MIT LL)

- GPS Radio Occultation offers a new, high-performance calibration standard for passive microwave radiometry
- Combines precision of GPS-RO with dense spatial coverage of cross-track-scanning passive sounders
- Simulation study presented using GPSRO refractivity to initialize radiometer gain optimization routing
- Performance simulations indicate absolute calibration accuracies approaching 0.1K are achievable
- MiRaTA CubeSat mission is being formulated to demonstrate these results (2016 launch)
- MicroMAS CubeSat mission (early Sept. 2014 ISS release) will demonstrate these results in one channel using GPSRO "measurements of opportunity"

Backup Slides

MiRaTA (2016 Launch)

- Funded by NASA Earth Science Technology Office
- First demonstration of CubeSat Atmospheric GPSRO
- First CubeSat tri-band radiometer (9-cm aperture)
- First demonstration of radiometer + GPSRO
- Based largely on MicroMAS (MIT/LL/UMASS) and CTECS (Aerospace)

MiRaTA Spectral Characteristics

dT_B/dθ > 100 !!

MiRaTA CALCON14 - 26 WJB 8/12/14

MiRaTA Ground Segment

\bigotimes

RMS Calibration Error (Perfect Angle Knowledge)

MiRaTA CALCON14 - 28 WJB 8/12/14 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Percentage of Accepted Calibrations

Geograpical Locations of Profiles

MiRaTA Performance Versus State-of-the-Art (ATMS)

	ATMS	MiRaTA
Volume (m ³)	0.17	0.003
Mass (kg)	75	4
Sensor power (W)	100	8.7
Sensor cost (\$M)	>100	~2
Share of spacecraft cost (\$M)	>100	~1
Share of launch cost (\$M)	20	0.221
Impact of launch failure	Severe degradation	Rapidly replaceable
Antenna beamwidth (deg) @ 55/183 GHz	2.2/1.1	5/1.25
Receiver noise temperature (K)	500,1800 (55/183 GHz)	500,1800 (55/183 GHz)
G-band mixer bandwidth	~15 GHz	~25 GHz
23.8/31.4/89/166-GHz channels	Yes	No
Cloud ice channel (207.4 GHz)	No	Yes
On-orbit electronic calibration	No	Yes (V-band)
On-orbit calibration accuracy	1.5K/2.0K	1.5K/2.0K
Temperature profile RMS error	~2.0K	~1.5K

- High-fidelity, independent ground truth needed to verify radiometer calibration accuracy
- Multiple proven validation techniques will be used
- Cross calibrations with ATMS/AMSU
- Cross calibration with COSMIC GPS-RO
- Comparisons with radiosondes and global NWP models