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ABSTRACT 

The Genetic Response of Two Amphibian Species After the  

1980 Eruption of Mount St. Helens 

by 

Kristin A. Bakkegard, Doctor of Philosophy 
 

Utah State University, 2008 

Major Professor: Dr. Edmund D. Brodie, Jr. 
Department:  Biology 

 The genetics of colonization is understudied in salamanders but has large 

conservation implications as new habitats are formed or restored to their previous 

condition. The 1980 eruption of Mount St. Helens provided a natural experiment to study 

the genetic effects of a large infrequent environmental disturbance on two species of 

salamander, Taricha granulosa (Rough-skinned newt) and Ambystoma gracile 

(Northwestern salamander). Both these species breed in ponds, and are thought to exhibit 

high breeding site fidelity and low vagility. I designated three treatments based on the 

effects of the eruption: new ponds (created by the eruption, immigrants only), recovery 

lakes (in blast zone, survivors plus immigrants), and reference lakes (unaffected by 

eruption, assumed to represent pre-eruption genetic diversity measures). Salamanders 

took at least nine years to colonize the new ponds. I studied the population genetics of 

colonization and recovery using microsatellites and AFLPs (amplified fragment length 

polymorphisms) to measure genetic diversity, gene flow, and population substructure at 



 iv 
Mount St. Helens National Volcanic Monument. Based on population genetics theory 

and the life history characteristics of these pond-breeding amphibians, I predicted that 

genetic diversity would be lower in newly colonized ponds compared to recovery or 

reference sites. I also expected significant levels of population substructuring. Finally, I 

predicted that because of their lower vagility and large number of neotenes, that A. 

gracile would have less gene flow and a greater degree of population substructuring than 

T. granulosa. My predictions were not supported by my data. There was no loss of 

genetic diversity in new or recovery populations in either species. There was no strong 

evidence for population structure by either AMOVA, isolation by distance or principal 

components analysis. Gene flow (FST) was high in both species. Taricha granulosa and A. 

gracile were found to be resistant to a large infrequent environmental disturbance. Loss 

of genetic variability in new populations cannot automatically be assumed. Predicting 

dispersal and colonization ability based on the broad category of pond-breeding 

amphibian is not always reliable.  

(137 pages) 
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CHAPTER 1 

INTRODUCTION 

 The genetics of colonization is an important topic in evolutionary biology. 

Colonization can occur with relatively few individuals, leading to founder effects or a 

bottleneck, resulting in the loss of alleles and a decrease in genetic diversity (Nei et al. 

1975). Loss of genetic variability may adversely affect a population, leading to decreased 

fitness or a decrease in the probability of persistence,  especially in small populations 

(Frankham 1995; Lesbarréres et al. 2005). Conversely, new habitats can be colonized by 

a large number of individuals or by multiple waves of immigrants from different source 

populations, increasing the amount of genetic variation in the newer populations (Kolbe 

et al. 2007). Colonization can, over many generations, act as an engine for evolution, 

leading to speciation events  as evident in the Galapagos and Hawaiian Islands with well 

known examples such as spiders (Tetragnatha) and birds (Geospiza; Grant et al. 2001; 

Gillespie 2004). On an ecological time scale, the success of a colonization event is 

dependent on the life-history of the colonizer, the selective pressures, reproductive output 

and survival. Therefore, each colonization event is unique.  

 Where does life-history and population genetic structure intersect? Wright’s 

(1931) effective population size (Ne) is strongly influenced by age at first reproduction, 

life span, fecundity, and mating system. Population genetics theory predicts a positive 

correlation between effective population size and genetic diversity (Kimura 1983) and 

smaller populations are considered to be at higher risk of suffering the deleterious effects 

of low genetic diversity (Rowe & Beebee 2003; 2005). One way to contextualize the role 

of life history in the genetic structure of multiple populations is to compare similar 
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species, preferably from the same collection sites. With that approach, genetic differences 

among populations has been attributed to differences in dispersal capabilities, extinction-

recolonization events, habitat fragmentation, and natural or anthropogenic disasters 

(Gallardo et al. 1995; Matocq et al. 2000; Newman & Squire 2001; Miller et al. 2002; 

Whiteley et al. 2004). Thus, a full understanding of the colonization process can provide 

guidance for research and conservation priorities, provide data for understanding 

demographic and dispersal patterns as related to life-history traits, and show if, or how 

much, genetic diversity is lost when a local population goes extinct and the habitat is later 

recolonized.   

 Since erupting on May 18, 1980, Mount St. Helens, located in the southwestern 

corner of Washington State, has become a classic study site for testing ecological theories 

of colonization (Dale et al. 2005). Researchers have studied how plants and animals have 

responded to and recovered from this major environmental disturbance, which has been 

allowed to proceed with minimal anthropogenic interference. Surprisingly, in the 25 plus 

years since the eruption, there are only two published studies on the genetic impacts of 

the eruption of Mount St. Helens for any taxa, both plants. Bishop (1996) compared 

survivor populations with newly colonized populations in Lupinus lepidus (prairie lupine) 

and found strong founder effects as expected from theory. Yang et al. (2008) found no 

evidence of founder effects or reduction in genetic diversity in new populations 

colonizing primary succession areas as compared to secondary succession or survivor 

plants in Vaccinium membranaceum (black huckleberry); evidence of  high gene flow 

and long distance dispersal of seeds of this plant by animals. Worldwide, genetic studies 

of recolonization, after a recent volcanic eruption are few. The fossorial rodent Ctenomys 
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maulinus brunnenus on Lonquimay volcano in Chile showed a drastic reduction in 

genetic diversity of populations resulting in bottleneck effects when compared to levels 

of pre-eruption genetic diversity (Gallardo et al. 1995). The recolonization of 

Hypochaeris tenuifolia, a flowering herb on the same volcano, had no loss of genetic 

diversity within five founder populations (less than 10 yrs old) as compared to survivor or 

isolated populations from other parts of the range (Tremsetsberger et al. 2003). The tree 

Antirhea borbonica that colonized young lava flows on La Réunion island showed no 

evidence of founder effects (Litrico et al. 2005). Other studies on the impact of volcanoes 

on population genetics were from eruptive events greater than 50 yrs ago (e.g. 

Vandergast et al. 2004).  

 The impact of the 18 May 1980 eruption on the surrounding landscape was swift, 

violent and dramatic. All areas on the northern side and to the northeastern side of the 

volcano were severely affected by the debris-avalanche, blast and ashfall (Peterson 1986). 

The collapse of the volcano’s north slope caused a debris-avalanche, leaving a deposit of 

rock, tephra and ash up to 195 m deep where nothing is believed to have survived 

(Swanson & Major 2005). The blast created a blowdown zone (approx. 570 km2 of forest 

affected). Some plants and animals survived the blast, including some fish in 67% of the 

lakes within the blowdown zone, and small burrowing animals (and their commensals), 

such as the northern pocket gopher, Thomonys talpoides, which were still in their winter 

retreats (Andersen 1982; Andersen & MacMahon 1985; Crawford 1986). In contrast, 

areas to the south of the volcano were relatively unaffected except to receive 

approximately 5 to 25 cm of tephra fall (Dahm et al. 2005). Several lakes on the south 

side have been used in other studies as reference sites, representing pre-eruption 
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conditions (Wissmar et al. 1982; Dahm et al. 2005). Out of this mosaic of effects upon 

the landscape I delineated three treatments: new ponds, generated by the debris-avalanche 

when depressions in the large hummocky deposits filled with water; recovery lakes, those 

within the blowdown zone; and reference lakes, those unaffected by the eruption. The 

biota of the new ponds consist entirely of colonists. Recovery lakes contain colonists and 

either survivors or their descendents. Animals collected in the reference lakes should be 

representative of the genetic diversity present in the Mount St. Helens area prior to the 

eruption.  

 The purpose of this research was to measure the amount of genetic diversity, gene 

flow, and amount of population subdivision in common two amphibian species found in 

and around Mount St. Helens. This study is the first to examine the population genetics of 

any animal species in response to the 1980 eruption. Based on population genetics theory, 

the amount of genetic diversity in ponds colonized since the eruption should be less than 

that of reference areas, if low gene flow and few colonists is assumed. These assumptions 

are developed by making a thorough consideration of the life-history characteristics of 

the colonizing species. However, predictions based on life-history characters may not 

always hold true (Colson & Hughes 2004). Therefore, each species must be considered 

on its own merits.  

  The genetics of colonization is understudied in salamanders, especially in those 

species found in the western United States. Understanding the outcomes of the 

colonization process is important in elucidating how well amphibians can recover from a 

major disturbance. In this study, the disturbance is natural. However, most amphibian 

conservation efforts include restoring degraded or severely damaged habitats back to a 



 

 

5 

 

more natural state. Restoration of genetic diversity is as important as restoring numbers 

of animals (Mace et al. 1996; Reed & Frankham 2003). A colonization event could result 

in a large number of individuals but the population as a whole may suffer from the 

deleterious effects of low genetic diversity, reducing the probability that a newly restored 

population will persist (Reed et al. 2007).   

 I studied two species of locally common pond-breeding amphibian, Taricha 

granulosa, the rough-skinned newt, and Ambystoma gracile, the northwestern salamander. 

Taricha granulosa has a typical biphasic life-cycle; aquatic eggs and larvae, with 

terrestrial adults. Over the course of several months, adults migrate to a breeding pond, 

court, females lay eggs, and then leave. Upon transformation (4-5 months, depending 

upon site conditions), larvae depart the breeding pond, returning when sexually mature at 

approximately 4-5 years old (Petranka 1998). Females mate with multiple males then 

deposit single eggs (112-226, mean = 172) over the course of several weeks (Jones et al. 

2002).  Taricha granulosa is assumed to be philopatric to breeding sites because they do 

not appear to move far from it when not breeding (Pimentel 1960). However, a 

population genetics study at a geographic scale comparable to mine measured an average 

FST  value of 0.005, indicating high gene flow (Jones et al. 2001). The life span of T. 

granulosa is estimated to be about 12 years and they are capable of homing and returning 

to their capture site when displaced (Efford & Mathias 1969). Taricha granulosa 

colonized the new ponds created by the debris-avalanche 10 years post eruption and the 

closest source population was estimated to be 5.7 km away (Crisafulli et al. 2005).  

 Ambystoma gracile also has a biphasic life-style though different from T. 

granulosa. In some populations, adults do not metamorphose into a lunged, terrestrial 
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form but instead remain in the natal pond and upon reaching maturity, breed as gilled 

adults called neotenes (Sprules 1974). Current Mount St. Helens populations appear to be 

highly neotenic, especially in the debris-avalanche zone (Crisafulli et al. 2005). Females 

attach gelatinous egg masses, containing 40–270 eggs, to vegetation or sticks in a pond 

(Nussbaum et al. 1983; MacCracken 2007). Larvae take longer to mature (over a year) 

which is an extended aquatic phase as compared to most other Ambystoma (Eagleson 

1976; Petranka 1998). The life-span of neotenic A. gracile is estimated to be 5 years 

(Efford & Mathias 1969). The lifespan of a terrestrial adult is unknown. Ambystomatid 

salamanders are considered highly site-fidelic, usually moving less than 1 km from their 

breeding ponds, exhibit low migration rates between subpopulations, and have low 

vagility (Spear et al. 2005; Gamble et al. 2007; Kinkead et al. 2007; Zamudio & 

Wieczorek 2007). It took 9 years for A. gracile to colonize the new ponds and their 

closest source population was 3.7 km away (Crisafulli  et al. 2005).  

 Based on the life-history of these pond-breeding amphibians and population 

genetics theory, I predict that populations from recently colonized habitat (immigrants 

only) will have less genetic diversity than populations from recovering (survivors plus 

immigrants) or unaffected areas (source populations). New ponds, created in 1980, were 

not colonized by salamanders until 9 years post eruption. Since colonization, I estimate 

there have been only 3–5 generations of T. granulosa and 5–10 generations of A. gracile. 

The debris-avalanche zone appears to be a moonscape (bare rock, little vegetation) with 

little cover or shelter to protect migrating salamanders. Therefore, it is reasonable to 

expect that new ponds have been colonized by only a few individuals because of the 

harsh environment and putative philopatry of breeding adults. Coupled with low gene 
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flow from other populations, new ponds should have low genetic diversity as compared 

to recovery lakes or source populations. Due to the rugged terrain, sampled populations 

across the area should also exhibit high levels of population substructure. 

 Another goal of this study was to compare the population genetics of two species 

collected from the same localities, so that they would be subjected to the same landscape 

and environmental conditions, to observe how differences in life-history affect the 

genetic diversity of colonized populations. There are few studies comparing the 

population genetics of two sympatric species. Miller et al. (2002) compared direct 

observation of dispersal with patterns of genetic diversity in four aerial dispersing aquatic 

insects and found that all four species showed different patterns of genetic diversity due 

to differences in dispersal ability. Monaghan et al. (2002) found differences in genetic 

patterns between three species of aquatic insects (2 mayflies, 1 caddisfly) due to 

differences in dispersal ability but overall, small-scale patterns were affected by 

demographic processes (recent habitat fragmentation within 100 yrs) and large-scale 

patterns were due to historical processes (habitat fragmentation on geologic scale). A 

forest specialist species of carabid beetle showed higher amounts of population 

substructuring and a lower dispersal capability than a generalist carabid beetle that could 

live in forest and open areas (Brouat et al. 2003). Matocq et al. (2000) used ecological 

and life- history differences to predict then measure the population genetic structure and 

amounts of gene flow in two species of sympatric spiny rats. Whiteley et al. (2004) found 

spawning location, population size and mating system were good predictors of gene flow 

patterns and genetic variation in sympatric populations of bull trout and mountain 

whitefish. They also provided a general framework for discussing the interactions among 



 

 

8 

 

ecological and life-history factors and neutral and adaptive divergence. Amphibian 

studies include the population genetics of three species of sympatric Ambystoma 

(Kinkead et al. 2007). Brede & Beebee (2004) found that populations of the toad Bufo 

bufo, had lower genetic variability than the frog Rana temporaria, even though the toad 

had larger breeding assemblages than the frog. They attributed this result to high levels of 

gene flow in the frog. Therefore, comparison of genetic diversity in sympatric species is 

applicable to a wide variety of ecological and evolutionary scenarios because with 

population genetics tools, specific hypotheses centered upon species-specific life-history 

differences can be addressed.   

 Taricha granulosa and A. gracile vary in critical life-history characteristics such 

as fecundity, age at first reproduction, life-span, and vagility and should respond 

differently to the eruption. Taricha granulosa is more vagile than A. gracile because they 

are less susceptible to desiccation. They also have a longer generation time resulting in 

fewer generations post-eruption. Comparing the two caudates, fecundity is about equal. 

Obviously, the first colonizers of A. gracile were terrestrial adults. However, current 

populations appear to be highly neotenic. Therefore, I predict that there have been fewer 

migrating A. gracile than T. granulosa and genetic diversity, as measured by 

heterozygosity, and gene flow, as measured by FST and population substructuring, will be 

lower in Northwestern salamanders.  

 In Chapter 2, I report on the genetics of colonization in Taricha granulosa, the 

Rough-skinned newt, in lakes and ponds at Mount St. Helens using microsatellites as the 

molecular marker. In Chapter 3, I study the colonization genetics of Ambystoma gracile, 

the Northwestern salamander. It differs from T. granulosa in some key life-history traits, 
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most notably, reproduction in the neotenic form. At many of the same ponds where I also 

collected T. granulosa, I measured genetic diversity, gene flow and population 

substructure using two classes of genetic markers to determine the effects of the eruption 

on a natural population of this salamander over an ecological timescale. In Chapter 4, I 

compare the results of the two species. Because few microsatellite primers worked in A. 

gracile and because the results for both species were similar, I was unable to speculate as 

to which life-history variable would have attributed to any species-specific differences. 
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CHAPTER 2 

 
RAPID GENETIC RECOVERY BY TARICHA GRANULOSA (CAUDATA: 

SALAMANDRIDAE) AFTER THE 1980 ERUPTION  

OF MOUNT ST. HELENS 

Introduction 

 Colonization is the establishment of a population in a new area due to one or 

several dispersal events. The success of a colonization event is dependent on the life-

history of the colonizer, the number of immigrants later adding to the new population, 

selective pressures during colonization, and survivorship and reproductive success after 

establishment (Slatkin 1977; Grant et al. 2001). An a priori expectation of colonization is 

a strong founder effect in the newly established population. Founder effects are 

characterized by an immediate loss of alleles followed by a decrease in genetic diversity 

and are most apparent in a population established by only a few individuals (Nei et al. 

1975; Maruyama & Fuerst 1985; Allendorf 1986; Dlugosch & Parker 2008). Loss of 

genetic variability may adversely affect a population, leading to decreased fitness or an 

increase in the probability of extinction, especially in small populations (Hitchings & 

Beebee 1997; Frankham 2005; Johansson et al. 2007; Reed et al. 2007). Additionally, 

smaller populations are considered to be at higher risk of suffering the deleterious effects 

of low genetic diversity than larger ones because of drift and inbreeding (Rowe & Beebee 

2003). Conservation biologists have learned that it is important to conserve both the 

number of individuals and the genetic diversity within a population in order to maximize 

fitness and avoid the loss of adaptive variation due to drift (Mace et al. 1996; Reed & 
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Frankham 2003). Therefore, newly colonized populations may be at greater risk of 

extinction because they are usually established by few individuals, have lower genetic 

diversity, and thus may suffer from the deleterious effects of inbreeding and drift 

(Lesbarréres et al. 2005; Rowe & Beebee 2005). Understanding colonization can guide 

research and conservation priorities, provide data for understanding demographic and 

dispersal patterns as related to life-history traits, and show if or how much genetic 

diversity is lost when a local population is extirpated and the habitat is later recolonized.  

 Pond-breeding amphibians (anurans and caudates) are considered to share some 

general life-history characteristics: low vagility, high site fidelity with respect to breeding 

site, slow spread across a landscape because they are prone to desiccation, low effective 

population size, high levels of population subdivision, and spatial dynamics comparable 

to metapopulations (Semlitsch & Pechmann 1985; Blaustein et al. 1994; Funk et al. 

1999; Marsh & Trenham 2001; Palo et al. 2004). Here, the phrase “pond-breeding 

amphibian” denotes those species with a terrestrial adult, aquatic eggs and larvae phases, 

that migrate to/from a perennial or permanent breeding pond. In North America, this 

definition includes most salamanders in the families Ambystomatidae and Salamandridae 

and anurans in the traditional families Bufonidae, Hylidae, and Ranidae (Salthe 1969; 

Duellman & Trueb 1986). This also appears to be how some others use the term pond- 

breeding amphibian, especially (but not always) in reference to metapopulations 

(Semlitsch 1998; Petranka et al. 2004; Jehle et al. 2005; Gamble et al. 2007). There are 

other amphibians that breed in ponds (e.g. Sirenids, Amphiuma, Hemidactyliini, many 

anurans) but researchers do not seem to apply the label “pond-breeding amphibian” to 

them. The traditional herpetological literature recognizes three forms of salamander 
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larvae based on their morphology: stream, mountain-brook, and pond (Valentine & 

Dennis 1964) but I was unable to find any other formal definition of “pond-breeding” 

amphibian.  

 Population genetics and life history traits such as age at first reproduction, life 

span, fecundity, and mating system are linked through the concept of effective population 

size which is positively correlated with genetic diversity (Wright 1931; Kimura 1983). 

Newly colonized populations of a pond-breeding amphibian are expected to have low 

effective population size, low genetic diversity, be negatively impacted by founder 

effects or a bottleneck, and be subject to low gene flow. For example, genetic bottlenecks 

have been found in newly established (less than 20 years) and severely declining 

populations in Bufo calamita (natterjack toads) in Great Britain (Beebee & Rowe 2001). 

An established population of the threatened Mallorcan midwife toad, Alytes muletensis, 

showed evidence of a bottleneck in a low gene flow system (Kraaijeveld-Smit et al. 

2005). An island population of tungara frog, Physalaemus pustulosus, established 12 

years earlier, showed evidence of a severe bottleneck (Lampert et al. 2007) and recently 

introduced (6-12 generations) populations of bullfrogs, Rana catesbeiana, in Europe 

showed a stong genetic bottleneck (Ficetola et al. 2008). However, not all colonization 

events by amphibians may lead to a bottleneck or a reduction in genetic diversity. The 

crested newt, Triturus cristatus, showed no significant genetic bottleneck in ponds it had 

colonized only decades earlier (Jehle et al. 2001) and a few individuals of the frog Rana 

ridibunda effectively colonized Great Britain in 1935 without a strong bottleneck effect, 

a result attributed to their rapid expansion (Zeisset & Beebee 2003). Similarly, the cane 

toad, Bufo marinus, showed no evidence of isolation by distance after an estimated 25–35 
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generations in Australia (Leblois et al. 2000). Apparently, each species must be 

evaluated individually. 

 The 1980 eruption of Mount St. Helens provides a natural experiment to study 

colonization at the ecological time scale and a unique opportunity to assess how species 

recover from the effects of a major environmental disturbance (Dale et al. 2005). There 

are only two published studies on genetic impacts of the eruption, both were on plants 

(Bishop 1996; Yang et al. 2008). The genetics of colonization after a recent volcanic 

eruption show a variety of results. At Mount St. Helens, Bishop (1996) found evidence of 

founder effects in new populations of the herb, Lupinus lepidus, while Yang et al. (2008) 

did not find evidence for founder effects in the animal dispersed Vaccinium 

membranaceum. The fossorial rodent Ctenomys maulinus brunnenus experienced a 

drastic reduction in genetic diversity and showed evidence of a bottleneck effect three 

years after the 1988 eruption of the Lonquimay volcano in Chile (Gallardo et al. 1995) 

and the recolonization of Hypochaeris tenuifolia, a flowering herb on the same volcano, 

showed no loss of genetic diversity within the five founder populations (less than 10 yrs 

old) compared to survivor or isolated populations from other parts of the range 

(Tremsetsberger et al. 2003). There was no evidence of founder effects in a tree species 

that colonized young lava flows on La Réunion island (Litrico et al. 2005). Most studies 

on the impact of volcanoes on population genetics were from eruptive events greater than 

50 yrs ago and emphasized evolutionary or phylogeographical events (e.g. Gillespie 

2004; Vandergast et al. 2004; Emerson et al. 2006) and thus had different goals than this 

one.  
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 The impact of the 18 May 1980 eruption of Mount St. Helens on the 

surrounding landscape was swift, violent, and dramatic. All areas north and north east of 

the volcano were severely affected by the debris-avalanche, blast and ashfall (Peterson 

1986). The eruption created a mosaic of conditions across the landscape. The debris-

avalanche zone, created by the collapse of the northern flank of the volcano, was the 

largest landslide in recorded history, affecting 60 km2 and covering the landscape in some 

areas with up to 195 m of rock and tephra (Swanson & Major 2005). All plant and animal 

life was extirpated, buried under the rubble. However, when the ash settled, new habitat 

was available for colonization. The blowdown zone (approx. 570 km2 of forest affected) 

was created by the lateral blast where trees toppled, ponds and lakes heated to near-lethal 

temperatures. Ashfall and organic debris dramatically altered the landscape and lakes 

(Dahm et al. 2005; Swanson & Major 2005). However, snow-covered ground and ice-

covered lakes provided some protection to animals in their winter retreats. Although there 

were survivors, subsequent mortality was high (Crisafulli et al. 2005b). For example, 

some fish survived in 67% of the lakes within the blowdown zone (Crawford 1986) and 

northern pocket gophers, Thomomys talpoides, were found less than a year after the 

eruption in the blowdown zone (Andersen 1982). Areas on the volcano’s south side were 

relatively unaffected except for receiving about 5 to 25 cm of tephra fall (Dahm et al. 

2005). Other post-eruption studies have used lakes on the south side as a reference 

(Wissmar et al. 1982; Dahm et al. 2005). In this study, reference populations are assumed 

to represent the levels of genetic diversity that would have been present across the entire 

area if the volcano had not erupted. Thus, the volcano created conditions by which both 

colonization and recovery can be studied in concert.  
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 Taricha granulosa, the rough-skinned newt is a common pond-breeding 

amphibian in the Pacific Northwest with a typical amphibian biphasic life-cycle: pond- 

breeding, aquatic eggs and larvae, and terrestrial adults (Nussbaum et al. 1983). Adults 

migrate to a breeding pond (males arrive first), court, females lay individual eggs (122–

226) over the course of several weeks, then leave  (Jones et al. 2002). Upon 

transformation (4–5 months, depending upon temperature), larvae depart the breeding 

pond for several years, returning when sexually mature (Petranka 1998). The life span of 

T. granulosa is estimated to be about 12 years and age to first reproduction is 

approximately 4–5 years (Chandler 1918; Efford & Mathias 1969). They are capable of 

homing, returning to their capture site when displaced (Efford & Mathias 1969). Taricha 

granulosa may be philopatric with respect to breeding site, similar to T. rivularis 

(Pimentel 1960; Packer 1963; Twitty 1966; Oliver & McCurdy 1974). However, genetic 

studies suggest high gene flow (Jones et al. 2001; Kuchta & Tan 2005; Ridenhour et al. 

2007). At Mount St. Helens, it took 10 years for T. granulosa to reach new ponds created 

by the debris-avalanche zone and the closest known source population was 5.7 km away, 

in the blast zone (Crisafulli et al. 2005b). Based on generation time, I estimate there have 

been at most 3–5 generations of T. granulosa in the new ponds since colonization in 

1990.  

 This study examines the genetic response of T. granulosa to the eruption of 

Mount St. Helens by comparing genetic diversity in three treatments: new ponds (debris-

avalanche), recovery areas (blowdown zone), and reference (unaffected areas). I 

predicted that T. granulosa in the new ponds (founding populations) would have less 

genetic variability than those from recovery populations or reference populations. 
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Because the terrain is rugged and likely to limit movement through the landscape, I 

expected to find genetic substructuring by collection sites and treatment. If T. granulosa 

are philopatric, new populations would show a strong founder effect, as evidenced by a 

bottleneck, and gene flow will be low, as indicated by high FST values and extensive 

population substructuring. If T. granulosa moves freely across the landscape, gene flow 

would be high, and genetic diversity in founding populations may or may not be different 

than reference populations. However, since only 3 to 5 generations are estimated to have 

passed since the eruption, I expected to see lower genetic diversity in the new 

populations. This study is unique in that it is the first to examine the genetic response of 

any animal to the eruption at Mount St. Helens and one of a handful measuring the 

genetic consequences at the ecological scale of organisms in response to a contemporary 

volcanic eruption. Little to no loss of genetic diversity would be a positive indicator that 

at least one species of amphibian can quickly recover genetic diversity after major habitat 

loss. 

Materials and Methods 

Study site 

 This study was conducted in the Mount St. Helens National Volcanic Monument, 

Washington State, USA (Figure 1). Collection sites were assigned to one of three 

treatments based on the effects of the eruption (Tables 2.1 and 2.2). The first treatment, 

new ponds, consisted of the Maratta and Hummocks sites, approximately 11 and 12 km 

northwest from the volcano’s crater. Neither are discrete lakes but a collection of ponds 

created when the hummocky deposits from the initial landslide filled with water. Maratta 

is a complex of approximately 35 ponds and Hummocks is a complex of approximately 
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15 ponds within the boundary delineated by the Hummocks (Forest Service Trail 229) 

trail. These ponds are now surrounded by red alder (Alnus rubra) and small willows 

(Salix spp.). The area between ponds is mainly loose piles of rock and tephra, covered 

with small herbs and grasses. The second treatment, recovery lakes, were pre-existing 

that occur in the blowdown zone. St. Charles (13km NE of the crater), Strawberry (17.8 

km NE) and Ghost (16.9km NE) Lakes all have open canopies but some trees and shrubs 

are growing up around them. Tephra is the predominate substrate for these lakes and 

surrounding area. Treatment three, references lakes, were Goat Marsh and McBride, 8.4 

and 8.2 km southwest of the crater. Goat Marsh Lake is surrounded by forest (primarily 

Abies, Pseudotsuga and Tsuga) and is in a research natural area (Franklin & Wiberg 

1979) and the southern slope of Mount St. Helens is clearly visible from Goat Marsh 

Lake. McBride Lake is also surrounded by coniferous forest characteristic of the area 

(Franklin & Dyrness 1973). Using Goat Marsh and McBride lakes as reference is not 

unusual. Others have used lakes on the southern side of Mount St. Helens as reference 

sites for their post-eruption studies (Wissmar et al. 1982; Dahm et al. 2005).  

Population sampling 

 I captured T. granulosa in May-June 2003 and in July 2005 using minnow traps 

(set and left overnight) and dipnet (Table 2.2). Collection effort by site and year is in 

Appendix A. Collection sites were chosen based on the probability that they would 

contain T. granulosa (Crisafulli, pers comm.) and were accessible within a 3 hr hike. I 

captured adults except for these number of small larvae (young of 2005); 1 in St. Charles 

Lake, 21 in Goat Marsh, and 7 in McBride Lake. Taricha granulosa was collected from 

all localities both years except for Strawberry Lake, which was sampled only in 2005. 
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They were immediately released at their capture site after taking a tissue sample by 

removing approximately 1 cm of tail tip from each individual.  

DNA extraction and microsatellite amplification 

 Each tissue was stored individually in 95% ethanol until return to the lab when 

samples were stored at -80º C. Total genomic DNA was isolated by digesting 

approximately 0.5mm of tissue sample in 550µl of lysis buffer (50mM Tris HCl, pH 8.0, 

10mM EDTA, pH 8.0, 200mM NaCl) with 11 µl of Proteinase K (20 µg/ml) at 55º C 

followed by either a chloroform purification and isopropanol precipitation (Mullenbach et 

al. 1989) or Qiagen DNeasy kits (Qiagen, Inc, Valencia, CA). I used a Nanodrop ND-

1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE) to measure the 

concentration of the isolated DNA and used ddH2O to standardize each sample to 

25ng/µL.   

 I used six T. granulosa microsatellite loci: Tgr 01, Tgr 02, Tgr 04, Tgr 06, Tgr 10, 

and Tgr 14 (Jones et al. 2001). Each PCR was carried out in a 20µL total volume with 

50ng of DNA. Reagents were as in Jones et al. (2001) with modifications to annealing 

temperatures, primer concentrations, and MgCl2 concentrations (Table 2.3). Thermal 

cycling was preceded by a 2 min denaturation at 92º C and followed by a 5 min extension 

period at 72º C. Each PCR consisted of 35 cycles. A cycle consisted of 1 min at 92º C, 1 

min at the optimal annealing temperature and 2 min at 72º C for extension. Fragments 

were separated and visualized on an ABI PRISM® 3730 DNA Analyzer by the Nevada 

Genomics Center, Reno, NV for all loci except Tgr 02 which was run on an ABI 

PRISM® 3100 Genetic Analyzer by the Center for Integrated BioSystems at Utah State 
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University, Logan, UT. I used GENEMAPPER 3.0 (Applied Biosystems Inc.) to score 

each sample and rounded allele sizes to the appropriate whole number.  

Data analysis 

 Data were analyzed by collection site and by treatment. I used GENEPOP web 

version 3.4 (Raymond & Rousset 1995) and FSTAT (Goudet 2001) to determine if the 

results varied by year. I found no significant differences so I pooled all years. I used 

ARLEQUIN version 3.1 (Excoffier et al. 2005) to estimate observed (HO) and expected 

(HE) heterozygosities, calculate pairwise FST values and their significant values (10100 

permutations), and AMOVA (Analysis of molecular variation; distance method: number 

of alleles;16000 permutations) to look for evidence of genetic substructure by collection 

site and treatment group. The AMOVA tested each treatment with two populations 

(collection sites) per group. I used GENEPOP to test for departures from Hardy-Weinberg 

equilibrium (HWE) and linkage disequilibrium (LD). FSTAT was used to calculate genetic 

diversity indices such as number of alleles, allelic richness (corrected for minimum 

sample size), Nei’s gene diversity, FIS and FST values, and average relatedness of 

individuals within samples when compared to the whole, corrected for population 

substructure. I tested for null alleles and scoring errors using MICROCHECKER (Van 

Oosterhout et al. 2004) at three different levels: all samples pooled, samples by treatment, 

and samples by collection site. I set the confidence interval for Bonferroni with 1000 

Monte-Carlo simulations. I tested for isolation by distance with a Mantel test (9999 

permutations) conducted in TFPGA (Miller 1997) with Nei’s unbiased genetic distances 

from GENALEX 6.1 (Peakall & Smouse 2006) and geographic distance between 
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collection sites (accounting for topography) measured with TOPO 6.0 (DeLorme, 

Yarmouth, ME). 

 When a population loses a large number of individuals (bottleneck) or is 

descended from a few number of individuals (founder effects), alleles are lost more 

rapidly than heterozygosity (Maruyama & Fuerst 1985; Allendorf 1986). To test for a 

bottleneck, I used the program BOTTLENECK (Cornuet & Luikart 1997) using the stepwise 

mutational model (SMM) and two-phased model of mutation (TPM). This program 

develops a distribution of expected heterozygosity values under mutation drift 

equilibrium and compares that with observed heterozygosity to determine if there is a 

heterozygote excess or deficiency at each locus. Statistical tests determine whether the 

allele frequency distribution is approximately L-shaped, as would be expected if the 

population had not undergone a bottleneck. I used the sign test only when collection sites 

were grouped by treatment to meet the minimal requirements of the test (Luikart & 

Cornuet 1998) and the Wilcoxon test for individual collection sites and treatments. Based 

on the authors’ recommendations, I set TPM with probability equal to 95%, variance set 

at 10% and 10,000 replications. I also used GENALEX 6.1 to visualize population 

structuring by treatment performing a principal component analysis (PCA) of genotypic 

distances using a standardized covariance matrix with 9999 permutations. PCA makes no 

prior assumptions about population structure. 

Results 

 All loci were highly polymorphic (Table 2.4). Tgr 04 had the lowest observed 

heterozygosity of any loci at all collection sites and showed evidence of null alleles with 

all animals pooled (102 homozygotes observed, 48.3 expected, P <0.001) or by treatment 
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(P < 0.001). Therefore, it was eliminated from further analysis. There was no evidence 

of significant linkage disequilibrium or departures from HWE either by collection site or 

by treatment for all remaining loci. By treatment, levels of genetic diversity were high 

and had small FIS values (Table 2.5). 

 There were no significant differences in allelic richness, HE, HS, FIS, FST, or 

relatedness when individual collection sites were grouped by treatment (Table 2.6). 

Pairwise FST values by collection site and treatment were low. By collection site, only 

two FST values were significantly different from each other, Goat Marsh Lake with 

Strawberry and Goat Marsh with St. Charles Lake (Table 2.7). There was no evidence of 

population substructure indicated by AMOVA. By treatment, 98.92%  (P< 0.001) of the 

variation was within populations (collection sites). Less than 1% of the variation was 

among treatments (0.67%, P = 0.0650) or among collection sites within treatments 

(0.41%, P = 0.0809). There was no evidence for a relationship between genetic distance 

and geographic distance (Figure 2.2; Mantel test, r = 0.3544, Z = 15.51, P = 0.0539). 

Principal components analysis showed extensive overlap between treatments (Figure 3) 

indicating low levels of genetic structuring. PC axis 1 explains 22.9% of the variation, 

axis 2 explains 18.0% and axis 3 explains 16.5% for a cumulative total of 57.4%. 

 BOTTLENECK tests showed no evidence of recent bottlenecks either by treatment 

or by collection site under SMM or TPM by either the sign or Wilcoxon test.  The 

smallest P value testing by treatment was 0.3125 (Wilcoxon, TPM, blowdown). The 

smallest P value for the testing by collection site was 0.0941 (Sign test, SMM, Goat 

Marsh Lake). Allele frequency distribution did not deviate significantly from the L-
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shaped distribution expected under mutation-drift equilibrium by treatment or 

collection site. 

Discussion 

 Taricha granulosa collected around Mount St. Helens did not show population 

structure. Rather, they appeared to be part of a panmictic population. There was no 

evidence of isolation by distance (IBD) and no measurable loss of genetic variability in 

the new or recovery populations. New ponds, resulting from the eruption, appear to have 

been colonized by a large number of individuals. Recovery ponds either had a large 

number of survivors, large migration pulse(s) or both. Pre-eruption Mount St. Helens was 

mostly surrounded by National Forest and managed forest lands, both of which most 

likely harbored large source populations (Franklin et al. 1995). Slatkin’s (1993) 

examination of isolation by distance models found that failure to find evidence of IBD for 

species with low FST values may indicate recent colonization, a result supported by these 

data. The results also suggest that T. granulosa are not site-fidelic with regards to 

breeding and that they move extensively and perhaps randomly (at least to us) across the 

landscape.  

 Other genetic studies support this result. Taricha granulosa from two Oregon 

populations separated by 16 km (a distance within the geographic scale of this study) 

showed significant differences in distributions of allele frequencies with five 

microsatellite loci but also displayed high levels of gene flow (FST = 0.005; Jones et al. 

2001). At larger scales, high gene flow, represented by low levels of population 

substructure (θST = 0.031), characterized populations from 20 sites across three transects 

in the Pacific Northwest. Isolation by distance was detected at the 200-km scale 



 

 

27 
(Ridenhour et al. 2007). Finally, in an indirect measure of gene flow covering the 

entire range of T. granulosa, the largest Nei’s genetic distance (DN; between a CA and a 

WA population) was 0.247 but the average among a cluster of WA to AK populations 

was low, DN=0.013 (Kuchta & Tan 2005). While not a direct measure of gene flow at an 

ecological scale, these populations of T. granulosa were not completely isolated from one 

another as some population groupings did not show isolation by distance (Kuchta & Tan 

2005). Therefore, high gene flow may be normal for T. granulosa.  

 Alternatively, short dispersal distances of T. granulosa observed in ecological 

studies and high gene flow measured in molecular studies can be reconciled through their 

mating system and large clutch size if populations had been founded by a few 

individuals. If you compared a polyandrous population with a monogamous one, 

heterozygosity could theoretically remain equal but the number of different allele 

combinations and allelic richness would be higher in the polyandrous population. Taricha 

granulosa are polyandrous and females store sperm from multiple males (2–5, mean 2.1) 

via a “topping off” mechanism where sperm from the first male has precedence (Jones et 

al. 2002). Mating continues until a female’s spermathecae are full (Jones et al. 2002). 

This could result in an effective population size greater than the census population size 

(Baer & Schmid-Hempel 1999; Trontti et al. 2007). Polyandry in caudates is not unique 

to T. granulosa but is also found in Ambystoma, Plethodon, Desmognathus, Salamandra 

and Lissotriton (ex Triturus; Myers & Zamudio 2004; Adams et al. 2005; Gopurenko et 

al. 2006; Liebgold et al. 2006; Steinfartz et al. 2006; Jehle et al. 2007). With a clutch size 

in T. granulosa ranging from 122–226 eggs (Jones et al. 2002), even a few individuals 

could dramatically influence the allelic richness in subsequent generations, a process 
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similar to some Ambystoma (Kinkead et al. 2007) but not others (Zamudio & 

Wieczorek 2007). Multiple paternity has resulted in increased genetic diversity in other 

organisms including Anolis lizards, loggerhead sea turtles, and blue tits (Foerster et al. 

2003; Calsbeek et al. 2007; Zbinden et al. 2007). However, in Ambystoma maculatum, 

individual larvae sired by stored sperm had lower genetic diversity than expected by 

chance (Chandler & Zamudio 2008) and in lemon sharks, Negaprion brevirostris, 

polyandrous litters did not have greater genetic diversity than monoandrous litters 

(DiBattista et al. 2008). To determine whether polyandry in T. granulosa increases 

genetic variability in the next generation of founder populations requires further testing 

but it could contribute to no loss of alleles in the new ponds of this study.   

 Remarkably, new populations showed no significant loss of genetic diversity, by 

collection site or treatment, even after only 3 to 5 generations (at most) passed since the 

eruption. It is well known that only one migrant is needed to introduce new alleles and 

prevent drift. In other taxa, known demographic declines have not always shown a 

detectable genetic bottleneck effect. For example, a population of kangaroo rats, 

Dipodomys spectabilis, although having suffered a 50% reduction in the number of 

adults, did not show any genetic evidence of a bottleneck when tested 5–6 generations 

after the major demographic decline (Busch et al. 2007). This result was attributed to 

immigration despite extensive mark-recapture and trapping studies showing low dispersal 

rates in Kangaroo rats. In ornate box turtles, Terrapene ornata, the failure to detect a 

bottleneck approximately six generations post disturbance was attributed to their long 

lifespan (Kuo & Janzen 2004). Other examples due to long lifespan or generation time 

include the copper redhorse, Moxostoma hubbsi, which takes at least 10 years to reach 
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maturity (Lippe et al. 2006) and the white-tailed eagle, Haliaeetus albicilla (Hailer et 

al. 2006). In the case of T. granulosa, high migration rates and a polyandrous mating 

system are the processes most likely erasing any bottleneck signature. In those taxa where 

genetic methods may be the only means available for determining demographic trends 

(Spear et al. 2006), any evidence of a bottleneck should be viewed with alarm, especially 

in sensitive or imperiled species. As in fish species with high gene flow (Waples 1998), 

the lack of a genetic signal indicating population differentiation should be viewed 

cautiously so that populations that really are discrete are not inappropriately grouped with 

others.  

 There may be few constraints on T. granulosa dispersal, especially across open 

areas, as would be encountered at Mount St. Helens. Across their entire range, T. 

granulosa may prefer to migrate across open areas and prefer (when not breeding) drier 

microclimates within their normal range. Landscape disturbances, such as clear cuts, do 

not appear to negatively impact presence in the Oregon Coast Range (Cole et al. 1997). 

Additionally, T. granulosa had the highest mean relative abundance (compared to 8 other 

salamanders) in clearcuts. Abundance in clearcuts was higher than in old growth stands 

and they were found in 100% of the dry stands (Corn & Bury 1991). However, presence 

of T. granulosa may just represent movement of animals through the forest to breeding 

sites (Bury et al. 1991). In a private industrial forest approximately 9 km north of Mount 

St. Helens, T. granulosa were most closely associated with open wetlands and early 

successional habitats (clear cut and sapling conifer) (Bosakowski 1999). Taricha 

granulosa were present (although not in large numbers) in both clearcut and forested sites 

in a managed forest in Southwest Washington State (Grialou et al. 2000) and although 
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few animals were found (N= 34 over 2 yrs), 80% of these were captured in a clearcut 

or in pre-canopy forest in another managed, second-growth forest in western Washington 

State (Aubry 2000). Bury and Corn (1988) found that T. granulosa prefer drier old 

growth forest and are also found in young forest and clearcuts. In the Mattolle River 

watershed (coastal Northern California), T. granulosa were most closely associated with 

grasslands and second growth forest rather than late serial forest (Welsh et al. 2005). 

Additionally, T. granulosa appear to choose clear migration routes and were positively 

associated with bare ground in managed forest land during a spring trapping season, 

potentially due to migration to breeding ponds and selection for clear pathways (Butts & 

McComb 2000). When not using streams as migratory corridors, T. granulosa used 

portions of a dirt road at two localities (Pimentel 1960). Thus, the terrain surrounding the 

new ponds may have been attractive to T. granulosa as an obstacle-free environment, 

promoting instead of deterring migration.  

 For juveniles, how far they migrate into the landscape to mature sexually or how 

they subsequently “choose” a breeding pond is unknown. Because smaller amphibians 

are less resistant to desiccation than larger ones (Spight 1968), it cannot be assumed that 

the habitat preferences of adults are the same as for juveniles (Rothermel & Semlitsch 

2002). Burrows created by fossorial northern pocket gophers, Thomomys talpoides, 

which were found throughout the affected areas at Mount St. Helens (Andersen 1982; 

Andersen & MacMahon 1985), could certainly act as refuges for dispersing T. granulosa. 

Additionally, T. granulosa are hardy creatures and capable of surviving challenging 

environmental conditions. Pimentel (1960) buried 10 T. granulosa for six months and 

stored them at 15.6ºC. Although desiccated, seven survived and appeared normal after 
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rehydration. He also placed 10 T. granulosa in an earth-filled outdoor enclosure where 

they lived without food or water for four months. Nine survived and moved to water 

when soil moisture increased. Therefore, what may appear to be an inhospitable 

landscape may in fact be a survivable habitat. 

 This study also highlights how different types of studies (e.g. demographic, 

ecological or molecular) may lead to different conclusions (e.g. Busch et al. 2007). If 

only non-genetic studies were considered, one would conclude that T. granulosa behave 

similarly to other typical pond-breeding amphibians: poor dispersal, site-fidelic, low gene 

flow, and metapopulation structure. For example, Taricha rivularis, a closely related 

species, traveled at least 8.0 km over rough terrain and across areas of suitable breeding 

habitat to return to within approximately 15 m of their original capture site (Packer 1963; 

Grant et al. 1968). Taricha granulosa are also capable of homing, similar to, although not 

as dramatic as T. rivularis. In a British Columbia population, over 96% of the T. 

granulosa captured in inlet or outlet streams then released in the middle of a lake, 

returned to their capture location. The furthest distance moved was 550 m and one 

salamander moved at an average of 56 m/hr, returning to its capture location in 9 hrs 

(Efford & Mathias 1969). A later study at the same locality found similar results (Neish 

1971).  

 Two additional studies also support the conclusion that T. granulosa remain in or 

near their breeding ponds. In Oregon, most were believed to have moved to underground 

retreats within 6.2–23 m of their breeding pond with an estimate of 90% moving to 

underground retreats within 61.5 m of their breeding pond (Pimentel 1960). On southern 

Vancouver Island, females overwintered on land, migrating into the pond to breed in the 
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spring and departing in the fall. Newly metamorphosed juveniles also left their natal 

pond in the fall while males appeared to be permanently aquatic (Oliver & McCurdy 

1974). However, males in an Oregon population were not permanently aquatic and left 

breeding ponds at the same rates as females (Pimentel 1960). Pimentel (1960) also 

described a new movement activity, wandering, consisting of short departures (1 to 45 

days) from a breeding pond, generally limited to short distances. While highly valuable, 

life-history and ecological studies may not match genetic data due to the differences in 

underlying assumptions (Schmeller & Merila 2007). Additionally, different molecular 

markers (mitochondrial versus nuclear) may produce different conclusions (Monsen & 

Blouin 2003; Canestrelli et al. 2007). Dependence on one type of data could lead to poor 

conservation recommendations. If an endangered species is involved, we cannot afford to 

choose poorly.  

 The rapid recovery and colonization of new ponds by T. granulosa is good news. 

Given large source populations and time, this species is resistant to large environmental 

disturbances. Loss of genetic variability in new populations cannot automatically be 

assumed. The results from demographic, ecological and behavior studies, even within the 

same species do not always lead to the same conclusion (e.g. Perret et al. 2003; Kinkead 

et al. 2007) and amphibian spatial dynamics are more complex than the metapopulation 

model (Marsh & Trenham 2001; Smith & Green 2005). In plants, life-history traits were 

poor predictors of population genetic structure (Duminil et al. 2007). There are over 60 

species of anuran and caudates that could be classified as a pond-breeding amphibian, by 

my definition, in the United States (Lannoo 2005). Taricha granulosa is a classic pond-

breeding amphibian. However, they are not site-fidelic, have high gene flow, are good 
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dispersers and ready colonizers. Thus, I caution against using labels such as “pond-

breeding amphibian” as a general predictor variable when making conservation 

recommendations, especially in poorly-known species. I recommend increased use of the 

complex life cycle concept  (Istock 1967; Wilbur 1980) in its place. I agree with 

Cushman (2006) that more species specific knowledge in a landscape setting is needed to 

improve and refine amphibian conservation strategies.  
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Table 2.1. Effects of 1980 eruption of Mount St. Helens on the local landscape (Crisafulli et al. 2005a; Swanson & Major 2005). The 
eruption also generated mudflows but these were localized to drainages and are not under consideration.  
 
 

Zone 
 

Caused by 
 

Characterized by 
 

Created 
 

Survivors 
 
Treatment 

Debris- 
Avalanche 

 

Collapse and landslide of 
volcano’s north slope. 

 

Hummocks/hills of 
rock. Covering of 

landscape by rock to 
195m. 

 

A clean slate with new lakes 
and ponds nonexistent prior 

to the eruption. 

 

None 

 

New  

Blow down 

 

High pressure blast, Air 
temps to 300ºC. High 

velocity rock and tephra 
moving across landscape. 

 
Blowdown of trees, 

heating of 
lakes/ponds, heavy 
levels of ash and 

organic material into 
lakes/ponds. 

 

Complex mosaic of 
disturbance dependent upon 

topography and distance 
from volcano.  

 

Some 
(fossorial animals, 

fish, T. granulosa, A. 
gracile, underground 

plant parts) 

 

Recovery 

Reference 

 

South of volcano.  Not in 
direct path 

of eruptive forces. 

 

Life as normal. Some 
ash/tephra fall. 

 

No major effects. 

 

Probably 100% 

 Reference 
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Table 2.2. Total collections of Taricha granulosa by zone and treatment (TRMT) in and around the Mount St. Helens National 
Volcanic Monument. DA is Debris-Avalanche, BLOW is Blowdown, REF is Reference, REC is Recovery, and N is the total number 
of animals collected. Latitude, longitude, and elevation were measured with a handheld GPS. Latitude and longitude are in degrees 
and minutes. 
 
 

 Zone TRMT N Lat (N) Long (W) Elevation (m) 
Maratta complex DA NEW     
        M5   1 46 17.48 122 16.98 730.8 
        M6   10 46 17.47 122 16.97 749.8 
        M26   1 Not recorded   
        M27   3 46 17.54 122 17.05 725.2 
        M28   1 Not recorded   
        M30   8 46 17.52 122 16.98 744.3 
Hummocks complex DA NEW     
        H6   4 46 16.77 122 16.15 763.7 
        H23   2 46 16.81 122 16.22 765.2 
St Charles Lake BLOW REC 11 46 19.34 122 05.23 1223.4 
Strawberry Lake  BLOW REC 46* 46 19.64 122 03.21 1456.0 
Ghost Lake** BLOW REC 2 46 19.17 122 03.68 1154.2 
Goat Marsh Lake REF REF 106 46 08.42 122 16.72 889.8 
McBride Lake REF REF 52 46 08.44 122 15.11 830.7 

*Many more were observed visually. **Ghost Lake not included in any analysis due to small sample size. 

44 
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Table 2.3. PCR Conditions and basic data on six microsatellite loci for T. granulosa 
from MSHNVM. Some reaction conditions differ from Jones et al. (2001).  
 
 
Locus Anneal 

temp ºC 
MgCl2 

mM 
Primer 
mM 

Dye Size range 
(base pairs) 

Total alleles 
all pops  

Tgr01 56 1.50 2.0 6 FAM 215–271 (tetra) 14 
Tgr02 56 1.50 1.5 HEX 179–255 (bi & tetra) 16 
Tgr04 56 1.50 2.0 NED 207–235 (bi & tetra) 9 
Tgr06 59 1.50 1.5 VIC 145–173 (bi & tetra) 12 
Tgr10 56 1.75 1.5 NED 174–214 (tetra) 11 
Tgr14 57 1.50 2.0 6-FAM 218–328 (tetra) 31 
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Table 2.4. Genetic measures for 6 T. granulosa microsatellite loci (L) by collection 
site. N is the number of animals genotyped for that locus, and HO, HE are observed and 
expected heterozygosities. FIS is a within population estimation of inbreeding. A is the 
number of alleles and R is the allelic richness (corrected for minimum sample size (6) 
using rarefaction (Leberg 2002). An allele frequency table is in Appendix B. 
 
 

 Maratta  Hummocks 
L N HO HE FIS A R  N HO HE FIS A R 

Tgr 
01 

26 0.8077 0.8778 0.081 12 6.89  6 1.0000 0.8788 -0.154 7 7.00 

Tgr 
02 

26 0.8462 0.8477 0.002 9 5.94  6 0.8333 0.9091 0.091 7 7.00 

Tgr 
06 

25 0.8000 0.7894 -0.014 8 5.31  6 0.6667 0.7576 0.130 5 5.00 

Tgr 
10 

26 0.8077 0.8559 0.057 10 6.26  6 1.0000 0.8939 -0.132 7 7.00 

Tgr 
14 

26 0.9615 0.9479 -0.015 20 9.11  6 1.0000 0.9545 -0.053 9 9.00 

ALL  0.8446 0.8638 0.034     0.9000 0.8788 -0.003   
              
 St. Charles  Strawberry 

L N HO HE FIS A R  N HO HE FIS A R 

Tgr 
01 

11 0.9091 0.8788 -0.036 8 6.66  41 0.8780 0.8681 -0.012 11 6.62 

Tgr 
02 

11 0.5454 0.8311 0.355 6 5.25  37 0.7568 0.8012 0.056 10 5.73 

Tgr 
06 

11 0.8181 0.7879 -0.040 7 5.38  41 0.8293 0.8244 -0.006 10 5.75 

Tgr 
10 

11 0.9091 0.8874 -0.026 8 6.62  41 0.7317 0.8341 0.124 8 5.71 

Tgr 
14 

11 0.8182 0.8788 0.072 11 7.47  41 0.9024 0.9407 0.041 20 8.82 

ALL  0.8000 0.8528 0.047     0.8196 0.8537 0.078   

              
 Goat Marsh  McBride 

L N HO HE FIS A R  N HO HE FIS A R 

Tgr 
01 

75 0.8400 0.8197 -0.025 10 5.54  43 0.8607 0.8159 -0.055 12 5.81 

Tgr 
02 

73 0.8630 0.8428 -0.024 13 6.08  40 0.9000 0.8674 -0.038 14 6.52 

Tgr 
06 

76 0.7895 0.8024 0.016 9 5.30  41 0.8049 0.8329 0.034 9 5.75 

Tgr 
10 

75 0.8800 0.8484 -0.037 11 6.05  43 0.8605 0.8509 -0.011 11 6.27 

Tgr 
14 

74 0.9459 0.9500 0.004 25 9.26  41 0.9512 0.9446 -0.007 22 9.06 

ALL  0.8637 0.8527 0.054     0.8754 0.8623 0.063   
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Table 2.5. Genetic measures for 5 T. granulosa microsatellite loci by treatment. Tgr 04 is not included because it contains a null allele 
in several populations. A is the number of alleles, R is allelic richness (corrected for minimum sample size (31) using rarefaction 
(Leberg 2002), N is the number of  animals genotyped for that locus, HO and HE are observed and expected heterozygosities. FIS is a 
within population estimation of inbreeding. 
 
 
    NEW  RECOVERY  REFERENCE 

 total                      

Locus A R  N HO HE FIS A R  N HO HE FIS A R  N HO HE FIS A R 

Tgr 01 14 10.58  32 0.8438 0.8834 0.046 13 12.90  54 0.8846 0.8799 -0.005 11 10.43  118 0.8475 0.8191 -0.035 12 9.58 

Tgr 02 16 10.52  32 0.8438 0.8492 0.007 9 8.97  50 0.7083 0.8092 0.126 10 9.36  113 0.8761 0.8557 -0.024 15 11.12 

Tgr 06 12 9.01  31 0.7742 0.7784 0.006 8 8.00  54 0.8269 0.8219 -0.006 10 9.44  117 0.7949 0.8122 0.021 10 8.72 

Tgr 10 11 9.50  32 0.8438 0.8517 0.009 10 9.94  54 0.7692 0.8536 0.100 8 7.96  118 0.8729 0.8482 -0.029 11 9.85 

Tgr 14 31 21.59  32 0.9688 0.9464 -0.024 21 20.78  54 0.8846 0.9350 0.054 21 18.34  115 0.9478 0.9492 0.001 28 22.01 

means     0.8548 0.8618 0.008     0.8147 0.9599 0.053     0.8678 0.8569 -0.013   
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Table 2.6. Comparisons between treatment groups over all loci in T. granulosa at 
MSHNVM. R is allelic richness, HO is observed heterozygosity, HS is Nei’s (1987) gene 
diversity, FIS is a within population estimate of inbreeding, FST is a measure of among 
population genetic diversity and Relc is the average relatedness of individuals within 
samples when compared to the whole, corrected for population structure.   
 
 
 New Recovery Reference P value 
R 6.86 6.40 6.56 0.1980 
HO 0.855 0.815 0.868 0.2001 
HS 0.867 0.854 0.856 0.2034 
FIS 0.014 0.046 -0.014 0.2001 
FST -0.018 0.020 0.002 0.1870 
Relc -0.028 -0.097 0.027 0.2001 
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Table 2.7. Pairwise FST values and P-values by collection site.  Number above the diagonal is the FST value, number below is the exact 
P-value obtained after 10100 permutations. Alpha, signifying a difference, adjusted for multiple comparisons is 0.00333. Significant 
values are bolded. 
 
 
 Maratta Hummocks St Charles Strawberry Goat Marsh McBride 

Maratta  -0.0167 0.0227 0.0109 0.0002 0.0025 
Hummocks 0.9275  0.0086 0.0013 -0.0015 -0.0017 
St. Charles 0.0127 0.3292  0.0214 0.0330 0.0216 
Strawberry 0.0154 0.4550 0.0091  0.0167 0.0095 

Goat Marsh 0.3936 0.4683 0.0001 < 0.0010  0.0020 
McBride 0.2059 0.4570 0.0046 0.0040 0.1487  
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Figure 2.1. Collection sites at MSHNVM. White arrow points north. New ponds are Maratta and 
Hummocks in the debris-avalanche zone, recovery lakes are St. Charles and Strawberry Lakes in 
the blowdown-zone, and reference lakes are Goat Marsh and McBride Lakes. Linear distance 
between Strawberry and McBride Lake is 26.14 km.  
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Figure 2.2. Isolation by distance in T. granulosa from six collection sites in MSHNVM. Negative 
genetic distances were converted to zero. A table of distances (geographic and Nei’s is in 
Appendix C). 
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Figure 2.3. Principal components analysis for T. granulosa at MSHNVM by treatment. New 
populations are represented by filled circles, recovery populations by open triangles and 
reference populations by open squares.   
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CHAPTER 3 

GENETICS OF COLONIZATION IN AMBYSTOMA GRACILE (CAUDATA: 

AMBYSTOMATIDAE) AFTER THE 1980 ERUPTION  

OF MOUNT ST. HELENS 

Introduction 

 Colonization is the result of a dispersal event that leads to the establishment of an 

organism into an area from which it was previously absent. Factors that lead to 

colonization are varied. Within an organism’s traditional range, there may be an 

environmental disturbance that creates new, suitable habitat or previously degraded 

habitat has been restored. Individuals may disperse into new habitats or ecosystems via 

invasion or range expansion. Depending on the circumstances of the colonization event 

and the life-history characteristics of the species, founding populations may lose alleles 

and genetic diversity as compared to source populations (Nei et al. 1975; Allendorf 1986; 

Whitlock & McCauley 1990). Whether founder populations gain or lose genetic 

variability is of great interest because genetic diversity is directly related to population 

fitness (Reed & Frankham 2003; Reed et al. 2007).   

 Amphibian decline is of great concern for conservationists (Mendelson et al. 

2006) and the list of adverse factors only seems to increase (Becker et al. 2007). Many 

species are imperiled through habitat fragmentation or outright habitat destruction. 

Although some restoration efforts have resulted in colonization events (e.g. Pechmann et 

al. 2001; Willson & Dorcas 2003; Brodman et al. 2006; Petranka et al. 2007), the genetic 

impacts are unclear. For example, an island-population of tungara frogs, established 12 
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years prior to the study, showed evidence of a genetic bottleneck (Lampert et al. 2007) 

but in contrast, a recently (past 70 years) fragmented frog population showed low levels 

of population subdivision (Vos et al. 2001). Human-caused habitat fragmentation over a 

large scale (> 100 km) left a genetic signal in a widespread and common anuran, 

Physalaemus cuvieri (Telles et al. 2007) but the crested newt, Triturus cristatus, showed 

no genetic bottleneck in ponds colonized only decades before (Jehle et al. 2001). Few 

individuals of the frog, Rana ridibunda, effectively colonized Great Britain in 1935 

without a strong bottleneck effect (Zeisset & Beebee 2003). The cane toad, Bufo marinus, 

rapidly spread once introduced to Australia, showed no evidence of isolation by distance 

after an estimated 25-35 generations (Leblois et al. 2000). From these and other studies 

(Cushman 2006 and references therein), we can see that the genetic response to 

colonization in pond-breeding amphibians appears to be situational, depending on the 

species though studies of anurans are more numerous than those of caudates. Therefore, 

there is no clear pattern as to whether founding populations of pond-breeding amphibians 

have lower genetic variability than their source populations.  

 Salamanders in the family Ambystomatidae are typical pond-breeding amphibians 

with aquatic eggs, aquatic larvae, and terrestrial adults. However, some species also 

reproduce as neotenes, a sexually mature adult in the aquatic larval form (Petranka 1998). 

The ratio of neotenes to transformed adults could have a significant impact on gene flow 

in an animal that breeds in discrete ponds. Ambystomatid salamanders are generally 

considered site-fidelic, move only short distances (usually < 1km) from breeding ponds 

when not reproducing, usually breed in their natal pond, have low vagility, and move 

slowly across a landscape (Spear et al. 2005; Gamble et al. 2007; Zamudio & Wieczorek 
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2007). At the genetic level, pond-breeding amphibians are considered to exist in 

metapopulations and migration rates between subpopulations are low (Kinkead et al. 

2007; Petranka 2007). Based on population genetics theory, it is reasonable to expect that 

founding populations of ambystomatid salamanders would possess low levels of genetic 

diversity characterized by low levels of gene flow among populations. In at least one 

amphibian species, the natterjack toad, Bufo calamita, low genetic variability can have 

adverse affects on survivorship and subsequent population viability (Rowe & Beebee 

2003; 2005). A theoretical simulation showed that the number of colonists moving into 

unpopulated habitat would have to be considerable larger than the number of migrants 

moving between existing populations to reduce the amount of genetic differentiation 

between existing populations (Wade & McCauley 1988). Therefore, although wetland 

restoration efforts for ambystomatid salamanders and other pond-breeding amphibians are 

on-going (Lehtinen & Galatowitsch 2001; Petranka et al. 2007), more research is needed 

to determine if natural colonization processes are sufficient to develop genetically diverse 

and robust populations.  

 Mount St. Helens has become a classic study site for testing ecological theories on 

colonization and primary succession (Dale et al. 2005a). The 1980 eruption created a 

natural experiment that generated the conditions where colonization and recovery can be 

studied in concert. New ponds in the debris-avalanche zone created by the initial 

landslide were first colonized by two anuran species within 3 years of the eruption and 

Ambystoma gracile, the Northwestern salamander, naturally colonized these ponds 9 

years post eruption (Crisafulli et al. 2005b). A typical pond-breeding amphibian, A. 

gracile has a biphasic lifestyle that includes aquatic eggs and larvae and a terrestrial adult 



 

 

56 
form. However, A. gracile also has a neotenic form, common in many localities. In 

fact, terrestrial adults are often difficult to find(Bosakowski 1999; Grialou et al. 2000; 

Hoffman et al. 2003; but see Aubry 2000). Although data on presence, survival, and 

breeding status of A. gracile in lakes and ponds in all zones around Mount St. Helens are 

available (Crisafulli et al. 2005b), the amount of genetic variability in new ponds and the 

amount of gene flow across this disturbed landscape remains unknown. Based on the 3 – 

4 year maturation time in this species, I estimate there has been only 5–10 generations 

since the eruption, not enough time for mutation to have an influence on genetic diversity. 

Therefore, any genetic effects should be due solely to colonization and subsequent gene 

flow.  

 I examined the genetic response of A. gracile to the 1980 eruption of Mount St. 

Helens. Using two molecular markers, microsatellites, and AFLPs (amplified fragment 

length polymorphisms), I measured genetic diversity, gene flow, and population structure 

to determine if genetic diversity is lower in newly colonized ponds. Based on the life-

history characteristics of this pond-breeding amphibian, I predicted that newly colonized 

ponds would have less genetic diversity than reference populations. Populations 

consisting of descendents from eruption survivors would show intermediate levels of 

genetic diversity and reference sites would have the highest measures of genetic diversity. 

I also expected that populations at Mount St. Helens would show significant evidence of 

population structure because of the irregular and rugged landscape, low vagility and high 

philopatry, a characteristic of ambystomatid salamanders. Measuring the genetic diversity 

of amphibian populations affected by the eruption helps elucidate how or if genetic 

diversity is lost when a local population goes extinct and the habitat is later recolonized. 
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If newly colonized and recovery populations show a significant loss of genetic 

diversity, that would indicate that more than a few generations are required for a 

population to regain original levels of genetic diversity. Little to no loss of genetic 

diversity would be a positive indicator that A. gracile can quickly recover (within 25 

years) from a major but infrequent environmental disturbance. 

Materials and Methods 

Study site  

 The impact of the 18 May 1980 eruption on the surrounding landscape was swift, 

violent, and dramatic. The eruption began with a landslide, followed by a searing blast 

that dramatically altered the local landscape. The initial debris-avalanche and blast 

oriented towards the north and north-east (Peterson 1986). Approximately 570 km2 of 

forest was leveled by the blast, creating a blowdown zone, where due to the timing (snow 

and ice still present in the montane spring, and morning), a few plants and burrowing 

animals survived (Dale et al. 2005b). For instance, post-eruption surveys found some fish 

survived in 67% of the lakes within the blowdown zone (Crawford 1986). Except for 

approximately 5 to 25 cm of tephra fall, the landscape on the volcano’s south side was 

relatively unaffected. Thus, several lakes on the south side have been used as reference 

sites to compare pre- and post-eruption effects (Wissmar et al. 1982; Dahm et al. 2005). 

In this study, reference populations are assumed to represent the levels of genetic 

diversity that would have been present across the entire area if the volcano had not 

erupted. Table 3.1 summarizes the study area.  
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Study organism  

 Ambystoma gracile, the northwestern salamander, has a biphasic life-cycle with 

terrestrial adults and aquatic larvae. However in some populations, adults do not 

transform but instead remain in their natal pond and upon reaching maturity, breed as 

gilled adults, called neotenes. Compared to most Ambystoma, the larvae of A. gracile 

have an extended aquatic phase (greater than 1 year) and it may take several years for 

adults to mature, depending on elevation and temperature (Eagleson 1976; Petranka 

1998). Current Mount St. Helens populations appear to be highly neotenic, especially in 

the debris-avalanche zone (Crisafulli et al. 2005b). Females attach egg masses (40–270 

eggs) to vegetation about 0.5–1 m below the water surface (Nussbaum et al. 1983; 

MacCracken 2007). Trout (Salvelinus fontinalis, Oncorhynchus spp.) prey upon adult and 

larval A. gracile, thus population densities are lower in trout-infested ponds. Rough-

skinned newts (Taricha granulosa) also feed upon egg masses (Efford & Mathias 1969; 

Taylor 1983; MacCracken 2007). At metamorphosis, juvenile A. gracile leave the natal 

pond, move into the surrounding landscape and take 2–3 years to sexually mature 

(Eagleson 1976; Nussbaum et al. 1983). The life-span of a neotenic A. gracile is 

estimated to be 5 yrs (Efford & Mathias 1969). The lifespan of transformed adults is 

unknown but A. macrodactylum (long-toed salamander, a related species also found in the 

Pacific Northwest) can live up to 10 years (Russell et al. 1996). Ambystoma 

macrodactylum (spotted salamander), A. gracile’s closest relative, can live to 32 years, 

although most animals from the study population were between 2 and 18 years old 

(Flageole & Leclair 1992). 
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Population sampling 

 I captured A. gracile May-June 2003 and July 2005 from ponds and lakes in the 

Mount St. Helens National Volcanic Monument (MSHNVM), Washington State, USA 

using minnow traps (set and left overnight) and dipnet (Fig. 3.1, Table 3.2). Ambystoma 

gracile were either larvae or neotenes. Collection sites (at least two per treatment) were 

chosen based on the probability that they would contain salamanders (Crisafulli, pers. 

comm.) and their accessibility within a 3 hr hike. Collection sites were assigned to 

treatments based on how they were affected by the eruption (Table 3.1). Maratta and 

Hummocks, in the debris-avalanche zone, were classified as new ponds as they did not 

exist prior to the eruption. Curtis, Ghost, Meta, Ryan and St. Charles Lakes in the 

blowdown zone where trees were toppled by the blast, were classified as recovery lakes. 

Goat Marsh and McBride Lakes, south of the volcano, where the impact of the eruption 

was minimal, were assigned as reference lakes.  

 In 2005, I also collected from a beaver pond, approximately 2.4 km in north of the 

Maratta complex. In 1997, beavers created this pond on Maratta Creek (Crisafulli, pers. 

comm.). Although this population is of recent origin, it was not formed by the volcano 

and its locality outside of the debris-avalanche precludes it from being grouped with 

Maratta and Hummocks. Therefore, I analyzed this pond separately to determine which of 

my other collection sites could be its source population. Table 3.2 provides geographic 

coordinates for collection sites and samples sizes.  

 Neither Maratta nor Hummocks are discrete lakes but instead are a collection of 

small ponds created by the landslide of the north slope of the volcano (debris-avalanche) 

during the initial stages of the eruption. Maratta is a complex of approximately 35 ponds 
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and the Hummocks is a complex of approximately 15 ponds within the boundary 

delineated by the Hummocks trail (Tr 229). I attempted to collect A. gracile from all 

localities both years except for Meta and Curtis Lakes, which were sampled only in 2003. 

After removing a section of tail tip, all animals were immediately released at their capture 

site.  

DNA extraction and amplification  

 I collected tissue samples by removing approximately 1 cm of tail tip from each 

salamander. Each tissue was stored individually in 95% ethanol until return to the lab 

when samples were stored at  -80º C. I isolated total genomic DNA by digesting 

approximately 0.5mm of tissue sample in 550µl of lysis buffer (50mM Tris HCl, pH 8.0, 

10mM EDTA, pH 8.0, 200mM NaCl) with 11µl of Proteinase K (20 µg/ml) at 55º C 

followed by a modified salt-chloroform extraction and isopropanol precipitation 

(Mullenbach et al. 1989). For AFLPs, I purified DNA from this initial extraction using a 

Qiagen DNeasy kit starting with step 3 of Appendix A: Purification of Genomic DNA 

from whole or non-nucleated animal blood (DNeasy Tissue Handbook 03/2004). 

Incubation was followed by step 3 of Protocol: Purification of total DNA from cultured 

animal cells (DNeasy Tissue Handbook 03/2004). I used a Nanodrop ND-1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE) to measure the 

concentration of the purified DNA and used ddH2O to standardize each sample to 

50ng/µL.   

 Microsatellites: No microsatellite primers for A. gracile have been published.  

Therefore, I tested 65 primers published for other Ambystoma. Of those, four amplified 
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acceptably (Table 3.3). Details on all Ambystoma primers tested are in Appendix D. I 

used AmaD49, AmaD226 (Julian et al. 2003a) and AjeD23 and AjeD314 (Julian et al. 

2003b). Each PCR was carried out in a 15µL total volume with 100ng of DNA, a final 

concentration of 0.5µM each primer, 0.25µM total dNTPs, and 2.0mM of MgCl2. I used a 

PTC-200 Peltier thermal cycler (MJ Research) with the following parameters: 2 min 

denaturation at 94º C, 35 cycles of 1 min at 94ºC, 45 sec at  58ºC and 1.5 min at 72ºC for 

extension, then ending with a 5 min extension period at 72º C. PCR amplicons were 

separated and visualized on an ABI PRISM®  3730 DNA Analyzer by the Nevada 

Genomics Center, Reno, NV for all loci. I used Genemapper 3.0 (Applied Biosystems 

Inc.) to score each sample and rounded allele sizes to the appropriate whole number. 

 AFLP: Because only four microsatellite primers amplified, I also used amplified 

fragment length polymorphism (AFLP), amplifying DNA using the protocols of Vos et 

al. (1995). I repeated 40 samples to calculate the error rate. Purified DNA (100ng) was 

digested for 1 hr at 37ºC with 5U of EcoRI (New England Biolabs) and 5U of MseI (New 

England Biolabs) in 5µL of 10 RL buffer (100mM Tris-acetate, 100mM Mg-acetate, 

500mM K-acetate, 50mM DTT, pH 7.5), with ddH2O to a final volume of 50µL. To the 

restriction digest, I added 10µL of ligation mix composed of 1µL 10X RL buffer, 5pmole 

each of EcoRI adaptor (forward and reverse) and 50pmole each of MseI adaptor (forward 

and reverse), 1.2µL of 10mM ATP (Fisher), 1U T4 DNA ligase (5 WeissU/Ul; Fermintas) 

and ddH2O. The ligation plus restriction digest was incubated for another 3 hrs at 37ºC.  

 The A. gracile genome is large, C-value = 42.0 pg (human C-value = 3.5 pg) 

(Licht & Lowcock 1991). Thus, a pre-amplification step using a 2+2 primer combination 

was required. Pre-amplification with a 1+1 combination (Eco-A and Mse-A) was tried but 
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this yielded messy results in the selective PCR with several combinations of 3+3 and 

4+4 selective primers. Preamplification was performed with 3µL of undiluted ligase 

samples in a total volume of 50µL with 10µL 5X PCR buffer (Promega), 1.5mM MgCl2, 

0.2mM dNTPs (equimolar mix of all 4), 1 U Taq DNA polymerase (GoTaq Flexi, 

Promega) and 0.1µM each of Eco-AC (5’-GAC TGC GTA CCA ATT CAC-3’) and Mse-

AC (5’-GAT GAG TCC TGA TGA GTA AAC-3’). The PTC-200 Peltier thermal cycler 

(MJ Research) parameters were 72ºC for 2 min, 94ºC for 30 sec, 58ºC  for 30 sec, 72ºC 

for 1 min, then repeating 29 times from 94ºC. This preamplification PCR product was 

diluted 1:10 for selective PCR. 

 Three selective primer combinations were used: Eco-ACGC (5’-GAC TGC GTA 

CCA ATT CAC GC-3’) / Mse-ACAG (5’-GAT GAG TCC TGA TGA GTA AAC AG-

3’), Eco-ACGC / Mse-ACAC, and Eco-ACGC / Mse-ACTC.  The Eco primer was 

labeled on the 5’ end with 6-FAM. Each PCR consisted of 2.5µL of diluted 

preamplification product, 2.0µL of 5X PCR buffer (Promega), 1.5mM MgCl2, 0.2mM 

dNTPs (equimolar mix of all 4), 0.05uM Eco primer, 0.2uM Mse primer, 0.5U Taq DNA 

polymerase (GoTaq Flexi, Promega) and ddH2O to 10µL. The thermal cycler parameters 

were 94ºC for 2 min, then repeated 9 times: denature at 94ºC for 30 sec, anneal at 65ºC 

for 30 sec (reduced by 1ºC each cycle with final temperature of 57ºC), and extension at 

72ºC for 1 min. Finally, there were 30 cycles of 94ºC for 30 sec, 56ºC for 30 sec, and 

72ºC for 30 sec. Fragments were separated on an ABI PRISM® 3100 Genetic Analyzer 

by the Center for Integrated BioSystems at Utah State University, Logan, UT. After 

converting the sample files with the program  “3730 FSA to GS converter” then 
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Genescan 3.7 (Applied Biosystems, Inc), I scored the gels using Genographer version 

1.6 (Benham 2001). 

Within-population patterns of genetic diversity 

 Data were analyzed by individual collection site and then by treatment. Basic 

population genetic diversity measures, including heterozygosity, number of alleles, 

genetic distances, and pairwise population ΦPT   values,  for microsatellite and AFLP loci 

were calculated using GENALEX 6.1 (Peakall & Smouse 2006) employing the option to 

interpolate missing data when calculating genetic distances for the microsatellite loci.  

Among-population patterns of genetic diversity 

 Due to small sample sizes (N < 5), animals from Ghost and Meta Lakes were 

excluded when testing for among-population patterns of genetic diversity. Beaver Pond 

was also excluded because it did not exist until 1997. To test for pairwise population 

differences, I used GENALEX 6.1. When comparing dominant and codominant markers, 

ΦPT (an analogue of FST) is recommended by the authors (Peakall & Smouse 2006). The 

null hypothesis of ΦPT  = 0 was tested using 999 permutations and significance was set at 

P = 0.05. I used analysis of molecular variation (AMOVA) for both microsatellite and 

AFLP data to look for genetic structure. Collection sites were grouped by treatment and 

for microsatellites, I used the codominate-genotypic option which uses ΦPT-values. For 

microsatellites, there were 93 animals in the new treatment (Hummocks, Maratta), 120 

recovery animals (Curtis, Ryan, St. Charles Lakes) and 30 reference animals (Goat Marsh 

and McBride Lakes). For AFLPs, there were 99 animals in the new treatment, 132 in the 

recovery treatment and 31 in the reference treatment. Samples sizes differ because not all 
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loci amplified in all animals. Significance was tested against 9999 random 

permutations where a significant P value (P < 0.05) indicates the observed value is 

significantly greater than the permutation value.  

 I also used GENALEX 6.1 to visualize population structure by treatment for both 

markers, performing a principal component analysis (PCA) of genotypic distances using a 

standardized covariance matrix with 9999 permutations. PCA makes no prior 

assumptions about population structure. I used the Mantel test in Tools for Population 

Genetic Analysis (TFPGA) version 1.3 (Miller 1997) to test for evidence of isolation by 

distance. Using 999 permutations, I tested for correlation between Nei’s unbiased genetic 

distance (Nei 1978) and a geographical distance matrix for the microsatellite and AFLP 

data. Geographic distance, accounting for topography (longer than point to point 

distances) was measured with TOPO 6.0 (DeLorme, Yarmouth, ME).    

Assignment tests 

 To determine possible source populations for animals in Beaver Pond, a breeding 

site colonized in 1997, and to estimate contemporary levels of gene flow, I used the 

population assignment test in GenAlEx for the microsatellite data and AFLPOP 

(Duchesne & Bernatchez 2002) for AFLPs. However, the Mount St. Helens area has more 

lakes and ponds where salamanders could breed than could be practically sampled. Thus, 

these assignments only provide a general indication of gene flow. Both programs use log-

likelihoods to calculate assignments, GenAlEx using the method of Paetkau et al. (2004). 

AFLPOP allocates animals of unknown origin to their most probable source population 

by calculating the probability of a given genotype being present in each of the possible 
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populations based on dominant band frequencies. The animal is then allocated to 

whichever possible source population that shows the highest likelihood for its genotype. I 

first performed the least stringent test, minimal log-likelihood difference (MLD) set to 

zero, which assigns animals as soon as one likelihood is higher than all others. I repeated 

the test and set MLD to 0.2 which corresponds to a 95% confidence level (Yang et al. 

2008). I also increased sensitivity by setting MLD = 1 so that an animal is allocated to a 

population only if its largest likelihood is 10 times as high as the next largest likelihood. 

Calculated P values indicate the percent of likelihoods that are less than or equal to that of 

the likelihood of an individual animal belonging to a specific population. The lower the P 

value, the less likely it is that an individual is properly allocated to a population.   

Results 

Sampling 

 I captured a total of 380 A. gracile. The number of animals captured by year and 

site is found in Appendix A. All were larvae or neotenic adults. Only one larvae appeared 

to be reabsorbing its gills and in the process of transforming to a terrestrial adult. 

Ambystoma gracile were abundant across the study area except for the two reference 

lakes, Goat Marsh and McBride Lake where animals were only found in 2005, and Ghost 

and Meta Lakes (Table 3.2). I also set traps in Strawberry Lake in 2005 (46°19.64N/122° 

3.21W) and although Taricha granulosa were easily captured by dip net and minnow 

trap, I did not find any A. gracile. These collection sites with few or no A. gracile were 

populated by enough trout to attract fly fishermen (pers. obs) and in Ghost Lake, my traps 

filled with a large number of crayfish.  
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Within-population levels of genetic diversity 

 The microsatellite genotyped animals showed high levels of polymorphism and 

genetic diversity (Tables 3.3, 3.4; Appendix B). Observed heterozygosity ranged from 

0.668 at McBride Lake to 0.917 at Ghost Lake. By treatment, recovery populations had 

the highest observed heterozygosity, 0.844 and reference lakes had the lowest at 0.711 

(Table 3.5). Aje D23 was not in Hardy-Weinberg equilibrium (HWE) at Maratta (P = 

0.029) and Ryan Lake (P < 0.001). AjeD314 was not in HWE at Beaver Pond (P = 

0.033), Curtis (P=0.004), Ryan (P = 0.001), Hummocks, Maratta, McBride, and St 

Charles Lakes (P < 0.001). AmaD226 was not in HWE at McBride and St. Charles Lakes 

(P = 0.030) and AmaD49 was not in HWE at Beaver Pond (P = 0.036) or Maratta (P < 

0.001).  

 AFLP analysis yielded 81 polymorphic loci from 269 animals (Table 3.6). Eco-

ACGC / Mse-ACAG combination yielded 32 bands, Eco-ACGC / Mse-ACAC 

combination yielded 25 bands, and Eco-ACGC / Mse-ACTC combination yielded 24 

bands. The methodological error rate was estimated to be 0.57% from the included 

replicates. Estimated heterozygosities (HA) ranged from 0.161 (Meta Lake) to 0.291 

(Hummocks and Goat Marsh; Table 3.5). The low HA value for Meta and Ghost Lake are 

a product of low sample sizes. Removing those two sites yields a mean HA of 0.251. 

Despite its recent origin (1997), inspection of microsatellite and AFLP data shows 

nothing unusual about the animals collected from the Beaver Pond. Heterozygosities and 

the percent of polymorphic loci are within the ranges of the other collection sites (Tables 

3.4, 3.6). 
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Among-population patterns of genetic diversity 

 Microsatellite and AFLP data show that A. gracile at MSHNVM had high levels 

of gene flow and low levels of genetic structure, either by collection site or by treatment. 

With microsatellites, observed heterozygosity was highest in the recovery treatment and 

almost equal at new and reference sites. AFLP data showed that average heterozygosity 

was highest (0.298) in the new treatment and lowest in the recovery treatment (0.272; 

Table 3.5). Pairwise ΦST values for microsatellites and AFLP’s are small (Table 3.7) 

ranging from 0.000 to 0.069 for microsatellites and 0.015 to 0.132 for AFLPs. Analysis of 

molecular variation (AMOVA) for microsatellite markers showed that 96% of the 

variance was found within populations (P = 0.001; Table 3.8) and for AFLPs, the amount 

of variance within populations was 90% (P = 0.001; Table 3.8). There was some evidence 

of isolation by distance by collection site only in the AFLP data (r = 0.7378, Z = 8.87, P = 

0.0015) but not in the microsatellite data (r = 0.1873,  Z= 84.8, P = 0.1559, Figure 3.2), 

likely due to the high scatter. However, PCA of the microsatellite data showed extensive 

overlap between treatments (Figure 3.3) indicating low levels of genetic structure. PC 

axis 1 explains 21.2% of the variation, axis 2 explains 20.1% and axis 3 explains 16.3% 

for a cumulative total of 57.4%. Similarly, with AFLPs, PCA analysis showed overlap 

between treatments (Figure 3.3). A plot of PC2 versus PC3 (not shown) has no pattern or 

grouping by treatment; many data points fell upon each other. Axis 1 explains 28.3% of 

the variation, axis 2 explains 16.5% and axis 3 explains 14.5% for a cumulative total of 

59.4%.  PC axis one most likely represents distance between ponds. I expected that 

treatments would be more likely to group than if collection sites and treatments were 

randomly located on the landscape, simply because when collection sites were grouped by 
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treatment, they were closer to each other than collection sites in the other treatments. 

Therefore, the overlap between treatments was even more surprising.  

Assignment tests 

 Salamanders from the Beaver Pond did not have a clear signal indicating their 

origin but both markers indicated that Maratta and Hummocks were the most likely 

source populations, a reasonable result as those localities are only 2.37 km and 3.80 km 

away from Beaver Pond, respectively. The microsatellite data showed that of the 23 

Beaver Pond animals, 13 were assigned to new ponds, 3 to Hummocks and 10 to Maratta. 

Surprisingly, there were 6 animals assigned to recovery lakes (3 to Curtis, 2 to Ryan and 

1 to St Charles) and 4 to reference lakes (2 each to Goat Marsh and McBride). Under the 

least stringent conditions for assigning AFLP genotypes to a putative source population, 

Beaver Pond animals clearly originated from either Maratta (13 of 23; P = 0.1724 – 

0.8576) or Hummocks (9 of 23; P = 0.0768 – 0.4436). One animal was assigned to 

Hummocks but with only a 0.8% probability so it did not assign well to any population. 

With MLD = 0.2, 2 animals were not allocated to any population (P = 0.001 – 0.7200), 12 

were allocated to Maratta (P = 0.1622 – 0.8567), and 8 to Hummocks (P = 0.0514 – 

0.4436). One animal was assigned to Hummocks but with only a 0.8% probability so it 

did not assign well but yet, did not meet the criteria to be unassigned. With MLD = 1, 16 

animals were not allocated to any population (P = 0.1166 – 0.4886), 5 were allocated to 

Maratta (P = 0.1360 – 0.8600), and 2 to Hummocks (P = 0.1360 – 0.2420).  
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Discussion 

 In general, pond-breeding amphibians are thought to be slow dispersers with low 

vagility (Duellman & Trueb 1986; Blaustein et al. 1994). Additionally, the apparent 

preponderance of neotenes captured in breeding ponds would lead to expectations of low 

gene flow. Given large source populations (mostly likely in the forests surrounding 

Mount St. Helens), A. gracile was resilient in the face of a large infrequent environmental 

disturbance. High levels of gene flow and no loss of genetic variability in new 

populations was an unexpected result. However, Titus & Gaines (1991) compared gene 

flow of A. gracile in coastal populations composed of transformed adults with montane 

populations composed of neotenic adults using allozyme markers. They were surprised to 

find high levels of gene flow (FST = 0.006, coastal populations; FST = 0.010, montane 

populations) and proposed three hypotheses to explain their results. Their first hypothesis 

(and the only relevant one here) is that metamorphosis and dispersal may be more 

common than thought. This is congruent with the genetic evidence from Mount St. 

Helens. Initial colonization of the new ponds formed by the debris-avalanche could only 

occur through terrestrial adults. Even though subsequent conditions in the new and 

recovery areas would seemingly favor neotenes (Sprules 1974a), low levels of population 

structure strongly indicate that there are substantial numbers of terrestrial adults moving 

across the landscape at Mount St. Helens. Sprules (1974b) demonstrated that A. gracile 

populations could include individuals that always metamorphose, regardless of 

environmental conditions, those that are always neotenic and finally, those that may or 

may not transform, depending on environmental cues. Because colonizers at Mount St. 
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Helens, could only come from unaffected forest areas surrounding the affected area and 

blowdown zone survivors, my results agree with Sprules (1974a,b) in that variation in 

reproductive mode contributes to colonization and survival.  

 Little is known of the terrestrial ecology and behavior of A. gracile except that 

they are fossorial, rarely seen, and make extensive use of rodent burrows (Nussbaum et 

al. 1983). It is likely that dispersing A. gracile used Northern pocket gopher (Thomomys 

talpoides) burrows as refuges. Many individuals of this fossorial herbivore survived the 

blast and significantly promoted recovery of the plant community due to their burrowing 

activities (Andersen & MacMahon 1985). My and the allozyme data of Titus (1990) 

suggest that A. gracile may not be philopatric to their natal or breeding pond, interesting 

in that A. maculatum, sister taxon to A. gracile, is highly philopatric (Shaffer et al. 1991; 

Semlitsch 1998). Kinkead et al. (2007) studied, using AFLPs and mark-recapture 

methods, Ambystoma talpoideum and A. maculatum and expected to find population 

structure in their breeding populations because only 6 animals were detected moving 

between ponds (142 m maximum distance) during a 3-year period. However, the genetic 

data showed no evidence of population structure, even over distances of approximately 25 

km. The results of my study, coupled with that of Kinkead et al. (2007) indicate that we 

still do not fully understand migration and dispersal (as defined by Semlitsch 2008) in 

ambystomatid salamanders. 

 High levels of heterozygosity and low FST values strongly indicate that, in the 

Mount St. Helens area, A. gracile appear to comprise a large, panmictic population. 

Unlike many other pond-breeding amphibians (Gamble et al. 2007), including most 

Ambystoma, these populations are not acting as a metapopulation at the scale of my study. 
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Instead, A. gracile populations around Mount St. Helens can be characterized as a 

single, large patchy population (Roslin 2001; Bradford et al. 2003). While is difficult to 

discern why pond-breeding amphibians move from favorable to apparently unfavorable 

habitats, there is evidence that some species are able to assess the condition of the 

breeding pond at oviposition time and if not adequate, due to factors such as the presence 

of predators or competitors, can switch to a different breeding site (Semlitsch 1998; 

Petranka et al. 2004).  

 Dispersal capability certainly plays a large role in determining the level of 

population structure and the amount of gene flow. At Mount St. Helens, Crisafulli et al. 

(2005b) report that some recently metamorphosed A. gracile dispersed at least 3.2 km in 

the blowdown zone, traveling over a steep valley wall, over a ridge, into the next 

drainage. In the Pumice Plain, a barren “moonscape,” an individual salamander dispersed 

3.0 km. The closest known source populations for the ponds in the debris-avalanche zone 

were 3.7 km away. If the colonization of the new ponds at Mount St. Helens is considered 

a process similar to that of an invasive species colonizing new habitat, my results suggest 

colonization by large numbers of animals. This may be a similar process to that of 

introduced Anolis lizards from around the Caribbean region into Florida where admixture 

contributed to increased genetic variation in introduced populations as compared to 

source populations (Kolbe et al. 2004; 2007). Although long distance migration of 

amphibians is difficult to study and thus may be underestimated for many species (Marsh 

& Trenham 2001), direct observation by Crisafulli et al. (2005b) and my genetic data 

show that A. gracile are capable of and do engage in long-distance movements. 
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 High gene flow can also be evidence of population expansion (Newman & 

Squire 2001). If that were the case at Mount St. Helens, I would expect to see differences 

in the measures of genetic diversity, especially with respect to reference populations, 

unless the expansion is over a larger area than my study area.  However, I consider this 

unlikely. First, this species was present in and around Mount St. Helens prior to the 

eruption. Second, populations of A. gracile do not appear to be declining or expanding 

and current distribution appears to resemble their historical range (Shaffer 2005), 

although demographic data on any salamander are limited. Another study, perhaps in 

another 20 years or so, may be warranted to ensure I have not recorded a transient 

response to the disturbance.    

 This study leads to another question: Why has A. gracile successfully colonized 

new ponds and is seemingly successful in blowdown areas while Ambystoma 

macrodactylum (long-toed salamander) has not? This species was assumed present in the 

area and reported to be breeding in Elk and St. Charles Lake within 3 years post eruption 

(Karlstrom 1986; Crisafulli et al. 2005b). However, I did not find any during my 

collecting. Ambystoma macrodactylum is considered a relatively common salamander, 

breeds earlier than A. gracile, and does not have a neotenic form (Petranka 1998). There 

is evidence that A. macrodactylum is capable of dispersal and migration. In rugged 

terrain, A. macrodactylum showed no isolation by distance in the eight populations 

sampled in northeastern Oregon and western Idaho and there was more variability within 

populations than between populations (Howard & Wallace 1981). In the Bitterroot 

Mountains of Idaho and Montana, A. macrodacylum showed substantial levels of genetic 

variation and was panmictic within basins with evidence for some gene flow on a 
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regional scale (Tallmon et al. 2000). Low altitude sites (< 1200 m) had more gene flow 

between them than among high altitude sites ( > 1200 m) or between high and low 

altitude sites (Giordano et al. 2007). Perhaps there were far fewer A. macrodactylum than 

A. gracile in the Mount St. Helens area pre-eruption and therefore few animals available 

for colonization post-eruption (Dvornich et al. 1997). Although both species are common 

in nearby Mount Rainer National Park, they differ in breeding site preferences and large 

A. gracile larvae are capable of preying upon smaller A. macrodactylum larvae (Hoffman 

et al. 2003). 

 Amphibian colonization at Mount St. Helens appears to follow a pattern similar to 

that of other amphibian communities: anurans first, then pond-breeding salamanders. 

Four species of anuran colonized the Maratta wetlands complex in the debris-avalanche 

zone (new ponds) before the first salamander, A. gracile arrived (Crisafulli et al. 2005b). 

Anurans and salamanders easily colonized constructed ponds within a year in a North 

Carolina site with multiple source ponds nearby (Petranka et al. 2003). In a sand prairie 

habitat in Indiana, seven of nine anurans colonized restored areas in one year while tiger 

salamanders (A. tigrinum) took five years (Brodman et al. 2006). Wildfire in Glacier 

National Park in Montana did not negatively affect populations of A. macrodactylum and 

the Columbia spotted frog, Rana luteiventris, while the western toad, Bufo boreas 

colonized fire affected areas (Hossack & Corn 2007). Nine of nine anuran species 

colonized restored wetlands in Minnesota while only one of three salamander species was 

able to do so (Lehtinen & Galatowitsch 2001). In Great Britain, the two anuran species 

(Bufo bufo and Rana temporaria) more readily colonized newly constructed ponds than 

two newt species (Triturus cristatus and Triturus vulgaris) because newts were unable to 
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colonize new ponds found greater than 400m from existing ones (Baker & Halliday 

1999). In South Carolina, some anuran species colonized new ponds (built to mitigate 

loss of wetlands) within a year and successfully reproduced while successful salamander 

reproduction took three years (Pechmann et al. 2001). As Petranka et al. (2004) noted, 

time is an important variable when determining the success of a colonization event. With 

respect to ambystomatid salamanders, colonization can take up to a decade and even if 

animals are observed in a breeding pond the first year, it can take 3-5 years for 

salamanders to mature (Petranka 1998). Therefore, colonization studies (usually 

conducted with respect to evaluating a habitat restoration event) must be cognizant of 

these time scales.  

 The effects of disturbance and habitat fragmentation on pond-breeding 

amphibians are complex. Traditionally, pond-breeding amphibians were thought to exist 

in metapopulations and generally did not move extensively across the landscape, although 

this assumption has been questioned several times (Marsh & Trenham 2001; Jehle et al. 

2005; Cushman 2006). This study shows that A. gracile are resilient in the face of a major 

environmental disturbance. Their ability to colonize new ponds set in an seemingly 

inhospitable matrix is surprising, more so when it appears to have been done by a large 

number of individuals, either in a single pulse, or more likely, multiple times. Clearly, 

predicting dispersal and colonization ability based on the broad category of pond-

breeding amphibian is not always reliable. Additionally, dispersal ability of the same 

species may be different across a continuous versus fragmented habitat; some animals, 

while poor dispersers in a continuous landscape, may be good dispersers through/across 

fragments (Marsh et al. 2004). Regardless of cause, the ability of A. gracile to colonize 
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the new ponds (and most likely recovery areas as well) is an encouraging result. Not all 

is doom and gloom in the amphibian conservation world. Future studies of amphibian 

colonization studies should emphasize the response of individual species at multiple 

scales of time and space.  
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Table 3.1. Effects of 1980 eruption of Mount St. Helens on the local landscape (Crisafulli et al. 2005a; Swanson & Major 2005). The 
eruption also generated mudflows but these were localized to drainages and are not under consideration.  
 
 

Zone 
 

Caused by 
 

Characterized by 
 

Created 
 

Survivors 
 

Treatment 

Debris- 
Avalanche 

 

Collapse and landslide of 
volcano’s north slope. 

 

Hummocks/hills of rock. 
Covering of landscape by 

rock to 195m. 

 

A clean slate with new lakes and 
ponds nonexistent prior to the 

eruption. 

 

None 

 

New  

Blow down 

 

High pressure blast, Air temps to 
300ºC. High velocity rock and 

tephra moving across landscape. 

 

Blowdown of trees, 
heating of lakes/ponds, 
heavy levels of ash and 
organic material into 

lakes/ponds. 

 

Complex mosaic of disturbance 
dependent upon topography and 

distance from volcano.  

 

Some 
(fossorial animals, fish, T. 

granulosa, A. gracile, 
underground plant parts) 

 

Recovery 

Reference 

 

South of volcano.  Not in direct 
path 

of eruptive forces. 

 

Life as normal. Some 
ash/tephra fall. 

 

No major effects. 

 

Probably 100% 

 

Reference 
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Table 3.2. Total collection of A. gracile by zone and treatment (Trmt) in and around 
the Mount St. Helens National Volcanic Monument (MSHNVM). The two letters under 
code are abbreviations for each collection site. Debris-Avalanche (DA), Recovery (REC), 
Reference (REF). Latitude, longitude, and elevation were measured with a handheld GPS. 
Pond designators (e.g. M5) in Maratta and Hummocks are from Crisafulli (pers.comm) 
and NR indicates not recorded. 
 
 

 Code Zone Trmt N Lat (N) 
(deg. min) 

Long (W) 
(deg. min) 

Elevation 
(m) 

Maratta  MA DA NEW     
        M5    3 46 17.48 122 16.98 730.8 
        M6    36 46 17.47 122 16.97 749.8 
        M27    4 46 17.54 122 17.05 725.2 
        M28    2 NR   
        M30    32 46 17.52 122 16.98 744.3 
Hummocks  HU DA NEW     
        H1    2 46 17.05 122 16.15 758.2 
        H6*    78 46 16.77 122 16.15 763.7 
        H23    21 46 16.81 122 16.22 765.2 
        H25    9 46 16.85 122 16.12 762.5 
        H26    2 46 16.91 122 16.28 745.5 
Beaver Pond BP REC N/A 25 46 18.76 122 12.21 939.7 
Curtis Lake CU REC REC 27 46 16.85 122 03.00 1107.7 
Ghost Lake GH REC REC 4 46 19.17 122 03.68 1154.2 
Meta Lake ME REC REC 4 46 19.64 122 03.21 1456.0 
Ryan Lake RY REC REC 32 46 21.17 122 03.70 1015.4 
St Charles Lake SC REC REC 69 46 19.34 122 05.23 1223.4 
Goat Marsh Lake GM REF REF 16 46 08.42 122 16.72 889.8 
McBride Lake MB REF REF 14 46 08.44 122 15.11 830.7 

* I captured many more animals at this site, but collected tissue samples from 78. 
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Table 3.3. PCR conditions and basic data on four microsatellite loci used in A. gracile from MSHNVM. Number genotyped per locus 
(N), number of alleles (A), observed heterozygosity (HO), expected heterozygosity (HE), and number of migrants (Nm) based on FST 
values (Nm)averaged over all collection sites except for Beaver Pond.  
 
 

Locus N Dye Size range (base pairs) A HO HE FST FIS Nm 
Aje D23 245 VIC 206–280 19 0.824 0.866 0.044 0.049 5.42 
Aje D314 225 6-FAM 164–300 69 0.673 0.898 0.076 0.251 3.05 
Ama D226 241 6-FAM 228–370 32 0.862 0.880 0.054 0.020 4.34 
Ama D49 211 NED 151–280 41 0.884 0.892 0.060 0.009 3.89 

 

 

85
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Table 3.4. Measures of genetic diversity for all collection sites at MSHNVM by 
microsatellite locus. Number genotyped (N), number of alleles (A), effective number of 
alleles (NE), observed heterozygosity (HO), expected heterozygosity (HE). Over all 
collection sites and loci, FST = 0.057, FIS = 0.084, and Nm = 4.3. 
 
 

 Aje D23 Aje D314 Ama D226 Ama D49 Mean 
HU N 68 67 69 61  

 A 13 29 17 25  
 NE  7.88  8.37  6.45 14.12  
 HO   0.853   0.582   0.812   0.820 0.767 
 HE   0.873   0.880   0.845   0.929 0.882 

MA N 47 36 43 48  
 A 13 28 15 26  
 NE  8.84 18.38  9.39 17.07  
 HO   0.787   0.694   0.837   0.792 0.778 
 HE   0.887   0.946   0.893   0.941 0.917 

CU N 23 22 24 13  
 A 12 25 20 19  
 NE  9.12 17.93 11.64 16.90  
 HO   0.913   0.773   0.875   0.923 0.871 
 HE   0.890   0.944   0.914   0.941 0.922 

GH N 4 3 4 3  
 A 6 5 7 5  
 NE  5.33  4.50  6.40  4.50  
 HO    1.000   0.667   1.000   1.000 0.917 
 HE   0.813   0.778   0.844   0.778 0.803 

ME N 4 3 3 4  
 A 6 6 5 6  
 NE  5.33  6.00  4.50  4.57  
 HO   0.750   1.000   0.667   1.000 0.854 
 HE   0.813   0.833   0.778   0.781 0.801 

RY N 25 25 25 17  
 A 17 28 20 18  
 NE 11.68 20.83 15.63 13.44  
 HO   0.800   0.680   0.880   0.941 0.825 
 HE   0.914   0.952   0.936   0.926 0.932 

SC N 44 42 43 40  
 A 12 26 21 27  
 NE  8.82 14.58 13.80 17.49  
 HO   0.909   0.738   0.884   0.850 0.845 
 HE   0.887   0.931   0.928   0.943 0.922 

GM N 14 11 14 10  
 A 10 14 15 13  
 NE  6.64 11.00 10.05 10.00  
 HO   0.714   0.545   0.929   0.900 0.772 
 HE   0.849   0.909   0.901   0.900 0.890 

MB N 16 16 16 15  
 A 10 15 13 12  
 NE  7.64 11.13  8.39  9.38  
 HO   0.688   0.375   0.875   0.733 0.668 
 HE   0.869   0.910   0.881   0.893 0.888 

BP N 22 22 21 16  
 A 11 18 19 17  
 NE  8.49 13.08 12.42 13.13  
 HO   0.818   0.591   1.000   0.875 0.821 
 HE   0.882   0.924   0.920   0.924 0.912 
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Table 3.5. Measures of genetic diversity by treatment at MSHNVM by microsatellite 
and AFLP loci. Number genotyped (N), number of alleles averaged over loci (A), 
effective number of alleles (Ne), observed heterozygosity (HO), expected heterozygosity 
(HE), average heterozygosity (HA) for AFLP, Fixation index (F) for microsatellite data, 
and percent of polymorphic loci (%P) for AFLPs. Over all treatments and loci, FST = 
0.017, FIS = 0.156, and Nm = 16.5 for microsatellite data. HA  over all treatments and 
AFLP loci = 0.284. 
 
 

Trmt N A Ne HO HE /  HA F / %P 
Microsatellite      

New 93 31.5 18.2 0.769 0.910 0.154 
Recovery 120 27.0 12.1 0.844 0.939 0.100 
Reference 30 18.0 12.2 0.711 0.912 0.217 
       

AFLP      
New 132 2.0 - - 0.298 100.0 
Recovery 99 1.9 - - 0.272 93.4 
Reference 31 1.9 - - 0.283 93.4 
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Table 3.6. Measures of genetic diversity for all collection sites at MSHNVM based on 
81 AFLP loci. Number genotyped (N), number of bands (NB), average heterozygosity 
(HA), standard error of estimated heterozygosity (SE), Percent Polymorphic (%P). Codes 
are as in Table 3.1. 
  
 

Code N NB HA SE % P 
HU 70 76 0.291 0.019 92.59 
MA 62 80 0.293 0.016 98.77 
CU 25 76 0.261 0.019 88.89 
GH 4 55 0.191 0.023 50.62 
ME 4 58 0.161 0.022 44.44 
RY 26 67 0.262 0.020 86.42 
SC 48 74 0.266 0.021 87.65 
GM 15 73 0.291 0.019 88.89 
MB 16 72 0.250 0.020 83.95 
BP 23 73 0.277 0.019 87.65 
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Table 3.7. Pairwise population ΦPT values (below diagonal) for microsatellites (top 
number of pair) and AFLPs (bottom number of pair). ΦPT values are functionally 
equivalent to FST and can be directly compared between microsatellites and AFLPs. 
Negative ΦPT values were converted to zero. P values are above the diagonal and non-
significant values are in bold.  
 
 
 Curtis Ryan St Charles Hummocks Maratta Goat Marsh McBride 
Curtis  0.392  

0.002 
0.463 
0.013 

0.001 
0.001 

0.001 
0.001 

0.191 
0.001 

0.034 
0.001 

Ryan 0.001  
0.029 

 0.013 
0.008 

0.001 
0.001 

0.001 
0.001 

0.142 
0.001 

0.011 
0.001 

St Charles 0.000  
0.015 

0.013 
0.015 

 0.001 
0.001 

0.001 
0.001 

0.043 
0.001 

0.001 
0.001 

Hummocks 0.044  
0.088 

0.062 
0.086 

0.047 
0.132 

 0.001 
0.001 

0.001 
0.001 

0.001 
0.001 

Maratta 0.023  
0.077 

0.020 
0.067 

0.020 
0.120 

0.042 
0.050 

 0.016 
0.001 

0.001 
0.001 

Goat Marsh 0.008  
0.052 

0.009 
0.063 

0.015 
0.075 

0.056 
0.086 

0.020 
0.062 

 0.219 
0.054 

McBride 0.018 
0.094 

0.019 
0.107 

0.033 
0.114 

0.069 
0.120 

0.031 
0.091 

0.009 
0.019 
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Table 3.8. Results of hierarchical AMOVA comparing genetic variation among the three treatments (new, recovery, reference), among 
collection sites within treatments and among collection sites for microsatellites and AFLPs.  
 
 

Source of variation df SS MS Est. Var. % Statistic Value Probability 

Microsatellites         

     Among Trmt 2 24.751 12.376 0.070 2% ΦRT 0.016 0.0001 

     Among Pops/Trmt 4 29.564 7.391 0.096 2% ΦPR 0.022 0.0001 

     Within Pops 236 994.509 4.214 4.214 96% ΦPT 0.038 0.0001 

     Total 242 1048.824 23.981 4.380     

AFLP         

     Among Trmt 2 196.527 98.264 0.930 7% ΦRT 0.069 0.0001 

     Among Pops/Trmt 4 107.999 27.000 0.414 3% ΦPR 0.033 0.0001 

     Within Pops 255 3091.958 12.125 12.125 90% ΦPT 0.100 0.0001 

     Total 261 3396.485 137.389 13.469     
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Figure 3.1. Collection sites at MSHNVM. White arrow points north. New ponds are 
Maratta and Hummocks in the debris-avalanche zone, recovery lakes are St. Charles and 
Ryan and Curtis Lakes in the blowdown-zone, and reference lakes are Goat Marsh and 
McBride Lakes. Linear distance between Ryan and McBride Lake is 28.04 km. 
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Figure 3.2. Geographic distance versus Nei’s unbiased genetic distance in A. gracile at MSHNVM. Open circles indicates 
microsatellites (no isolation by distance, r = 0.1873, P = 0.1559) and solid squares indicate AFLPs (significant isolation by distance, r 
= 0.7378, P = 0.0015). See appendix C for a distance table (geographic and Nei’s). 
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Figure 3.3. Principal component analysis for microsatellite (A,B) and AFLPs (C, D) for A. gracile at MSHNVM. 
New populations are indicated by a filled square, recovery populations by an open circle and reference populations 
by an open triangle. 93
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CHAPTER 4 

CONCLUSIONS 

 The goal of this study was to measure the population genetic response of two 

common amphibians, Taricha granulosa (rough-skinned newt) and Ambystoma gracile 

(northwestern salamander) to the 1980 eruption of Mount St. Helens. Understanding how 

measures of genetic diversity, gene flow, and population structure may be affected by a 

major environmental disturbance is important in improving our knowledge of 

colonization. Colonization rates and the order that plant and animal species established 

themselves at Mount St. Helens was more complex that present ecological theory could 

explain. Instead of following a clear pattern, colonization and recovery was species and 

situation specific (Franklin et al. 1985; Crisafulli et al. 2005b). For the purposes of my 

study, the eruption created a mosaic of landscape alterations that could be assigned into 

three treatments, which were new, recovery and reference. I predicted that in both species, 

populations in recently colonized habitats (composed of immigrants only), would have 

less genetic variation than populations from recovery area (survivors/their descendants 

and immigrants), or reference populations (assumed to be unimpacted by the eruption). 

This prediction was based on the supposition that new populations would have been 

colonized by few individuals and that migration rates were low. The data did not support 

my predictions. In newts, there were no significant differences in six measures of genetic 

diversity among treatments (Table 2.6). Results were similar in A. gracile (Table 3.6). 

With microsatellite markers, the observed heterozygosity of the reference lakes was 

lower than either new or recovering populations and with AFLPs, newly colonized 



 

 

95 
populations had a higher average heterozygosity than either of the other two treatments 

(Table 3.6).  

 The results for both species can be explained through the surprisingly high levels 

of gene flow, despite the rugged terrain. Gene flow, the movement of genetic material 

from one area to another, reduces or eliminates genetic differences among populations 

(Petranka 2007). Those amphibian species with higher vagility may be more adversely 

affected by habitat fragmentation than those that are site fidelic (Cushman 2006) because 

they require larger areas of suitable habitat.  Additionally, habitat change may be the be 

the biggest threat to amphibian conservation (Gardner et al. 2007). Thus, the rapid 

recovery and minimal loss of genetic variability in colonizing populations in both these 

species is good news.  

 High gene flow can result from large numbers of animals moving across the 

landscape or through multiple waves of colonization. A review of T. granulosa activity 

patterns (Chapter 2, discussion) show that they are well suited to move across open areas 

and may in fact prefer moving across them. For both species, burrows created by northern 

pocket gophers (Thomomys talpoides) or other fossorial mammals may have created 

suitable refuges for salamanders unable to move during hot and dry periods (MacMahon 

et al. 1989). Interestingly, although the gophers were found within the blast zone less 

than a year post eruption (Andersen & MacMahon 1985), they took 12 years to colonize 

the debris-avalanche zone (Crisafulli et al. 2005a). Ambystoma gracile took 9 years and T. 

granulosa took 10 years (Crisafulli et al. 2005c). It is possible that salamander migration 

rates were limited by the dispersal rates of fossorial mammals because it is likely that 

salamanders used their burrows as refuges. Additionally, female newts mate with 
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multiple males (2-5) and offspring from a single clutch may have multiple fathers 

(Jones et al. 2002). While no one has tested for multiple paternity in the A. gracile, it is 

found in other species of Ambystoma including A. tigrinum, A. maculatum, and A. 

talpoideum (Tennessen & Zamudio 2003; Myers & Zamudio 2004; Gopurenko et al. 

2006; Whiteman et al. 2006).   

 Genetic studies of two sympatric species can highlight how differences in life-

history strategies affect gene flow and population substructure. Often, there is a key 

difference between species that the researchers wish to highlight. For example, 

comparing a specialist or generalist (Brouat et al. 2003), differences in dispersal ability 

(Tibbets & Dowling 1996; Miller et al. 2002; Hoehn et al. 2007), social structure (Brouat 

et al. 2007) or several life-history variables (Kraaijeveld-Smit et al. 2007). Such was the 

intent with this study. Efford and Mathias’ (1969) study of T. granulosa and A. gracile in 

the same lake concluded that the two species differ greatly in their population dynamics; 

T. granulosa with low adult recruitment, and long life, and A. gracile with a high 

reproductive and growth rate and a short life span. I expected T. granulosa to be less 

philopatric to their breeding site than A. gracile because there was some evidence they 

were capable of high gene flow. Ambystomatid salamanders are generalized (although 

this view is being questioned (Trenham 1998; Smith & Green 2005) as highly philopatric 

and there was little evidence to suspect that A. gracile was any different. Additionally, 

the population of A. gracile at Mount St. Helens appears to be characterized by a high 

level of neoteny. Neotenes are not physiologically capable of moving across the 

terrestrial landscape because they breathe with gills. Therefore, gene flow in T. granulosa 

should be higher than A. gracile. Comparing sites where both animals were collected, 



 

 

97 
gene flow levels are comparable (Table 2.7, 3.7). Additionally, neither species showed 

evidence for population structure or isolation by distance (Figures 2.2, 2.3, 3.2, 3.3). 

Perhaps neoteny is not a response to a harsh terrestrial environment as suggested by 

Sprules (1974) or there are more terrestrial A. gracile moving across the landscape than 

originally thought. Neotenes and terrestrial forms are capable of interbreeding in many 

species of Ambystoma including A. gracile (Knudsen 1960; Semlitsch 1985; Licht & 

Sever 1991; Whiteman et al. 2006). Neoteny should not restrict the reproductive output 

of the species and gene flow can be maintained by terrestrial adults. 

 Finally, this study shows that the generalities encompassed in the term “pond-

breeding amphibian” does not serve as good predictor variables in predicting a response 

to an environmental disturbance. The term pond-breeding amphibian implies high site 

fidelity and low vagility, resulting in low gene flow and genetic differences in 

subpopulations. Populations of pond breeding amphibians are often automatically 

classified as existing in a metapopulation type structure, an assumption not always 

correct or tested for (Marsh & Trenham 2001). Taricha granulosa and A. gracile, while 

they do breed in ponds, have shown the opposite pattern. At Mount St. Helens, 

populations are characterized by high gene flow which results in low population structure. 

Therefore, researchers should use the term pond-breeding amphibian carefully as the 

mental image and stereotype the term invokes is not universally applicable.      
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Table A.1. Collections by location and year of Taricha granulosa and Ambystoma gracile at Mount St. Helens National Volcanic 
Monument. NS indicates not sampled.  
 
 
 Hummocks  Maratta 

2003 H1 H2B H23 H6 H9 H25 H26  M3 M5 M6 M30 M26 M27 M28 
Marratta 

Lake 
Beaver 
Pond 

T. granulosa  ns ns 2 1 ns ns ns  ns 1 7 8 1 ns ns 0 ns 

A. gracile  ns ns 19 42 ns ns ns  ns 1 27 21 0 ns ns 1 ns 
                  

2005                  
T. granulosa 
adult 

0 0 0 3 0 0 0  0 0 3 0 ns 3 1 ns 0 

T. granulosa 
larvae 

0 0 0 0 0 0 0  0 0 0 0 ns 0 0 ns 0 

A. granulosa 
neotene 

2 0 2 36 0 9 2  0 2 9 11 ns 4 2 ns 25 

A. gracile larvae 0 0 0 0 0 0 0  0 0 0 0 ns 0 0 ns 0 

 
 
 Blowdown  Reference 

2003 Curtis St. Charles Ryan Meta Ghost Strawberry  Goat Marsh McBride 

T. granulosa adult 0 7 0 0 2 ns  46 40 
A. gracile 27 33 17 4 3 ns  0 0 
          

2005          
T. granulosa adult ns 3 0 ns 0 46  29 5 
T. granulosa larvae ns 1 0 ns 0 0  21 7 
A. gracile neotene ns 28 15 ns 1 0  16 12 
A. gracile larvae ns 8 0 ns 0 0  0 2 
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Table B.1 Allele frequencies for Taricha granulosa and Ambystoma gracile from 
Mount St. Helens National Volcanic Monument. N indicates the number of animals 
genotyped at a locus. Allele sizes are in base pairs. 
  
 

Taricha granulosa 
      

Locus size Hummocks Maratta Strawberry 
St 

Charles 
McBride 

Goat 
Marsh 

 

Tgr 01 N 6 26 41 11 43 75  

 215 0.000 0.019 0.000 0.000 0.000 0.000  

 219 0.167 0.154 0.146 0.000 0.105 0.140  

 223 0.000 0.038 0.061 0.182 0.035 0.047  

 227 0.000 0.038 0.024 0.000 0.023 0.000  

 231 0.000 0.038 0.012 0.000 0.035 0.033  

 235 0.083 0.192 0.220 0.136 0.326 0.220  

 239 0.083 0.231 0.220 0.091 0.233 0.287  

 243 0.083 0.096 0.061 0.273 0.128 0.167  

 247 0.167 0.058 0.061 0.091 0.035 0.040  

 251 0.083 0.000 0.073 0.091 0.012 0.007  

 255 0.333 0.077 0.061 0.045 0.035 0.053  

 259 0.000 0.038 0.061 0.091 0.023 0.007  

 263 0.000 0.019 0.000 0.000 0.000 0.000  

 271 0.000 0.000 0.000 0.000 0.012 0.000  

         

Tgr 02 N 6 26 37 11 40 73  

 179 0.167 0.192 0.041 0.000 0.150 0.212  

 183 0.000 0.000 0.027 0.000 0.025 0.014  

 187 0.083 0.096 0.176 0.227 0.175 0.082  

 191 0.083 0.077 0.135 0.045 0.038 0.062  

 195 0.167 0.135 0.378 0.273 0.213 0.144  

 199 0.000 0.038 0.027 0.000 0.013 0.007  

 203 0.000 0.019 0.068 0.227 0.025 0.103  

 207 0.167 0.269 0.081 0.136 0.175 0.267  

 211 0.250 0.154 0.054 0.091 0.100 0.062  

 215 0.000 0.000 0.000 0.000 0.000 0.007  

 235 0.083 0.019 0.000 0.000 0.025 0.014  

 239 0.000 0.000 0.000 0.000 0.013 0.000  

 243 0.000 0.000 0.000 0.000 0.025 0.000  

 245 0.000 0.000 0.014 0.000 0.000 0.000  

 247 0.000 0.000 0.000 0.000 0.013 0.021  

 255 0.000 0.000 0.000 0.000 0.013 0.007  
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Tgr 06 N 6 25 41 11 41 76  

 145 0.000 0.000 0.037 0.045 0.073 0.013  

 149 0.083 0.200 0.207 0.045 0.134 0.132  

 153 0.083 0.080 0.061 0.045 0.134 0.145  

 157 0.417 0.380 0.305 0.409 0.293 0.309  

 159 0.000 0.000 0.000 0.000 0.012 0.000  

 161 0.333 0.160 0.171 0.091 0.195 0.250  

 163 0.000 0.000 0.037 0.000 0.000 0.000  

 165 0.083 0.080 0.110 0.182 0.098 0.053  

 167 0.000 0.020 0.037 0.000 0.000 0.046  

 169 0.000 0.040 0.024 0.182 0.049 0.033  

 171 0.000 0.000 0.012 0.000 0.000 0.000  

 173 0.000 0.040 0.000 0.000 0.012 0.020  

         

Tgr 10 N 6 26 41 11 43 75 
 

 174 0.083 0.038 0.110 0.045 0.116 0.093  

 178 0.083 0.096 0.110 0.136 0.035 0.020  

 182 0.000 0.019 0.000 0.000 0.035 0.013  

 186 0.250 0.173 0.122 0.182 0.267 0.213  

 190 0.250 0.269 0.232 0.091 0.198 0.233  

 194 0.000 0.058 0.037 0.136 0.047 0.060  

 198 0.083 0.135 0.024 0.227 0.070 0.080  

 202 0.167 0.154 0.268 0.136 0.151 0.167  

 206 0.083 0.038 0.098 0.045 0.035 0.100  

 210 0.000 0.019 0.000 0.000 0.035 0.013  

 214 0.000 0.000 0.000 0.000 0.012 0.007  

         

Tgr 14 N 6 26 41 11 41 74  

 218 0.000 0.000 0.000 0.000 0.000 0.007  

 222 0.083 0.077 0.061 0.000 0.000 0.027  

 226 0.000 0.000 0.000 0.000 0.037 0.027  

 230 0.000 0.000 0.000 0.000 0.000 0.020  

 234 0.000 0.058 0.024 0.000 0.110 0.074  

 238 0.083 0.019 0.085 0.045 0.061 0.068  

 242 0.167 0.038 0.037 0.136 0.134 0.068  

 246 0.000 0.038 0.085 0.136 0.073 0.108  

 248 0.000 0.000 0.000 0.000 0.012 0.000  

 250 0.000 0.096 0.049 0.045 0.024 0.047  

 254 0.083 0.077 0.061 0.045 0.024 0.041  

 258 0.083 0.058 0.012 0.000 0.037 0.041  

 262 0.167 0.115 0.073 0.318 0.073 0.034  

 266 0.083 0.058 0.024 0.000 0.012 0.027  

 270 0.083 0.096 0.012 0.000 0.037 0.007  
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 274 0.000 0.019 0.000 0.000 0.000 0.020  

 278 0.000 0.019 0.000 0.000 0.000 0.000  

 282 0.000 0.000 0.000 0.000 0.000 0.054  

 286 0.000 0.019 0.024 0.000 0.024 0.020  

 290 0.000 0.019 0.098 0.091 0.073 0.027  

 294 0.167 0.000 0.122 0.045 0.061 0.068  

 298 0.000 0.096 0.085 0.045 0.037 0.088  

 302 0.000 0.038 0.012 0.000 0.037 0.034  

 306 0.000 0.000 0.000 0.000 0.012 0.000  

 308 0.000 0.019 0.061 0.000 0.037 0.027  

 312 0.000 0.000 0.000 0.045 0.024 0.041  

 314 0.000 0.000 0.037 0.000 0.000 0.000  

 316 0.000 0.019 0.024 0.045 0.049 0.007  

 318 0.000 0.019 0.000 0.000 0.000 0.000  

 320 0.000 0.000 0.012 0.000 0.000 0.020  

 328 0.000 0.000 0.000 0.000 0.012 0.000  

         

Ambystoma gracile       

Locus Size Hummocks Maratta Curtis Ryan 
St. 

Charles 
Goat 

Marsh 
McBride 

Agr 23 N 68 47 23 25 44 14 16 

 206 0.000 0.000 0.000 0.000 0.000 0.000 0.031 

 214 0.022 0.000 0.000 0.020 0.000 0.000 0.000 

 218 0.000 0.000 0.065 0.040 0.080 0.036 0.000 

 222 0.000 0.011 0.022 0.140 0.023 0.071 0.000 

 226 0.154 0.149 0.043 0.060 0.102 0.179 0.000 

 230 0.029 0.128 0.130 0.080 0.114 0.036 0.094 

 234 0.059 0.096 0.087 0.080 0.102 0.071 0.219 

 238 0.162 0.043 0.130 0.060 0.182 0.036 0.156 

 242 0.074 0.149 0.087 0.060 0.114 0.214 0.125 

 246 0.191 0.128 0.196 0.160 0.148 0.214 0.125 

 248 0.000 0.000 0.000 0.040 0.000 0.000 0.000 

 250 0.022 0.106 0.065 0.040 0.045 0.107 0.094 

 254 0.140 0.106 0.043 0.060 0.023 0.000 0.031 

 256 0.000 0.000 0.000 0.020 0.000 0.000 0.063 

 258 0.096 0.021 0.087 0.080 0.034 0.036 0.063 

 262 0.022 0.043 0.043 0.020 0.034 0.000 0.000 

 266 0.000 0.011 0.000 0.020 0.000 0.000 0.000 

 270 0.022 0.011 0.000 0.020 0.000 0.000 0.000 

 280 0.007 0.000 0.000 0.000 0.000 0.000 0.000 

         

Agr 49 N 61 48 13 17 40 10 15 

 151 0.000 0.021 0.038 0.000 0.013 0.050 0.067 

 155 0.016 0.021 0.000 0.000 0.000 0.050 0.000 
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 159 0.082 0.063 0.077 0.059 0.013 0.050 0.000 

 163 0.098 0.125 0.000 0.088 0.100 0.000 0.133 

 166 0.041 0.042 0.077 0.000 0.038 0.050 0.067 

 167 0.041 0.052 0.077 0.088 0.100 0.150 0.033 

 171 0.115 0.073 0.077 0.059 0.063 0.050 0.067 

 175 0.107 0.042 0.038 0.088 0.063 0.000 0.033 

 179 0.016 0.063 0.038 0.059 0.025 0.000 0.133 

 183 0.033 0.083 0.000 0.029 0.063 0.150 0.067 

 187 0.000 0.021 0.038 0.029 0.000 0.000 0.000 

 191 0.016 0.010 0.038 0.147 0.088 0.150 0.067 

 192 0.000 0.000 0.038 0.000 0.063 0.000 0.000 

 193 0.008 0.000 0.000 0.029 0.013 0.000 0.000 

 195 0.107 0.021 0.077 0.029 0.013 0.050 0.033 

 196 0.008 0.000 0.000 0.000 0.038 0.000 0.000 

 199 0.008 0.010 0.000 0.000 0.050 0.050 0.000 

 200 0.057 0.031 0.038 0.000 0.038 0.000 0.000 

 203 0.008 0.000 0.038 0.000 0.000 0.050 0.167 

 204 0.000 0.000 0.000 0.000 0.013 0.000 0.000 

 207 0.008 0.021 0.077 0.029 0.013 0.000 0.000 

 208 0.000 0.031 0.000 0.029 0.050 0.000 0.000 

 210 0.000 0.010 0.000 0.000 0.000 0.000 0.000 

 211 0.008 0.010 0.000 0.029 0.000 0.000 0.133 

 212 0.033 0.010 0.000 0.000 0.025 0.050 0.000 

 215 0.000 0.021 0.000 0.029 0.000 0.000 0.000 

 216 0.008 0.000 0.077 0.000 0.025 0.000 0.000 

 217 0.000 0.000 0.000 0.000 0.013 0.000 0.000 

 218 0.000 0.000 0.000 0.000 0.000 0.100 0.000 

 219 0.049 0.063 0.000 0.059 0.000 0.000 0.000 

 220 0.016 0.073 0.000 0.088 0.025 0.000 0.000 

 223 0.057 0.031 0.038 0.000 0.000 0.000 0.000 

 224 0.000 0.000 0.038 0.000 0.000 0.000 0.000 

 228 0.049 0.031 0.000 0.000 0.013 0.000 0.000 

 232 0.000 0.000 0.000 0.029 0.013 0.000 0.000 

 235 0.008 0.000 0.038 0.000 0.000 0.000 0.000 

 237 0.000 0.000 0.000 0.000 0.013 0.000 0.000 

 243 0.000 0.000 0.038 0.000 0.000 0.000 0.000 

 258 0.000 0.000 0.000 0.000 0.025 0.000 0.000 

 280 0.000 0.021 0.000 0.000 0.000 0.000 0.000 

         

Agr 
314 

N 67 36 22 25 42 11 16 

 164 0.000 0.000 0.023 0.000 0.012 0.000 0.000 

 168 0.000 0.014 0.023 0.000 0.000 0.000 0.000 

 172 0.000 0.014 0.000 0.000 0.000 0.045 0.094 

 176 0.007 0.000 0.045 0.000 0.000 0.000 0.000 
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 180 0.022 0.014 0.000 0.020 0.000 0.045 0.000 

 184 0.000 0.000 0.000 0.000 0.000 0.000 0.156 

 188 0.000 0.000 0.023 0.000 0.024 0.136 0.000 

 190 0.000 0.000 0.023 0.000 0.000 0.000 0.000 

 192 0.022 0.028 0.000 0.000 0.000 0.000 0.000 

 195 0.000 0.000 0.000 0.000 0.000 0.000 0.031 

 196 0.045 0.028 0.000 0.000 0.000 0.000 0.000 

 200 0.082 0.028 0.045 0.000 0.036 0.000 0.000 

 202 0.000 0.000 0.045 0.060 0.000 0.000 0.000 

 204 0.007 0.000 0.000 0.000 0.000 0.000 0.000 

 206 0.000 0.069 0.000 0.000 0.024 0.000 0.000 

 208 0.112 0.000 0.023 0.000 0.000 0.045 0.000 

 212 0.276 0.097 0.000 0.000 0.071 0.045 0.063 

 214 0.000 0.028 0.023 0.000 0.024 0.000 0.031 

 216 0.007 0.028 0.000 0.000 0.000 0.091 0.031 

 217 0.045 0.014 0.000 0.000 0.000 0.000 0.000 

 220 0.022 0.000 0.023 0.020 0.000 0.045 0.094 

 221 0.007 0.014 0.091 0.000 0.048 0.000 0.000 

 222 0.007 0.014 0.000 0.000 0.000 0.045 0.000 

 224 0.000 0.000 0.000 0.000 0.000 0.000 0.125 

 225 0.030 0.014 0.000 0.020 0.012 0.000 0.031 

 226 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 228 0.007 0.000 0.068 0.040 0.060 0.000 0.000 

 229 0.007 0.014 0.023 0.020 0.012 0.045 0.000 

 230 0.119 0.000 0.000 0.040 0.024 0.000 0.000 

 232 0.022 0.056 0.045 0.020 0.167 0.045 0.000 

 233 0.007 0.000 0.091 0.040 0.060 0.000 0.000 

 234 0.000 0.000 0.023 0.060 0.000 0.000 0.000 

 236 0.000 0.000 0.000 0.040 0.012 0.136 0.063 

 237 0.000 0.042 0.045 0.040 0.000 0.045 0.000 

 238 0.015 0.083 0.000 0.000 0.107 0.000 0.000 

 240 0.000 0.000 0.045 0.000 0.024 0.091 0.000 

 241 0.015 0.028 0.000 0.000 0.000 0.000 0.000 

 242 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 244 0.000 0.000 0.000 0.080 0.048 0.000 0.031 

 245 0.007 0.097 0.000 0.100 0.000 0.000 0.094 

 246 0.000 0.069 0.000 0.000 0.000 0.000 0.000 

 248 0.000 0.014 0.023 0.000 0.000 0.000 0.031 

 249 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

 250 0.015 0.000 0.000 0.020 0.000 0.000 0.000 

 252 0.000 0.000 0.023 0.000 0.024 0.000 0.000 

 253 0.000 0.000 0.000 0.020 0.000 0.000 0.094 

 255 0.000 0.056 0.000 0.000 0.000 0.000 0.000 

 256 0.000 0.000 0.000 0.020 0.000 0.000 0.031 
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 257 0.007 0.000 0.000 0.020 0.000 0.000 0.000 

 258 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

 260 0.000 0.000 0.000 0.020 0.012 0.000 0.000 

 262 0.000 0.000 0.000 0.000 0.000 0.136 0.000 

 264 0.000 0.000 0.023 0.000 0.000 0.000 0.000 

 265 0.000 0.028 0.000 0.000 0.000 0.000 0.000 

 267 0.000 0.000 0.000 0.000 0.012 0.000 0.000 

 268 0.000 0.000 0.114 0.060 0.048 0.000 0.000 

 270 0.015 0.042 0.000 0.020 0.000 0.000 0.000 

 272 0.007 0.000 0.023 0.040 0.048 0.000 0.000 

 274 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

 276 0.000 0.042 0.023 0.040 0.024 0.000 0.000 

 278 0.000 0.000 0.000 0.000 0.012 0.000 0.000 

 280 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 281 0.000 0.000 0.000 0.020 0.024 0.000 0.000 

 285 0.000 0.014 0.045 0.060 0.036 0.000 0.000 

 300 0.000 0.014 0.000 0.000 0.000 0.000 0.000 

         

Agr 
226 

N 69 43 24 25 43 14 16 

 240 0.000 0.000 0.000 0.000 0.047 0.036 0.000 

 252 0.029 0.012 0.021 0.000 0.047 0.036 0.000 

 256 0.000 0.023 0.042 0.000 0.000 0.000 0.000 

 260 0.014 0.000 0.063 0.040 0.012 0.000 0.000 

 264 0.080 0.093 0.021 0.040 0.058 0.071 0.031 

 268 0.029 0.151 0.000 0.060 0.035 0.036 0.063 

 272 0.022 0.058 0.042 0.020 0.047 0.000 0.000 

 276 0.283 0.163 0.146 0.020 0.163 0.036 0.063 

 280 0.036 0.151 0.146 0.080 0.058 0.143 0.156 

 284 0.101 0.035 0.146 0.080 0.093 0.179 0.219 

 288 0.203 0.093 0.042 0.060 0.058 0.143 0.094 

 292 0.000 0.070 0.000 0.040 0.047 0.071 0.031 

 296 0.014 0.035 0.021 0.060 0.047 0.036 0.125 

 300 0.036 0.023 0.021 0.060 0.012 0.000 0.031 

 305 0.007 0.000 0.021 0.000 0.012 0.036 0.000 

 309 0.000 0.000 0.042 0.020 0.081 0.071 0.094 

 313 0.000 0.000 0.000 0.040 0.012 0.036 0.000 

 317 0.000 0.000 0.021 0.020 0.000 0.000 0.031 

 326 0.000 0.000 0.000 0.000 0.000 0.000 0.031 

 330 0.007 0.000 0.000 0.020 0.000 0.000 0.000 

 332 0.007 0.000 0.000 0.000 0.000 0.000 0.000 

 334 0.109 0.000 0.042 0.000 0.000 0.036 0.031 

 338 0.007 0.012 0.063 0.080 0.023 0.000 0.000 

 342 0.000 0.000 0.000 0.060 0.000 0.000 0.000 

 346 0.014 0.000 0.042 0.060 0.058 0.000 0.000 
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 350 0.000 0.000 0.021 0.120 0.058 0.036 0.000 

 354 0.000 0.070 0.000 0.000 0.000 0.000 0.000 

 358 0.000 0.012 0.000 0.020 0.023 0.000 0.000 

 362 0.000 0.000 0.021 0.000 0.000 0.000 0.000 

 370 0.000 0.000 0.021 0.000 0.012 0.000 0.000 

         

Agr 
314 

N 67 36 22 25 42 11 16 

 164 0.000 0.000 0.023 0.000 0.012 0.000 0.000 

 168 0.000 0.014 0.023 0.000 0.000 0.000 0.000 

 172 0.000 0.014 0.000 0.000 0.000 0.045 0.094 

 176 0.007 0.000 0.045 0.000 0.000 0.000 0.000 

 180 0.022 0.014 0.000 0.020 0.000 0.045 0.000 

 184 0.000 0.000 0.000 0.000 0.000 0.000 0.156 

 188 0.000 0.000 0.023 0.000 0.024 0.136 0.000 

 190 0.000 0.000 0.023 0.000 0.000 0.000 0.000 

 192 0.022 0.028 0.000 0.000 0.000 0.000 0.000 

 195 0.000 0.000 0.000 0.000 0.000 0.000 0.031 

 196 0.045 0.028 0.000 0.000 0.000 0.000 0.000 

 200 0.082 0.028 0.045 0.000 0.036 0.000 0.000 

 202 0.000 0.000 0.045 0.060 0.000 0.000 0.000 

 204 0.007 0.000 0.000 0.000 0.000 0.000 0.000 

 206 0.000 0.069 0.000 0.000 0.024 0.000 0.000 

 208 0.112 0.000 0.023 0.000 0.000 0.045 0.000 

 212 0.276 0.097 0.000 0.000 0.071 0.045 0.063 

 214 0.000 0.028 0.023 0.000 0.024 0.000 0.031 

 216 0.007 0.028 0.000 0.000 0.000 0.091 0.031 

 217 0.045 0.014 0.000 0.000 0.000 0.000 0.000 

 220 0.022 0.000 0.023 0.020 0.000 0.045 0.094 

 221 0.007 0.014 0.091 0.000 0.048 0.000 0.000 

 222 0.007 0.014 0.000 0.000 0.000 0.045 0.000 

 224 0.000 0.000 0.000 0.000 0.000 0.000 0.125 

 225 0.030 0.014 0.000 0.020 0.012 0.000 0.031 

 226 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 228 0.007 0.000 0.068 0.040 0.060 0.000 0.000 

 229 0.007 0.014 0.023 0.020 0.012 0.045 0.000 

 230 0.119 0.000 0.000 0.040 0.024 0.000 0.000 

 232 0.022 0.056 0.045 0.020 0.167 0.045 0.000 

 233 0.007 0.000 0.091 0.040 0.060 0.000 0.000 

 234 0.000 0.000 0.023 0.060 0.000 0.000 0.000 

 236 0.000 0.000 0.000 0.040 0.012 0.136 0.063 

 237 0.000 0.042 0.045 0.040 0.000 0.045 0.000 

 238 0.015 0.083 0.000 0.000 0.107 0.000 0.000 

 240 0.000 0.000 0.045 0.000 0.024 0.091 0.000 

 241 0.015 0.028 0.000 0.000 0.000 0.000 0.000 
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 242 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 244 0.000 0.000 0.000 0.080 0.048 0.000 0.031 

 245 0.007 0.097 0.000 0.100 0.000 0.000 0.094 

 246 0.000 0.069 0.000 0.000 0.000 0.000 0.000 

 248 0.000 0.014 0.023 0.000 0.000 0.000 0.031 

 249 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

 250 0.015 0.000 0.000 0.020 0.000 0.000 0.000 

 252 0.000 0.000 0.023 0.000 0.024 0.000 0.000 

 253 0.000 0.000 0.000 0.020 0.000 0.000 0.094 

 255 0.000 0.056 0.000 0.000 0.000 0.000 0.000 

 256 0.000 0.000 0.000 0.020 0.000 0.000 0.031 

 257 0.007 0.000 0.000 0.020 0.000 0.000 0.000 

 258 0.015 0.000 0.000 0.000 0.000 0.000 0.000 

 260 0.000 0.000 0.000 0.020 0.012 0.000 0.000 

 262 0.000 0.000 0.000 0.000 0.000 0.136 0.000 

 264 0.000 0.000 0.023 0.000 0.000 0.000 0.000 

 265 0.000 0.028 0.000 0.000 0.000 0.000 0.000 

 267 0.000 0.000 0.000 0.000 0.012 0.000 0.000 

 268 0.000 0.000 0.114 0.060 0.048 0.000 0.000 

 270 0.015 0.042 0.000 0.020 0.000 0.000 0.000 

 272 0.007 0.000 0.023 0.040 0.048 0.000 0.000 

 274 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

 276 0.000 0.042 0.023 0.040 0.024 0.000 0.000 

 278 0.000 0.000 0.000 0.000 0.012 0.000 0.000 

 280 0.000 0.000 0.000 0.020 0.000 0.000 0.000 

 281 0.000 0.000 0.000 0.020 0.024 0.000 0.000 

 285 0.000 0.014 0.045 0.060 0.036 0.000 0.000 

 300 0.000 0.014 0.000 0.000 0.000 0.000 0.000 
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Table C.1. Matrix of Nei’s unbiased genetic distances and topographic distances 
between collection sites at Mount St. Helens National Volcanic Monument. Distances 
(km) are above the diagonal, Nei’s unbiased genetic distances are below the diagonal. 
Top number is Nei’s genetic distance using AFLPs for Ambystoma gracile, middle 
number is Nei’s genetic distance using microsatellites for A. gracile, and bottom number 
is Nei’s genetic distance using microsatellites for Taricha granulosa.  N/A indicates not 
applicable. Abbreviations for collection sites are as in Table 3.2. 
 
 

 HU MA CU RY SC SB GM MB 

HU  1.60 17.37 18.61 14.69 18.13 13.90 16.19 

MA 
0.013 
0.280 
0.000 

 18.54 18.86 15.77 18.92 15.24 17.42 

CU 
0.030 
0.291 
n/a 

0.025 
0.254 
n/a 

 8.50 2.98 n/a 23.66 23.41 

RY 
0.028 
0.507 
n/a 

0.025 
0.232 
n/a 

0.016 
0.056 

n/a 
 7.55 n/a 28.36 28.94 

SC 
0.038 
0.312 
0.048 

0.032 
0.196 
0.150 

0.007 
0.016 

n/a 

0.007 
0.142 
n/a 

 4.96 21.65 22.23 

SB 
n/a 
n/a 

0.005 

n/a 
n/a 

0.084 
n/a n/a 

n/a 
n/a 

0.136 
 26.56 27.46 

GM 
0.027 
0.430 
0.000 

0.018 
0.240 
0.002 

0.024 
0.130 

0.031 
0.157 

0.027 
0.180 
0.213 

n/a 
n/a 

0.116 
 2.97 

MB 
0.045 
0.543 
0.000 

0.031 
0.326 
0.017 

0.034 
0.210 

0.044 
0.245 

0.035 
0.331 
0.131 

n/a 
n/a 

0.064 

0.014 
0.189 
0.012 
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 To date, there are no published microsatellite primers for A. gracile. I tried 65 

sets of primers from five other species of Ambystoma: A. maculatum (Wieczorek et al. 

2002; Julian et al. 2003a) sister species to A. gracile, A. jeffersonianum (Julian et al. 

2003b), A. tigrinum (Mech et al. 2003), A. macrodactylum (Shields & Liss 2003) and A. 

texanum (Williams & Dewoody 2004; Table 1). Of these, only four amplified sufficiently 

and cleanly enough to use: AmaD49, AmaD226, AjeD23, and AjeD314. Details on their 

use are in chapter 3 of this dissertation. Other primers amplified but either showed no 

variation (all animals the same) or too many peaks (e.g. > 2). The genome of Ambystoma 

is large, ranging from a C- value of 21.85 pg in A. mexicanum to 80.7 pg in A. laterale 

(Gregory 2006). The C-value of A. gracile is  42.0 pg (as reference, the human C-value = 

3.5 pg; Licht & Lowcock 1991). This high level of genomic complexity likely 

contributed to the failure of many of the primers to amplify across species or caused 

amplification of more than two bands.  

 Conditions for amplification of DNA via PCR generally follow those in chapter 3. 

If a primer looked promising, I attempted optimization by varying annealing temperatures 

and/or concentration of MgCl2. Some primers were labeled with a fluorophore (HEX, 6-

FAM, NED, VIC, or PET).  For those, suitability for use was determined by testing a 

minimum of 6 samples, and a positive control (except for A. texanum and A. 

jeffersonianum) then examining PCR products on a 1.7% or 2% agarose gel with TBE. 

No two samples were from the same collection site to increase the probability of 

detecting variation. To visualize the PCR product, I stained the gel with either ethidium 

bromide or SYBR Safe™ DNA gel stain (Invitrogen, Eugene, OR).  This is indicated in 

the table as “gel”. Promising PCR products, as indicated on the gel by one or two bands 
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within 150–450 base pair range) were sent to either the Nevada Genomics Center, 

Reno, NV or the Center for Integrated BioSystems at Utah State University, Logan, UT 

for separation on an ABI PRISM 3730 or ABI PRISM 3100. I used GENEMAPPER 3.0 

(Applied Biosystems Inc.) to score each sample and round allele sizes to the appropriate 

whole number. This is indicated in the table as “ABI”. For those primers that were not 

labeled, I tested a minimum of 6 samples, plus a positive control, and ran the PCR 

product out on a 1.7% or 2% agarose gel with TBE and an appropriate sized DNA ladder 

to approximate the band size. I also sent 8 samples of A. gracile DNA to Mr. Ken Jones 

at Genetic Identification Services (9552 Topanga Canyon Blvd. Chatsworth, CA 91311) 

where the A. macrodactylum primers were developed. None of the samples amplified. 

Notes in the observation column of table 1 apply to A. gracile samples, not the control. 

Any numbers relating to peaks is the fragment size in base pairs. Micropeaks refer to 

those peaks that look like signal but are so small that they could not be distinguished 

from noise.  



 

 

118 
Literature Cited 

Gregory TR (2006) Animal genome size database. http://www.genomesize.com. 
 
Julian SE, King TL, Savage WK (2003a) Isolation and characterization of novel 

tetranucleotide microsatellite DNA markers for the spotted salamander, Ambystoma 
maculatum. Molecular Ecology Notes 3, 7-9. 

 
Julian SE, King TL, Savage WK (2003b) Novel Jefferson salamander, Ambystoma 

jeffersonianum, microsatellite DNA markers detect population structure and hybrid 
complexes. Molecular Ecology Notes 3, 95-97. 

 
Licht LE, Lowcock LA (1991) Genome size and metabolic rate in salamanders. 

Comparative Biochemistry and Physiology 100B, 83-92. 
 
Mech SG, Storfer A, Ernst JA, Reudink MW, Maloney SC (2003) Polymorphic 

microsatellite loci for tiger salamanders, Ambystoma tigrinum. Molecular Ecology 
Notes 3, 79-81. 

 
Shields BA, Liss WJ (2003) Genetic diversity of long-toed salamanders (Ambystoma 

macrodactylum) in high-elevation lakes. Unpublished report to Seattle City Light 54 
pp. 

 
Wieczorek AM, Zamudio KR, King TL, Gjetvaj B (2002) Isolation of microsatellite loci 

in spotted salamanders (Ambystoma maculatum). Molecular Ecology Notes 2, 313-315. 
 
Williams RN, Dewoody JA (2004) Fluorescent dUTP helps characterize 10 novel 

tetranucleotide microsatellites from an enriched salamander (Ambystoma texanum) 
genomic library. Molecular Ecology Notes 4, 17-19. 

 



 

 

119 

Table D.1. Ambystoma microsatellite primers in A. gracile. Abbreviations used in this table are bp (base pairs), and amp 
(amplification). 

 
 

Primer Ref Developed for 
Testing 
method Observations 

AjeD03 1 jeffersonianum ABI all samples > 3 peaks, all small and messy 
AjeD108 1 jeffersonianum ABI No amplification 
AjeD13 1 jeffersonianum ABI No amplification 
AjeD162 1 jeffersonianum ABI Poor amplification; multiple and micropeaks most samples. 
AjeD212 1 jeffersonianum ABI Most had a 284 bp and 383 bp peak, no variation between samples 
AjeD23 1 jeffersonianum ABI USED IN THIS STUDY / cleanest and best of the bunch 
AjeD280 1 jeffersonianum ABI Good amplification but 60 of 78 animals homozygotes, others 2-4 peaks / Tested 1.5mM and 2.0mM MgCl2 
AjeD283 1 jeffersonianum ABI Messy; multiple peaks all animals 
AjeD294 1 jeffersonianum ABI > 2 peaks, all in noise range, all samples 
AjeD314 1 jeffersonianum ABI USED IN THIS STUDY 
AjeD326 1 jeffersonianum ABI > 2 peaks, all samples; overall messy 
AjeD346 1 jeffersonianum ABI Ugly clumps of peaks, messy / retested: gel only, single band @ 250 bp all samples, no variation 
AjeD37  1 jeffersonianum ABI No amplification  
AjeD378 1 jeffersonianum ABI Some amplification, messy, spectra looked like ECG / retested, gel only, PD and 2-3 bands > 500 bp 
AjeD422 1 jeffersonianum ABI No to poor amplification; messy 
AjeD448 1 jeffersonianum ABI Most samples 3 peaks, but good amplification 
AjeD46 1 jeffersonianum ABI No amplification 

AjeD75 1 jeffersonianum ABI 
One large peak at 111 bp all samples, 0 to 3 additional peaks in all samples / retested, gel only, 1 band > 500 
bp; no variation 

AjeD84 1 jeffersonianum ABI 
Good amplification, tested 31 animals / attempted temp and MgCl2 optimization / most samples had odd set of 
279 & 354 bp peaks in addition to others 

AjeD94 1 jeffersonianum ABI Ok amplification but abnormally high amount of variation: 28 animals had 24 alleles 
F104 2 macrodactylum GEL No amplification / primer-dimer only 
F11 2 macrodactylum GEL No amplification / primer-dimer only 
F12b 2 macrodactylum GEL No amplification   
F136 2 macrodactylum ABI All samples, 1 peak @ 92 bp 
F142 2 macrodactylum GEL No amplification   
H120 2 macrodactylum GEL Primer-dimer only 
H123b 2 macrodactylum GEL No amplification   
H129 2 macrodactylum GEL No amplification   
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H136 2 macrodactylum GEL  No amplification 
H18 2 macrodactylum ABI Good amplification with 2-3 peaks/animal; no variation 
H20 2 macrodactylum GEL No amplification   
H29 2 macrodactylum GEL No amplification   

Ama5-1 3 maculatum GEL Poor amplification; smear from 200-300 bp 
Ama07 3 maculatum ABI No variation ; most with peak @ 160 bp 

Ama11-2B 3 maculatum GEL Smear and primer-dimer 
Ama12-7 3 maculatum ABI Messy; all with 3 - 6 peaks 
Ama3-3 3 maculatum ABI Each animal with peaks @ 147,155,316, 321 bp ; no variation 
Ama34 3 maculatum GEL No variation, 1 band approx 100bp all animals 

Ama4-10 3 maculatum ABI Every animal with peaks at 157,188, 277 bp; no variation 
Ama61 3 maculatum ABI Multiple peaks/sample 

AmaC151 4 maculatum ABI All micropeaks , poor amplification, >3 peaks/sample 
AmaC40 4 maculatum ABI 2 peaks/sample; no variation / retested; gel only, single band @ 150 bp; no variation 
AmaD184 4 maculatum ABI Multiple peaks/sample, noisy, some with large peak at 280 
AmaD203 4 maculatum ABI Poor amplification; micropeaks 
AmaD226 4 maculatum ABI USED IN THIS STUDY 
AmaD287 4 maculatum ABI No amplification 
AmaD315 4 maculatum ABI No amplification 
AmaD321 4 maculatum ABI Only 1 peak in all samples / no variation 

AmaD328 4 maculatum ABI 
2-3 peaks/sample; unsuccessfully tried to optimize with temperature and MgCl2 gradients, resulted in mostly 
primer-dimer 

AmaD367 4 maculatum ABI No amplification 

AmaD42 4 maculatum ABI 
Good amplification but no bi, tri, tetra pattern discernable after 303 animals (alleles range from 168-424 bp, 68 
total alleles) / attempted temperature and MgCl2 gradients  

AmaD450 4 maculatum ABI Amplification in only 1 sample which was messy 
AmaD49 4 maculatum ABI USED IN THIS STUDY 
AmaD95 4 maculatum ABI No variation and poor amplification 
AmaD99 4 maculatum ABI Amplification, messy 
Atex65 5 texanum ABI Some amplification; messy, some samples have 2-5 peaks; 1 sample with 3 nice peaks 

ATS10-7 6 tigrinum GEL No amplification 
ATS12-3 6 tigrinum GEL No amplification  
ATS14-3 6 tigrinum GEL All samples smeared 
ATS4-11 6 tigrinum GEL Primer-dimer only 
ATS4-20 6 tigrinum GEL Bad PCR? or no amplification 
ATS4-25 6 tigrinum ABI All with 3 peaks @ 232, 241, 253 bp ; no variation 
ATS5-6 6 tigrinum GEL Poor amplification  120 
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ATS5-7 6 tigrinum ABI Good amplification but no variation, all with peak @ 228 bp 
ATS5-8 6 tigrinum GEL No amplification / primer-dimer only 

Reference         
1 Julian et al. 2003b   
2 Shields and Liss 2003   
3 Wieczorek et al. 2002  
4 Julian et al. 2003a   
5 Williams and DeWoody 2004  
6 Mech et al. 2003     
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