Utah State University DigitalCommons@USU

Presentations

Materials Physics

Spring 5-2008

Launch and Deployment of the Misse-6 Payload: State of Utah Space Environment & Contamination Study

Joshua Hodges Utah State University

Jeff Duce Utah State University

JR Dennison Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Physics Commons

Recommended Citation

Hodges, Joshua; Duce, Jeff; and Dennison, JR, "Launch and Deployment of the Misse-6 Payload: State of Utah Space Environment & Contamination Study" (2008). 13th Rocky Mountain NASA Space Grant Consortium NASA Fellowship Symposium. *Presentations*. Paper 77. https://digitalcommons.usu.edu/mp_presentations/77

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

On the ram side of MISSE 6 Utah State has the Double Stack, a two tiered experiment with 75 samples being exposed to space atmosphere and 50 concealed samples experiencing the temperature cycles and pressures of space. The two tiered design allows for varying atomic oxygen (AO) and ultra violet radiation (UV) exposure.

Ram Sample Holder

The Double Stack will also investigate oxidation by atomic oxygen and the effects that shadowing have on atomic oxygen exposure. (Below) Measuring the mass erosion rate of Kapton due to atomic oxygen radiation degradation has long been the standard in determining how much atomic oxygen a surface has been exposed to. (Above and Right) Double Stack Ag foils will be evaluated as an accurate AO fluence monitor sensor and calibrated against kapton sensors. This study will use high purity silver and measure the penetration depth of the oxide layers to determine the atomic oxygen exposure. This test will also study the effects caused by shadowing and the possibilities of ballistic scattering of atomic oxvgen.

(Above) B.A. BANKS, S. K. RUTLEDGE, J. A. BRADY and J. E. MERROW, NASA/SDIO Space Environmental Effects on Materials Workshop, Hampton, VA. June July 1988. NASA Conference Publication 3035, Part 1, pp. 197-239.

(Right) J. KULIG, MS thesis, Case Western Reserve University Cleveland (1991).

Wake Side

The SUSPECS sample holder on the wake side of the International Space Station will investigate the effects that spacecraft charging has on contamination of samples. Four sets of 4 samples (Ag, Al, graphitic carbon, and Kapton XC) are biased at+5 V, 5 V, and +8 V, in addition to the control set grounded to ISS. These samples will be examined to determine the changes in contamination from the space environment that results from the sample charging.

(Right) Modeling electronic fields and particle trajectories of the biased wake-side samples. A side view shows the equipotential lines on a single sample charged to +5 volts. This charging attracts ions that can damage materials, and enhance contamination.

(Right) Studies at USU have shown that very thin layers of contamination—even a few monolayers—can potentially cause significant changes in electron emission properties that can dramatically affect the charging of satellites. The graph shows the differential charging of clean Au and 2-3 monolayers carbon-contaminated Au surfaces on a hypothetical satellite in GEO orbit.

SUSpECTS Material Samples List

	Material	Source	
C01	COIC AS/N720 Oxide committeeum (CMC)	ATK	Provide
002	COIC \$200 Nonoxide CMC	ATK	
C03	Thiokal Carbon-Carbon Composite #1	ATK	
004	Thiokol Carbon-Carbon Composite #2	ATK.	
C05	Thiokol Fiber Filled Carbon-Carbon Composite	ATK	
006	Thickol Carbon-Phenolic Composite	ATK	14
007	Thickol Graphite Epoxy Foll - No Hole	ATK	9
008	Thickol Graphite Epoxy Foll - With Hole	ATK	ſЪ I
000	COIC \$400 Nonoxide CMC	ATK	X
C10	COIC \$200H Nanoxide CMC	ATK	
C11	COIC \$300 Nonexide CMC	ATK	
101	Kapton on Aluminum	Sheidahi	Prov
07	Teffon on Aluminum	Sheidahl	
03	Mylar on Aluminum	Sheidahi	
104	Nylon 6/6	McMaster-Carr	
106	SiO, (Fused Quartz)	UQG Optics	
107	ALO ₂ (Sapohire)	UQG Optics	
111	Germanium on Kapton	Sheidahl	
112	Anodized Aluminum (Chromic Acid Eltch)	NASA/MSFC	[음]
113	Anodized Aluminum (Bulleric Acid Etch)	NASA/MSFC	1 <u>e</u> I
115	UV Ce-doped Cover Glass	OCLI	12
117	FR4 Printed Circuit Board Material	CRRES NASA	12
118	CV-1147 RTV on Copper	Doeng	
119	DC93-500 RTV on Copper	Boeng	181
28	Borosilicate Glass	UQG Optice	1.
101	Gold (09.99% Punty)	ESP1	Ľ.
102	Aluminum (99.999% Punty)	E8P1	8
T03	316 Stainless Steel	McMaster	c
T04	Gold(2um)/Nickel(2um) on 316 Stainless Steel	Gold Plating	2
T05	OFHC Copper (99.9% Punty)	McMaster .	16
TOB	Silver (99.777% Purty)	United Material	12
107	Inconnel on Silver on Teffon on ITO	Sheklahl	5
110	g-C (Graphitic Amorphous Carbon) on Copper	Arizona Carbon	171
T11	Aquadag on Copper	LADD Research	1
T12	100XC Black Kapton	Sheidahl	1
713	Thick Film Black	Sheidahl	1
114	ITO on Teffon on Silver on Inconel	Sheidahl	
128	White Paint (Zinc Oxide Thermal Control Paint)	SOL	S
127	Composite (GIFTS Carbon Composite)	SOL	121

Scientific Solutions Inc has technology that uses nematic liquid crystal as the tuning medium in Fabry-Perot Interferometers. The passed temperature and vibration testing but the final test will be to see if it can withstand the atmosphere of lower

earth orbit (LEO).

in és és de ce, per a un de se de

10 21 94 67 20 40 78

Wake Side

SUSpECS 3

assive UV Exposur

25 Grounded Samples

10 Concealed samples

т