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Absolute radiance re-calibration of FIRST 
Harri Latvakoskia, Marty Mylnczakb, David Johnsonb, Rich Cageaob, Jason Swaseya, and Kendall 

Johnsona

aSpace Dynamics Laboratory, 1695 Research Park Way, N. Logan, UT 84341; 
bNASA Langley Research Center, Hampton, VA 23681 

ABSTRACT 

The FIRST (Far-InfraRed Spectroscopy of the Troposphere) instrument is a 10 to 100 micron spectrometer with 0.64 
micron resolution designed to measure the complete mid and far-infrared radiance of the Earth's Atmosphere.  FIRST 
has been successfully used to obtain high-quality atmospheric radiance data from the ground and from a high-altitude 
balloon.  A Fourier transform interferometer is used to provide the spectral resolution and two on-board blackbodies are 
used for calibration.  This paper discusses the recent re-calibration of FIRST at Space Dynamics Laboratory for absolute 
radiance accuracy.  The calibration used the LWRICS (Long Wave Infrared Calibration Source) blackbody, which NIST 
testing shows to be accurate to the ~100 mK level in brightness temperature.  There are several challenges to calibrating 
FIRST, including the large dynamic range, out of phase light, and drift in the interferogram phase.  The accuracy goal 
for FIRST was 0.2 K over most of the 10 to 100 micron range, and results show FIRST meets this goal for a range of 
target temperatures. 

Keywords: FIRST, atmospheric spectra, Fourier transform interferometer, far-infrared spectra, far-infrared blackbody 

1. INTRODUCTION
FIRST (Far-IR Spectroscopy of the Troposphere)1,2 is a high altitude balloon and ground-based instrument to measure 
the far-infrared spectrum of the atmosphere from 100 to 1000 cm-1 (10 to 100 μm) with a spectral resolution of  0.643 
cm-1.  Build by Space Dynamics Lab (SDL), FIRST has been successfully used since 2005 on multiple campaigns to 
obtain high-quality radiance data of the atmosphere from both a high altitude balloon and the ground3,4. 

In 2011 FIRST was returned to SDL for absolute radiance recalibration, which is described in this paper.  Section 2 is a 
description of the instrument, section 3 describes the calibration equipment and test, section 4 describes the data 
processing and section 5 is the absolute calibration results. 

2. INSTRUMENT DESCRIPTION
FIRST uses a Fourier transform interferometer with a Germanium-on-Mylar thin film beamsplitter to provide 0.643 cm-1 

spectral resolution and strong response over a 100 to 1000 cm-1 spectral range (with some response from 50 to 2200 
cm-1).  Data is collected for both directions of interferometer travel and collection time for one 24576-point scan is 11.5 
seconds including turnaround.  The FIRST aperture is 7 cm and FIRST has 10 silicon bolometer detectors each with a 
0.41° field of view.  These 10 detectors are at the center and four corners of a sparsely populated array which has a total 
field of view of 4.4×4.4°.  The silicon bolometers are behind Winston cones and are cooled to 4.2 K with liquid helium. 
Two on-board blackbodies are used for instrument calibration, an ambient blackbody (ABB) and a warm blackbody 
(WBB) that is heated to ~30 K above ambient.  For balloon flights one blackbody can be replaced by a view of space. 
The FIRST NEDT is <0.1 K @ 310 K from 200 to 1000 cm-1 in a single spectrum of a target.  The FIRST absolute 
accuracy goal was 0.2 K at 230 K from 170 to 1000 cm-1 and 0.5 K from 100 to 170 cm-1.   

FIRST (Figure 1) consists of three sections separated by vacuum windows: a scene select assembly, the interferometer 
section, and the detector dewar.  The vacuum windows are 41-μm thick polypropylene and the detector dewar simply 
contains the detectors and cryogen tanks.  The interferometer section contains the interferometer and the aft-optics that 
focus the beam from the interferometer onto the detectors.  There are no imaging fore-optics.  The interferometer section 
can be cooled to 180 K to demonstrate the interferometer can operate at this temperature, but during most operations, 
this section is kept under vacuum but at ambient temperature.  The scene select assembly contains a rotating mirror that 
directs the FIRST beam to one of three ports, each of which can connect to an on board blackbody or be left open.  The 
entire scene select assembly can be rotated where it attaches to the interferometer section so that an open port can face 
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up, down, or to the side as needed.  Except for the detector amplifiers, the electronics that control and read out FIRST 
are in a separate container and are entirely commercial-off-the-shelf boards and computers. 

                           
Figure 1: A cutaway view of FIRST with the principle components labeled and the light path shown. 

3. ABSOLUTE CALIBRATION TEST 
FIRST was calibrated for absolute radiance by attaching the Long Wave Infrared Calibration Source (LWIRCS) 
blackbody to the third port of the scene select assembly (Figure 2).  LWIRCS5 (Table 1) is a ground calibration 
blackbody of a similar design to the FIRST on-board blackbodies.   This design6 uses specular Z302 paint and a specular 
trap cavity to achieve the high emissivity. 

Table 1: The LWIRCS performance specifications 

Wavelength range  1 to 100 μm 
Temperature range 90 to 350 K 
Aperture 6.1” 
Beam divergence accepted 6° full angle  
Emissivity ≥0.9998 (1-35 μm) 

≥0.9980 (35-100 μm) 
Temperature uncertainty ~130 mK 

 



 
 

 
 

The output of LWIRCS has been measured with the NIST transfer radiometer (TXR)7.  The TXR has a 5 μm band and a 
10 μm band, each ~1 μm wide, and a brightness temperature scale based on a NIST water bath blackbody.  The TXR 
measurement uncertainty is ~90 mK at 5 μm and ~150 mk at 10 μm.  When observed with the TXR, the LWIRCS 
brightness temperature agreed with the LWIRCS temperature to within 95 mk (maximum deviation) at 5 μm from 210 to 
350 K, and to within 186 mK at 10 μm from 180 to 350 K8.  The agreement is at approximately the TXR measurement 
uncertainty level.  During this test, the emissivity of LWIRCS was measured with the TXR and a heated-halo type test to 
be 0.99969±0.00003 at 5 μm. This result is consistent with the calculated value of 0.9998 because method used to 
perform the test reduces the LWIRCS emissivity from the calculated case. 

 

       

 
Figure 2: FIRST (at left) attached to the LWRICS blackbody (at right) during ground calibration.  The FIRST on-board 
blackbodies are at left attached to the scene select assembly at an angle. 

 

Absolute radiance data was collected by setting LWIRCS to a variety of temperatures and observing with FIRST.  At 
each LWIRCS temperature a data set was collected by observing the ABB for 4 minutes, LWIRCS for 7 minutes, and 
the WBB for 4 minutes and then repeating this once.  In all cases the ABB was at temperature near 293 K and the WBB 
was at 324 K. 

4. CALIBRATION DATA PROCESSING 
To process the FIRST data into spectra follows the general processing of interferograms into spectra, but because of its 
design, FIRST data also requires combining data from two gain channels per detector, excluding data with large 
vibration effects, and aligning phases. 

To reach the sensitivity levels desired of FIRST requires a 20 bit dynamic range in the interferogram.  A commercial 20 
bit A/D converter that would meet the needs of FIRST was not available, so instead two sets of data are collected per 
detector, with one set having 100x higher gain.  The data from the gain channels for each detector are combined by using 



 
 

 
 

high gain data except where the low gain absolute value is high enough that the high gain data saturates.  Before 
combining, the high gain data is multiplied by a factor and an offset is added match the scale of the low gain data.  The 
factor and offset for each detector were found from this calibration data by comparing simultaneous high and low gain 
data and fitting a line.  The signal levels on the interferogram are such that low gain data is used only within 1000 points 
of the centerburst (Figure 3). 

                                
Figure 3: A section of FIRST interferograms from near the centerburst when looking at the ABB.  Interferograms from all 
ten detectors are shown, each in a different color. 

 
FIRST uses a thin film beamsplitter (Ge on Mylar) in the interferometer which is susceptible to vibration.  Vibration 
effects were observed during the development of FIRST and mitigated by sampling at every fringe of the HeNe laser, 
which put the Nyquist wavenumber at 7899 cm-1 and transferred the major effects of vibration to a region of the 
spectrum (2500 to 3200 cm-1) with no signal of interest.  For most spectra, the remaining effects of vibration are reduced 
to acceptable levels, but occasionally, outside sources add excessive vibration to some interferograms.  Spectra with 
excessive vibration are excluded by transforming an interferogram from any one detector and screening for excess signal 
in a broad peak from 2250 to 3215 cm-1 (Figure 4). 



 
 

 
 

                            

 
Figure 4: 10 full-resolution FIRST spectra from detector 3.  Excess vibration is present in some spectra and visible as a 
broad peak around point 4000 (2571 cm-1).   

 
The FIRST beamsplitter does not pass a HeNe laser, and leaving a clear section on it for the laser to pass could have 
adversely affected the film.  Instead, the metrology laser has its own separate beamsplitter and illuminates a polished 
section on the back side of the moving mirror.  This effectively provides position information for the moving mirror; 
however, thermal expansion can differentially change the optical path of the laser and the infrared beam.  This results in 
a shift of the sampling positions with respect to the peak of the interferogram, which in turn results in the shift of the 
phase in spectra produced from the interferograms.  This phase drift can be enough that it must be accounted for during 
data processing.  To complicate matters, FIRST has out of phase light present, and thus the interferogram phase will 
differ for targets with a differing radiance.  In addition the interferogram peak can be negative for some detectors when 
viewing a cold target.  Figure 5 shows both the variation in spectrum phase with target and the drift in phase at 514 cm-1 
from a data set with LWIRCS at ~310 K.  (The shift in phase produced by differential change in the optical path is a 
simple linear function of wavenumber so it is sufficient to measure phase over a limited spectral range.)  A correction for 
the drifting phase is found by fitting a line to the WBB and ABB phase data and combining these to give a quadratic 
phase correction curve (see Figure 5).  All spectra are then shifted in phase by the amount of this correction at 514 cm-1 
with proportional shifting at other wavenumbers.  In practice, this aligns the phases to ~0.2°, below which phase errors 
are not significant. 



 
 

 
 

                                     
Figure 5:  The phase (left axis) for all good spectra in the forward direction for detector 3 at 514 cm-1 averaged over 15 cm-1 
for the data set where LWIRCS was at ~310 K.  Orange is the ABB data, red is LWIRCS data, and black is the WBB data.  
The green curve (right axis) is the phase correction function at 514 cm-1, which shows the amount subtracted from all 
forward direction phases to correct for the drift. 

 
After processing from interferograms to spectra, all good spectra were averaged for each target with separate averages 
kept for each scan direction.  To assess the FIRST absolute calibration, these spectra were used to calculate a measured 
radiance from LWIRCS using the calibration equation: 
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SABB and SWBB are the measured spectra of the ABB and WBB, STarget is the measured spectra of LWIRCS, P is the 
Planck function and TABB and TWBB are the blackbody temperatures.  The FIRST responsivity is ℜ and RTarget is the 
measured LWIRCS radiance, which was then used to calculate a brightness temperature using the inverse Planck 
function.  The measured spectra and the responsivity are complex numbers.  If the spectral phases are properly aligned 
and FIRST does not change between views of each blackbody the imaginary component of the LWIRCS radiance will 
show only noise.  This was the case for all calibration data.  A correction for detector non-linearity was not applied as 
additional processing of this data indicates the FIRST detector response is linear to ~0.3%. 

5. ABSOLUTE RADIANCE CALIBRATION RESULTS 
The FIRST absolute calibration was assessed by comparing the LWIRCS brightness temperature as measured by FIRST 
with the temperature from the LWIRCS temperature sensors.  Figure 6 shows the brightness temperature measured when 
LWIRCS is at 292.76 K.  Between 200 and ~1000 cm-1, excluding the narrow regions of low response, the brightness 
temperature agrees with the LWRICS temperature to within 0.2 K.  The brightness temperatures for the two directions 
trace each other closely but not exactly and the difference between the two is indicative a random noise component in 
the spectra.  Above ~900 cm-1 the backward and forward results diverge, which is indicative of significant noise.  As 
data sets for other LWIRCS temperature data sets do not consistently show this amount of noise, the cause is probably 
beamsplitter vibration. 



 
 

 
 

 
Figure 6:  The brightness temperature for LWIRCS at 292.76 K as measured by each detector (the color order for detectors 
1-10 is black, red, orange, yellow, yellow-green, green, blue-green, cyan, sky-blue, and blue).  Both scan directions are 
shown in the same color.   The plot at right is a close up on the plot at left.  The red line in each plot is 293.76 K.  The 
spectral resolution is 0.6428 cm-1. 



 
 

 
 

 
 Figure 7: The brightness temperature for LWIRCS at 324.33 K (left) and 324.38 (right).  

 
For the data set with LWRICS at 292.76 K, the ABB was at 293.66 K.  By Equation 1, this data set is essentially a 
comparison of the ABB with LWIRCS, and because both are at room temperature, it reduces to a comparison of the 
temperature sensors.  Given the result shown in Figure 6, the blackbody temperature sensors must agree to within 0.1 K, 
which is at the level of the estimated uncertainty in these sensors. 



 
 

 
 

Figure 7 show the measured brightness temperature with LWIRCS at ~324 K.  Two separate data sets were taken to 
show the repeatability.  The 324.38 K set clearly shows less noise than the 324.34 K especially above 1000 cm-1.  Below 
800 cm-1 both sets are very similar and the brightness temperature deviation from the LWRICS temperature is dominated 
by systematic effects, such as the oscillations in the curves for detector 1 (black) and 10 (blue).  For all detectors the 
brightness temperature is within 0.5 K of the LWRICS temperature, but if 1, 5 (yellow-green), and 10 are excluded the 
brightness temperature is within 0.3 K.  Other data taken during this calibration suggests that detector 5 is affected by 
light from outside the blackbodies, and the oscillations in brightness temperature deviation seen for detectors 1 and 10 
may be an effect of stray light from outside the blackbodies with the amount varying with wavenumber. 

LWRICS at 324.38 K is very close to the WBB at 324.60 K so this set is a comparison of LWIRCS with the warm 
blackbody.  To achieve the agreement seen in Figure 7, the brightness temperature of each blackbody must agree to ~0.1 
K, which is again the uncertainty in the temperature sensors. 

Figure 8 to Figure 11 shows the LWIRCS brightness temperature at several other temperatures from 169 to 310 K.  At 
310.43 K, the brightness temperature is within 0.2 K of the LWIRCS temperature with the exception of detector 10 
which shows high noise here.  For 270.55, 247.42 and 225.18 K, detector 5 reads notably high and the oscillations in 1 
and 10 increase, and detector 2 becomes increasingly noisy.  Excluding these three detectors, the brightness temperature 
deviations are within 0.3, 0.5 and 1 K, respectively.   



 
 

 
 

 
Figure 8: The brightness temperature for LWIRCS at 310.43 K (left) and 270.55 K (right). 



 
 

 
 

 
Figure 9: The brightness temperature for LWIRCS at 247.42 K (left) and 225.18 K (right). 



 
 

 
 

 
Figure 10:  Brightness temperatures with LWRICS at 228.84 K (left) and 209.41 K (right). 

 
 



 
 

 
 

 
Figure 11:  Brightness temperatures with LWIRCS at 189.33 K (left) and 169.06 K (right). 

For the data at 310, 229, 209, 189, and 169 K , the large oscillations in the detector 1 and 10 brightness temperatures are 
not present, the temperature from detector 5 is not unusually high, nor is 2 noisy.  These sets were collected during a 
different vacuum cycle of FIRST, and the changes to the detector 5, 1 and 10 behaviors suggest the amount of stray light 
may change with cold cycle.  This is possible since the FIRST windows do not return to the same shape after each 
pumpdown and this may direct the light. 

At 228 K the brightness temperature deviations from the LWRICS temperature are within ~1 K, while at 209 K the 
deviations are within 2K, but at 189 K and 169 K the deviation can be up to 5 K.  For these lower temperature sets, the 
wavenumber range where temperatures are accurate is reduced because of decreasing signal with temperature at the 
higher wavenumbers.  Noise is increasingly significant at colder temperatures because a given amount of noise in the 
radiance is a larger change in temperature at a lower temperature, and because noise in the WBB and ABB spectra add 
increasing noise to the measurement as the LWIRCS temperature gets farther from the WBB and ABB temperatures.  



 
 

 
 

The reduced accuracy in the brightness temperature at low temperatures is clearly dominated by systematic effects that 
seem to lack a clear trend with temperature. 

6. CONCLUSIONS 
The results of the FIRST recalibration shows that, for detectors 2, 3, 4, 6, 7, 8, and 9, the absolute calibration is better 
than 1 K (peak deviation) from 200 to 800 cm-1 for temperatures above 209 K, and the result is likely as good for 
detectors 1, 5, and 10 but stray light size issues complicate direct measurement.  For temperatures in between or close to 
the WBB and ABB temperatures, FIRST meets the design goal of 0.2 K absolute accuracy.  The WBB and ABB spectra 
agree with the well calibrated and NIST tested LWIRCS spectra to within 0.1 K for the on-board blackbody 
temperatures used during this calibration.  Because of this and the lack of any observed non-linearity in the FIRST 
detectors, FIRST data can be calibrated using the calibration equation and the on-board blackbody temperatures with no 
additional corrections. 
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