
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

International Symposium on Hydraulic 
Structures 

Jun 29th, 1:30 PM - 3:30 PM 

Decision-making through Sustainability Decision-making through Sustainability 

F. Pardo-Bosch 
Universitat Politècnica de Catalunya (BcnTech), francesc.pardo@berkeley.edu 

A. Aguado 
Universitat Politècnica de Catalunya (BcnTech) 

Follow this and additional works at: https://digitalcommons.usu.edu/ishs 

 Part of the Civil Engineering Commons, Construction Engineering and Management Commons, and 

the Hydraulic Engineering Commons 

Recommended Citation Recommended Citation 
Pardo-Bosch, F., Aguado, A. (2016). Decision-making through Sustainability. In B. Crookston & B. Tullis 
(Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on 
Hydraulic Structures, Portland, OR, 27-30 June (pp. 577-586). doi:10.15142/T3700628160853 (ISBN 
978-1-884575-75-4). 

This Event is brought to you for free and open access by 
the Conferences and Events at DigitalCommons@USU. It 
has been accepted for inclusion in International 
Symposium on Hydraulic Structures by an authorized 
administrator of DigitalCommons@USU. For more 
information, please contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/ishs
https://digitalcommons.usu.edu/ishs
https://digitalcommons.usu.edu/ishs?utm_source=digitalcommons.usu.edu%2Fishs%2F2016%2FSession9%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.usu.edu%2Fishs%2F2016%2FSession9%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/253?utm_source=digitalcommons.usu.edu%2Fishs%2F2016%2FSession9%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1087?utm_source=digitalcommons.usu.edu%2Fishs%2F2016%2FSession9%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


6th International Symposium on Hydraulic Structures Portland, Oregon, USA, 27-30 June 2016 

Hydraulic Structures and Water System Management 

ISBN 978-1-884575-75-4      DOI: 10.15142/T3700628160853 

 

Decision-making through Sustainability  

 

F. Pardo-Bosch1 and A. Aguado2  
1Dept. of Political Science, UC Berkeley – Civil Engineering Department, BcnTech  

UC Berkeley - Universitat Politècnica de Catalunya (BcnTech) 

Berkeley, CA 94720 – Barcelona 08034  

USA - SPAIN 
2 Civil Engineering Department 

Universitat Politècnica de Catalunya (BcnTech) 

Barcelona, 08034 

SPAIN 

E-mail: francesc.pardo@berkeley.edu – francesc.pardo@upc.edu 
 

ABSTRACT  

 

From immemorial time, dams have contributed significantly for the progress of civilizations. For this reason, 

nowadays, there is a vast engineering heritage. Over the years, these infrastructures can present some ordinary 

maintenance issues associated with their normal operation or with ageing processes.  

 

Normally, these problems do not represent an important risk for the structure, but they have to be attended. To do it, 

owners of dams have to finance many ordinary interventions. As it is impossible to carry out all of them at the same 

time, managers have to make a decision and select the most “important” ones. However, it is not easy because 

interventions usually have very different natures (for example: repair a bottom outlet, change gates, seal a crack...) 

and they cannot use a classical risk analysis for these type of interventions. 

 

The authors, who are aware this problem, present, in this paper, a multi-criteria decision-making system to 

prioritize these interventions with the aim of providing engineers a useful tool, with which they can prioritize the 

interventions from the most important to the least. To do it, the authors have used MIVES. This tool defines the 

Prioritization Index for the Management of Hydraulic Structures (PIMHS), which assesses, in two phases, the 

contribution to sustainability of each intervention. The first phase measures the damage of the dam, and the second 

measures the social, environmental and economic impacts. At the end of the paper, a case of study is presented 

where some interventions are evaluated with PIMHS. 

 

Keywords: Sustainability, decision-making, MIVES, MCDM, Dams, Prioritization.  

1. INTRODUCTION  

Dams are considered fundamental structures for the development of nations in providing numerous socio-economic 

and environmental advantages (ICOLD, 2007). Their main functions are water supply, irrigation, flood control 

throughout the whole year, power generation, navigation, fishing, and even leisure. At the same time, these 

structures generate obvious environmental and social impacts caused by their construction (ICOLD, 1997).  Given 

the evidence that society cannot live without the benefits which dams provide, it is necessary to maximize the utility 

of the dams that are already in operation.  

 

Over the years, these infrastructures can present some ordinary maintenance problems associated with their normal 

operation or with ageing processes. Due to these problems, dams can lose resistance capacity, while, as a general 

rule, the solicitations, at least, are equal or even bigger than when they started to work. For this reason, direct 

managers of each structure suggest to their superiors some maintenance interventions to re-establish or to improve 

functional, mechanical and/or safety aspects of each dam. As it is impossible to carry out all of these interventions 

(budgets are usually very important) at the same time, general managers have to make a decision and select the most 

“important” ones. However, it is not easy because interventions usually are very different (for example: repair a 

bottom outlet, change a gate, seal a crack...) and they cannot use a classical risk analysis for these type of 



 

interventions because they are used to studying events or loads that can provoke the failure of the dam. Moreover, 

these kinds of studies need sophisticate calculations that required month of work. Thus, it is important to develop a 

decision support system that ranks, prioritizes, and selects the required maintenance interventions. 

 

Given this need, this communication aims to present the Prioritization Index for the Management of Hydraulic 

Structures (PIMHS) a multi-criteria decision-making system, based on Integrated Model for Sustainable Value 

Assessments (MIVES for its name in Spanish) and on Analytic Hierarchy Process (AHP), which orders and 

prioritizes non-similar maintenance investments in hydraulic structures. The final and most important objective is 

that n maintenance and conservation actions, which have no common characteristics, may be compared, in order to 

select the ones with best global result to deliver the most benefit to all citizens (Pardo-Bosch 2014, Pardo-Bosch & 

Aguado 2015). 

2. BACKGROUND  

2.1. Management classic systems on the hydraulic field   

According to ICOLD (1987), a structure is safe when it is free of any condition that may lead to deterioration or 

destruction. To measure the distance between the real condition of the structure and a state regarded as not safe, the 

technical community has developed two types of methodologies: Condition Index and Risk Analysis. 

 

Infrastructures management methodologies, which use a condition index, are based on the Pavement Condition 

Index (Sahin et al. 1977), was developed to study the condition of pavements on airfields. This index assesses the 

type, the amount, and the severity of damage to obtain a value from 0 to 100, where 100 is assigned to a perfect 

pavement. Despite the technological advances developed since the 80s, this method remains as the reference system 

for the air industry (Broten and De Sombre 2001). Using PCI as a reference, the US Army Corps of Engineers 

developed a Condition Index (CI) to assess the state of the concrete of dams, including spillways (Bullock and Folz 

1995), and another one to assess the state of the gates (Greimann et al. 1995), because they understood that it was 

impossible to develop a single system to evaluate all cases. These methods and those that have followed them only 

focus on the study of the structure, so it is impossible, by their nature, to assess the consequences that the detected 

damage can cause in other elements, such as the dam or the environment. 

 

Risk analysis, which can also be used to manage hydraulic structures, can be divided in two different groups: 

stochastic and deterministic. The stochastic group is used to study events or loads that can provoke the failure of the 

dam, so it is not adapted to the current needs of daily management of dams (ICOLD, 2005). Due to this fact, the 

Bureau of Reclamation and Army Corps of Engineers (2010) have converted the stochastic approach into a 

deterministic one, using qualitative or semi-quantitative methods. In this case, risk severity is calculated through Eq. 

(1), where P(failure) may be low, moderate, high or very high; and the Consequences can be Level 1 (minimum), 

Level 2, Level 3 and Level 4 (maximum). As the methodology is so general, the problem is that many damages can 

be located in the same group of preferences. So, it is fantastic to define a first approximation, it is not possible to 

classify a large number of very similar interventions in order to select only the most important ones. 
 

Risk=P(failure) * Consequences                          (1) 

2.2. Integrated Model for Sustainable Value Assessments (MIVES) 

In civil engineering, as in other fields, multi-criteria decision-making (MCDM) methodologies have been 

incorporated on the decision making process in order to assist those who have to make decisions. These systems 

usually assess a set of variables to compare the benefits and damages of different alternatives. Among them, there is 

the Integrated Model for Sustainable Value Assessments (MIVES) a methodology developed in Spain within the 

field of industrial construction (San-José and Cuadrado 2010, Aguado et al. 2012, Pons and Aguado 2012).  

 

MIVES has the particularity that combines multi-criteria decision-making and multi-attribute utility theory (MCDM, 

MAUT) with the concept of value function (Alarcon, 2010) in order to standardize the indicators with different units 

http://www.usbr.gov/


 

(very typical for a global comparison); this process is more qualitative than quantitative in nature,. Its first 

applications were within the field of industrial construction, but over the years it has been adapted to any 

construction typology, in aspects such as localization, materials, energy and water consumption, construction 

solutions, etc.   

 

The MIVES method has special features that are lacking in other sustainability assessment methods. It not only 

focuses on costs or product data, because it offers the possibility of incorporating other types of requirements, for 

example, social or environmental impacts, and doing so at any stage of the life cycle of a construction. MIVES 

encompasses the upward process of assessing indicators and weighing sub-levels, effectively integrating the set of 

indicators, criteria, requirements and fields of assessment proposed, and thus emerging as a dynamic and convenient 

method.  To reflect the relative importance and prioritization of each requirement, criterion, and indicator level 

weights are assigned by decision-makers using the Analytic Hierarchy Process (AHP), developed by Saaty (1980). 

 

Until this project, MIVES had been used to comparing homogeneous alternatives (for example, to decide the 

location of a factory between two different cities), but now the problem is much more complex because the 

alternatives are not homogenous, and as a result, it will be necessary to introduce a modification in the regular 

structure of MIVES. 

3. SUSTAINABILITY AS A GUIDE TO DECIDE  

As seen on section 2, MCDM have been and are a reference as methodologies to assist the decisions makers. The 

only problem, which is not so trivial, is to find, among stakeholders, consensus on the definition of the concepts to 

be measured, either by variables or attributes. 

 

Sustainability has been introduced firmly, despite being a recent discipline (United Nations World Commission on 

Environment and Development used this concept for the first time in the Brundtland Report in 1987), as a valid 

argument when it is necessary to create consensus to define the variables that have to be measured in some areas of 

the civil engineering sector. Sustainability, according the World Commission on Environment and Development 

(1987), is the capacity to meet the needs of the present without compromising the ability of future generations to 

meet their own needs. The concept of sustainable development does imply limits - not absolute limits but limitations 

imposed by the present state of technology and social organization on environmental resources." Any sustainable 

development is based on a long-term approach, taking into account the inseparable nature of environmental, social 

and economic impacts of human actions, as shown in Figure 1 (United Nations 2013). 

 

 

Figure 1. Axioms of sustainability 

 

The Economic area assesses the use given to the limited economic resources of the decision-makers, either to 

perform a new project or to maintain it in operation. Executing a project ‘A’ can mean not executing project ‘B’, so  

companies (public or private) should strive to achieve maximum yield. The Environmental area considers the 

capacity of the project to preserve the environment (natural and constructed) in which the new project should be 



 

located. The goal is to promote those projects that encourage this preservation. Finally, the Social area evaluates the 

consequences (direct or indirect) that a project could generate on people that use or live with it.  

 

Despite its transcendence, in civil engineering, sustainability as a main argument of a multi-criteria analysis has only 

been used to select, in a specific project, the most convenient alternative among a finite number of homogeneous 

alternatives, as shown in Shang et al. (2004), Abrishamchi et al. (2005), Comisión Permanente del Hormigón 

(2008), Koo and Ariaratnam (2008), and Ariaratnam et al. (2013), among others. Due to the existing hole in this 

field, the decision model will use the axioms of the sustainability as main guidelines. 

4. NEW DECISION-MAKING MODEL  

In a dam, it is possible to find structural units (SU) as different as: the body of the dam (BD), the abutments (Ab), the 

foundation (Fd), the reservoir (Rv) and auxiliary structures (AS). Each of them has its functions, all essential for the 

development of the hydraulic activity. These structures can present very different types of damage, associated with 

different causes that must be repaired in order to keep operating the dam. Given the evidence that the interventions 

needed will correct the damages will be also very different, it is necessary, according to Pardo-Bosch and Aguado 

(2015), to divide the analysis and evaluation process in two phases (see Figure 2). 
 

 

 

 

 

Figure 2. Decision Model  

4.1. Structural damage (phase 1)  

To understand the benefits of an intervention, it is essential to know the damage that affects the structure, because 

severe damage means severe consequences, and it is important to remember that the mission of owners and 

managers is to avoid negative consequences. In order to assess the damage that affects the structure, a new 

engineering concept called Structural Damage (SDa) has been defined, which is a universal system (valid for all 

structural typologies) to perform a semi-quantitative evaluation of the capacity of the structure to operate without 

compromising the safety. As equivalent units, SDa allows technicians to compare the condition of different 

structural units, which is basic in order to compare the consequences in the next phase. 

 

SDa, as it shown in Figure 2, is evaluated through 4 independent and complementary variables that ensure the rigor 

and quality needed with that this type of analysis. These variables are defined to answer strategic questions (see 

Figure 2). All of them are assigned a score, which ranges from one (very low) to five (very high/ very significant) 

points as recommended in Williams (2009). As all variables are independent, each score is not conditional upon the 

values of others. The 4 variables are Degree of Damage (DeD), Location of Damage (LoD), Extension of Damage 

(ExD) and Evolution of Damage (EvD). 

 

- Degree of Damage (DeD), which answers the question “what is the severity of the damage?” This defines 

the intrinsic seriousness of the damage. It means that DeD assesses the physical condition of the structure 

after it has been modified by the action of the damage. The decision maker will assign 5 points when the 

damage compromises the ultimate limit-state of the structure, and 1 point when the problem (damage) be 

simply aesthetic 

- Location of Damage (LoD), which answers the question “where does the damage happen?”  This defines 

the relative position where damage appears. The importance of damage will vary in accordance with the 

relevance of its location on the structural unit. 

- Extension of Damage (ExD), which answers the question “what is the extent of the damage?” This 

defines which part of the structure is affected by the damage. To obtain the punctuation of the variable 

easily, the measurement is done in percentage.  

Intervention i 
PHASE 1: Definition of 

Structural Damage (SDa) 

PHASE 2: Prioritization 
Index (PIMHS) 

DECISION 
MAKING 



 

- Evolution of Damage (EvD), which answers the question “how the damage is evolving?” This defines the 

potential capacity of the pathological process to increase the damage in the immediate future.   

 

To obtain the final value of the SDa, these 4 variables are related through a summation [see Eq. (2)], where they are 

weighted according to their relative importance as determined by a group of experts using the Analytic Hierarchy 

Process (Saaty 1980).   
 

StD(Ax)=0.35DeD(Ax)*0.35LoD(Ax)*0.10ExD(Ax)*0.20EvD(Ax)            (2) 

4.2. Prioritization Index for the Management of Hydraulic Structures (phase 2) 

Phase 2 of the decision model develops, through MIVES, the Prioritization Index for the Management of Hydraulic 

Structures (PIMHS). PIMHS is an index that assesses the degree of sustainability associated with a proposed 

maintenance intervention. The evaluation is semi-quantitative and uses the value of SDa to relate the damage and 

the consequences.  The degree of sustainability depends on the social, environmental and economic consequences, 

for this reason the decision model is articulated through the 3 axioms of sustainability, as it shown in Table 1, which, 

in this case, are defined as: 

 

Table 1: Decision framework for the Investment Prioritization Index 
 

 

- The Social requirement assesses the affects that damage can cause on people. The health and welfare of 

people are prioritized above any other consideration. The requirement is divided into two criteria: 

Individuals, which evaluates direct damages that a person may suffer; and conditions, which assesses the 

indirect damage that may alter the normal activity of people or companies. 

- The Environmental requirement assesses the negative impacts that damage can generate on the natural 

surroundings of the dam. Also, it assesses the positive impacts that interventions generate on that 

environment. Usually, these kinds of impacts are not very important (the most important impact was 

occasioned by the construction of the dam) so the weight of this requirement should be pretty small. 

- The Economic requirement aims to maximize the yield of every dollar invested in eliminating damages, 

which is not the same as to prioritize those actions that will increase the owner's benefits. This 

requirement breaks down into two criteria to complete the economic study of the project to be carried out: 

the first one analyzes the initial investment, and the second one the potential impact of that investment. 

 

The final result of the PIMHS for each investment project is calculated according to Eq (30 as the weighted sum of 

each indicator, IVj(Ai,x). As previously mentioned in section 2, the relative weights of each indicator (𝑤𝐼𝑗
), criteria 

 Requirements Criteria Indicators 

P
IM

H
S
 

R1. Social 

(50%) 

C1. Physical people              

(60%) 

I1. Population Exposed to Risk* (70%) 

I2. Collective Perception of Risk (30%) 

C2. Effects                            

(40%) 

I3. Essential Services Affected* (50%) 

I4. Material-Economic loses* (50%) 

R2. Environmental  

(15%) 

C3.  Environmental impact 

(100%) 

I5. Negative Impact of Damage* (65%) 

I6. Value Added Actions (35%) 

R1. Economic 

(35%) 

C4. Service change (50%) I7. Annual Unitary Cost* (100%) 

C5. Return on investments 

(50%) 

I8. Maintenance Supervision Savings (30%) 

I9. Estimation Increase in Production (70%) 

* Indicators conditioned by SDa 



 

(𝑤𝐶𝑦
) and requirement (𝑤𝑅𝑡

) were calculated by the Analytic Hierarchy Process (AHP), and the indicator IVj(Pi,x) 

with the function value of each indicator.  
 

)(AIVwww)PIMHS(A i,xjjIyctRx                (3) 

 

PIMHS value goes from 0 (low priority) to 1 (high priority). A qualitative assessment may be assigned to each 

project according to the PIMHS five category levels presented in Table 2 (ICE 2010, ASCE 2013). Projects will 

likely be classified among the B, C and D level due to the high demanding requirements of the multi-criteria 

analysis. The maximum and minimum contributions to sustainability are represented by levels A and E, 

respectively. According to Pardo-Bosch and Aguado (2015), investment projects may hardly score over 0.8 due to 

the highly demanding requirements of a multi-criteria analysis. At the same time, it is unlikely to get projects with 

an E level score, as those are directly rejected beforehand for its obvious lack of contribution to sustainability.  

 

Table 2. PIMSH levels to classify the projects (ICE, 2010; and ASCE, 2013) 

 

Level A Level B Level C Level D Level E 

0.≤ PIMHS <0.8 0.8≤ PIMHS <0.6 0.6≤ PIMHS <0.4 0.4≤ PIMHS <0.2 0.2≤ PIMHS <0 

 

This paper, because of its length, cannot explain the details of the calculation of the indicators presented in Table 1. 

The reader can find complete information either on Pardo-Bosch (2014) or Pardo-Bosch and Aguado (2015). 

5. CASE OF STUDY 

This section aims to present a real case in which the decision-maker could use PIMHS to prioritize its maintenance 

investments. Nine (9) different interventions have been selected to show the usefulness of this tool. All of them were 

projected by a private hydroelectric company in 6 different dams. The prioritized interventions are described below:  

 

A1.- Treatment and sealing of cracks which affect two thirds of the dam, mainly the left abutment.  

A2.- Building a wall to reinforce the rock mass where the dam is supported. The aim is to increase the 

safety factors, and thus prevent slippage.  

A3.- Reparation and reinforcement of a land retaining wall on the road access to hydroelectric power 

station, where it is registered low displacements.  

A4.- Replacing valves of bottom outlets to adapt them to the design criteria. The current ones suffer a 

widespread deterioration due to aging. Furthermore water leaks are considerable.  

A5.- Grout injections to waterproof the dam body, with the aim of halting: the loss of cohesion, increased 

porosity and surface erosion.  

A6.- Injection of cold joints in the dam body where has appeared some water leaks.  

A7.- Reconstruction of a side compartment (10m high) collapsed by an avenue. There is no risk for people 

or environment.  

A8.- Stabilizing a rock mass to avoid a landslide, which could generate a wave that would affect the dam 

crest, as well as the dam body.  

A9.- Injection of cold joints in dam body. They have been opened by the combined action of concrete 

expansion and uplift pressure.  

5.1. Prioritization  

Due to the limited extent of this communication, it is not possible to present the evaluation of each variable of the 

decision model (the reader can find more information on Pardo-Bosch 2014). In order to present the results, Figure 3 



 

shows, for each of the 9 interventions, the value (from 0 to 1) of each indicator, before applying their weight. It is 

easy to see that the value of each indicator varies significantly depending on the intervention, which means that all 

of them are important to generate discrimination among the interventions.  

 

   

   

   

Figure 3. Indicators value (from 0 to 1) for each project 

 

The prioritization is presented in Table 3. As the reader can see, the variability of the PIMSH values for the 

intervention options (values are ranged between 0.22 and 0.77) is sufficient to help identify the more important 

options. It’s also important to remark regarding three different aspects. First, the order that we obtain with PIMSH is 

not the same as would be obtained if using only the SDa parameter (as an example, intervention A2 is located on the 

3rd position using PIMHS, while it would have been located on the 5th position only using SDa), so we need to use 

both phases of the decision model. Another relevant aspect is that the cost of the operation does not determine the 

result of the classification. The first two prioritized interventions are much more expensive than the third, for 

example. Finally, it’s important to say the all of structural units are ordered randomly, so none of them determine the 

result. 

5.2. Sensitivity analysis 

Sensitivity analyses are essential in any multi-criteria decision-making tool. These studies involve changing the 

value of variables to determine the impact that they can have on the final outcome (French 2003). In this case, to do 

this study, three new alternatives are presented, which were obtained by changing the weight of the requirements in 

the decision tree (see Table 4). Variation 1 and Variation 2 represent two combinations with weights that are 

considered consistent (possible). 

 

On Variation 1, the weight of social requirement is reduced by 20%, so it goes from 50% to 40%. The remaining 

10% is divided in two equal parts between the other two requirements. On variation 2, the weight of social 

  A1 

  A5   A4 

  A2   A3 

  A9 

  A6 

  A8   A7 



 

requirement is increased by 20%, so it goes from 50% to 60%. In that case, the additional 10% was obtained from 

the economic, as it is not possible to reduce more weight from the environmental requirement. Moreover, in 

Variation 3, the SDa was removed, but the weight remained the same as in the original decision model. The aim of 

this Variation is to show the significance of the SDa. 

 

 

Table 3. Interventions classification obtained by PIMSH  

 

Classification Actuation PIMSH SDa Level SU Cost ($) 

1 A4 0,70 4,25 B AS 4,500,000 

2 A8 0,66 4,35 B Rv 5,500,000 

3 A2 0,57 3,35 C AS 160,000 

4 A7 0,48 4,2 C DB 470,000 

5 A3 0,34 2,95 D Ab 7,500,000 

6 A5 0,31 3,45 D DB 330,000 

7 A6 0,27 2,65 D DB 270,000 

8 A9 0,22 2,65 D DB 330,000 

9 A1 0,17 2,05 E DB 220,000 

 

 

Table 4.  Weight of the requirements in each alternative 
 

 Social Environmental Economic 

Initial Weight (%) 50 15 35 

Variation 1 (%) 40 20 40 

Variation 2 (%) 60 15 25 

Variation 3 Initial Weight, without StD 

 

In Figure 4a, the reader can see that the results of Variations 1 and 2 do not introduce big changes in the valuation 

for the interventions, and for this reason the prioritization order is exactly the same that was obtained by the original 

weight. These results demonstrate the robustness of the model.  

 

The case of the Variation 3 (V3) is quite different. Without the SDa, the evaluation of the interventions, in some 

cases, is different enough to change the order of the prioritization (see Figure 4a and 4b). This result reinforced the 

indivisible nature of the two phases of the decision model. 

  

 



 

 

Figure 4. a) Value for each intervention in each variation of weight; b) Classification order Initial Weight vs V3 

6. CONCLUSIONS 

PIMHS allows prioritizing maintenance interventions in hydraulic structures with technical rigor. The main 

contribution of PIMSH is that it allows comparing different interventions, which would take place in very different 

hydraulic structures. The definition of the Structural Damage (SDa) is essential in order to allow comparisons 

between different interventions. Another advantage is that an expert can assess a large number of interventions in a 

few hours because the analysis is very simple, but at the same time, it is also very accurate. 

 

This multi-criteria decision model based on MIVES will minimize the subjectivity in the entire decision-making 

process, and it will help companies and public administrations to explain their policies.  Sustainable development is, 

at all times, the main argument that guides the process through the decision three requirements: economic, 

environmental, and social.   

 

Once the model is defined, each institution can change the weight of any variable to introduce its philosophy or the 

citizens' demands in the decision-making process. 
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