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ABSTRACT 

The Effect of Climate Change on the Hydrology of a Mountainous Catchment in the  

Western US: A Case Study at Reynolds Creek, Idaho 

by 

Anurag Nayak, Doctor of Philosophy 

Utah State University, 2008 

Major Professor: Dr. David G. Chandler 

Department: Biological and Irrigation Engineering 

This research is focused on understanding the sensitivity of a hydrologic regime at 

the Reynolds Creek Experimental Watershed (RCEW), a snowmelt dominated semi-arid 

mountain basin located in southwest Idaho, to climate warming.  

Climate data, collected during 1962 to 2006 at many locations in the RCEW, was 

carefully checked, preprocessed, and corrected for errors and noise signals introduced by 

the instrument malfunctioning and extreme weather conditions. An Automated 

Precipitation Correction Program (APCP) was developed to remove mechanical errors 

from the weighing-recording bucket type precipitation gauge measurements. APCP 

produces comparable results to the manual techniques but a degree faster (few minutes 

against 2-3 days) and is not influenced by operator biases. 

Long-term climate data collected over a range of elevations of RCEW were 

analyzed for temporal trends. Significant increase in temperatures, with minimum 

temperature rising at a faster rate than maximum temperature, was observed at all 
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elevations. Though trends in annual precipitation and streamflow were not significant, 

streamflow shows a seasonal shift to larger winter and early spring flows, and reduced 

late-spring and summer flows. These analyses indicate more precipitation as rain than 

snow, decrease in snow water equivalent (SWE), reduction in number of soil freeze days, 

and earlier occurrence of plant-water stress. All trends show a significant elevation 

gradient in either timing or magnitude. 

To assess the sensitivity of the mountain snow cover to natural climate variability, 

and as forced by warming climate, snow cover development and melt during five snow 

seasons (1984, 1986, 1987, 2001, and 2006) were simulated under actual (base), warm 

(+2°C), and cold (-2°C) forcing climate scenarios, at the Reynolds Mountain East (RME) 

basin, a head water catchment of the RCEW. Selected seasons displayed tremendous 

variability in snow distribution, accumulation, and melt with snowcover during dry snow 

(1987, 2001) seasons substantially smaller, and peak snow accumulations and melts 

about a month earlier compared to wet snow seasons (1984, 1986, 2006). Results from 

altered climate scenario simulations show that colder conditions result in less rain and 

more snow, increase in SWE, later timing of peak SWE, and later snowmelt. The 

simulations with warm scenarios show more rain and less snow, decrease in SWE, earlier 

timing of peak SWE, and earlier timing of snowmelt. In general, seasonal snowcover 

shows greater sensitivity to warm scenarios than cold.   

(209 pages) 
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CHAPTER 1 

INTRODUCTION 

1. General 

Global surface temperature has risen by about 0.6-0.7 °C over the last 50 years 

(Trenberth et al. 2007). Further increase in global temperature by 1.1 to 6.4 °C is 

projected by the end of 21
st
 century (Meehl et al. 2007). This increase in temperature is 

primarily attributed to anthropogenic increase in green-house gas concentrations in 

atmosphere. Substantial change in both at global and regional scales hydro-climate have 

been observed and predicted as a result of persistent warming (Leung and Ghan 1999; 

Manabe et al. 2004; Stewart et al. 2005; Leipprand and Gerten 2006; Trenberth et al. 

2007; Randall et al. 2007). 

Though increase in surface temperatures have been observed over the entire globe 

during past 50 years, the rate and nature of rise in temperature varies from one region to 

another. In western USA and Canada, regional surface temperature has increased by 1-3
 

°C since mid 20
th

 century (Trenberth et al. 2007) with greater increase in winter 

temperatures. The trends of rising temperature are also diurnally asymmetric, with a 

larger increase in minimum temperature than maximum temperature and a decrease 

diurnal temperature range (Karl et al. 1984, 1993; Quintana-Gomez 1999; Brunetti et al. 

2000; Trenberth et al. 2007). 

Precipitation in much of the western USA and Canada is winter dominant, the 

majority of which falls as snow, especially at high elevations. Mountain snowpack plays 

an important role in regional hydrologic cycle by storing winter precipitation and 
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releasing melt water during late spring and summer, when ecological, agricultural and 

domestic water demand is at its peak. Warming climate conditions can substantially alter 

hydrologic cycle in these regions by altering snow deposition, accumulation and melt 

pattern.  

 Volume of water stored in mountain snowpack and timing of melt generated are 

very sensitive to climate conditions. A number of studies have reported impacts of 

warming climate on hydrologic cycle of these western mountains by means of decline in 

snow accumulation and spring snowpack (Mote 2003a, 2003b, 2006; Mote et al. 2005; 

Hamlet et al. 2005), decrease in fraction of precipitation that falls as snow (Aguado et al. 

1992; Dettinger and Cayan 1995; Huntington et al. 2004; Regonda et al. 2005; Knowles 

et al. 2006), and a shift in the timing of snowmelt runoff toward earlier in the year 

(Aguado et al. 1992; Dettinger and Cayan 1995; Cayan et al. 2001; Stewart et al. 2004, 

2005; Regonda et al. 2005).  

In the western USA, hydrologic sensitivity of a basin to warming climate has 

shown to have strong correlation with elevation and low to mid elevation basins (with 

winter temperatures near freezing point) have displayed greater changes in streamflow 

timings and spring SWE than high elevation basins (with winter temperatures well below 

freezing point) (Stewart et al. 2004, 2005; Mote et al. 2005; Regonda et al. 2005; 

McCabe and Clark 2005). Similarly Knowles et al. (2006) reported that the greatest 

decline in fraction of precipitation as snow occurred in low to mid elevation basins where 

winter temperatures were warmer than -5 °C. Though studies cited above clearly indicate 

a strong relationship between the basin elevation and Climate Change signal in the 
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western USA they were limited by the lack of coherent climate and snow data and by 

limited number of high elevation measurement sites.  

It is clear that warming temperature has affected hydrologic cycle of the 

mountainous western USA. Most research, however focuses on the large scale changes in 

hydrologic regime and based on majority data collected at low to mid elevation sites near 

urban areas. This is primarily due to limited availability of quality data at remote 

mountainous locations (Hamlet et al. 2005).  

Mountain basins of the western USA display tremendous spatial heterogeneity 

due to rapid change in elevation, slope, topography and vegetation. In these mountain 

basins precipitation typically increases with elevation (Hanson 1982, 2001; Cooley et al. 

1988; Daly et al. 1994) and shows substantial differences between upwind and downwind 

slopes (Hanson 1982). These spatial heterogeneities and differences in precipitation lead 

to great disparities in snowpack development and melt within the basin. The large scale 

research studies cited earlier fail to clarify specific questions about differences in 

sensitivity of hydrologic cycle to the warming climate at range of elevations in these 

mountain basins.  

Given the importance of mountain snowpack and snowmelt in regional 

hydrology, it is important to understand impacts of climate warming in these mountain 

basins. The Reynolds Creek Experimental Watershed (RCEW), a 238 km
2
 semi-arid 

basin located in Owyhee Mountains, Idaho, is a densely instrumented watershed with 

sensors recording precipitation, climate data (temperature, wind speed and direction, 

solar radiation, evaporation, humidity etc.), snow, soil temperature and moisture, 

streamflow etc. at high temporal and spatial resolution. The available data make it an 
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ideal place to investigate impacts of warming climate on hydrologic cycle of mountain 

basins. 

Climate data collected at RCEW (and other mountain locations) are subjected to 

noise and errors as instruments are affected by extreme weather conditions. Therefore 

careful quality checks and corrections in the climate data are necessary before their use in 

hydrologic studies and modeling. Precipitation measurements are most adversely affected 

by the systematic and mechanical errors in mountainous environments such as RCEW, 

where substantial amount of precipitation falls as snow. Techniques to correct 

precipitation data for systematic errors have already been developed (Hamon 1971, 1973; 

Goodison et al. 1998; Yang et al. 1998), but researchers have often relied on manual 

methods to remove mechanical errors. Manual removal of mechanical errors from the 

high frequency precipitation data is very tedious, requires operator expertise and may be 

affected by operator bias. Currently 26 dual gauge precipitation stations (two National 

Weather Service (NWS) weighing-recording gauges, one unshielded and the other 

shielded with Alter-type shield, located in close proximity) recording precipitation at 15 

min or higher frequency, are in operation at RCEW. Manual removal of mechanical 

errors from high frequency precipitation data, in a heavily instrumented watershed like 

RCEW, is not practical and there is a need to develop automated techniques to remove 

mechanical noise signals from the precipitation data.  

In mountain basins where topography, vegetation and climate conditions change 

rapidly with elevation, it is important to understand differences in impact of warming 

climate at range of elevations within the basin. Continuous records of hydro-climate and 

related data are available at a range of elevations of RCEW since early 1960’s. Analyses 
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of these uniquely coherent long term hydro-climate data could be useful in understanding 

nature, extent and spatial differences in Climate Change signal in mountain basins.  

There is a strong elevational gradient in precipitation at RECW, where the high 

elevation southern extent of the basin receives as much as 5-6 times more precipitation 

than the valley bottom (Hanson 2001). In RCEW, development of high elevation snow 

cover and subsequent release during late spring and summer is critical to sustaining the 

vegetation and ecosystems (Marks et al. 2001). Warming climate conditions could 

significantly alter snow cover development and melt pattern. Therefore it is important to 

understand the sensitivity of high elevation snowpack to the change in climate conditions.  

The weather patterns at RCEW is related to oceanic circulations such as Pacific 

Decadal Oscillation (PDO) and El-Nino Southern Oscillation (ENSO) (Hurrell 1995; 

Hurrell and Van Loon, 1997; Dettinger et al. 1998) because of which the climate at 

RCEW shows great natural variability in precipitation (wet and dry cycles) and climate 

conditions (warm and cold phases). This natural variability in precipitation and climate 

conditions cause substantial year to year differences in snow accumulation and melt 

pattern at RCEW.  

The studies cited above have reported that the warming climate has substantially 

altered the hydrologic regime of the mountainous western USA. These changes will 

continue at similar or accelerated rate if future climate predictions are true (Meehl et al. 

2007). In order to prepare and adapt to the altered hydrologic regime due to climate 

warming, it is important to understand not only the long-term changes but also the 

variability associated with the hydrologic cycle. 
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2. Objectives 

The overarching goal of this project is to clarify the processes by which warming 

climate conditions are affecting local scale hydrologic cycle in snowmelt dominated 

mountain catchments by altering precipitation (amount, distribution and phase), snow 

accumulation, and snowmelt timings. The main objectives of this research are:   

1. Develop an automated technique to remove mechanical errors from the weighing-

recording bucket precipitation gauges.  

2. Investigate long-term (1960’s to present) measurements of precipitation, 

temperature, humidity, snow, soil temperature and moisture and streamflow made 

at Reynolds Creek Experimental Watershed to quantify the extent of changes in 

temperature, precipitation (amount, distribution and phase), snow cover, and 

streamflow over a range of elevations. 

3. Identify the impact of warming climate on snow accumulation, and melt of a mid-

elevation mountain catchment during snow cover period in conjunction with 

natural climate variability. 

 

These objectives were accomplished through a series of three papers presented as 

chapters in this dissertation. Each of these chapters contains necessary literature review 

and background information to make a case for the topic dealt in the chapter.  Chapter 2 

describes the development of an Automated Precipitation Correction Program (APCP) 

that can remove mechanical noise signals from the high frequency precipitation data 

collected using weighing-recording precipitation gauges. APCP was used to preprocess 

precipitation data collected at many stations in RCEW which was used in later part of the 
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research. Chapter 3 presents the trend analyses of carefully processed long term hydro-

climate and related data collected at range of elevations of RCEW. In Chapter 4, 

sensitivity of seasonal snowcover to changing climate conditions, was tested for five 

snow seasons representing range of precipitation (from wet to dry) and climate (from 

warm to cold) conditions at Reynolds Mountain East, a high elevation headwater 

catchment of RCEW.  
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CHAPTER 2 

OBJECTIVE SUB-DAILY DATA CORRECTION FOR WEIGHING BUCKET 

TYPE PRECIPITATION GAUGE MEASUREMENTS
1
 

 

Abstract 

Electronic sensors generate valuable streams of forcing and validation data for 

hydrologic models, but are often subject to noise which must be removed as part of 

model input and testing database development.  We developed Automated Precipitation 

Correction Program (APCP) for weighting bucket precipitation gauge records, which are 

subject to several types of mechanical and electronic noise and discontinuities including 

gauge maintenance, missing data, wind vibration and sensor drift.  Corrected cumulative 

water year precipitation from APCP did not exhibit an error bias and matched measured 

water year total precipitation within 2.1 % for 58 station-years tested.  Removal of low 

amplitude periodic noise was especially important for developing accurate instantaneous 

precipitation records at sub-daily time steps. Model flexibility for use with other data 

types is demonstrated through application to time domain reflectometry soil moisture 

content data, which is also frequently subject to substantial noise. 

                                                 
1
 Coauthored by A. Nayak, D.G. Chandler, D. Marks, J. P. McNamara, and M. Seyfried. Submitted for 

publication to the Water Resources Research, American Geophysical Union.  
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1. Introduction 

Precipitation and soil moisture are two of the most commonly measured 

components in catchment water balance studies.  Continuous and accurate data for these 

and other variables are critical for driving and validating hydrological models.  Many 

hydrological processes occur at sub-daily time steps and modeling these processes 

requires either accurate forcing data at the time step of the model (Haddeland et al. 2006) 

or a scaling approach (Waichler and Wigmosta 2003; Kandel et al. 2005) to use daily 

data.   

Building accurate sub-daily time step hydrometeorological data sets is also an 

important step in reconstructing land surface atmosphere interactions though hydrological 

modeling (Ngo-Duc et al. 2005), especially for mountain environments and snowmelt 

conditions where distributed data sets are limited (Arnold et al. 1998; Schnorbus and Alia 

2004; Lehning et al. 2006).  Generally these data are difficult to acquire and limit the 

temporal extent of the simulation (Link and Marks 1999a&b; Winstral and Marks 2002).  

If high quality data are available, snow cover simulation for entire snow season is 

possible (Marks et al. 1999; Susong et al. 1999; Garen and Marks 2005). 

Precipitation gauge measurements are subject to a wide range of errors that may 

affect the precipitation record and require assessment and correction.  These may be 

broadly divided into two groups: mechanical errors and systematic errors. The magnitude 

of these errors and the techniques required to correct them depend on the meteorological 

conditions and type of gauge.  The most prevalent recording gauge types are tipping 

bucket and weighing bucket. 
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The influence of mechanical errors on precipitation records has been well 

investigated for tipping bucket type gauges (La Barbera et al. 2002; Molini et al. 2005a).   

Sources of mechanical error in tipping bucket gauge data include incomplete dumping 

(Vasvari 2005) and can be associated with high rainfall intensity (Molini et al. 2005a) or 

data processing strategy (Ciach 2003).  Several sensor calibration approaches have been 

developed (Calder and Kidd 1978; Marsalek 1981; Molini et al. 2005b).   

The weighing bucket precipitation gauge is most common in environments 

receiving precipitation both as rain and snow, where tipping bucket gauge records are 

unreliable (Kuligowski 1997).   Systematic errors in weighing bucket type gauges have 

been well investigated and are known to occur due to wind field deformation above the 

gauge-rim, evaporation (Yang et al. 1999; Hanson 2001), splashing of raindrops and 

blowing of snow (Sevruk 1982). Evaporative losses from weighing bucket gauges in 

colder climates range from 0.1-0.2 mm/day (Goodison et al. 1998) and can be minimized 

by adding mineral oil into the precipitation bucket (Kuligowski 1997). Under catch due to 

wind may reach 10-20% for liquid precipitation and 75-80% for snow and can be 

corrected through the use of paired shielded and unshielded gauges (Hamon 1971, 1973) 

or empirical equations (Goodison et al. 1998; Yang et al. 1998, 1999, 2000).  Appropriate 

use of systematic error correction algorithms requires prior removal of mechanical errors 

from the data record.  However, mechanical errors associated with weighing bucket 

gauges have received only passing attention as part of comparative studies (Nystuen 

1999; Duchon and Essenberg 2001).  In this paper we will focus primarily on automated 

correction of mechanical errors typical of electronically recorded weighing bucket type 

gauges. 
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Weighing bucket precipitation gauge data are intrinsically cumulative.  While this 

type of data is convenient when long term (such as daily, monthly or annual) total 

precipitation volume is of interest, for many hydrologic applications, discrete values in a 

time series with a fixed interval of minutes to hours are required.  To process time-series 

precipitation values from cumulative data, it is necessary to derive unbiased 

instantaneous differences from the cumulative record. Even small errors in instantaneous 

time-series precipitation values become additive in the cumulative annual record and can 

result in relatively large differences between physically measured volume and calculated 

cumulative precipitation. 

Manual removal of mechanical errors and electronic noise from data is tedious 

and can be time consuming. Discontinuities and errors in weighing type precipitation 

gauge data due to maintenance activities such as bucket recharge, addition of mineral oil 

and antifreeze and malfunctioning of the gauge-data logger assembly are easily identified 

as distinct discontinuities in measured precipitation volume and can be simply removed 

in a spreadsheet. However, small oscillations induced by wind vibration, or thermal 

expansion and contraction of weighing equipment are more difficult to separate from 

precipitation input in the data record.  Fluctuations caused by wind vibration can have an 

affect on gauge measurements for periods from a few hours to a few days depending on 

conditions while fluctuations due to temperature are cyclic in nature. Here we present an 

automated precipitation correction program (APCP) to remove mechanical errors from 

continuous time series data obtained from weighing bucket precipitation gauges. 

Although the ACPC program was written specifically to address weighing bucket 

precipitation data, and some of the features are unique to that kind of data, the data 
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smoothing and filling algorithms are basically generic and can be applied, with minimal 

modification, to other types of data. We demonstrate this more general applicability of 

the program by applying it to soil moisture data collected with automated time domain 

reflectometry (TDR) to demonstrate other uses of the algorithm.  TDR pulse 

generator/analyzers can contain sufficient instrument errors to render the data impractical 

to use.  Such errors are commonly caused by misinterpretation of waveform reflection 

points and result in values outside of the expected range for soil moisture and instrument 

error values (e.g. -6999, -9999).  In addition to out of range values, many values, though 

clearly incorrect in the context of the environment, are not out of range of the likely 

values. 

 

2. Types of Mechanical Errors 

We classify the various types of mechanical errors present in weighing bucket 

gauges as a) out of range data values, b) bucket decanting, c) bucket recharge, d) 

intermittent noise, e) periodic noise, and f) episodic noise (Figure 2.1).  Based on the 

noise signal amplitude, errors due to out of range data values, bucket decanting, bucket 

recharge and intermittent noise can be classified as high amplitude noise signals, while 

small vibrations in the data record due to wind (episodic noise) and temperature 

fluctuations (periodic noise) can be classified as low amplitude noise. 

Periods of instrument or data logger failure are recorded by Campbell Scientific 

data loggers as extreme negative values (e.g. -6999, -9999) that cause discontinuities in 

the precipitation records during these periods of out of range data (Figure 2.1a).  During 

instrument servicing the gauge bucket is removed from the load cell-weighing 
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mechanism, decanted and then recharged with mineral oil (to prevent evaporation) and 

anti-freeze (to melt snow, only during snow season) before returning the bucket to the 

gauge. This activity introduces large instantaneous changes in the load cell records. Such 

discontinuities in the record are generally negative (bucket decanting; Figure 2.1b), but 

can be positive depending on the mass of mineral oil and/or anti-freeze added to the 

measurement buckets (bucket recharge; Figure 2.1c).  Occasionally, the gauge record is 

subject to large instantaneous changes or fluctuations from intermittent electronic noise 

(Figure 2.1d).   

Low amplitude noise signals may be introduced by load cell sensitivity to 

temperature fluctuations, diurnal changes in the data-logger power supply, wind or 

barometric pressure changes. These effects can be broken into periodic noise, which 

follows the diurnal cycle (Figure 2.1e) and episodic noise which is characterized by 

irregular, low amplitude, high frequency fluctuations near to the mean of the values 

(Figure 2.1f). Some of the gauge systems located at RCEW show a diurnal variation up 

to 0.4 mm (Hanson et al., 2001). This diurnal variation can be attributed to solar heating 

and cooling of load cell-gauge system and is more pronounced in summer (Hanson et al., 

2001). Shielded gauges at windy sites can be subject to frequent episodic noise due to 

wind induced vibrations if the shield is mounted to the same post as the gauge (Hanson et 

al., 1979). Although such low amplitude noise does not affect long-term aggregate 

precipitation measurements, it is difficult to manually separate from sub-daily (15 min, 

hourly, etc.) precipitation data and can obscure the beginning and end of precipitation 

events.  
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Figure 2.1: Types of mechanical errors present in gauge measurements, pink hollow 

diamonds show unprocessed data and blue solid lines show data processed using APCP. 

(a) Out of Range Data, (b) Bucket Decanting, (c) Bucket Recharge, (d) Intermittent 

Noise, (e) Periodic Noise, and (f) Episodic Noise  
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3. Program Description 

The APCP utility was developed in ‘Visual Basic 6.0’ to process high frequency 

cumulative precipitation records, fill data gaps, remove discontinuous data and filter 

mechanical and electronic noise from the file.  APCP is designed to process data one year 

at a time, and will accept any regular or irregular input time interval.  User-defined 

parameters include: out of range data value indicator, NoData; bucket decanting limit, 

BucketDecanting; bucket recharge limit, BucketRecharge; and noise limit, Noise. By 

default APCP generates a processed output data file following the time steps of input data 

file but it can also generate output data file at any user specified time interval (such as 15 

min, 1 hour or 3 hours, etc.). The value of the parameter NoData should be selected based 

on data-logger settings (e.g. -6999, -9999). Prior to running the program input data files 

should be inspected carefully, to verify that the initial values are accurate, to identify 

extended periods of missing data, and to ensure reasonable selection of values for other 

user defined parameters. Both BucketDecanting and BucketRecharge limits should be set 

smaller than the minimum absolute change in data records due to bucket decanting and 

bucket recharge respectively, but greater than the Noise limit. The Noise limit, which 

separates high and low amplitude noise signals, should smaller than the minimum change 

due to high amplitude noise but greater than the maximum change due to low amplitude 

fluctuations in input data file. 

APCP scans the data and compares the difference in consecutive records to the 

user-defined limits in two separate cycles.  In the first scanning cycle, APCP removes 

high amplitude noise and discontinuities including missing records, bucket decanting, 

bucket recharge and intermittent noise.  In the second scanning cycle APCP removes low 
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amplitude noise and fluctuations due to diurnal temperature variations and vibrations 

from wind. A list of user defined parameters and program variables used by APCP is 

given in Table 2.1. Symbols used to describe programming logic are described in the 

Appendix (Section 7 of this chapter).  

 

Table 2.1: Description of User defined parameters and variables used in APCP program 

User Defined Parameters  

BucketDecanting Bucket decanting limit 

BucketRecharge Bucket recharge limit 

Noise Threshold of high magnitude noise 

NoData Out of range data value.  

Program Variables 

Records Number of data points in the input file 

i Counter used to limit the scanning cycles 

j Counter from beginning to end of noise 

p Value of ‘i’ at start of noise 

n Value of ‘i’ at end of noise 

CumPPT Cumulative precipitation 

PPT, PPTB, PPTE Incremental precipitation 

 

 

3.1. Out of Range Data Values 

Out of range data values are first replaced to make the data record continuous. 

Most data of this type are of short duration and are automatically filled by APCP by 

uniformly distributing the difference between previous and next available valid data over 

the period of out of range data points. The value of the cumulative precipitation record 

(CumPPT) at each time step (i) is first compared to NoData, to identify out of range data. 

APCP sets a marker (p) at the end of noise-free values to identify beginning of the period 

of the out of range data values. 
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=
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Since an out of range data value is assumed to be an extreme negative value, 

APCP sets a second marker (n) at the point where data resume. 

j= p+1

Records

CumPPT j( )≥ 0 & CumPPT( j) ≠ NoData? n = j  

 

In some cases out of range data values are generated during gauge maintenance.  

If the collection bucket was decanted or recharged during the period of out of range data, 

no precipitation is assumed. Otherwise, the difference in cumulative precipitation is 

distributed evenly throughout the period. 

( ) ( ) ( ) ( )( ) ?|| rgeaBucketRechnCumPPTpCumPPTntingBucketDecanCumPPTpCumPPT >−−>−
 

( ) ( ) ( ) ( ) ( ) ( )
pn

pCumPPTnCumPPT
pjpCumPPTjCumPPT

n
pjpCumPPTjCumPPT

n

pj −

−
×−+=

−
+==

−

+=
)(

1
1:

1

1

 

3.2. Scanning Cycle 1 

After removal of out of range values from the data record, high amplitude noise 

signals are identified and removed using the user specified limit, Noise in the first 

scanning cycle. If the absolute difference of two successive data values is greater than the 

Noise limit, the second value is identified as affected by noise and a marker ‘p’ is set 

before the beginning of noise signal.   

( )( ) 1?)1(
Re

2
−=>−−

=
ipNoiseiCumPPTiCumPPT

cords

i
 

The end of a noise period in the data is identified by at least five successive data 

values for which the absolute values of the successive differences are all less than the 

Noise limit and a marker ‘n’ is set at next good value after the end of the noise signal.  
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APCP then identifies instances of bucket decanting (and recharge) within the 

period of noise.  If the positive (or negative) difference in recorded cumulative 

precipitation before and after the noise signal is greater than the BucketDecanting (or 

BucketRecharge) limit then all instantaneous precipitation values during the period are 

set equal to zero. 
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If the absolute difference in cumulative precipitation over the period of noise is 

less than the Noise limit, any difference in cumulative precipitation over the period is 

distributed uniformly over the records within that period. 
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High variation in successive values may also occur due to precipitation intensity 

greater than the specified Noise limit. An increase in the cumulative precipitation over the 

period of noise that exceeds Noise but not BucketRecharge it is attributed to high 

intensity precipitation. Instantaneous precipitation during high intensity precipitation 

events is calculated by subtracting previous cumulative precipitation value from the 

current cumulative precipitation value. 
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Similarly if the absolute difference between two successive data values is less 

than the Noise limit, instantaneous precipitation is calculated by subtracting previous 

cumulative precipitation value from the current cumulative precipitation value. 
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3.3. Scanning Cycle 2  

After all high amplitude noise signals have been removed from the record in 

scanning cycle 1, low amplitude episodic and periodic noise are removed in the second 

scanning cycle.  Low amplitude noise does not affect the long term total catch volume, 

but introduces negative values when instantaneous precipitation (PPT) is calculated from 

the cumulative record, as at the end of scanning cycle 1.  APCP identifies episodic or 

periodic noise as negative instantaneous precipitation values and uses an averaging 

approach to distribute them over the two previous and two successive precipitation 

values, thereby smoothing the data without changing the total cumulative record value. 

The approach assumes that actual precipitation during periods of episodic or periodic 

noise is reasonably approximated by the generated mean values.  

In scanning cycle 2, the array containing instantaneous precipitation after 

scanning cycle 1 (PPT) is first copied in two separate arrays: one is smoothed from the 

beginning of file to the end (PPTB) and the other is smoothed from the end of file to the 

beginning (PPTE). It is important to note that scanning cycle 1 assigns values in array 

PPT from cells 2 to Records while value in first cell is by default assigned as zero.  
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In order to implement the program, noise free conditions are required for the 

second and third values of PPT.  This is achieved by moving any errors to successive 

values of PPT:  
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For the remainder of the array, periods of five values with a central instantaneous 

negative value are assigned the average of these five values or the net negative value is 

assigned to the i+2
th
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The second array is scanned in the same manner, but in reverse order, i.e. from 

Records-2 to 4. Finally, the instantaneous values for each time step of the two arrays are 

averaged to return the corrected instantaneous precipitation.  
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4. Test Data  

The U.S. Department of Agriculture Agricultural Research Service-Northwest 

Watershed Research Center (ARS-NWRC) is operating a dense network of precipitation 

gauges in Reynolds Creek Experimental Watershed (RCEW) since 1962.  The watershed 

is located in the Owyhee Mountains of southwestern Idaho, approximately 80 km 

southwest of Boise and experiences a wide range of meteorological conditions (Slaughter 

et al. 2001). The current network is a dual-gauge system consisting of one unshielded and 

one shielded Belford universal recording gauge with orifice diameter of 203 mm, 

capacity 305 mm (Hamon 1971, 1973; Hanson et al. 1999, 2001; Hanson 2001) and an 

absolute sensitivity of +/-0.25 mm (Kuligowski 1997). Through time, the weighing 

mechanisms have also been updated to improve measurement accuracy and sensitivity.  

In their current configuration, a data logger records the load cell output of precipitation 

depth in the gauge collection bucket at 15 minute intervals (Hanson et al. 2001).  

Experience with weighing bucket gauge data has led NWRC to develop extensive 

quality control protocols and quality analysis techniques.  Through 2004, NWRC used 

the graphical tool ‘Rainfall Analyzer’ (RA) to manually filter, correct and process raw 

precipitation data. This method requires 1-3 days per station-year depending on operator 

training, skill, judgment, and patience. Internal comparisons have shown that RA results 

are somewhat subject to operator bias and are not exactly reproducible even when 

repeated by the same operator.  Nevertheless, to our knowledge RA is the most 

sophisticated data filter available for weighing type bucket gauges. Estimated total 

annual gauge catch was added as a supplemental measure of quality analysis. This value 

is the sum of total collected gauge bucket volume changes, recorded from field records of 
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gauge maintenance. It is the most objective measure available of actual cumulative 

precipitation at RCEW. 

The APCP correction technique was applied to 22 dual gauge stations in RCEW 

for water years 1997-2005 (October through September). The gauge sites span an 

elevation range from 1177 to 2169 m and mean annual precipitation from 236 to 1123 

mm (Hanson 2001). Corrected data from APCP and RA are compared to estimated total 

annual gauge catch for eleven dual gauge stations for water years 2002-2004 for a total 

of 58 station-years. These sites and station years were selected for availability of both RA 

corrected precipitation records and field maintenance records to estimate total annual 

gauge catch.  To asses the effect of the APCP on sub-daily precipitation data, we 

compare precipitation records  following scanning cycle 1, which is similar to records 

following manual correction of out of range data and gauge servicing, to information 

following scanning cycle 2, which removes low amplitude noise for daily, hourly and 15 

minute time steps (Figure 2.2).   

As a demonstration of the capability of APCP to remove random noise from other 

data, we applied the program to TDR data.  The data were collected in the Dry Creek 

Experimental Watershed near Boise, Idaho, in coarse-loamy, mixed mesic Ultic 

Haploxerolls (Harkness 1997; McNamara et al. 2005). The TDR waveguides were 30 cm 

in length and logged hourly using TDR100, coaxial multiplexers and CR10X data loggers 

(Campbell Scientific, Logan, UT).  Data filtering was performed with the first scanning 

cycle of APCP only, since these data are not cumulative.  In this case Noise limit is set to 

0.025. Bucket decanting and recharge limits are set to very high values (50) to only 
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Figure 2.2: Measured and corrected shielded gauge precipitation data using manual (only 

bucket decanting), RA and APCP techniques for site 176, water year 2004. Estimated 

catch is computed by adding bucket decanting depths to the recorded precipitation. 

Inserted figure shows differences in three correction approaches at sub-daily scale.   

 

 

Remove extreme data spikes and out of range data value was set to -6999. 

Contemporaneous data from a proximal Water Content Reflectometer (WCR) which was 

previously calibrated with TDR (Chandler et al. 2004) is provided for comparison.   

 

5. Results and Discussion 

The goal of data processing is noise and error removal without introducing bias.  

To demonstrate the function of APCP for each defined category of mechanical error, we 

present example comparisons of raw and APCP processed data at the scale of each error 

(Figure 2.1).   The error categories “Out of Range Data,” “Bucket Decanting,” “Bucket 

Recharge,” and “Intermittent Noise” occur as instances or constant value shifts from a 
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baseline and are simply corrected relative to local baseline cumulative precipitation by 

scanning cycle 1.  Establishing a local baseline is more complicated over the temporal 

scale of “Periodic Noise,” which is by definition a quasi-regular waveform around the 

expected value and for “Episodic Noise,” which superimposes random noise onto the 

diurnal signal of “Periodic Noise” (Figure 2.1e, f).  The uncertainly in baseline 

cumulative precipitation during Periodic and Episodic Noise, as complicated by 

contemporaneous noise and precipitation, is the greatest potential source of error and bias 

in data correction for cumulative gauge records.   

In the case of cumulative precipitation, the match between processed and raw 

cumulative gauge-catch data is a qualitative measure of the efficacy of data processing 

techniques.  Such a comparison requires developing a cumulative record from raw data 

by correction of negative steps in the measured record from bucket decanting, for 

instance by APCP scanning cycle 1.  Comparison of the raw 15 minute interval data from 

the shielded gauge at site 176, to the cumulative series following manual adjustment for 

bucket decanting, output from APCP and RA is presented in Figure 2.2.  All three 

correction approaches maintain the basic structure of the time series data and match the 

incremental estimated catch at the annual time scale.   However, at sub-daily time scale, 

the cumulative records for manual correction, RA and APCP often diverge at the mm 

scale (Figure 2.2, inset) due to differences in the approach to processing Periodic and 

Episodic Noise.  Bias is therefore inherent in both methods of processing precipitation 

data.   

For 58 station-years tested, the bias between processed cumulative gauge 

precipitation and estimated actual gage catch is lower for APCP than RA (Figure 2.3).   
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APCP annual total is consistently close to the estimated total annual precipitation, with a 

mean difference and standard deviation (SD) of about -0.6 mm (-0.1%) and 3.4 mm 

(0.6%) respectively for shielded gauge and -0.2 mm (-0.02%) and 2.1 mm (0.5%) 

respectively for unshielded gauges. In contrast, RA results show a mean difference and 

standard deviation of -2.7 mm (-0.5%) and 11.3 mm (2.1%), respectively, for shielded 

gauge and -1.0 mm (0.4%) and 12.9 mm (3.4%) for unshielded gauge. Because APCP is 

not affected by operator bias, total water year precipitation for data processed by APCP 

can be exactly repeated and processing and depending on the operator, APCP can process 

one station year in a few minutes. Depending on the extent of noise, spreadsheet and RA 

processing may take 1-3 days per station year. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Errors with respect to estimated total annual precipitation, solid diamonds 

show shielded and open boxes show unshielded gauges. (a) Rainfall Analyzer (RA). (b) 

Automated Precipitation Correction Program (APCP). 
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Ultimately, the goal of removing low amplitude noise from the record is to 

generate a reliable instantaneous precipitation record at sub daily time steps.  As an 

example of the temporal scale dependence of the influence of low amplitude noise on the 

instantaneous precipitation record, we compare distributions for daily hourly and 15 

minute time steps for a single station year (Figure 2.4).  Once again, APCP scan 1 is used 

to remove all major noise and scan 2 is then used to filter the low amplitude noise.  

Excluding the nil instantaneous precipitation data, which were most frequent for all time 

steps, two clear trends emerge: First, the instances of precipitation represented by scan 1 

exceed those by scan 2 at all time steps.  Second, the number of representations of 

negative precipitation increases with decreasing time step (Figure 2.4).    Whereas the 

positive and negative instantaneous precipitation values balance in the annual record at 

all time steps, manual correction of erroneous instantaneous precipitation values is clearly 

impractical for hourly and 15 minute records due to the exponential increase in number of 

errors at shorter time steps (Table 2.2). 

 

Table 2.2: Instantaneous precipitation occurrence frequency and cumulative annual depth 

for daily, hourly, and 15 min 

 

 scan 1 scan 2  

 positive event  negative event positive event 

 number sum 

(mm) 

number sum 

(mm) 

number sum 

(mm) 

daily 188 491 130 -28 95 463 

hourly 3895 721 3098 -246 885 475 

15 min 13912 1328 12030 -853 2081 475 

 

 

APCP does not eliminate the requirement for careful observation of raw data and 

field notes. APCP may not remove all noise satisfactorily when the amplitude of noise 
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Figure 2.4: Frequency of instantaneous precipitation values following scan 1 and scan 2 

of the Automated Precipitation Correction Program for daily, hourly, and 15-minute time 

steps. 
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Caused by site maintenance is very small. In this case it is necessary to remove these 

errors from the raw precipitation record before using APCP. It is also recommended that 

the processed data generated by APCP be checked by comparison with estimated total 

annual gauge catch and visual inspection of raw data to verify that all noise and 

discontinuities have been removed satisfactorily.  

The result of application of APCP to hourly TDR data is shown in Figure 2.5.  In 

this case, the assumption that instantaneous change in the hourly water content record 

greater than 0.025 m
3
 m

-3
 were noise.  This approach identified 459 data records as noise 

and adjusted them to the local average.  Of the records identified an noise, 70 were 

greater than 0.4 m
3
 m

-3
, 83 were less than the apparent residual moisture content of 0.045 

m
3
 m

-3
 (29 were negative).  Of the 306 adjusted data values within the possible range of 

soil moisture (0.045- 0.40 m
3
 m

-3
), 128 were greater than the apparent field capacity (0.24 

40 m
3
 m

-3
).   The remaining 178 identified errors were random changes greater than the 

assumed noise limit within the expected range of soil moisture, for example the spikes 

near Julian day 160 (Figure 2.5).  The corrected TDR record is comparable to the 

calibrated WCR record, which tend not to be subject to similar noise problems.   

 

6. Conclusion 

The APCP precipitation correction utility, developed to filter mechanical errors 

from raw precipitation data, was applied successfully to process data collected at 22 dual 

gauge stations for water years 1997-2005 and tested against the data processed using RA 

and estimated total annual gauge catch at 11 dual gauge sites for water years 2002-2004. 

APCP was capable of rapidly and accurately filtering noise and discontinuities from the 
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Figure 2.5: Noise removal from hourly TDR water content record with APCP Scan cycle 

1 and (offset) comparative water content record from a calibrated Water Content 

Reflectometer. 

 

Raw precipitation data. The data processed by APCP has smaller mean and standard 

deviation of error than the graphical RA correction. This can be attributed to the fact that 

APCP is automated, repeatable and eliminates the effect of operator bias. The time 

required to process the raw high frequency precipitation data using APCP is significantly 

less than the graphical RA approach, which is important in extensively instrumented 

watersheds like RCEW.  The success of the APCP correction of TDR data indicates 

further that the model uses a robust approach to filtering and filling data that can be 

applied to different sources of continuous data. 
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7. Appendix 

The following notation has been used in this paper 

n

i 1=  = for i = 1 to n 

A ? B  = If ‘A’ is true then ‘B’. 

A ? B : C  = If ‘A’ is true then ‘B’ otherwise ‘C’. 

A || B  = ‘A’ or ‘B’  

A & B  = ‘A’ and ‘B’ 

| A |  = Absolute of ‘A’ 

         =         Sum of A(i) from i=1 to n 

 

 

 

8. Acquiring the APCP Software 

Detail description of the APCP software and programming code is presented in 

Appendix A. The APCP software is available for download in the ‘apcp’ directory at the 

anonymous ftp site ftp://cirque.nwrc.ars.usda.gov/pub/ maintained by the U.S. 

Department of Agriculture Agricultural Research Service, Northwest Watershed 

Research Center in Boise Idaho, United States.  Questions may be addressed to Anurag 

Nayak (anurag.nayak@aggiemail.usu.edu) or Dr. Danny Marks 

(danny@nwrc.ars.usda.gov).  Note that any reference to specific equipment types or 

manufacturers is for information purposes, and does not represent a product endorsement. 
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CHAPTER 3 

LONG-TERM SNOW, CLIMATE, AND STREAMFLOW TRENDS AT THE 

REYNOLDS CREEK EXPERIMENTAL WATERSHED, OWYHEE 

MOUNTAINS, IDAHO, USA
2
 

 

Abstract 

Forty-five water years (1962 – 2006) of carefully measured data on temperature, 

precipitation, streamflow, snow, soil temperature, and moisture for valley bottom, mid-

elevation, and high elevation sites within the Reynolds Creek Experimental Watershed 

(RCEW) were analyzed to evaluate the extent and magnitude of the impact of climate 

warming on the hydrology and related resources in the interior northwestern U.S. This 

analysis shows significant trends of increasing temperature at all elevations, with larger 

increases in daily minimum than daily maximum.  The proportion of snow to rain has 

decreased at all elevations, with the largest and most significant decreases at mid- and 

low elevations.  Maximum snow water equivalent (SWE) has decreased at all elevations, 

again with the most significant decreases at lower elevations and the length of the snow 

season has decreased by nearly a month.  Changes in air temperature and snow cover 

affect the duration of soil freezing (a reduction by about half the number of freezing 

days) at low and mid-elevations, and the onset of plant-water stress, which occurs about 3 

weeks earlier at high elevations.  All trends show a significant elevation gradient in either 

timing or magnitude.  Though inter-annual variability is large, there has been no change 

in water year total precipitation or streamflow.  Streamflow shows a seasonal shift, 

                                                 
2
 Coauthored by A. Nayak, D. Marks, D.G. Chandler, and M. Seyfried. To be submitted for publication in 

The Cryosphere, European Geosciences Union.  
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stronger at high elevation and delayed at lower elevations, to larger winter and early 

spring flows, and reduced late-spring and summer flows.  

 

1. Introduction 

In the mountainous western U.S. and Canada the seasonal snowcover is a critical 

component of the hydrologic cycle.  Most precipitation falls during winter, with 

significant snowfall in the mountains.  Mountain snowcovers provide both the primary 

supply and storage reservoir for water in the region.  In the western U.S., water 

management is largely based on the belief that, in these mountain basins, there is a stable 

and robust relationship between snow deposition and the timing and magnitude of melt 

from the snowcover.  From this it follows that if climate warming alters patterns of snow 

deposition, the timing of melt, and the delivery of melt-water to soil, streams and rivers, 

water supplies and water resource management in the region will be substantially 

affected.  

Since the beginning of the 20
th

 century, Earth’s mean surface temperature has 

increased by about 1°C (IPCC 2007; Trenberth et al. 2007), with greater temperature 

increases in mountainous regions and strong effects on the seasonal snow cover (Lemke 

et al. 2007; Randall et al. 2007).  Observations and model predictions indicate that 

persistent warming will substantially alter hydro-climate, both at global and regional 

scales (Leung and Ghan 1999; Manabe et al. 2004; Stewart et al. 2005; Leipprand and 

Gerten 2006; Trenberth et al. 2007; Randall et al. 2007).  In the western U.S. and Canada 

mean surface temperature has increased by 1 – 3°C over the last 50 years (0.2 – 0.5°C per 

decade), with larger increases during winter (Dec, Jan, Feb) (0.7 – 0.9°C per decade; 
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Trenberth et al. 2007).  The trend in warming is diurnally asymmetric, with a larger 

increase in minimum temperature and a decreased diurnal temperature range (Karl et al. 

1984, 1993; Quintana-Gomez 1999; Brunetti et al. 2000; Trenberth et al. 2007). 

The effect of climate warming on precipitation is not definitive, particularly in 

mountainous regions of the western United States where the density of representative 

measurement stations is limited, and the change in phase from rain to snow as storms 

progress from valley bottoms to higher elevations is difficult to assess.  In the United 

States and Canada it is reported that total annual precipitation has increased slightly 

(Groisman and Easterling 1994; Karl and Knight 1998; Hu et al. 1998; Akinremi et al. 

1999; Easterling et al. 2000; Garbrecht et al. 2004; Hamlet et al. 2005; Trenberth et al. 

2007), though some regions have reported persistent drought.  The studies cited above are 

generalizations, extending over hemispheric or continental regions, or are limited to 

plains and prairie, due to the difficulty of modeling snow deposition and melt across 

mountainous areas of the western U.S. and Canada.   

In mountainous western U.S. and Canada, much of the precipitation falls during 

winter as snow, to be released as melt water during spring and early summer.  

Topographic and vegetation canopy controls on wind fields, spatial and temporal patterns 

of precipitation, snow deposition, snowcover energy balance and drainage from snowmelt 

in mountains results in highly complex spatial and temporal patterns of runoff generation.  

Precipitation intensity and volume over the western mountains are strongly influenced by 

storm track and air mass characteristics associated with ocean circulation features such as 

the El Nino-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) 

(Hurrell 1995; Hurrell and Van Loon 1997; Dettinger et al. 1998), but the dynamics of 
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ocean circulation and temperature are poorly monitored (Bindoff et al. 2007) and 

subsequent linkages between atmosphere – ocean interactions and precipitation in 

mountainous regions of the Western U.S. and Canada are not well understood (Trenberth 

et al. 2007).   

The timing and magnitude of snowmelt in the mountains of the western U.S. is 

very sensitive to climate conditions.  Along with warmer temperatures a number of 

studies have shown substantial changes in snow deposition and melt patterns, reduced 

fraction of precipitation that falls as snow over western U.S. and Canada (Aguado et al. 

1992; Dettinger and Cayan 1995; Huntington et al. 2004; Regonda et al. 2005; Knowles 

et al. 2006), and a shift in the timing of snowmelt runoff toward earlier in the year 

(Aguado et al. 1992; Dettinger and Cayan 1995; Cayan et al. 2001; Stewart et al. 2004, 

2005).  Indications of this shift have been earlier timing of the initial pulse of snowmelt 

runoff (Cayan et al. 2001; Stewart et al. 2004, 2005), declines in snowcover and spring 

snow water equivalent (Mote 2003a&b, 2006; Mote et al. 2005), earlier timing of the 

peak runoff, and a redistribution of the average monthly or seasonal fractional flow 

(Aguado et al. 1992; Cayan et al. 2001; McCabe and Clark 2005; Regonda et al. 2005).  

While the studies cited above show the general sensitivity of the seasonal 

snowcover to climate warming, they give us little insight into how that sensitivity will 

vary with elevation, site or climate conditions other than temperature.  We expect that 

snow in low to mid-elevations (the so-called “rain – snow transition zone”) within a 

mountain basin will be more affected by climate warming than snow at higher elevations, 

but few data are available to test this hypothesis, and most of the conclusions reached are 

circumstantial or anecdotal.  McCabe and Clark (2005) evaluated streamflow timing for 
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84 rivers in the western U.S. showing a systematic shift toward earlier flows in all 

regions, with the strongest trend in the Pacific Northwest.  This work shows increased 

trend significance for lower elevation rivers, but the comparison is limited by the data 

used for the analysis. Many of the high significance trends are for low elevation sites 

located in the Cascade Mountains of the Pacific Northwest, with weaker trends for higher 

elevation sites in the Upper Colorado, Great Basin and California, which include the 

Rocky Mountains, Wasatch and Sierra Nevada.  While their analysis does indicate that 

the Pacific Northwest may be more sensitive to warming than other regions of the west, 

because the low elevation rivers are geographically removed from the high elevation 

rivers, the effect of elevation on the trend is not direct. 

Hamlet et al. (2005) and Mote et al. (2005) used a modeling approach to evaluate 

the sensitivity of trends in snow water equivalent (SWE) across the western U.S. to 

changes in temperature and precipitation.  Both compared simulated SWE across the 

western U.S. to measured values, and both attempted to separate the effects of changes in 

temperature from changes in precipitation.  These studies show that SWE is decreasing, 

that peak SWE is occurring earlier, and that these trends – across the west – are not the 

result of changes in precipitation but are strongly correlated to increases in temperature. 

The decrease in SWE was again greatest in the Pacific Northwest.  However, both studies 

were limited by the lack of climate and snow data, and by a limited range of elevations 

where data were collected within the same geographic area.  Though the western U.S. has 

probably the most extensive mountain snow measurement program in the world, the 

NRCS SNOTEL system (Serreze et al. 1999), the sites are generally located in protected, 

mid-elevation locations.  Few sites are located in higher elevations, and while a few 
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SNOTEL sites include meteorological instrumentation, most do not.  The analysis 

presented by Hamlet et al. (2005) and Mote et al. (2005), though carefully done and 

clearly presented, was based on extrapolated data across a range of elevations that 

extended far beyond that of the measurement sites.  Temperature measurement sites were 

typically in valley bottoms, and may have been a km or more below the snow and 

precipitation sites, and precipitation at higher elevations was based on estimated lapse 

rates that could not be validated.  

It is clear that temperatures across the west have increased, and that the seasonal 

snowcover has been affected.  Most research, however, has focused on large-scale 

analysis, leaving many questions about specific impacts of climate warming, particularly 

how the mountain snowcover across a range of elevations within a mountain basin may 

be differently affected.  Few locations exist where climate, precipitation and snow 

measurement sites are co-located, and fewer still where these are located along a range of 

elevations from the valley bottom to headwaters in a mountain basin.  In mountain basins 

the distribution of the snowcover, snowmelt and the generation of runoff are 

heterogeneously distributed across the landscape as a function of terrain structure 

(elevation, slope and aspect), wind exposure and land cover (Marks and Dozier 1992; 

Marks and Winstral 2001; Winstral and Marks 2002; Marks et al. 1999, 2002; Garen and 

Marks 2005). To better understand how climate warming has affected, and in the future, 

may further affect the mountain snowcover, snowmelt, streamflow and catchment 

hydrology in the western U.S., coherent, long-term data from a range of elevations within 

a mountain basin on snow, precipitation, temperature, humidity, streamflow, and related 

parameters are required.  
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Detailed and carefully collected data from 45 years of monitoring (1962-2006 

water years
3
) within the Reynolds Creek Experimental Watershed (RCEW), a USDA 

Agricultural Research Service watershed in the Owyhee Mountains of Idaho (Robins et 

al. 1965; Marks 2001; Flerchinger et al. 2007; Marks et al. 2008), are analyzed in this 

paper. Temporal trends in temperature and precipitation are analyzed by year and season, 

followed by seasonal analysis of precipitation phase (snow or rain), peak, April 1 and 

May 1 SWE, snowcover initiation and meltout dates, soil freezing days, the date of plant-

water stress onset and streamflow for sites across the full range of elevations and site 

conditions found within the RCEW.  This analysis shows similar hydro-climate trends to 

those reported in the literature.  Further, the more complete meteorological record and 

data from a range of elevations and site conditions within the RCEW, indicates that there 

are elevational gradients and seasonal differences to climate warming and its effects that 

may have significant hydrologic impacts in the region. We highlight the implications of 

global warming for water management by comparing temporal trends in 

hydrometeorological forcing variables to changes in precipitation runoff-relationships for 

nested watersheds at RCEW for twenty year periods before and after the year 1985. 

 

2. The Reynolds Creek Experimental Watershed (RCEW) 

The Reynolds Creek Experimental Watershed (RCEW), a 238 km
2 

drainage with 

an elevation range of 1145 m (1099–2244 m AMSL) is located in the Owyhee Mountains 

near Boise, Idaho, and has been continuously monitored since the early 1960’s.  The 

                                                 
3
 A water year (WY) runs from October through September, so the 1962 WY extends from Oct 1961 thru 

Sept 1962.  The WY is used in the western US because most precipitation falls during fall – spring months 

of Nov – April.  The WY includes an entire precipitation cycle, whereas a calendar year would include the 

last part of one annual precipitation cycle, and the first part of the next. 
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vision for RCEW as an outdoor hydrologic laboratory in which watershed research would 

be supported by sustained, long-term monitoring of basic hydro-climatic parameters was 

first described in 1965 in the first volume of Water Resour. Res. (Robins et al. 1965), the 

first 35 years of data presented in a series of papers in 2001 (Marks 2001) and updated 

descriptions presented by Flerchinger et al. (2007) and Marks et al. (2008).   

Research at the RCEW is supported by monitoring at 9 weirs, 32 primary and 5 

secondary meteorological measurement stations, 5 tower profile sites, 26 precipitation 

stations, 8 snow course and 5 snow study sites, 27 soil temperature and moisture 

measurement sites with 5 sub-surface hill-slope hydrology sites and 5 Eddy Covariance 

(EC) systems, including measurements over low sage, big mountain sage, and above and 

below aspen. All data are ingested into a computer database, and available to the public 

via both web-based and on-line ftp access (Slaughter et al. 2001; ftp://ftp.ars.usda.gov/ ).  

In this study, data collected at 3 meteorological stations, 12 precipitation stations, 3 

weirs, 8 snow courses, 1 snow pillow and 4 soil temperature and moisture measurement 

stations were selected based on length and continuity of data records, to investigate the 

impact of climate warming on hydrology and related resources at the RCEW (Figure 

3.1). Detailed descriptions of selected stations are presented in sections below. 

 

2.1. Meteorological Measurement Sites 

Of the 37 meteorological measurement sites currently within the RCEW, data 

from three, which have been operated continuously since the 1960’s, are used for this 

study.  As reported by Hanson et al. (2001) these were the primary meteorological 

monitoring sites within RCEW for the first 35 years that the watershed was operated.   
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Figure 3.1: Topographic map of RCEW with long-term climate stations, precipitation 

gauges, snow courses, snow pillow, soil temperature and moisture measurement stations, 

and weirs. 
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They represent nearly the full range of elevations within RCEW, and are co-located with 

precipitation and soil moisture and temperature measurement sites (Table 3.1).  These 

sites were initially established to monitor daily climate conditions (max/min temperature 

& RH, and pan evaporation during summer) at a range of elevations within the RCEW.  

As digital data loggers became available in the 1970’s and early 1980’s, they were 

converted to full micro-meteorological stations, providing hourly records of temperature, 

humidity, wind, and radiation. 

The low elevation meteorological site (site 076_met, also referred to as the 

“Quonset”) is located at the operational headquarters for the RCEW.  Precipitation 

(076_ppt) and soil temperature and moisture (076_stm) measurements are co-located at 

this site. This site is in a relatively broad, flat valley bottom approximately centered 

within the RCEW (see Figure 3.1). At an elevation of 1207 m, it is only 108 m above the 

RCEW Outlet weir, but it is nearly 10 km distant. Site 076_met vegetation is Wyoming 

Big Mountain sagebrush with some low sage, which is representative of valley bottom 

vegetation in the RCEW.  Annual average wind-corrected precipitation is less than 280 

mm, mean annual temperature is 9.8°C, with an average daily max of 15.7°C and a min 

of 2.4°C, annual average wind speed is 2.3 ms
-1 

(1981-2006), growing season pan 

evaporation is 1250 mm (1964-2001), and dew point temperature is -0.8°C (1981-2006).  

The mid-elevation meteorological site (site 127_met, also referred to as “Lower 

Sheep Creek” or LSC) is located on the eastern side and about half way between 076_met 

and the southern – and highest elevation – boundary of the RCEW (see Figure 3.1).  

Precipitation (127_ppt) and soil temperature and moisture (127_stm) measurements are 

co-located at this site.  At an elevation of 1652 m, it is 66 m below the mid-point 
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Table 3.1: Long-term climate (Ta, RH), precipitation, snow, soil temperature and 

moisture measurement sites at the RCEW. 

 

Location
4
 Data Records 

 

Site ID 
Easting 

(m) 

Northing 

(m) 

 

Elevation 

(m) Type 

Records 

Begin 

163_ppt 514,134 4,764,430 2170 Precip. 1962 

163_sc 514,042 4,769,428 2162 Snow Course 1961 

163b_sc 515,042 4,769,342 2147 Snow Course 1961 

163c_sc 515,689 4,768,520 2125 Snow Course 1961 

176_ppt 519,693 4,767,923 2097 Precip. 1968 

176_stm 519,693 4,767,923 2097 Soil T 1981 

    Soil Moisture 1973 

176_met 519,686 4,767,924 2093 Daily T, RH 1967 

    Hourly Micromet 1983 

174_ppt 516,815 4,768,026 2074 Precip. 1962 

174_sc 516,731 4,767,765 2073 Snow Course 1961 

176e_ppt 520,055 4,768,117 2056 Precip. 1962 

176e_sc 520,040 4,768,108 2056 Snow Course 1961 

176e_sp 520,047 4,768,115 2056 Snow Pillow 1982 

167_ppt 521,596 4,769,779 2003 Precip. 1962 

147_ppt 521,336 4,772,334 1872 Precip. 1962 

144_ppt 515,945 4,771,988 1815 Precip. 1962 

144_sc 515,862 4,771,963 1815 Snow Course 1961 

155_ppt 518,424 4,771,320 1654 Precip. 1962 

155_sc 517,893 4,770,341 1743 Snow Course 1961 

127_ppt 521,742 4,776,189 1652 Precip. 1962 

127_met 521,742 4,776,195 1652 Daily T, RH 1967 

    Hourly Met 1984 

127_stm 521,742 4,776,195 1652 Soil T 1982 

    Soil Moisture 1970 

116_ppt 519,008 4,776,343 1459 Precip. 1962 

098_stm 523,353 4,779,404 1259 Soil T 1981 

    Soil Moisture 1971 

076_ppt 520,367 4,783,418 1207 Precip. 1962 

076_met 520,365 4,783,423 1207 Daily T, RH 1964 

    Hourly Met 1981 

076_stm 520,367 4,783,418 1207 Soil T 1981 

    Soil Moisture 1981 

057_ppt 521,390 4,786,033 1188 Precip. 1962 

                                                 
4
 UTM zone 11, North American Datum 1927.  
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elevation (1718 m) of the watershed, but half way between the low (076_met) and high 

elevation (176_met) sites.  Site 127_met vegetation is low sagebrush, with some bare 

ground, which is representative of mid-elevation vegetation on the eastern side of the 

RCEW. On the western side there is less bare ground, more of a mix of Wyoming Big 

Mountain and low sagebrush with some Juniper encroachment. Annual average wind-

corrected precipitation is 350 mm, temperature is 8.8°C, with an average daily max of 

12.2°C and a min of 3.9°C, wind speed is 3.4 m s
-1

 (1984-2006), growing season pan 

evaporation was 1082 mm (1964-2001), and dew point temperature is -2.5°C (1984-

2006). 

The high elevation meteorological site (176_met, also referred to as “Reynolds 

Mountain East” or RME) is located in a headwater catchment on the southern rim of the 

RCEW (see Figure 3.1). This is an exposed area where the few trees and larger shrubs in 

and around the site offer only limited protection from the wind.  Precipitation (176_ppt) 

measurement is co-located at this site, but is also measured in a wind-sheltered clearing 

in an Aspen grove 300 m to the northeast and 36 m below (site 176e_ppt, 2061 m).  Soil 

temperature and moisture (176_stm) measurements are co-located at this site. At an 

elevation of 2093 m, it is located 150 m below the peak elevation (2242 m) of the 

watershed on the southern rim of the RCEW.  Site 176_met vegetation is not as uniform 

as 076_met and 127_met, but is a mix of Wyoming Big Mountain and low sagebrush, 

with a few shrub stands of Bitter Brush and Mountain Mahogany.  Adjacent to the site 

are Douglas fir and a few Aspen trees.  This heterogeneous mix of vegetation is 

characteristic of higher elevations within southeastern regions of the RCEW. Further to 

the west along the high rim are more extensive stands of fir and aspen.  Annual average 



 50 

wind-corrected precipitation is 795 mm at the wind-exposed site 176_ppt, and 996 mm at 

the sheltered site 176e_ppt.  Annual average temperature is 5.1°C, with an average daily 

max of 8.9°C and a min of 0.9°C, wind speed is 4.2 m s
-1

 (1983-2006), growing season 

pan evaporation was 795 mm (1964-2001), and dew point temperature is -3.6°C (1983-

2006). 

 

2.2. Precipitation Measurement Sites 

Of the 26 active precipitation measurement sites in the RCEW, data from 11 of 

the 12 long term sites listed in Table 3.1 were selected for this study.  These sites were 

selected because they had a long period of record (45+ water years) and represented a 

range of elevations, site and wind exposure conditions. Data from site 176_ppt was 

omitted from this part of the analysis because it had a shorter record (1968-2006, 38 

water years) and because of its close proximity to site 176e_ppt. Because much of the 

precipitation across the RCEW falls as snow, a significant wind-induced under-catch 

occurs.  Wind correction of the recorded gauge catch is critical.  Each precipitation 

measurement site consists of a pair of 30.48 cm (12 inch) orifice (orifice height is 3 m), 

weighing-recording gauges, one unshielded, and the other with an Alter-type wind shield, 

baffles individually constrained at 30° from vertical.  This system supports the dual-

gauge wind correction technique developed by Hamon (1973) (see also Hanson et al. 

1999).  The dual gauge method uses the ratio of shielded to unshielded catch as an 

indication of wind-induced under-catch.  The method was evaluated as part of the WMO 

solid precipitation measurement experiment (Yang et al. 1999, 2001; Hanson et al. 1999, 

2004), and was found to be comparable to the standard WMO wind correction, and to 
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reliably reproduce reference values based on the Wyoming shield over a wide range of 

wind, temperature and precipitation intensity conditions.   

Though wind is currently measured at all precipitation measurement sites in the 

RCEW, this was not the case until recently.  Because the dual-gauge method is based on 

the ratio of shielded to unshielded gauge catch, it allows wind correction of recorded 

gauge catch without wind data.  Therefore because wind data are not available at the 

precipitation measurement sites for most of the period of record, application of the dual-

gauge wind correction method is critical to the analysis presented here.  Shielded and 

unshielded data from the period of record for all 12 sites were processed, integrated to an 

hourly time-step, and noise and discontinuities removed using a utility presented in 

Chapter 2 and then dual gauge wind corrections were performed using the Dual Gauge 

Wind Correction Program as described in Appendix B. Only wind-corrected values were 

used in the analysis presented in this paper. 

 

2.3. Snow Measurement Sites 

Seven bi-weekly snow courses have been operated at the RCEW since the early 

1960’s, with one additional added in 1970.  These represent the upper 25% of the RCEW 

with a range of elevations from 1743 – 2162 m (Table 3.1).  Only during cold, wet years 

does a continuous seasonal snowcover develop in the upper 50% of the RCEW 

(elevations above 1500 m) and hardly ever below that level.  All sites are classical snow 

courses, with a fixed number of samples along a pre-determined track.  Samples of depth 

and mass are taken with a Rosen Sampler, which tends to show improved sampling when 

compared to the Standard Federal Sampler (see Marks et al. 2001a).  Twelve depth and 
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mass samples are taken at each snow course.  Prior to 1970, samples were sporadic and 

did not always occur at two-week intervals, but after that care was taken to insure that the 

bi-weekly interval was maintained between December 1 and May 15.  Depending on 

snow conditions, samples may be taken prior to December 1 and/or after May 15.  If the 

ground is bare during a sample visit, zero values are recorded.  All sites have been 

carefully maintained over the period of record to avoid the effects of site disturbance, 

vegetation removal or overgrowth.    

A snow pillow has been maintained at a site just adjacent to the snow course 

176e_sc, and next to the precipitation measurement site 176e_ppt since 1982.  This site is 

a wind-protected clearing in an Aspen grove, similar to NRCS Snotel sites across the 

western U.S. (Serreze et al. 1999).  The snow pillow is a 3 m diameter butyl-rubber 

device filled with a mix of anti-freeze, alcohol and water for measuring snowcover mass 

with a pair of pressure transducers.  Hourly data on depth of SWE are recorded.   

 

2.4. Soil Temperature and Moisture 

 Measurement Sites 

Data from four soil temperature and moisture measurement sites over range in 

elevation from 1207 – 2098 m were selected for analysis (Table 3.1).  Data from these 

sites begin in the early 1980’s, include sub-daily or hourly soil temperature from multiple 

depths, and bi-weekly neutron probe data from a tube located just adjacent to the 

temperature measurement site.  Soil temperature was measured with thermistors and 

logged hourly at each site at multiple depths (Seyfried et al. 2001a). We analyzed data 

collected at a depth of 10cm to reflect soil-freezing conditions. Soil water content 

measurements were made every two weeks for most of the time period using the neutron 
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moderation method as described by Seyfried et al. (2001b). Individual depth increment 

measurements were combined to produce root zone water content estimates (Seyfried et 

al. 2001c). 

 

2.5. Streamflow Measurement Sites 

Of the 9 active weirs within the RCEW, data from three were selected for location 

and the availability of hourly streamflow records that begin in the early to mid-1960’s 

(Pierson et al. 2001).  These weirs include the Reynolds Mtn. East weir (166_sf), which 

drains the 0.38 km
2
 headwater catchment, the Tollgate weir (116_sf) which drains the 55 

km
2
 Tollgate sub-basin, and the Outlet weir (036_sf), which drains the 238 km

2
 RCEW 

basin (Table 3.2). 

 

 Table 3.2: Long-term Streamflow Measurement Sites at the RCEW 

Location 

Site ID 
Easting 

(m) 

Northing 

(m) 

Elevation 

(m) 

Records 

Begin 

Area 

(km
2
) 

Elevation 

Range, m 

Mean WY 

Streamflow 

166_sf 519,952 4,768,494 2024 1963 0.38 2024-2139 6.7 ls
-1 

116_sf 519,392 4,776,492 1404 1966 54.7 1398-2244 0.424 m
3
s

-1 

036_sf 520,109 4,789,673 1099 1963 238.2 1099-2244 0.560 m
3
s

-1 

 

3. Data Presentation and Trend Analysis 

In this section data from the Reynolds Creek Experimental Watershed are 

presented and analyzed for trends over the period of record.  First temperature data from 

the three meteorological measurement sites are presented, followed by precipitation.  

These are followed by presentation of analyses of trends in precipitation phase, snow, soil 

moisture and temperature, and finally streamflow.  To capture the annual hydrologic 

cycle, which begins in fall and ends in summer, annual trend analysis was conducted over 
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water year (WY) intervals (October – September).  For seasonal analysis, the water year 

is divided into four seasons, fall (Oct – Dec), winter (Jan – Mar), spring (Apr – Jun), and 

summer (Jul – Sep).  

 

3.1. The Statistical Significance Test 

The significance of temporal trends present in the hydro-climatic observations is 

evaluated using the Mann-Kendall statistic (Hirsh and Slack 1984; Lettenmaier et al. 

1994; Yue et al. 2002). The null hypothesis, H0, is that the variables are independent and 

randomly distributed. The test statistic is:  
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It is assumed that statistically significant trends are present if |Z| > Z1-α, at a 

selected significance level, α.  In this study, trends were tested for significance at α = 0.10 
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and 0.05 (90 & 95% confidence levels).  The value of statistic Z1-α can be found in 

standard normal distribution statistical tables. 

We test the temporal stationarity of runoff by comparing three aspects of 

precipitation – runoff relationships at nested watersheds; threshold to runoff, runoff 

response rate and prediction interval of the relationship.  The linear regression constants 

and statistics are calculated matrix linear regression using SimaStat (Systat Software, 

Point Richmond, CA).   

 

3.2. Air Temperature 

A systematic increase in temperature over the period 1965 – 2006 is indicated at 

all three elevations for annual average daily minimum and maximum temperatures, 

though the extent of change depends on  elevation (Figure 3.2).  Water year minimum 

daily temperatures increase about 30% more than maximum daily temperatures, and 

temperature trends at low elevations (076_met) are 50 – 60% that at mid- and high 

elevations (127_met, 176_met).  The greatest increase in annual average daily minimum 

temperature (0.55 ± 0.69°C per decade) is found at the mid elevation site (Table 3.3).   

As with water year trends, all seasons show warming, and minimum temperatures 

increase the most (Tables 3.3b –e).  At low elevation (076_met), winter and spring 

increases in minimum daily temperature show strong trends that are significant at the 

95% level, and both summer minimum and maximum daily temperature increases show 

strong trends that are significant at the 95% level. However, fall minimum and maximum 

daily temperature and winter and spring maximum daily temperature increases show 

weak trends that are not significant at the 90% level.   
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Figure 3.2: Water year maximum and minimum temperatures for high (Site 176_met, 

2093 m), mid- (Site 127_met, 1652 m), and low elevation (Site 076_met, 1207 m) 

meteorological sites. Pink diamonds shows maximum and blue squares shows minimum 

temperature.  Trend lines are indicated for each site, showing an increase in both 

minimum and maximum temperature at all sites. 

 

At mid-elevation (127_met) the increase in minimum daily temperature is large 

and shows a strong trend in all seasons (significant at the 95% level).  The only 

significant change (at the 90% level) in seasonal maximum daily temperature at site 
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Table 3.3: Trends (in °C per decade) in maximum and minimum temperature based on 

least square linear fitting and Mann-Kendall test. Bold numbers indicate significance 

level greater than 90%; Blue, bold-Italic numbers, significance level greater than 95%. 

Critical shifts
5
 caused by trends are highlighted in yellow.   

 

340Annual (Water Year) Trends 

Tmin I Tmax I 

Site ID Mean SD Trend ± SE Mean SD Trend ± SE 

176_met 0.9 0.9 0.44 ± 0.78 8.9 1.1 0.39 ± 1.04 

127_met 3.9 0.9 0.55 ± 0.69 12.2 0.8 0.26 ± 0.76 

076_met 2.4 0.8 0.36 ± 0.71 15.7 0.9 0.18 ± 0.84 

 

b) Fall (Oct – Dec) Trends 

176_met -2.9 1.3 0.30 ± 1.29 3.8 1.6 0.43 ± 1.50 

127_met -0.2 1.4 0.41 ± 1.34 6.5 1.5 0.28 ±1.48 

076_met -2.1 1.4 0.19 ±1.41 9.4 1.4 0.00 ±1.46 

 

c) Winter (Jan – Mar) Trends 

176_met -5.8 1.6 0.42 ± 1.55 0.3 1.7 0.51 ± 1.65 

127_met -3 1.4 0.43 ± 1.34 3.4 1.3 0.33 ± 1.31 

076_met -3.6 1.5 0.38 ± 1.47 6.5 1.6 0.27 ± 1.54 

 

d) Spring (Apr – Jun) Trends 

176_met 2.1 1.4 0.48 ± 1.28 11.1 1.8 0.26 ± 1.80 

127_met 5.5 1.4 0.57 ± 1.30 15.1 1.5 0.10 ± 1.49 

076_met 4.8 1 0.44 ± 0.87 19.3 1.5 0.16 ± 1.53 

 

e) Summer (Jul – Aug) Trends 

176_met 10.2 1.3 0.55 ± 1.10 20.3 1.2 0.37 ± 1.13 

127_met 13.2 1.4 0. 80 ± 1.13 23.6 1.3 0.33 ± 1.24 

076_met 10.4 1.2 0. 43 ± 1.08 27.5 1.3 0.29 ± 1.25 

 

 

127met is the increase during summer. At high elevation (176_met) the increase in 

minimum daily temperature is significant in all seasons, and the increase in maximum 

daily temperature is significant in all but spring.  At site 176_met trends in increasing 

daily maximum and minimum temperature are strongest during fall and winter. Whereas 

                                                 
5
 Critical shifts are identified if temperature trends crosses freezing point (0 °C) during the period of record. 
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springtime minimum temperature show an increasing trend maximum daily temperature 

do not show a significant trend. Summer increases in both minimum and maximum 

temperature are significant (at 90% level) at site 176_met. 

 

3.3. Precipitation 

Data presented in Table 3.4 illustrate the complexity of precipitation patterns in 

mountain basins, and the limitations of attempting to establish a precipitation lapse rate 

over mountainous areas with limited precipitation data when attempting to estimate 

basin-wide precipitation.  Though there is a general increase in water year total 

precipitation with elevation (869 mm km
-1

, a basin-wide increase of nearly a 4x), 

discontinuities are evident.  Sites on the wetter, western side of the RCEW (163_ppt, 

174_ppt, 144_ppt, 155_ppt, 116_ppt) ranging in elevation from 1491 – 2170 m show a 

wind-corrected precipitation range of 474 – 1124 mm, and a precipitation lapse rate of 

971 mm km
-1 

but only a 2.4x increase over the considered gauges, while those on the 

drier, rain-shadowed eastern side (167_ppt, 147_ppt, 127_ppt, 076_ppt, 057_ppt) ranging 

in elevation from 1188 – 2003 m show a range of 239 – 806 mm, with a smaller lapse 

rate of 696 mm km
-1

, but a larger 3.4x increase over the considered gauges (Table 3.4). 

Water year precipitation data are subject to considerable interannual variability, as 

evidenced by the high standard deviations in the annual mean (Table 3.4) and the only 

significant temporal trend in water year precipitation data is a decrease at site 144_ppt    

(-45 mm/decade ± 220) which is attributed to logging in the late 1990’s. Seasonal 

precipitation data and trend analysis are presented for 3 of the eleven measurement sites, 

representing high elevation (176e_ppt), mid-elevation (127_ppt) and low elevation



Table 3.4: Annual and seasonal precipitation for the period 1963-2006.  

  

  Annual Fall Winter Spring Summer 

Gauge 

ID 

Elevation 

(m) 

Mean 

(mm) 

SD 

(mm) 

Mean 

(%) 

SD 

(%) 

Mean 

(%) 

SD 

(%) 

Mean 

(%) 

SD 

(%) 

Mean 

(%) 

SD 

(%) 

163_ppt 2170 1124 263 32.88 9.09 38.88 7.72 21.94 7.00 6.31 3.70 

174_ppt 2074 967 230 32.43 8.96 38.18 7.86 22.47 7.18 6.91 3.91 

176e_ppt 2056 996 270 33.17 9.50 39.31 8.78 21.01 7.29 6.51 3.47 

167_ppt 2003 806 213 32.58 9.94 37.74 9.18 22.30 8.09 7.38 3.99 

147_ppt 1872 518 148 32.86 8.69 36.54 8.13 23.27 7.64 7.34 4.38 

144_ppt 1815 881 226 32.60 9.39 36.03 8.78 23.17 7.94 8.19 4.73 

155_ppt 1654 704 193 30.95 9.67 31.89 8.23 27.50 9.77 9.65 5.55 

127_ppt 1652 351 98 28.37 9.65 29.42 8.33 31.13 10.69 11.08 5.45 

116_ppt 1459 474 129 31.34 9.29 32.57 8.38 27.13 8.94 8.97 4.82 

076_ppt 1207 279 77 28.74 9.47 29.62 9.80 30.08 11.49 11.57 7.22 

057_ppt 1188 239 68 27.19 9.82 27.36 9.71 32.12 12.27 13.32 8.28 

 

5
9
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(076_ppt) showing the range of precipitation over the RCEW (Figure 3.3).  The data 

indicate no significant trends during fall or winter, and only one site (174_ppt) has an 

increasing trend (significant at the 90% level) in spring.   

 

3.4. Snowfall 

At RCEW 60 – 75% of the water year precipitation occurs during fall and winter, 

regardless of elevation.  Historically most of that precipitation has fallen as snow, melted 

during spring, and provided water for streamflow during spring and summer.  The 

rain/snow proportions of water year precipitation are critical to the timing of streamflow 

in the RCEW.   

Hanson (2001) reported that, in the RCEW, the proportion of snowfall in the 

annual precipitation total varied from around 20% at the lowest elevations to more than 

75% at the highest.   This was a monthly estimate based on the ad hoc assumption by 

Cooley et al. (1988) that precipitation in any month in which the mean temperature was 

≤1°C would be considered snow.  Similar air-temperature based methods have been used 

by many investigations (e.g. Hanson et al. 1979; Lapp et al. 2005; Hamlet et al. 2005), 

but the temperature thresholds used are variable and seem to be site and season 

dependent.  Knowles et al. (2006) used increased snow depth as an indicator of snowfall, 

but these data are also limited, particularly during storms. 

Actual observations of precipitation phase are rare, but since 2001 phase 

determination has been available at many of the precipitation sites within the RCEW.  

The approach is based on concurrent measurement of precipitation, snow depth and dew 

point temperature during precipitation events.  Olsen (2003) recommends wet-bulb  
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Figure 3.3: Seasonal precipitation as percentage of total water year (WY) precipitation at 

the high, mid- and low elevation measurement sites.  Trend lines are indicated for each 

over the period of record. 
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Temperature as a determinate of air mass potential for rain or snow, but suggests near-

surface dew point temperature as the most reliable predictor of precipitation phase for a 

specific location.  This approach has been used reliably for analysis of rain-on-snow 

events (Marks et al. 1998, 2001b), and for time-series simulations of the seasonal 

snowcover at a variety of scales and a number of locations across the western U.S. 

(Marks et al. 1999, 2001b, 2002; Marks and Winstral 2001; Garen and Marks 2005). If 

the dew point temperature is above 0°C, precipitation is assumed to be rain, if it is <0°C, 

snow, and if close to 0°C, mixed rain and snow.  A detailed discussion of the use of dew 

point temperature to determine precipitation phase using 2004-2006 transect data from 

the RCEW is presented by Marks and Winstral (2008).  

For the analysis presented here, concurrent measurements of humidity (dew point 

temperature) and precipitation were available from the three long-term meteorological 

sites back to the early 1980’s, so dew point temperature is known for every storm from 

then to the present.  Daily maximum and minimum temperature data were used to 

estimate storm dew point temperatures for the early part of the RCEW data record.  

Hourly temperature estimates for the pre-hourly data period were simulated for the three 

long-term met stations (176_met, 127_met, 076_met).  A sinusoidal diurnal cycle 

between maximum and minimum temperature with a temperature maximum offset from 

noon was derived for each month from the 1986 – 1995 hourly temperature data.  These 

monthly cycles were then used to derive hourly temperatures for the early period of 

record.  Monthly storm-period (events > 1 mm) dew point temperature deficit (Ta –Tdpt) 

was estimated from the 1986 – 1995 hourly temperature and humidity data.  These were 

then used to estimate storm dew point temperatures for the 1962-1982 portion of the 
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RCEW precipitation data set.   Because it best matched recent observations, and to avoid 

the “mixed phase” issue, it was assumed that if the dew point temperature was ≤0°C, the 

precipitation fell as snow. 

Figure 3.4 presents snow as a fraction of total water year precipitation for the 

high (176e_ppt), mid- (127_ppt) and low (076_ppt) elevation sites.  Site 176e_ppt is 

snow-dominated, with a relatively constant mean water year value of nearly 70% snow 

over the period of record.  Sites 127_ppt 076_ppt are rain-dominated, with mean water 

year values over the period of record of 40% and 30% snow, respectively.  These values 

have changed 4-5% per decade over the period of record.  

Temporal trend analysis for fall, winter and spring seasons clarifies that while 

snow is decreasing at all elevations, the strongest trends are at the lower elevations 

(Table 3.5).  Snowfall shows a significant decreasing trend at the low elevation site 

(076_ppt) in all seasons.  The mid-elevation site (127_ppt) shows significant decreasing 

trends only in fall and spring.  The only significant seasonal trend for the high elevation 

site (176e_ppt) is a decrease in snow during fall.  During winter, the percentage snow at 

both the high and mid-elevation sites are relatively unchanged. 

 

3.5. Snow Measurements 

Data from the RCEW bi-weekly snow courses listed in Table 3.1 from 1964 – 

2006 (43 water years) snow seasons were analyzed for temporal trends in mean April 1 

and May 1 SWE (Table 3.6) and timing and depth of peak SWE (Table 3.7).  All snow 

courses show a decreasing trend in both April 1 and May 1 SWE.  The least significant 
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trends occur at the highest elevation courses, and the most significant at the low elevation 

courses.  Note that the very large decreasing trend at snow course 144_sc is likely due to 

 

 

 
 

Figure 3.4: Rain and snow fraction (percentage) of water year total precipitation at high 

(176e_ppt), mid- (127_ppt) and low (076_ppt) elevation measurement sites. Pink 

diamonds show snow, blue stars show rain.  Trend lines indicated for each over the 

period of record showing a decrease in snow and an increase in rain at all elevations. 
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Table 3.5: Trends (in % per decade) in fraction (%) of precipitation falling as snow. 

Blue, bold-italic numbers: significance level greater than 95%. Critical shifts
6
 caused by 

trends are highlighted in yellow.  

 

a) Annual 

Site 

Identification 

 

Mean (%) 

 

SD (%) Trend ± SE 

176e_ppt 67.4 10.3 -1.52 ± 8.65 

127_ppt 45.1 10.8 -4.10 ± 10.97 

076_ppt 31.7 10.5 -5.02 ± 11.49 

 

b) Fall 

176e_ppt 83.5 13.2 -7.41 ± 10.40 

127_ppt 56.1 16.2 -5.85 ± 15.97 

076_ppt 41.6 17.4 -7.56 ± 14.96 

 

c) Winter 

176e_ppt 87.3 11.6 -1.00 ± 11.69 

127_ppt 67.7 17.2 -0.38 ± 17.38 

076_ppt 53.3 20.7 -7.37 ± 18.84 

 

d) Spring 

176e_ppt 42.1 16.4 -1.16 ± 16.54 

127_ppt 24.3 15.1 -3.40 ± 14.74 

076_ppt 14.8 13.8 -2.56 ± 13.57 

 

deforestation that occurred at the site in the mid-1990’s.  This affects the decreasing trend 

in depth of SWE, making it larger than it expected, but should not affect trends toward 

earlier timing of peak SWE (Table 3.6).  Example trends for May 1 SWE are presented 

for high elevation (163c_sc, 2125 m), mid-elevation (176_sc, 2056 m) and low (155_sc, 

1743 m) elevation snow courses. 

 

 

                                                 
6
 Critical shifts are identified if annual of seasonal precipitation regime changes from snow dominated to 

rain dominated during the period of records. 
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Table 3.6: Trends (in mm per decade) in April 1 and May 1 SWE based on least square 

linear fitting and Mann-Kendall test for the water year period 1964-2006. Bold numbers 

indicate significance level greater than 90%; Blue, bold-italic numbers a significance 

level greater than 95%. The large, significant trend at 144_sc caused by site modification 

(deforestation) is highlighted in yellow.   

 

1-Apr 1-May 

 

Site ID 
Mean 

(mm) 

SD 

(mm) Trend ± SE 

Mean 

(mm) 

SD 

(mm) Trend ± SE 

163_sc 701.3 200.4 -22.1 ± 201.8 686.2 241.1 -18.8 ± 243.6 

163b_sc 640.3 209.7 -35.6 ± 209.1 501.8 288.2 -57.2 ± 285.5 

163c_sc 662.9 218.5 -32.2 ± 218.8 532.8 289.4 -53.6 ± 287.5 

174_sc 636.5 210.5 -44.0 ± 208.0 490.6 283.7 -70.5 ± 277.2 

176_sc 542.1 202.5 -53.5 ± 196.8 377.4 266.1 -92.8 ± 249.9 

144_sc 205.3 162.6 -97.1 ± 125.9 42.4 112.2 -34.9 ± 107.2 

155_sc 162.6 116.8 -32.2± 113.1 13.4 54.8 -12.7 ± 53.7 

 

May 1 trends are strongest at the high and mid-elevation courses, while at the low 

elevation course (155_sc), no snow has been measured on May 1 since 1984 and 

therefore the decreasing trend is weak (Figure 3.5).  At this elevation, melt now occurs 

primarily in March and the April 1 trend is relatively strong (Table 3.6).   

All snow courses indicate a trend toward earlier peak SWE and less depth of SWE at 

peak (Table 3.7).  Low elevation courses (144_sc, 1815 m; 155_sc, 1743 m) show the 

strongest trend toward earlier peak SWE, with a shift of 7 – 10 days earlier per decade, or 

28 – 40 days earlier over the period of record.  Mid- to low elevation courses (174_sc, 

2073 m; 176_sc, 2056 m; 144_sc, 1815 m) show the strongest trend in reduced depth of 

peak SWE, with a shift of 50 – 85 mm less per decade.  The lowest elevation course 

(155_sc, 1743 m) shows a similar trend in depth of peak SWE, but it is not significant at  
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Figure 3.5: May 1
st
 SWE (mm) for high elevation (163c_sc, 2125 m), mid-

elevation (176_sc, 2056 m) and low elevation (155_sc, 1743 m) snow courses.  

Trend lines are indicated for period of record showing a consistent decrease at all 

elevations, with a strong decrease at the low elevation snow course (155_sc) in 

both months. 

 

The 90% level.   High elevation courses (163_sc, 2162 m; 163b_sc, 2147 m; 163c_sc, 

2125 m) show similar trends in both timing and depth of peak SWE, but these are not 

significant at the 90% level. 

The snow pillow (site 176_sp) results support the observed trends at the nearby 

snow course, (176_sc), and provide supplemental information about the timing of 

snowpack initiation and melt out.  Since 1983 at 176sc and 176sp, mean dates of peak 

SWE were March 31 and March 29, depths of peak SWE were 573 mm 564 mm, and the  
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Table 3.7: Trends in timing (days per decade) and depth (mm per decade) of peak SWE 

accumulation based on least square linear fitting and Mann-Kendall test for water year 

period 1964-2006. Bold numbers indicate a significance level greater than 90%; Blue, 

bold-italic numbers a significance level greater than 95%.  

 

Timing of Peak SWE Depth of Peak SWE (mm) 

 

Site ID 
Mean 

Date 

SD 

(days) Trend ± SE 

Mean 

(mm) 

SD 

(mm) Trend ± SE 

163_sc 15-Apr 15 -1.3 ± 15.1 757 211 -18.3 ± 214 

163b_sc 7-Apr 15 -2.2 ± 15.1 681 222 -37 ± 225 

163c_sc 7-Apr 16 -1.6 ± 16.2 695 225 -31.8 ± 228 

174_sc 6-Apr 15 -1.8 ± 15.6 665 218 -50.8 ± 220 

176_sc 31-Mar 15 -3.1 ± 15.2 573 210 -55.6 ± 212 

144_sc 11-Mar 24 -10.2 ± 23.9 272 147 -84 ± 143 

155_sc 28-Feb 21 -6.8 ± 21.4 254 99 -8.5 ± 100 

 

trends toward earlier peak SWE were -3.1 and -2.5 days per decade, respectively.  Over 

the period from 1983 -2006, the date of snow cover initiation at 176sp is delayed by 7.8 

(± 13.7) days per decade (significant at the 95% level).  Trends are indicated toward 

earlier melt-out (3.5 days per decade), and a reduced depth of peak SWE (-82 mm per 

decade), but these are not significant at the 90% level.  The date of snow pillow peak 

SWE appears to be only slightly earlier (2.5 days per decade) over the period of record. 

 

3.6. Soil Freezing 

The presence of frozen soil has a significant hydrologic impact by reducing or 

eliminating infiltration, which may increase surface runoff, erosion and the potential for 

flooding, and a biological impact by holding surface soil moisture in place during winter, 

reducing deep drainage and evaporative losses and allowing the growing season to begin 

(Seyfried et al. 1990; Seyfried and Flerchinger 1994; Seyfried and Murdock 1997; 

Shanley and Chalmers 1999; Gray et al. 2001).  To evaluate changes in soil freezing, data 
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from three of the four soil temperature measurement sites listed in Table 3.1 – 127_stm 

(1652 m), 098_stm (1259 m) and 076_stm (1207 m) – were used to determine the number 

of days with frozen soil in each year of record.  Data from the high elevation site 176_stm 

(2097 m) were not used because the length of record is much shorter (14 water years) 

than at the other sites.  A soil freeze day was defined as a day when the noon soil 

temperature at 10 cm was at or below freezing. 

Table 3.8 and Figure 3.6 present the number of soil freeze days at the mid- 

(127_stm, 1652 m), low slope (098_stm, 1259 m) and valley-bottom (076_stm, 1207 m) 

sites.  Only hourly, recorded soil temperature data were used, so the data record was 

limited to 1986 – 2006, 21 water years.   

To take advantage of new technology, new profiles were installed in 1990 at the 

098_stm and 127_stm sites, and in 1994 at the 076_stm site. Seyfried et al. (2001a) 

presents details of data recording and soil temperature instrumentation at the RCEW. 

Dates of profile changes are indicated on Figure 3.6.  All three sites show strong trends 

toward fewer freeze days. However, Figure 3.6 indicates a sharp discontinuity associated 

with the 1994 profile change at site 076_stm, leaving the trend analysis in doubt for the 

valley-bottom site. 

 

Table 3.8: Trends (in number of days per decade) in soil freeze days at mid-elevation, 

low slope, and valley-bottom sites. Bold numbers indicate significance level greater than 

90%; Blue, bold-italic numbers significance level greater than 95%.  

 

 

 

 

 

Site ID 

Mean 

(days) 

SD 

(days) Trend ± SE 

127_stm 48.1 26.2 -25.5 ± 21.4 

098_stm 51.7 21.3 -13.0 ± 20.3 

076_stm 46.9 31.1 -33.1 ± 23.9 
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Figure 3.6:  Number of soil freeze days for mid-elevation (127_stm, 1652 m), low slope 

(098_stm, 1410 m) and valley-bottom (076_stm, 1207 m) sites. Vertical line shows the 

timing of temperature profile change. Note the discontinuity after the instrument change 

at the valley-bottom site (076_stm). Trend lines are indicated for each over the period of 

record showing a consistent decrease in the number of soil freeze days at all sites (though 

the trend at the valley-bottom site is clearly biased by the profile change discontinuity). 

 

3.7. Plant Water Stress 

As discussed by Seyfried et al. (2001c), within the RCEW soil water storage 

follows an annual cycle with its peak during late winter or early spring when spring rain 
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and snowmelt provide water to replenish soil water storage.  During the growing season, 

evaporative demand greatly exceeds precipitation.  Soil water storage declines rapidly 

due to plant-water extraction and evaporation until soil water storage reaches a stable 

minimum in late summer each year. This late summer soil water condition, with 

vegetation present but no apparent transpiration, is regarded as the limit of what the 

vegetation can extract from the soil.  

To assess the potential impact of climate warming, reduced summer precipitation 

and earlier snowmelt on the plant-water stress experienced by the native vegetation, we 

estimated the length of time the vegetation was under water stress each year.  In order to 

make comparisons across sites, which have different soils, we used a constant fraction 

(45%) of the average total plant-available soil water, which is defined as the difference 

between the annual maximum soil water storage and the summer minimum described 

above. This resulted in plant-water stress index values of 8 cm H2O at high elevation site 

176_stm, 7 cm H2O at mid-elevation site 127_stm and 3.5 cm H2O at low slope site 

098_stm.  In the absence of summer precipitation, the earlier in the growing season the 

plant-water stress value is reached, the longer soils are dry and the native vegetation will 

have to persist under water-stress. 

Table 3.9 presents the period of record (1977 – 2006, 30 water years) mean onset 

date of plant-water stress, along with associated trends for the high (176_stm), mid- 

(127_stm) and low slope (098_stm) soil measurement sites.   Data from the valley-bottom 

site (076_stm) were not used for this analysis because reliable soil water data were not 

available until after 1987.  The high elevation site (176_stm) shows a very strong trend 

(nearly 8 days per decade earlier) and the mid-elevation sites shows a strong trend (nearly 
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5 days per decade earlier) toward earlier onset of plant-water stress, indicating that the 

length of plant-water stress has been extended by 3 weeks or more at higher elevations 

within the RCEW over the period of record.  The low slope site shows almost no change 

over the period of record.   

 

Table 3.9: Trends (in days per decade) in timing of plant water stress for high (176_stm), 

mid- (127_stm) and low slope (098_stm) soil measurement sites for 1976 – 2006 (31 

water years) period of record. Plant water stress is defined as 45% of average peak plant-

available water or “field capacity” in the top meter of soil at each site. Blue, bold-italic 

numbers indicate significance level greater than 95%. 

 

Site ID Mean (date) SD (days) Trend ± SE 

176_stm 4-Jul 13.6 -7.5 ± 12.2 

127_stm 12-Jun 21.5 -4.6 ± 21.6 

098_stm 8-Jun 23.5 -1.0 ± 24.1 

 

3.8. Streamflow 

Streamflow data from three weirs, Reynolds Mtn. East (RME), Tollgate (TG), and 

the RCEW basin outlet were analyzed by water year and by season over the 1964 – 2006 

period of record.  At all three weirs, most of the flow water year flow occurs from March 

– June.  During these months, nearly 90% of streamflow occurs at the RME headwater 

weir (166_sf), 82% at the mid-elevation TG weir (116_sf) and 70% at the RCEW outlet 

weir (036_sf) (Figure 3.7).  Due to the large interannual variability in precipitation, water 

year runoff volume variability is great, with standard deviations of at least 50% of the 

annual mean at all sites, and no significant temporal trends in annual runoff volume 

emerged for the period of record (Table 3.10a).   

Trend analysis of monthly streamflow as a fraction of annual total indicates a shift 

to earlier flows at RME (166_sf) and TG (116_sf)  weirs, with increases in March and 
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April and decreases in June flows (Table 3.10).  Temporal trends at RCEW outlet 

(036_sf) weir are less conclusive, with an increase in May flows as the only significant 

change. Spring and summer diversions to irrigation below 116_sf probably confound 

trend analysis at the RCEW outlet weir. 

 

 

 

Figure 3.7: Average monthly streamflow at the RME headwater catchment weir 

(166_sf), the Tollgate mid-elevation weir (116_sf) and the RCEW outlet weir (036_sf).   
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Table 3.10: a) Trends (in 10
6
 m

3
 per decade) in streamflow (10

6
 m

3 
WY

-1
) based on least 

square linear fitting and Mann-Kendall test for the period record. B-e)Trends (in % per 

decade) in monthly distribution of streamflow as % of total water year streamflow over 

the Mar – Jun for the period of record.  Bold numbers indicate significance level greater 

than 90%; Blue, bold-Italic numbers a significance level greater than 95%. 

 

341Water Year 

Weir ID Mean  

(10
6
 m

3
 WY

-1
) 

SD Trend ± SE  

166_sf 

116_sf 

036_sf 

0.21 

13.4 

17.1 

0.10 

7.52 

12.4 

-0.0005 ± 0.1 

-0.066 ± 7.6 

-0.175 ± 12.3 

 

                 b) March 

 Weir ID Mean (%) SD Trend ± SE 

166_sf 

116_sf 

036_sf 

4.1 

11.0 

14.9 

4.2 

5.0 

7.5 

0.4 ± 4.2 

0.2 ± 5.0 

-0.4 ± 7.6 

                  

c) April 

166_sf 

116_sf 

036_sf 

22.8 

24.3 

19.6 

13.5 

9.4 

7.7 

3.2 ± 13.0 

2.7 ± 8.9 

0.8 ± 7.7 

                  

d) May 

166_sf 

116_sf 

036_sf 

45.6 

33.9 

24.0 

11.3 

7.9 

10.4 

-0.3 ± 11.5 

0.7 ± 8.0 

3.1 ± 9.8 

                   

e) June 

 

 

 

 

Precipitation-runoff relationships at the annual scale integrate the covariance in 

annual precipitation and runoff thereby removing much of the confounding effect of 

interannual variability in precipitation from the analysis.  Basin mean annual precipitation 

was estimated for each water year, using a simple isohyetal relationship based on the 

average annual value from gauges within each elevation band.  Annual precipitation – 

166_sf 

116_sf 

036_sf 

16.6 

12.5 

10.3 

10.5 

6.2 

6.0 

-2.7 ± 10.0 

-1.5 ± 6.0 

-0.2 ± 6.0 
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runoff relationships were developed for the periods of record up to and following the year 

1985 (Figure 3.8) to identify the aggregate effect of the temperature difference on annual 

hydrologic response.    

For the period before 1985 the runoff response at the RME headwater (166_sf) 

and larger Tollgate (116_sf) catchments are strongly linear and quite similar in slope 

(0.86±0.07 and 0.89±0.09, respectively) and threshold precipitation to runoff (355± 84 

mm and 334± 68 mm, respectively) (Table 3.11).  The RCEW outlet (036_sf) has a much 

lower runoff response rate (0.39±0.05) than the smaller non-agricultural catchments but a 

similar threshold precipitation depth to runoff (300± 63 mm).   The runoff response 

prediction intervals prior to 1985 decreased with increasing catchment size  (Figure 3.8, 

Table 3.11) as reflected by the decreasing standard error of the estimate for RME 

(91mm), Tollgate (58 mm) and RCEW (27 mm) .  For the period following 1985, there 

were insignificant changes in the runoff response from the pre- 1985 period at the lower 

Tollgate and RCEW weirs, and precipitation threshold to response at all sites.  However, 

the runoff response at RME increased significantly to 0.98 ± 0.04 for the period 1986-

2006.  

 

4. Discussion 

The data and trend analyses over the 1965 – 2006 (42 water years) period of 

record show both maximum and minimum temperature are increasing at all elevations, 

but minimum temperature is increasing more rapidly.  Annually, the temperature trends 

are significant at all elevations and indicate increases in minimum temperature of 1.7 –  
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Figure 3.8: Annual Precipitation – Runoff relationship for RME (166_sf), Tollgate 

(116_sf) and the RCEW outlet (036_sf), for period prior to and after 1985.  Annual 

values, slope and +/- one standard error are plotted. 
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Table 3.11:  Annual Precipitation – Runoff relationship for RME (166_sf), Tollgate 

(116_sf) and the RCEW outlet (036_sf), for period prior to and after 1985.  Slope, 

precipitation threshold (P0), R
2
 and standard error are presented. 

 

  

Slope (-) 

 

P0 (mm) 

 

R
2
 

std error of 

estimate 

(mm) 

RME  

1963-1985  0.86 ± 0.067 355 ± 84 0.89 91 

1986-2006 0.98 ± 0.042 441 ± 42 0.97 44 

 

TG  

1967-1985 0.89 ± 0.091 334 ± 68 0.85 58 

1986-2006 0.82 ± 0.075 311 ± 54 0.86 49 

 

RCEW  

1963-1985 0.39 ± 0.046 300 ± 63 0.78 27 

1986-2006 0.32 ± 0.030 302 ± 45 0.85 16 

 

2.5°C, and 0.8 – 1.7°C for maximum temperature over the period of record.  However, 

the most important differences in hydrology by elevation within the watershed are 

observed at the seasonal time scale.   

Seasonally, increasing trends in average daily maximum temperature are 

significant for the high elevation site in fall (>90%) and winter (>95%) and summer 

(>90%) and for the mid (>90%) and low (>95%) elevation sites in summer only.  Trends 

in minimum temperature increases are significant in all seasons at all sites, with the 

exception of fall for the low elevation site.    Increases in fall and winter minimum 

temperature tend to be larger and more significant at the high and mid-elevation sites, and 

larger and more significant at the mid- and low elevations sites in spring and summer.  

Mean conditions over the period of record indicate that all elevations experience diurnal 

freezes during fall and winter.  Fall, winter and spring mean daily minimum temperatures 
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are cooler at the low elevation site than at the mid-elevation site, primarily because strong 

temperature inversions occur in the valley bottom during winter.  Generally, the mid-

elevation site is just above the inversion level, and does not experience this effect.   

At high and mid-elevations, several temperature thresholds (highlighted in yellow 

in Table 3.3) appear to have been crossed during the period of record.  Annually (water 

year), the mean minimum daily temperature at high elevation for the period of record is 

0.9°C, with strong (>95%) increasing trend of 0.44°C per decade (Table 3.3a).  This 

suggests that at the beginning of the period of record, the mean daily minimum at this site 

was at or below 0°C, while at the end it is nearly 2°C.  The mean winter daily maximum 

temperature at high elevation for the period of record is 0.3°C, with a strong (>95%) 

increasing trend of 0.51°C per decade (Table 3.3b).  This suggests that at the beginning 

of the period of record, the mean winter maximum daily temperature was close to -1°C, 

and that by the end it is around 1.4°C.  The increase in the water year mean minimum 

daily temperature suggests a shift at high elevation from one dominated by an annual 

freeze – thaw diurnal cycle, to one where, on average, the diurnal cycle is above freezing.  

The increase in winter maximum daily temperature suggests a shift from winter 

conditions where the entire diurnal cycle is sub-freezing to one that generally has a 

diurnal freeze – thaw. 

The mean fall minimum daily temperature at mid-elevation for the period of 

record is -0.2°C, with a strong (>95%) increasing trend of 0.41°C per decade (Table 

3.3c). This suggests that at the beginning of the period of record, mean fall minimum 

daily temperature was about -1°C, and that by the end of the period of record was close to 

0.7°C.  This indicates a fall shift at mid-elevation from a freeze – thaw diurnal cycle to an 



 79 

above-freezing diurnal cycle.  These trends indicate that freezing temperatures at mid-

elevations are now limited to winter, and temperatures at high elevations are becoming 

more like those at mid-elevation at the beginning of the period of record.  Like much of 

the interior northwestern U.S, elevations within the RCEW are limited and do not extend 

much beyond the elevation of the high elevation measurement site (176_met).  In more 

alpine regions colder conditions are able to shift to higher elevation areas, while in the 

RCEW there is no higher elevation land area to shift to, so there is no longer a season 

where the entire diurnal cycle is below freezing. 

Precipitation phase (snow vs. rain) is strongly affected by warming climate.  The 

percent snow in the water year precipitation has decreased at all elevations over the 

period of record (1965 – 2006, 42 water years).  The decreasing trend is most significant 

(>95%) at mid- and low elevations.  The data presented in Table 3.5 (highlighted in 

yellow) indicate that some critical hydro-climatic thresholds have been crossed.  At high 

elevation, the snow fraction is only slightly reduced over the period of record.  However, 

at mid-elevation, the snow fraction has decreased from 54% to 37% over the period of 

record, while at low elevation, it has decreased 42% to 21% over the period of record 

(Table 3.5a).  Both changes indicate that mid- and low elevations have shifted from a 

regime of mixed show and rain to one that is dominated by rain.   

During fall, there has been a large decrease (significance >95%) in snowfall at all 

elevations (Table 3.5b).  At high elevation the decline is large (from 99% to 67%) 

indicating that during fall high elevations have shifted from a totally snow dominated 

system to one that, while still snow dominated, has a significant rain component.  At mid-

elevation the decline is from 69% to 44% snow and at low elevation the decline is from 
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58% to 25% snow, indicating that both sites have shifted from a snow-dominated rain-

snow mix to one that is rain-dominated. 

During winter, the only significant (>95%) decreasing trend in snowfall occurred 

at low elevation, which showed a decline from 69% to 37% snow (Table 3.5c).  This 

indicates that even during winter at low elevations there has been a shift from a snow-

dominated to a rain-dominated system. In spring, significant (>95%) decreasing trends 

occur at both mid- and low elevations.  Again, the elevational trend is evident, as the 

decrease in snow fraction is greatest at lowest elevation, and least at mid- and high 

elevation. 

Snow water equivalent (SWE) is also strongly affected by warming climate.  

Marks et al. (2001a) points out the SWE timing and depth differences between the low 

and mid elevation snow courses (176_sc, 144_sc, 155_sc) and the high elevation snow 

courses (163_sc, 163b_sc, 163c_sc, 174_sc).  While the snow regimes are different 

between these, the impact they represent to the hydrology of the RCEW is also distinct. 

Over the period of record (1964 – 2006, 43 water years), both April 1 and May 1 SWE 

are decreasing, as is the depth and timing of peak SWE at all measurement sites.  As with 

the snow fraction, the decreasing trends are largest and most significant at the low 

elevations.  The hydrologic importance of these trends is in the hypsometry of the 

RCEW, where only 2% or about 5 km
2
 the land area is above 2060 m, while 24% or 

about 57 km
2
 of the RCEW is between 1700 – 2060 m.  The loss or redistribution of 

100mm of high elevation (above 2060 m) SWE represents less than 1% of the mean 

water year streamflow from the RCEW, while the same 100mm loss or seasonal 
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redistribution of SWE from 1700 – 2060 m seasonal snowcover represents more than 

14% of water year streamflow from RCEW.  

Though at higher elevations it is colder and more snow falls, because it represents 

a small area, its hydrologic impact on the RCEW is not as important as the mid- to low 

elevation snowcover.  The snowcover at snow measurement sites above 2060 m (163_sc, 

163b_sc, 163c_sc, 174_sc) show a relatively small response to climate warming, without 

a significant trend toward earlier peak SWE or reduced April 1 SWE.  However, sites 

between 1700 and 2060 m (176_sc, 144_sc, 155_sc) show a strong response to warming 

with a significant (>95%) trend toward earlier peak SWE, and a significant (>95%) trend 

toward reduced April 1 SWE.   The data indicate that the only high elevation snow course 

with a significant (>90%) decreasing trend in April 1 SWE is 163c_sc, which shows a 

21% decrease from 732 to 594 mm SWE.  The mid- and low elevation courses show 

significant decreasing trends of 43% (657 to 427 mm SWE) for 176_sc, and 85% (231 to 

93 mm SWE) for 155_sc (Figure 3.5, Table 3.6).  The data indicate that the only 

significant changes in the timing of peak SWE occur at low elevations, with data from 

144_sc showing that the date of peak SWE has shifted to 44 days earlier, and data from 

155_sc showing a shift to 30 days earlier (Table 3.7) over the period of record.  At the 

end of the record, both courses now tend to peak near the middle of February, indicating 

that while these two snow courses initially represented different snow environments, they 

now essentially represent the lower extent of the seasonal snowcover within the RCEW. 

Though the record is shorter (1983 – 2006, 24 water years), the hourly snow 

pillow data provide a more detailed perspective on how climate warming has affected the 

seasonal snowcover.  Data from the snow pillow on the date and depth of peak SWE are 
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similar to the 176_sc snow course located adjacent to the pillow.  The snow pillow 

provides data on the dates of snowcover initiation and melt-out, which cannot be derived 

from the snow course data.  Though the data indicate that snowcover initiation is later 

and melt-out earlier (a shorter snow season), the only significant (>95%) trend for these 

dates is in the timing of snowcover initiation.  The data indicate that this date occurs 20 

days later than it did at the beginning of the period of record.  This is consistent with 

trends in increasing fall temperatures and decreases in fall snowfall. 

The number of soil freeze days shows a significant decreasing trend (>95%) at 

both sites with viable data (127_stm, 098_stm) over the 21 water years of record (Table 

3.8, Figure 3.6). It is important to note that deep snow accumulation at these sites is very 

rare and much more commonly characterized as intermittent and thin. The insulating 

effect of a snowcover is well documented and generally results in much warmer soils. 

However, the same insulating property can work to extend soil-freezing events where 

snow cover is shallow and intermittent because snow events are generally associated with 

freezing conditions and a snow cover reduces incoming solar energy and helps maintain 

freezing conditions.  Most frozen-soil runoff events occur in the presence of a shallow 

snow cover that prevents rapid soil thawing (Seyfried et al. 1990).  The lack of snow 

deposition and warmer temperatures suggests that potential frozen-soil runoff events will 

migrate to higher elevations and become less dramatic as the land area affected decreases.  

However, if cold conditions allow soil freezing and the formation of an early season 

semi-continuous snowcover down to lower elevations, the likelihood of a later rain-on-

snow frozen-soil runoff event would be increased. 
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The decrease in soil freeze days at mid-elevation (127_stm) is largest at nearly 25 

days per decade, or a decrease in freeze days of more that 50 days over the period of 

record.  The decrease in soil freeze days should increase infiltration of rainfall at lower 

elevations within the RCEW, but may also increase direct evaporation from the soil 

during winter.  Decreasing trends in the date of the onset of plant-water stress are 

significant (>95%) at the high (176_stm) and mid-elevation (127_stm) sites, but not at the 

low slope site.  Trends are largest at the high elevation site, where the date of plant-water 

stress onset has moved forward by nearly three weeks over the period of record.  The 

lack of change at low slope areas (098_stm) is expected, as at lower elevations within the 

RCEW there is limited precipitation, almost no snowfall, and this has changed little over 

the past 45 years.  The impact of climate warming on native plants will be strongest in 

locations where the hydrology has been altered. 

The observed shifts in plant-water stress (Table 3.9) also reflect trends in snow 

cover discussed above. At high elevation (176_stm), the native vegetation is entirely 

covered by snow most winters, so that there is no transpiration or soil evaporation until 

after snowmelt, a time of relatively high evaporative demand (May). The documented 

earlier melt-out date over the period of record, therefore results in earlier transpiration 

and hence earlier and longer plant water stress (summer precipitation was always 

negligible and is now less than before).  At the low slope site (098_stm), no change in 

plant water stress was observed even though there has been an increase in air 

temperature. This is also consistent with snow accumulation patterns. At the low slope 

site, snow rarely covered the vegetation and generally melted in winter, prior to 

significant evaporative demand, so that precipitation phase has little effect on soil water 
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availability. The effect of the temperature increase on evaporative demand is probably 

overwhelmed by large year-to year variations in precipitation.  Results at mid-elevation 

(127_stm) are, predictably, intermediate, as snow cover of the vegetation is more 

common and melt out slightly later at mid-elevation than at the low slope areas. These 

data indicate that the impact of climate warming on vegetation in this region will be most 

pronounced at higher elevations that experience continuous, relatively deep (>40 cm) 

snow cover. 

Both mean water year and seasonal precipitation volume are unchanged at all 

measurement sites over the period of record (Figure 3.3).  The only significant trends 

indicated by the data are a general decrease in summer precipitation at all sites.  

However, these summer trends, while significant, are small (about 1% decrease per 

decade).  Though the shift in other seasons is not significant at the 90% level, the 

decrease in summer precipitation represents a re-distribution of water year precipitation 

to fall and spring at mid- to high elevations, and to winter and spring at lower elevations.  

Whereas mean water year streamflow, like precipitation, is unchanged as over the 

period of record; seasonal streamflow, like snowmelt, has shifted toward earlier flow.  

Late winter and early spring flows have increased, while late spring and summer flows 

have decreased.  There is a strong elevational gradient to this shift.  The high elevation, 

headwater weir shows significant (>95%) March and April flow increases, while the mid-

elevation weir shows significant (>95%) April flow increases.   The outlet weir, however, 

shows a significant (>95%) May flow increase.  All three weirs show decreases in June 

flow, with very significant (>95%) decreases at headwater weir, significant decreases 

(>90%) at the mid-elevation weir, and non significant (<90%) change at the outlet weir. 
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The accuracy of estimated values for mean annual precipitation over RME, Tollgate and 

the entire RCEW, used in the rainfall – runoff analysis are suspect because precipitation 

is highly variable over the RCEW and, as shown in Table 3.4, that variability is not a 

simple function of elevation.  However, this analysis is presented as an example of how 

climate warming may alter basin hydrology at an annual time-scale. A more detailed, and 

better verified estimates of mean basin precipitation, SWE, surface water input and 

streamflow, at multiple time-scales, for selected snow seasons over the smaller RME 

catchment is presented in Chapter 4.   

The rainfall – runoff analysis presented here indicates that predictability of annual 

runoff depth from the developed precipitation-runoff curves for the two-decade period 

since 1985 is better than for the two decades preceding 1985.  Whereas decreases in the 

variance from the predicted relationship occur at all sites between the pre- and post-1985 

periods, the 50% reduction in standard error of the estimate at the high elevation 

catchment is the most striking change, and may drive a reduction in variance over larger 

nested watersheds (Figure 3.8, Table 3.11).  The contemporaneous decrease in duration 

of snowcover, increase in annual runoff response and decrease in predictive variability of 

annual runoff from the RME catchment suggests that as high elevation drainages cross 

temperature thresholds controlling snow accumulation and melt, the runoff season will 

become temporally compressed and as a result may be more predictable.  Any gains in 

runoff from high elevation snowcovers are likely to depend on the increase in plant water 

stress days within the catchment as the period of runoff is advanced.  Such gains are 

likely to be offset as warming continues further reducing the spatial variability of soil 
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water input, due to decreased redistribution of snow and as vegetation communities 

respond to warming. 

 

5. Conclusions 

In agreement with other studies of temperature trends in the western U.S. and 

Canada (e.g. Trenberth et al. 2007), temperatures have significantly warmed at all 

elevations within the RCEW with trends indicating minimum temperature warming is 

greater (+1.7 to +2.5°C) than maximum temperatures (+0.8 to +1.7°C).  Trends in the 

data indicate that important thermal thresholds have been crossed during the period of 

record.    

At high elevation, the mean water year diurnal cycle is shifting from freeze – 

thaw to above freezing, and the winter diurnal cycle from below freezing to a daily freeze 

– thaw.  Although this change has not been accompanied by significant changes in phase 

of precipitation or depth and timing of peak SWE, snow pillow data indicate that 

initiation of the seasonal snowcover occurs later and melt-out occurs earlier, resulting in a 

snow season that is at least a month shorter than it was at the beginning of the record.  

This change in timing of snow cover is followed directly by a three-week increase in the 

duration of plant water stress.   The earlier melt also drives increases in March and April 

runoff that are balanced by decreases in May and June runoff. 

At mid-elevations, the fall diurnal cycle is shifting from freeze – thaw to above 

freezing.  These changes have affected the proportion of snow in water year precipitation, 

the timing of snowmelt and streamflow, the number of soil freeze days and the length of 

time native plants are subjected to water stress. 
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The data also indicate a decrease in SWE at all elevations, with the largest and 

most significant decreases at mid- and low elevations.  This elevational gradient is 

important to the hydro-climatology of the RCEW because so much more area exists at 

mid- and low elevations than at high elevations.  Dates of peak SWE occur earlier at all 

elevations.  At low elevations, the date of peak SWE has shifted to mid-February.   

At lower elevations where, in the absence of a snowcover, soil freezing is 

possible, the number of soil freeze days has significantly decreased.  While this may 

increase infiltration of rainfall and reduce flooding, it also will likely increase the rate of 

soil dry down.  The onset of plant-water stress is occurring earlier at mid- and high 

elevations, with the largest shift at high elevations where hydrology has been most 

significantly altered.  This will increase the time native plants are under water stress and 

put ecosystems at risk. 

The data indicate that, while there is large year-to-year variability, water year 

(annual) streamflow and precipitation have not changed over the period of record.  

However, as other studies have shown (e.g. Regonda et al. 2005; Mote et al. 2005), there 

has been a seasonal shift in streamflow, with increases in winter and early spring, and 

decreases in late spring and summer.  This shift is stronger at high elevation, and delayed 

at mid- and low elevations.  Fall, winter and spring precipitation volume has not changed, 

but the proportion of snow has significantly declined at all elevations.  This has caused 

critical shifts in precipitation regimes such that while high elevations are still snow 

dominated, more of a rain – snow mix now exists, and mid- and low elevations have 

changed from mixed rain and snow to rain dominated.   
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Together these results indicate that the hydro-climatology of the RCEW and 

similar regions of the interior northwestern U.S. have already been affected by climate 

warming.  Snowfall and the seasonal snowcover have been significantly affected.  

Changes snow deposition and melt have altered patterns of soil temperature and moisture, 

and streamflow.  In the short term, these trends will likely have a significant impact on 

land and water management practices.   If they were to continue for the next 50-100 

years, as suggested by the IPCC report (2007), the RCEW will be very different hydro-

climatically. 
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CHAPTER 4 

SENSITIVITY OF SNOWCOVER TO CLIMATE WARMING IN A  

SEMI-ARID MOUNTAIN CATCHMENT
7
 

Abstract 

Changes in mid-elevation snowcover and duration have been well documented 

but the complex interaction among topography, energy balance and snowpack occurrence 

complicate the prediction of future changes.  In this study, sensitivity of seasonal 

snowcover to climate warming is assessed for the range of precipitation and temperature 

conditions typical of a mountain catchment, in Idaho, USA.  A spatially distributed 

energy and mass balance snow model, Isnobal, is used to continuously simulate snow 

accumulation and melt for five years and then for climates adjusted by +/- 2°C. Model 

output of snow water equivalent (SWE) for the base condition compares well to field 

measurements for all years (Nash-Sutcliffe model efficiency coefficient of 0.81 to 0.97). 

Simulations from the adjusted climate scenarios indicate that colder conditions increase 

snow to rain fraction and snow water equivalent and thereby delay surface water input 

(SWI) to soil and streams until late spring and early summer.  Warming scenarios showed 

the converse, with advances in the date of peak SWE from the base case of up to 2 ½ 

months, and associated decreases of about 50 % in SWE.  This analysis indicates that 

climate warming of 2°C will result in a critical hydrologic shift across the region, as 

mean winter maximum and minimum temperatures cross thresholds determining 

predominant precipitation phase.  As early winter precipitation shifts from snow to rain 

                                                 
7
 Coauthored by A. Nayak, D. Marks, D.G. Chandler, and A. Winstral. 
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and snowpack water storage is reduced, the snowpack becomes more susceptible to melt 

from mid winter and spring rain on snow events.  The related advance of the SWI timing 

from spring to a mid-winter peak, with reduced SWI in spring or early summer, indicates 

earlier and drier summer conditions with the greatest relative change for wet years.   

1. Introduction 

Precipitation in the mountainous western US is winter dominated and a significant 

fraction of the annual total falls as snow. High elevation mountain snowcovers play an 

important role in the regional hydrologic cycle, storing winter precipitation as snow and 

releasing melt water during spring and summer when water demand is at its peak. Water 

from snow melt contributes 50-80% of soil moisture and total streamflow in the western 

U.S. (Stewart et al. 2004; Marks et al. 2001b). The magnitude and timing of water 

released from melting seasonal snowcovers are critical for regional ecosystem and water 

management strategies.  

Over the last 50 years, mean surface temperature in the western US has increased 

by 1-3 °C (Trenberth et al. 2007). A number of studies have shown substantial changes in 

snow deposition and melt patterns such as decrease in the snow fraction of precipitation 

(Aguado et al. 1992; Dettinger and Cayan 1995; Huntington et al. 2004; Regonda et al. 

2005; Knowles et al. 2006; Chapter 3), decrease in total snow accumulation (Mote 

2003a&b, 2006; Mote et al. 2005; Chapter 3), earlier timing of snowmelt runoff and 

earlier peak streamflow (Aguado et al.1992; Dettinger and Cayan 1995; Cayan et al. 

2001; Regonda et al. 2005; Stewart et al. 2004, 2005; Chapter 3). Trends in patterns of 

snow deposition and melt are expected to continue at a similar or accelerated rate if 
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climate continues to warm as predicted (Meehl et al. 2007). Alterations to the hydrologic 

regime driven by global warming may require proactive adjustments to water 

management strategies in the western USA.  

Weather patterns over the western US are strongly influenced by natural oceanic 

circulations such as Pacific decadal oscillation (PDO) and El-Nino southern oscillation 

(ENSO) (Hurrell 1995; Hurrell and Van Loon 1997; Dettinger et al. 1998) which results 

in great variability in precipitation (wet and dry cycles) and climate conditions (warm and 

cold phases) over the region.  This regional variability in climate and precipitation results 

in year-to-year differences in the distribution and timing of snowcover development and 

melt. The studies cited above are focused on long-term changes in snow accumulation 

and melt and do not specifically address the complexities introduced by the inter-annual 

climate and precipitation variability. Moreover, they report large-scale hydrologic cycle 

changes and are primarily based on data collected at low and mid elevation sites with 

limited data from high elevation sites.  

Given the influence the mountain snowcover has on the regional hydrological 

cycle it is important to understand the sensitivity of mountain snowcovers to warming 

climate conditions. This will require simulation of the development and depletion of the 

seasonal snowcover across complex mountain terrain, under varying climate conditions. 

The mountains of the western U.S. display tremendous heterogeneity in patterns of snow 

deposition and melt caused by variations in vegetation canopy, topography and elevation 

over short distances (Luce et al. 1998; Marks et al. 2002; Winstral and Marks 2002; 

Winstral et al. 2002). Winstral and others (e.g. Winstral and Marks 2002; Winstral et al. 

2002, 2008a&b) showed that is it possible to use a generalized wind field to accurately 
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simulate the redistribution of snow in complex terrain, and Marks et al. (2002) showed 

that this method can be coupled to an energy balance snow model to improve simulation 

of complex patterns of snow distribution, melt and surface water input (SWI) to soils in 

mountain basins. Surface water input (SWI) is defined as the input of melt-water or rain 

to the soil surface.   

In the western U.S., water management strategies are based on the assumption 

that regional climate is relatively stable, within the natural range of variability, and that a 

predictive relationship between temperature, snowcover, snowmelt and streamflow can 

be developed.  However, in view of observed and predicted changes in temperature, 

climate, snowfall and precipitation in the western U.S. (see Chapter 3), the reliability of 

seasonal snow cover as a storage reservoir for late spring and summer runoff is in 

question.  How temperature forcing affects runoff is particularly important for extremely 

wet and dry years, during which reservoirs must be managed for either flood or drought, 

respectively.  

The objectives of this research are to use a snow distribution, energy and mass 

balance model to: (1) investigate how a range of natural climate and precipitation 

variability alters patterns of snow deposition, melt, and the delivery of water to the soil 

and stream in a mountain basins; (2) evaluate the sensitivity of the seasonal snowcover to 

colder and warmer average temperatures for snow seasons with cold and wet, cold and 

dry, warm and wet and warm and dry base conditions; (3) understand how climate-altered 

snowcover affects delivery of water to soil and streamflow of mountain basins near the 

transitional snow line. 
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2. The Study Site 

This study was conducted within the Reynolds Mountain East (RME) 

experimental catchment, a small headwater sub-basin located on the southern rim of the 

Reynolds Creek Experimental Watershed (RCEW), in Owyhee Mountains of southwest 

Idaho. The majority of precipitation falls during the cold season (fall, winter and spring) 

as snow, but recent research indicates significant trends to more rain and less snow 

(Nayak et al. 2008).  As is typical of the mountain west, the depth of water storage 

increases with elevation and is greatest snowpack of headwater catchments. 

RME is a perennial headwater catchment with drainage area of 0.38 km
2
 and 

elevation range of 2022-2139 m (Figure 4.1). Within this basin, precipitation is measured 

at three locations, meteorological and snow depth data are collected at seven stations, 

temperature, humidity and wind profiles collected at two tower stations, and stream 

discharge is measured at the catchment outflow.  For this study, precipitation, snow and 

meteorological data are used from the two long-term stations, one located on a wind-

exposed ridge (site 176_met, elevation 2097 m, hereafter referred to as the ridge site) and 

other located in area sheltered by grove of aspen trees (site 176e_met, elevation 2061 m, 

hereafter referred to as the grove site). Extensive analysis of long-term precipitation, 

snow and meteorological records from ridge and grove sites has documented topographic 

and vegetation interactions with wind and provided reliable estimates of snow deposition 

across RME (Marks and Winstral 2001; Marks et al. 2001a, 2002; Winstral et al. 2002; 

Winstral and Marks 2002).  Dominant plant communities in the basin are mixed 

sagebrush, aspen and fir. About 30% of the basin is forested and 70% is mixed sagebrush 

(Winstral and Marks 2002; Marks et al. 2002).  



 
1
0
1
 

 

Figure 4.1: The Reynolds Mountain East (RME) catchment, within the Reynolds Creek Experimental Watershed (RCEW).  

Locations of the outlet weir, ridge and grove measurement sites are indicated. 
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For RME, as shown in Chapter 3, over the past 45 years, increasing trends in 

minimum and maximum temperature (+0.44°C and +0.39°C decade
-1

).  They also show a 

modest (-1.52 % decade
-1

) decrease in the RME snow fraction of precipitation, decreases 

in peak SWE (-56 mm decade
-1

), and earlier date of peak SWE (-3.1 days decade
-1

). 

These trends are accompanied by a streamflow shift to March and April (+2.8% decade
-1

) 

from June (-2.7% decade
-1

) with no change in annual precipitation or stream discharge 

volume. These trends indicate a temperature increase of about 2°C, with about a 7% 

reduction in the precipitation snow fraction over the 45 years (1962-2006) of analysis.  

3. The Study Snow Seasons 

Three wet (1984, 1986, and 2006) and two dry (1987 and 2001) snow seasons 

were selected to represent the range of precipitation and temperature that have occurred 

naturally in the RME (Chapter 3).  These years also satisfy the Isnobal model 

requirement for hourly meteorological forcing data, which is available for RME since 

1984.  A brief summary of climate conditions during the selected snow seasons is 

presented in Table 4.1.  Dew point temperature is used to approximate precipitation 

temperature and divide precipitation into rain or snow, based on the criteria used in 

Marks et al. (1999). Bi-weekly division of precipitation as rain and snow is presented in 

Figure 4.2. 

The 1984 snow season was cold and wet. Average air temperatures were nearly 

1°C below normal and precipitation was 153 % of the long-term average snow season 

wind corrected precipitation at grove site. Average Nov-May and dew point temperatures 

near lowest of the five snow seasons analyzed.  Although 307 mm (25%) of the total



Table 4.1: Summary of conditions during selected snow seasons.  

 

                                                 
a
 Percentages in parenthesis are of the long-term average snow season wind corrected precipitation at grove site. 

b
 Percentages in parenthesis show rainfall as fraction of total snow season precipitation. 

c
 Values in parenthesis show departure from long-term average snow season temperature.  

d
 Average dew point temperatures during Nov-May precipitation events. 

e
 Values in parenthesis are percentages of the long-term average snow season streamflow at RME weir. 

Snow Season 1984 1986 1987 2001 2006 

Precipitation (mm):      

grove site
a
 1428 (153%) 1179 (126%) 603 (65%) 707 (76%) 1188 (127%) 

ridge site 625 528 364 516 796 

Distributed Basin Total 1221 981 532 674 1148 

Distributed Basin Rain
b
 307 (25%) 115 (12%) 165 (31%) 157 (23%) 346 (30%) 

Air Temperature (°C):      

Seasonal
c
 0.6 (-0.8) 2.4 (+1.0) 2.9 (+1.5) 1.4 (-0) 1.9 (+0.5) 

Nov-May -2.9 -2.1 -1.9 -3.3 -2.2 

Dew Point Temperature (°C):      

Seasonal -4.2 -4.8 -4.9 -4.2 -4.5 

Storm
d
 -4.4 -4.3 -3.9 -4.1 -3.5 

Wind Speed (m s
-1

):      

grove site 2.5 2.8 2.3 2.5 2.0 

ridge site 5.2 5.2 4.0 5.9 5.5 

Streamflow (mm):
e
 1040 (187%) 800 (142%) 213 (38%) 283 (50%) 762 (136%) 

1
0
3
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Figure 4.2: Bi-weekly basin total 

precipitation (snow and rain) for the five 

selected snow seasons. 
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seasonal precipitation was rain, most of this fell in fall, prior to or during early snowcover 

development and in late spring, during melt-out (Figure 4.2).  Snowcover was initiated 

with a very large influx of snow during fall and early winter, and sustained by substantial 

snowfall during late winter and early spring. 

The 1986 snow season was cool and wet. Average air temperatures were nearly 

1°C above normal, though average Nov-May and dew point temperatures were low.  

Precipitation was 126 % of the long-term average wind corrected seasonal precipitation, 

only 12% (115 mm) of which was rain.  The season was characterized by a very cold and 

snowy late fall, winter and early spring, with much higher temperatures in late spring.  

Though a substantial snowcover had developed during fall and early winter, a large input 

of snow occurred during late winter and early spring.   

The 1987 snow season was warm and very dry with air temperature 1.5°C above 

normal, and the lowest seasonal humidity of the 5 snow seasons analyzed.  Average Nov-

May and storm temperatures were the warmest of all years analyzed.    Seasonal 

precipitation was only 65% of wind corrected long term average, 31% (165 mm) of 

which was rain.  If not for the 118 mm of rain in May and June, which fell after snow 

melt was complete, 1987 snow season would have been substantially drier.  

The 2001 snow season was cool and dry with air temperatures close to normal, 

low humidity and the lowest average Nov-May temperatures of the years analyzed.  

Precipitation was 76% of long term wind corrected average. Only 23% (157 mm) of total 

precipitation was rain, most of which fell near the beginning or end of the snow season.  

The 2006 snow season was warm and wet with air temperature 0.5°C above 

normal, high Nov-May temperatures and the highest storm dew points of the five snow 
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seasons analyzed.  Precipitation was 127% of long term wind corrected average.  30% 

(346 mm) of total precipitation was rain and many rain-on-snow events occurred in the 

initial stages of snow cover development and throughout the season.  The precipitation 

pattern is similar to 1984, with a large input of precipitation in fall and early winter.  The 

significant difference, however, is that a substantial portion of this precipitation fell as 

rain. While rain-on-snow (ROS) events do occur in the RCEW, historically they have 

been infrequent, and most precipitation that fell as rain either occurred before snow cover 

initiation or after melt-out.  As discussed in Chapter 3, rain is now a larger proportion of 

precipitation than in the past, and ROS is more frequent.  In the selected snow seasons, 

2006 is an example of this trend, where many mixed, rain and ROS events occurred 

throughout the snow season.   

4. The Modeling Approach 

The first objective is to investigate how a range of natural climate and 

precipitation variability alters patterns of snow deposition, melt, and the delivery of water 

to the soil and stream in a mountain basin.  This is performed for the study snow seasons 

at RME with the Isnobal model and results are referred to as the base condition. 

Isnobal is designed to run over a digital elevation model (DEM) grid and solves 

the snow cover energy and mass balance over each grid-cell.  In general the energy 

balance of a snow cover can be given as: 

MGELHRQ vn ++++=∆  

where ∆Q is change in snow-cover energy, and Rn, H, LvE, G and M are net radiative, 

sensible, latent, conductive and advective (from addition of precipitation mass) energy 
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fluxes.  Isnobal represents the snow cover as a two-layer system: a surface fixed-

thickness active layer and a lower layer. The model solves for the temperature and 

specific mass of each layer. Melt is computed in either layer when the cold content is 

greater than 0.0. Runoff from the base of the snow cover is predicted when the 

accumulated liquid water content exceeds a specific threshold.  In addition to the state 

variables listed in Table 4.2, the model predicts energy and mass fluxes to and from the 

snow cover. Downward fluxes from the bottom of the snow cover and rain in the absence 

of snow are considered surface water input (SWI). Marks et al. (1999) present a detailed 

description of the equations solved and a discussion of the structure of the model.  

Table 4.2:  State variables predicted and forcing variables required by the Isnobal snow 

model.  

  

State Variables: Forcing Variables: 

Snow Depth (m) Net Solar Radiation (W m
-2

) 

Snow Density (kg m
-3

) Incoming Thermal Radiation (W m
-2

) 

Snow Surface Layer Temperature (°C) Air Temperature (°C) 

Average Snow Cover Temperature (°C) Vapor Pressure (Pa) 

Average Snow Liquid Water Content (%) Wind Speed (m s
-1

) 

Soil Temp (°C) 

Precipitation Mass (mm) 

Precipitation Temperature (°C) 

 

The model has been extensively tested and verified across mountainous regions of 

the western US and Canada (Marks et al. 1999; Link and Marks 1999a&b), to simulate 

snow cover processes and properties during rain-on-snow (ROS) (Marks et al. 1998, 

2001a), and to simulate the interaction of topography and vegetation with the seasonal 

snow cover (Marks et al. 2002).  When coupled to a wind-field and snow redistribution 
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model, Isnobal accurately predicted patterns of snow water equivalent (SWE) and snow 

covered area (SCA), including wind scour and deposition (drifting) (Winstral et al. 2002; 

Winstral and Marks 2002; Marks et al. 2002; Winstral et al. 2008a&b). 

For this experiment, Isnobal is coupled with a wind field and snow redistribution 

model (Winstral and Marks 2002) to simulate hourly snow cover development and melt. 

The wind field and snow redistribution model (Winstral and Marks 2002) uses shelter or 

exposure parameters derived using upwind topography and vegetation to develop 

distributed time-series of snow accumulation rates and wind speeds.  A 10x10 m grid cell 

DEM is used as a base for model simulations along with a 10x10 m grid vegetation 

coverage map to account for canopy effects.  Continuous model simulations were done at 

an hourly time step for five snow seasons (1984, 1986, 1987, 2001, and 2006). A snow 

season is defined as the 9-month period from October 1 to June 30.  Hence, the 1984 

snow season runs from October 1, 1983, to June 30, 1984. Distributed surfaces of forcing 

meteorological variables (Table 4.2) are generated using the data collected at ridge and 

grove sites. Redistribution of precipitation by wind is a function of precipitation phase, 

which was decided on the basis of dew point temperature (Tdp) (Marks and Winstral 

2008). As precipitation phase is adjusted for altered temperature model scenarios, Alter-

shielded gauge-catch at the ridge site is adjusted by a best-fit regression developed from 

base-condition averages of Tdp and wind speed (us) at the ridge site, and the ratio of 

precipitation at the grove and ridge sites (Ppt (grove/ridge)) for the selected snow seasons: 

 

Ppt (grove/ridge) = 1.76     us >= 10 m s
-1

 or Tdp >= -2.7°C 

Ppt (grove/ridge) = 0.311 + 0.2183 * us – 0.0864 * Tdp us < 10 m s
-1

 and Tdp < -2.7°C 
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In the case of change in precipitation phase to mixed (from all snow or rain), 

alter-shielded precipitation gauge catch is adjusted using the weighted average ratio 

depending on the fraction of snow and rain. For pure rain events, wind-corrected gauge 

catch at the grove site is uniformly distributed across the RME catchment.   

Model performance for the base condition was evaluated by comparison of model 

values of SWE and SWI to equivalent field data.  Model simulated daily SWE at the 

grove site grid cell to measured SWE at the grove site snow pillow.  Verifying SWI is 

less direct. The model calculates surface water input (SWI), which is the delivery of 

liquid water, including snowmelt and rain, to the soil surface at each grid cell.  Though 

SWI is indirectly related to stream discharge, most of the fall and early winter SWI is 

utilized for recharge of soil and ground water storage. The exception to this is the 

occurrence of large ROS events when the soil is either frozen or saturated, as occurred in 

2006.  To remove uncertainty from SWI losses to soil moisture storage, in our evaluation 

of model performance for SWI, we compare cumulative predicted basin average SWI to 

cumulative stream discharge for the period from peak SWE to the end of the snow 

season. 

SWE and SWI were evaluated using three standard tests: (1) The root mean 

square difference (RMSD), (2) the mean bias difference (MBD) and (3) the Nash-

Sutcliffe model efficiency (ME) (Nash and Sutcliffe 1970). The three tests are calculated 

as  

 

RMSD =
1

n
xsim( i) − xobs(i)( )2

i=1

n

∑  
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5. Experimental Design 

The second objective of this research is to investigate the sensitivity of the 

seasonal snowcover to expected changes in temperature and humidity expected under 

climate warming for each of the base conditions. Potential significant effects include 

direct effects on sensible heat flux between the atmosphere and the snowcover, 

temperature influences on humidity by altering the water-holding capacity, and thermal 

radiation from the atmosphere (see Brutsaert 1975, 1982; Marks and Dozier 1979, 1992). 

Forcing data scenarios were developed from the base-level data, by adjusting 

temperatures +2°C and -2°C, which was approximately the magnitude of change 

presented in Chapter 3.  To insure consistent precipitation events, and temperature – 

humidity coherence in forcing data for the scenarios, we kept the relative humidity 

constant.  Temperature – humidity coherence means that precipitation could only occur 

when humidity was at, or close to saturation.  The most objective way to insure this is to 

keep the relative humidity unchanged and to re-calculate the absolute humidity for the 

scenarios. This approach had the effect of increasing the Tdp for the +2°C scenarios, and 

decreasing Tdp for the -2°C scenarios in a way that was similar to trends in precipitation 

phase noted in Chapter 3.  
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For each temperature scenario, precipitation event timing and volume were held 

constant, but adjusted temperature and humidity resulted in changes in precipitation 

phase and the magnitude of redistribution.  Changes in precipitation phase altered snow 

albedo, which is a function of temperature and density of snowfall (Marks et al. 1999), 

resulting in lower snow albedo for warm or mixed rain/snow events.  ROS causes in 

accelerated grain growth, further lowering snow albedo (Marks et al. 1998).   

6. Results and Discussion 

 In this section results of the modeling experiment are presented.  In section 6.1 

results of the base-condition simulations are summarized and validated.  Section 6.2 

compares basin average SWE and cumulative SWI results between the base and scenario 

simulations.  Section 6.3 presents spatial results for the base and scenario simulations, 

evaluating changes in snow distribution for two of the five selected snow seasons.  

Finally, section 6.4 presents a detailed analysis of how warming or cooling may affect 

extreme events such as drought or flooding.  

6.1. Base-Condition Simulations 

Simulation results for base-conditions for each of the selected snow seasons 

illustrates the differences in key hydrologic cycle parameters during wet and dry, cold 

and warm snow seasons. Figure 4.3a compares measured snow pillow and snow course 

SWE at the grove site to the simulated value from the grid cell that contains the grove site 

for all five selected snow seasons.  The Isnobal model reliably simulates both the 

accumulation and ablation of SWE at the grove site, and even handles mixed 

precipitation and rain-on-snow (ROS) events.  Simulated basin average SWE for each of  



 112 

 

Figure 4.3: Base-condition simulation results for each of the selected snow seasons.  

a) Grove site snow pillow and snow course results are compared to SWE from the 

grove site simulation grid cell, and to simulated basin average SWE. b) daily total 

simulated surface water input (SWI) compared to measured streamflow.  
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the selected snow seasons is also presented.  Both measured and simulated SWE at the 

grove site, which is a sheltered clearing surrounded by trees (similar in many ways to 

NRCS SNOTEL sites), is generally greater than basin average SWE at RME.  

Figure 4.3a also shows that basin average SWE continues for several weeks after 

melt-out at the grove site, indicating that drift areas continue to hold snow even after the 

snowcover over most of the rest of the catchment has melted.  These simulation results 

are in agreement with those presented by Winstral and Marks (2002) and Marks et al. 

(2002) who showed that within RME, snow deposition and melt patterns are controlled 

by the distribution of terrain and vegetation shelter and exposure zones, with sheltered 

areas holding more snow and melting later than exposed areas which hold less snow and 

melt earlier.  

Comparing point measurements to spatially derived values is not straight-forward.  

While the grove site snow course and the snow pillow are in the same general area, they 

are located 3-5 m apart and do not measure the same snowcover.  In some years, the 

snow course SWE is nearly identical to snow pillow SWE, but in others, particularly 

during cold, wet snow seasons, like 1984, it tends to track well during snowcover 

development and melt-out, but be larger during mid-season.  During cold conditions, 

snow deposition is highly variable, while warmer conditions tend to have more uniform 

snow distribution.  Simulated SWE is based on mean snow deposition conditions over a 

10x10m area, and does not account for within-grid-cell variability.   It is also difficult to 

specify the exact area represented by the selected grid-cell, because the positional 

accuracy of the DEM is no better than +/- 5m, so location of the model grid-cell 

representing the grove site is only approximate.   
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1984 snow season was cold and wet with April 1 SWE measured at the grove site 

178% (945 mm) and stream discharge from the basin 187% (1040 mm) of long-term 

(1962-2006) seasonal average (October 1 to June 30).  During the cold, wet 1984 snow 

season, a small drift occurred in the snow course track during mid-winter.  This resulted 

in a 14-18% difference between snow course and snow pillow SWE from January to mid-

March.  During this time, simulated SWE closely matched the snow pillow, suggesting 

that the simulation conditions within the grove site grid-cell did not recognize or account 

for the snow course drift.  During the cool, wet 1986 snow season, snow course and snow 

pillow SWE are in good agreement, with April 1 SWE at the grove site was 125% (669 

mm) and seasonal stream discharge from the basin was 152% (800 mm) of long-term 

seasonal average.   Simulated SWE matches observations during snowcover development 

and melt-out, but over-estimates measured SWE by 6-10% from mid-February to early 

April.  Measured dew point temperatures during the 1986 snow season are questionable, 

due to instrument calibration issues.  The data indicate that the mid-February storm was 

all snow, while the drop in snow pillow SWE (Figure 4.3a) suggests it was a mixed 

rain/snow event. In 1987 the temperature/humidity sensor was replaced with a more 

robust design.  

During the 1987, 2001 and 2006 snow seasons, simulated SWE generally matches 

both snow course and snow pillow SWE.  Figure 4.3a, however, shows that simulated 

SWE better matches snow course SWE during the 1987 and 2001 snow seasons.1987 

April 1 SWE was 57 % (305 mm) and seasonal stream discharge only 40 % (213 mm) of 

the long-term seasonal average.  2001 April 1 SWE was 50% (264 mm) and seasonal 

stream discharge 54% (283 mm) of the long-term seasonal average. In 2006, April 1 
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SWE was 128% (681 mm) of the average and total seasonal stream discharge was about 

145% (762 mm) of the average.   

  Comparison of daily total SWI and stream discharge is presented in Figure 4.3b 

for each of the simulation years.  SWI generated during October-December in most years 

is due to rain or warm conditions following snow events, resulting in melt of a shallow 

snowcover. In most years SWI virtually ceases once the snowcover develops, beginning 

again only when snowmelt starts in spring. The effect of mixed or rain-on-snow (ROS) 

precipitation events can be seen in SWI spikes in late fall, winter, and increase in stream 

discharge before initiation of snowmelt. Figure 4.3b indicates that much of the SWI 

generated during the fall and winter contributes to recharge of groundwater and soil water 

storage. This is particularly evident during the 2006 snow season, when a substantial 

volume of SWI was generated during fall and early winter with little subsequent 

streamflow.  However, during spring snowmelt, SWI shows good relationship to stream 

discharge.  Correlation between SWI and stream discharge is weaker for dry snow 

seasons because a much larger fraction on SWI is required to bring the soils to field 

capacity prior to initiation of streamflow.   

Model performance was evaluated for both SWE and SWI. Results of the 

performance tests are presented in Table 4.3 below. Model efficiency (ME) for predicted 

snow season daily SWE is good in all years, but is slightly less in the 1987 and 2001 

drought years. In general predicted SWE is slightly higher in most years, with RMS 

differences between predicted SWE and total precipitation of 6% for 1984, 7% for 1986, 

7% for 1987, 6% for 2001 and 3% for 2006. Model efficiency (ME) for predicted 

cumulative daily SWI during melt-out is very good during the 1984, 1986 and 2006 snow 
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seasons.   For 1984 and 1986, predicted SWI has little bias, with RMS differences 

between predicted SWI and measured snow season streamflow of 4% for both 1984 and 

1986.  Both MB and RMS differences are large (+11% and12% respectively) for the 

warm, and very rainy 2006.  The larger differences in 2006 occur in spite of the fact that 

it was a substantial snow season (135% of average), because the previous 6 snow seasons 

were dry (2000, 67%; 2001, 55%; 2002, 97%; 2003, 74%; 2004, 90%; 2005, 76%), so 

that much of the generated SWI was utilized for soil and ground water recharge. 

 

Table 4.3: Root mean square difference (RMSD), (2) mean bias difference (MBD) and 

(3) Nash-Sutcliffe model efficiency (ME) for daily simulated vs. measured SWE at the 

grove site from the start of snowcover to the end of the snow season, and cumulative 

simulated basin SWI vs. measured streamflow from peak SWE to the end of the snow 

season for each of the simulation years. 

 

 

For the 1987 and 2001 drought years, however, model efficiency (ME) for 

predicted cumulative daily SWI from during melt-out is poor, with a strong bias toward 

more simulated SWI than measured streamflow (+37% for 1987, +44% for 2001), and 

Snow Seasons RMSD MBD ME 

Daily SWE (mm) 

1984 84 30 0.93 

1986 78 58 0.90 

1987 40 33 0.82 

2001 43 32 0.81 

2006 36 -20 0.97 

 

Cumulative Daily SWI (mm) 

1984 38 9 0.98 

1986 28 -17 0.99 

1987 95 78 -2.30 

2001 148 124 -4.68 

2006 90 80 0.84 
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RMS differences of 45% for 1987 and 52% for 2001.  Clearly, much of the SWI 

generated during drought years is utilized for recharge of soil and ground water storage. 

The very large RMS and bias differences in 2001 occurred because the proceeding snow 

season was also dry (66% of average), whereas the year proceeding 1987 was 141% of 

average. 

Comparison of cumulative seasonal SWI and stream discharge on July 1 is 

presented in Figure 4.4, which shows that for the cold, wet years measured stream 

discharge was a significant fraction of simulated SWI (90% in 1984, 87% in 1986).  This 

was because the preceding twelve water years (1975 – 1986) were very wet.  Only 3 

years were below average (1977, 1979, and 1981), and the three wettest years on record 

were 1982 (148%), 1983 (143%), and 1984 (154%).  For the 1984 and 1986 snow 

seasons, there was a small soil and ground water storage deficit, and SWI was converted 

almost directly to streamflow. 

However, for the warm, wet 2006 snow season, this fraction was reduced (67% in 

2006), because that year was proceeded by 6 dry years, and much of the early season 

SWI went to soil and ground water recharge. In the 1987 and 2001 dry years, stream 

discharge was only 44% and 42% of simulated SWI respectively.  During dry years, it 

generally takes a larger percentage of SWI to bring the soils to saturation prior to the 

initiation of streamflow.  Conditions during 1987 and 2001 were both dry, but 

circumstances were quite different.  Though conditions prior to 1987 were wet, the 1987 

snow season was very warm, was the second driest year on record and without the 118 

mm of rain (nearly 25% of snow season precipitation) that fell after melt-out, would have 

been the driest on record.  Most of this late spring rain went to again recharge the soil and 
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groundwater, rather than being translated into streamflow.   The 2001 snow season was 

cool and not as dry as 1987, and produced more streamflow though as a percentage of 

SWI it was less.  2001 was the second of a pair of very dry years (2000 was just 66% of 

average) so the soil and groundwater deficit was larger and consumed a larger percentage 

of SWI.  

 

 

 

 

 

 

 

In all five simulated snow seasons, snowcover was initiated in November.  For all 

years, except 1986, peak SWE occurs in late April – early May.  SWE peaked in March 

in 1986 due to a very large mid-March snow event, with very little precipitation after 

Figure 4.4: Base-condition total snow season SWI and streamflow for each of 

the selected snow seasons.  Note that in cold wet years streamflow is nearly 

equal to SWI, while in warm, wet years it is less, and in dry years it is 

substantially less. 
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that.  In cold wet years (1984, 1986) SWI peaks in late May – early June, while in dry 

years (1987, 2001) SWI peaks in April.  The warm and wet 2006 snow season is 

anomalous, in that SWI occurs throughout the snow season, with dual peaks – one in 

December, one in May.  

6.2. Base, -2°C, and +2°C Scenario Simulations: 

 Basin Average Results 

 

Basin average SWE for selected dates, date of 50% SWI, cumulative SWI at the 

time of peak SWE and precipitation and rainfall total for base, -2°C and +2°C scenarios 

for each of the simulation years are presented in Tables 4.4-4.8.  Figure 4.5a presents 

daily basin average SWE for the base, -2°C and +2°C simulations for each of the selected 

snow seasons.  As expected the -2°C scenarios show greater SWE and the +2°C scenarios 

show less SWE when compared to base simulations. It is noteworthy that with the 

exception of the 2006 snow season, the decrease in simulated SWE with the +2°C 

scenarios is much greater than the increase with the -2°C scenarios.  

Because precipitation mass is forced to be nearly constant in base and altered 

temperature scenario simulations, the primary influence of decreasing the temperature on 

precipitation is a change of phase from rain into snow.  In cold, wet years, there was not 

much rain for the base simulation, so colder temperatures added only a small amount of 

additional SWE.  In dry years, there was little precipitation, and while the rain proportion 

was substantial (31% for 1987; 23% for 2001) the depth was small (165 mm for 1987; 

157 mm for 2001) and most rain fell before snowcover development , or after the  
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Figure 4.5: a) Daily basin-average SWE for the base, -2°C, and +2°C simulations for 

each of the selected snow seasons.  b) Bi-weekly basin-total SWI hydrographs for the 

base, -2°C, and +2°C simulations for each of the selected snow seasons. 
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snow melted.  For the dry years, simulated colder temperatures had almost no effect until 

spring, when peak SWE showed a relative increase over base conditions and snowcover 

persisted a few days later.  The 2006 snow season, however, was wet and warm, with 

30% (346 mm) of snow season precipitation falling as rain, so colder temperatures added 

a substantial amount of SWE.   

In Tables 4.4-4.8 the 200 mm SWI value is approximately ½ that required to 

recharge the soil – groundwater system so that streamflow can be initiated (see Table 

3.11; Chapter 3).  The date of 50% SWI indicates timing of the delivery of water to the 

soil, and the percentage of total seasonal SWI at peak SWE shows how coupled SWI is to 

SWE.  Cold, wet or dry conditions (1984, 1987, 2001) tend to delay recharge until spring, 

and 50% SWI until after peak SWE.  Warm, wet conditions (1986, 2006) tends to earlier 

recharge of the soil – groundwater system, and date of 50% SWI.  All of the selected 

years show a strong relationship between SWE and SWI, with the colder years (1984, 

1986, and 1987) indicating that only about 20% of SWI had been produced by the date of 

peak SWE, and the warmer years (2001 and 2006) indicating about 35%.  Cold scenarios 

delay SWI production and recharge, and increase the significance of peak SWE.  Warmer 

scenarios cause SWI production and recharge to occur much earlier, and significantly 

reduce the relationship between SWE and SWI. 

For the 1984 snow season (Table 4.4), the cold scenario does not change the date 

of peak SWE, increases it by only 14% (119 mm), shifts the date of 200 mm SWI to 18 

days later, the date of 50% SWI to 9 days later, reduces the percent of SWI occurring 

prior to peak SWE to only 8%, and reduces the rain fraction to only 12% of total 

precipitation.  The warm scenario reduces peak SWE by 34% (282 mm), and shifts the 
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date of peak SWE 23 days earlier.  The rain fraction nearly doubles from 25% to 47%, 

the date of 200 mm SWI to nearly 5 months (163 days) earlier and 50% SWI 25 days 

earlier.  Nearly 50% of the season SWI occurs prior to peak SWE, significantly reducing 

the relationship between SWE and SWI. 

 

Table 4.4: 1984 snow season basin-average SWE for selected dates, date and depth of 

peak SWE, dates of 200 mm and 50% SWI, SWI occurring prior to peak SWE and 

precipitation and rain total.   Percentages in parentheses (%) indicate the fraction of peak 

SWE, total SWI or the rain fraction of total precipitation.  Positive or negative numbers 

in parentheses (+/-) indicate date advance or retreat from base conditions. 

 

 -2.0 °C Base Case +2.0 °C 

Peak SWE: 

Depth (mm): 945 826 544 

Date: 5-May 5-May 12-Apr (-23) 

Seasonal SWE, mm (%): 

23 Dec 444 (47%) 373 (45%) 281 (52%) 

1 Mar 693 (73%) 621 (75%) 430 (79%) 

16 Mar 746 (79%) 672 (81%) 443 (81%) 

1 Apr 846 (90%) 770 (93%) 527 (97%) 

16 Apr 889 (94%) 801 (97%) 501 (92%) 

1 May 933 (99%) 822 (99%) 450 (83%) 

16 May 879 (93%) 694 (84%) 282 (52%) 

1 Jun 581 (61%) 325 (39%) 79 (15%) 

Date of 200 mm SWI: 19-May (+18) 1-May 19-Nov (-163) 

Date of 50% SWI: 4-Jun (+9) 26-May 1-May (-25) 

SWI @ Peak SWE: 86 (8%) 216 (20%) 500 (47%) 

Precipitation, mm: 1202 1221 1294 

Rain, mm (%): 149 (12%) 307 (25%) 604 (47%) 

 

 

The 1986 snow season (Table 4.5) was not as cold as 1984, and had more storm 

events that were either mixed rain – snow, or very close to that the dew point criterion for 



 123 

determining precipitation phase.  Because of these conditions, the cold scenario caused a 

larger divergence from base conditions than in 1984.  Nearly all the season rain was 

converted to snow.  This, delayed the date of peak SWE by 30 days, while increasing it 

by 26% (155 mm), delaying the date of  200 mm SWI by nearly 2 months, and 50% SWI 

by 23 days, reducing the proportion of SWI that occurred prior to peak SWE from 22% to 

 

Table 4.5: 1986 snow season basin-average SWE for selected dates, date and depth of 

peak SWE, dates of 200 mm and 50% SWI, SWI occurring prior to peak SWE, and 

precipitation and rain totals. Percentages in parentheses (%) indicate the fraction of peak 

SWE, total SWI or the rain fraction of total precipitation.  Positive or negative numbers 

in parentheses (+/-) indicate date advance or retreat from base conditions. 

 

 -2.0 °C Base Case +2.0 °C 

Peak SWE: 

Depth (mm): 759 604 225 

Date: 15-Apr (+30) 16-Mar 21-Feb (-23) 

Seasonal SWE, mm (%): 

23 Dec 241 (32%) 212 (35%) 193 (86%) 

1 Mar 677 (89%) 566 (94%) 173 (77%) 

16 Mar 754 (99%) 604 (100%) 201 (89%) 

1 Apr 744 (98%) 563 (93%) 139 (61%) 

16 Apr 758 (100%) 535 (88%) 96 (43%) 

1 May 683 (90%) 425 (70%) 56 (25%) 

16 May 607 (80%) 329 (54%) 34 (15%) 

1 Jun 152 (20%) 82 (14%) 2 (1%) 

16 Jun 49 (20%) 23 (4%) 0 

Date of 50% SWI: 25-May (+23) 2-May 19-Feb (-73) 

Date of 200 mm SWI: 2-May (+56) 7-Mar 18-Jan (-48) 

SWI @ Peak SWE: 88 (10%) 215 (22%) 556 (61%) 

Precipitation, mm: 977 981 1079 

Rain, mm (%): 28 (3%) 115 (12%) 497 (46%) 
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10%, and reducing the rain fraction to only 3% of total precipitation.  However, the warm 

scenario had an even stronger affect.  Peak SWE was reduced by 63% (379 mm), and the 

date of peak SWE is shifted 23 days earlier to mid- February.  The date of 200 mm SWI 

is a 1½ months (48 days) earlier, and 50% SWI is 2½ months (73 days) earlier, 61% of 

SWI occurs prior to peak SWE and the rain fraction nearly quadruples, from 12% to 

46%.  Melt-out dates are slightly extended by the cold scenario but reduced by nearly a 

month by the warm scenario. 

For the warm and dry 1987 snow season (Table 4.6), the cold scenario does not 

change the date of peak SWE, increases it by 26% (68 mm), delays the date of 200 mm 

SWI by 9 days, the date of 50% SWI by only 5 days, decreased the proportion of SWI 

occurring prior to peak SWE from 19% to 5%, and only slightly reduces the rain fraction 

to 21% of total precipitation.  The warm scenario shifts the date of peak SWE to 25 days 

earlier, and reduces peak SWE by 39% (102 mm).  The date of 200 mm SWI occurs 40 

days earlier, the date of 50% SWI 28 days earlier, the proportion of SWI that occurs prior 

to 50% SWE increases from 19% to 28%, and the rain fraction increases, from 31% to 

43%. 

For the cool, dry 2001 snow season (Table 4.7), the cold scenario delays the date 

of peak SWE 7 days, increases it by 26% (94 mm), delays the date of 200 mm SWI by a 

month (29 days), 50% SWI by 9 days, reduces the proportion of SWI occurring prior to 

the date of 50% SWE from 33% to 18%, and reduces the rain fraction by half to 12% of 

total precipitation.  The warm scenario shifts the date of peak SWE to 41 days earlier, and 

reduces peak SWE by 32% (116 mm).  The date of 200 mm and 50% SWI are shifted to 
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Table 4.6: 1987 snow season basin-average SWE for selected dates, date and depth of 

peak SWE, dates of 200 mm and 50% SWI, SWI occurring prior to peak SWE, and 

precipitation and rain totals. Percentages in parentheses (%) indicate the fraction of peak 

SWE, total SWI or the rain fraction of total precipitation.  Positive or negative numbers 

in parentheses (+/-) indicate date advance or retreat from base conditions. 

 

 -2.0 °C Base Case +2.0 °C 

Peak SWE: 

Depth (mm): 331 263 161 

Date: 23-Mar 23-Mar 26-Feb (-25) 

Seasonal SWE, mm (%): 

23 Dec 74 (22%) 60 (23%) 36 (22%) 

1 Mar 268 (81%) 243 (92%) 159 (99%) 

16 Mar 295 (89%) 227 (86%) 97 (60%) 

1 Apr 328 (99%) 253 (96%) 103 (64%) 

16 Apr 230 (69%) 134 (51%) 36 (22%) 

1 May 53 (16%) 31 (12%) 4 (2.5%) 

16 May 3 0 0 

1 Jun 0 0 0 

Date of 50% SWI: 26-Apr (+5) 21-Apr 24-Mar (-28) 

Date of 200 mm SWI: 24-Apr (+9) 15-Apr 6-Mar (-40) 

SWI @ Peak SWE: 23 (5%) 92 (19%) 136 (28%) 

Precipitation, mm: 528 532 543 

Rain, mm (%): 110 (21%) 165 (31%) 235 (43%) 

 

nearly a month (25 and 29 days, respectively) earlier, and the rain fraction is increased 

from 25% to 44%.  Because the warm scenario reduces SWE and shifts the date of peak 

SWE to mid-winter, the proportion of SWI occurring prior to peak SWE actually declines 

from 33% to 30%. 

For the warm and wet 2006 snow season (Table 4.8), which received nearly the 

same precipitation as 1984, but developed only 75% the peak SWE, the cold scenario 

converts most of the season rain to snow, delaying the date of peak SWE 6 days and 
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Table 4.7: 2001 snow season basin-average SWE for selected dates, date and depth of 

peak SWE, dates of 200 mm and 50% SWI, SWI occurring prior to peak SWE, and 

precipitation and rain totals. Percentages in parentheses (%) indicate the fraction of peak 

SWE, total SWI or the rain fraction of total precipitation.  Positive or negative numbers 

in parentheses (+/-) indicate date advance or retreat from base conditions. 

 

 -2.0 °C Base Case +2.0 °C 

Peak SWE: 

Depth (mm): 456 362 246 

Date: 21-Apr (+7) 14-Apr 4-Mar (-41) 

Seasonal SWE, mm (%): 

23 Dec 185 (41%) 181 (50%) 118 (48%) 

1 Mar 327 (72%) 323 (89%) 234 (95%) 

16 Mar 361 (79%) 356 (98%) 244 (99%) 

1 Apr 381 (84%) 296 (82%) 83 (34%) 

16 Apr 449 (98%) 358 (99%) 114 (46%) 

1 May 310 (68%) 150 (41%) 30 (12%) 

16 May 39 (9%) 12 (3%) 0 

1 Jun 0 0 0 

Date of 50% SWI: 5-May (+9) 26-Apr 28-Mar (-29) 

Date of 200 mm SWI: 27-Apr (+29) 29-Mar 4-Mar (-25) 

SWI @ Peak SWE: 124 (18%) 224 (33%) 200 (30%) 

Precipitation, mm: 677 685 697 

Rain, mm (%): 81 (12%) 168 (25%) 304 (44%) 

 

increasing it by 55% (340 mm).  Because cold scenario converts the wet, rainy fall for the 

base condition to snow, the date of 200 mm SWI is delayed by nearly 5 months (137 

days) from December 21 to May 7.  However, the date of 50% SWI is only delayed 19 

days, the proportion of SWI occurring prior to peak SWE reduced from 35% to 5%, and 

the rain fraction from 30% to 12% of total precipitation. The warm scenario reduces peak 

SWE by 52% (320 mm), and shifts the date of peak SWE 10 days earlier.  The date of 

200 mm SWI is shifted nearly a month (20 days) earlier, occurring in mid-fall.  The date 
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of 50% SWI is shifted 2 months earlier (61 days) earlier, the proportion of SWI occurring 

prior to peak SWE from 35% to 59%, and the rain fraction nearly doubles, from 30% to 

56%.  Melt-out dates are extended by the cold scenario by about 2 weeks, but reduced by 

nearly a month in the warm scenario. 

 

Table 4.8: 2006 snow season basin-average SWE for selected dates, date and depth of 

peak SWE, dates of 200 mm and 50% SWI, SWI occurring prior to peak SWE, and 

precipitation and rain totals. Percentages in parentheses (%) indicate the fraction of peak 

SWE, total SWI or the rain fraction of total precipitation.  Positive or negative numbers 

in parentheses (+/-) indicate date advance or retreat from base conditions. 

 

 -2.0 °C Base Case +2.0 °C 

Peak SWE: 

Depth (mm): 962 622 306 

Date: 17-Apr (+6) 11-Apr 1-Apr (-10) 

Seasonal SWE, mm (%): 

23 Dec 286 (30%) 94 (15%) 10 (3%) 

1 Mar 731 (76%) 417 (67%) 178 (58%) 

16 Mar 836 (87%) 525 (84%) 285 (93%) 

1 Apr 895 (93%) 583 (94%) 306 (100%) 

16 Apr 961 (100%) 606 (97%) 236 (77%) 

1 May 869 (90%) 408 (66%) 81 (26%) 

16 May 550 (57%) 131 (21%) 18 (6%) 

1 Jun 148 (15%) 48 (8%) 0 

Date of 50% SWI: 18-May (+19) 29-Apr 27-Feb (-61) 

Date of 200 mm SWI: 7-May (+137) 21-Dec 1-Dec (-20) 

SWI @ Peak SWE: 62 (5%) 397 (35%) 669 (59%) 

Precipitation, mm: 1132 1148 1159 

Rain, mm (%): 131 (12%) 346 (30%) 644 (56%) 

 

Figures 4.5b presents bi-weekly basin-total SWI for the base, -2°C and +2°C 

simulations for each of the selected snow seasons, plotted as SWI hydrographs.  In 
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general the cold scenario shifts SWI to later and the warm scenario to earlier in the year.  

As discussed above, in wet years (1984, 1986, and 2006) SWI is translated almost 

directly to streamflow, but in dry years (1987 and 2001) SWI is utilized for soil and 

ground water recharge and is not strongly correlated to streamflow. 

In 1984 the cold scenario delays SWI to beyond the simulation period, with peak 

SWI occurring on July 1.  The warm scenario shifts peak SWI to about a month earlier 

and generates some winter SWI.  The general shape of the SWI hydrograph is similar for 

base and both scenario simulations.  In 1986 the cold scenario doesn’t shift the date of 

peak SWI, but increases its magnitude by substantially reducing winter SWI.  The warm 

scenario strongly shifts the date of peak SWI to 2½ months earlier in mid-winter.   

Two of the selected snow seasons (1984 and 2006) are very similar in both the 

timing (Figure 4.2) and basin total of precipitation volume (1221 and 1148 mm 

respectively) and basin total simulated surface water input (SWI) (1155 and 1139 mm 

respectively) (Figure 4.4).  However, the development of the seasonal snowcover and 

basin average SWE (Figure 4.3b) and the seasonal distribution of SWI (Figure 4.5b) are 

quite different.  Most of this was caused by air and dew point temperature differences, 

and the resulting changes in precipitation phase.  Figure 4.5a indicates that if the 2006 

snow season had been colder, the development of SWE in the RME basin would have 

been very similar to the base condition in 1984, and if the 1984 snow season had been 

warmer basin SWE would have been similar to the base condition in 2006.  Figure 4.5b 

shows a similar relationship for SWI.  If the 2006 snow season had been colder, the 

resulting SWI hydrograph would have been similar to the base condition in 1984, and if 
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the 1984 snow season had been warmer, the resulting SWI hydrograph would have been 

similar to the base condition in 2006. 

 

6.3. Base, -2°C and +2°C Scenario Simulations: 

 Spatial Distribution Results 

 

At the RME basin, snow distribution and melt patterns exhibit tremendous spatial 

heterogeneity (Winstral and Marks 2002; Marks et al. 2002).  Marks et al. (2002) divided 

the RME basin into four shelter classes: drift, sheltered, exposed and all else, based on 

exposure/shelter to the upwind topography and vegetation. They showed that though drift 

and sheltered classes represent only 9% and 22% of the total basin area respectively they 

generally hold about 50% of the basin SWE, and contribute about 50% of the total 

generated SWI. Drift and sheltered classes also melt later than the other two shelter 

classes and responsible for almost all of the late spring SWI.  

Though the comprehensive analyses of how the distribution of SWE and SWI 

over the RME catchment varies between the snow seasons, and how these distributions 

are affected by the cold and warm scenarios, are beyond the scope of this paper, bi-

weekly distributions of SCA (%) and SWE (mm) for the base, -2°C, and +2°C scenario 

simulations are presented in Figures 4.6 and 4.7 to illustrate spatial heterogeneities in the 

development and ablation of the snowcover. Simulated patterns of SCA and SWE show 

great spatial variability under all selected snow seasons and scenarios. During wet snow 

seasons (1984, 1986, and 2006) SWE depths range from very shallow (0-250 mm) to 

very deep (2500-3000 mm, even greater than 3000 mm in 1984 snow season) at the time  
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Figure 4.6:  Bi-weekly basin area-normalized SCA (%), by SWE depth class for the 

base, -2°C, and +2°C simulations.   
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 Figure 4.7:  Bi-weekly basin average depth-normalized SWE (mm), by SWE depth 

class for the base, -2°C, and +2°C simulations.  Note that the y-axis is scaled 0–1000 

mm SWE for 1984, 1986, & 2006, and 0–500 mm SWE for 1987 & 2001 snow seasons. 
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of peak basin average SWE.  During dry snow seasons (1987 and 2001) maximum SWE 

depth was in the range of 1000-1500 mm while some area of the basin was already snow 

free at the time of peak basin average SWE.  

In all snow seasons higher ranges of SWE depths represent drift areas which 

continue to hold SWE during late spring.   Lower ranges of SWE depths represent 

exposed conditions, where melt is initiated earlier (see also Figure 4.8 and 4.9).  Figure 

4.6 and 4.7 show that both SCA and SWE increase with the cold scenario, and decrease 

as conditions get warmer. Though the precipitation mass and total seasonal SWI is 

essentially unchanged from base conditions for the scenario simulations, in all snow 

seasons the snowcover generally continues to develop in the cold scenario until the peak 

SWE is reached resulting in a sharp spring snowmelt pulse.  Under the warm scenario 

frequent rain, ROS events and warm conditions cause reduced snowcover and a 

dampened spring snowmelt pulse (see Figure 4.5b).   

Two snow seasons were selected as examples of how the spatial distribution of 

SWE varies under different temperature and moisture regimes.  Figure 4.8 presents 

spatial SWE images for selected dates from the warm, dry 1987 snow season, and Figure 

4.9 presents SWE images from the warm, wet 2006 snow season.  The selected dates 

generally represent images of the development and depletion of the snowcover from the 

date of near-continuous snowcover to melt-out for the base condition. 

Snowcover development during the warm and dry 1987 snow season, as shown in 

Figure 4.8, was well underway for the base condition, almost complete for the cold 

scenario, and just beginning for the warm scenario by early December.  By February 1, 
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 Figure 4.8:  Spatial SWE images, 1987 snow season during snowcover development and 

ablation for base, -2°C, and +2°C simulations.  Dec 5 through May 1 images presented. 

Average basin SWE and percent of peak SWE indicated for each image.  Green colors 

indicate snow free areas. 
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the drift pattern was well developed in all three simulations, a continuous snowcover 

existed for both the base condition and cold scenario, but for the warm scenario the wind-

exposed areas were still snow-free.   By February 15 continuous snowcover was 

established for all three simulations, and by March 1 the warm scenario had reached peak 

SWE.  During snowcover development, the warm scenario generates less than half the 

SWE generated by the base and cold scenario. 

 Snowcover depletion during the 1987 snow season, as shown by Figure 4.8, is 

already underway for the warm scenario by March 16, but peak SWE is not achieved 

until April 1 for the base condition and cold scenario.  Even for this very dry year, on 

April 16 a substantial snowcover is still in place for the base condition and cold scenario.  

However, for the warm scenario only a few shallow drifts remain. By May 1 the warm 

scenario is essentially snow-free, but drifts remain for both the base condition and the 

cold scenario.  

The snowcover during the warm and wet 2006 snow season, as shown by Figure 

4.9, is well established in the cold scenario, almost continuous for the base condition and 

just beginning for the warm scenario by late December.  The cold scenario has nearly 

three times the basin SWE of the base condition, and the warm scenario is essentially 

snow-free.  By March 1 both the base condition and cold scenario have well established 

drifts that hold 4-5 times the basin average SWE.  The warm scenario has nearly 

established a continuous snowcover, with shallow drifts.  By March 16 all three 

simulations show a continuous, well-established snowcover, and by April 1 the warm 

scenario has reached peak SWE.  Peak SWE for the warm scenario is only about half the 

base condition SWE, and only a third of the cold scenario SWE. 
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Snowcover depletion during the 2006 snow season, as shown by Figure 4.9, is 

already underway for the warm scenario by April 16, at the same time peak SWE is 

achieved for the base condition and cold scenario.  By May 1 the warm scenario is nearly 

depleted with only shallow drifts holding SWE, depletion has begun for the base 

condition, and the cold scenario is still maintaining a substantial snowcover.  Melt-out 

has occurred for the warm scenario by May 16, while the cold scenario still holds 57% of 

its peak SWE.  By May 24 the base condition holds only shallow drifts, while the cold 

scenario maintains a nearly continuous snowcover with very deep drifts holding 10 times 

or more the basin SWE. 

 

6.4. Base, -2°C, and +2°C Scenario Simulations: 

 Rain-on-Snow Sensitivity 

The work from Chapter 3 and the analysis in this chapter suggest that in 

mountainous regions of the northwestern US such as the RCEW the most important 

impact of climate warming will be precipitation phase change.  The change in the 

rain/snow ratio to more rain and less snow is reducing SWE in the seasonal snowcover, 

by delaying snowcover initiation, and increasing mid-winter and early spring rain, which 

will lead to earlier snowcover depletion.  This will result in increased winter streamflow, 

and reduced spring and summer streamflow. This shift will not be gradual but will be 

more like a step-function, because the change in phase from snow to mixed, or mixed to 

rain will result in a substantial change in how water is delivered to the soil in mountain 

basins such as RME.  This is particularly true of events that occur at or just before peak 

SWE.   
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Figure 4.9:  Spatial SWE images, 2006 snow season during snowcover development 

and ablation for base, -2°C, and +2°C simulations.  Dec 23 through May 24 images 

presented. Average basin SWE and percent of peak SWE indicated for each image.  

Green colors indicate snow free areas. 
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In this paper we show the sensitivity of the seasonal snowcover to warming, and 

the impact that may have on the delivery of water to the soils and streams in the region.  

Figure 4.5 shows how basin SWE would be affected by warmer or colder conditions, and 

how the SWI hydrograph will change as a result.  Of the five-selected snow seasons only 

1984 did not have a critical near-peak SWE precipitation event that under the scenario 

simulations resulted in sharp change in peak SWE and a substantial change to the SWI 

hydrograph. The most sensitive condition is an event that is mixed rain and snow in the 

base simulation.  That sort of event is likely to become all snow under the cold scenario, 

and all rain under the warm scenario.  Rain-on-snow (ROS) has tremendous 

thermodynamic potential because of the magnitude of possible condensation-induced 

heat transfer during the event (Marks et al. 1998, 2001a).  Over the nearly 50 years of 

monitoring, all flood events within the RCEW have been associated with mid-winter or 

spring ROS events. 

The 1986, 1987, 2001, and 2006 snow seasons all had such events.  In the section 

below we will look in detail at the impact of climate warming on mixed rain/snow events 

that occurred a few days prior to peak SWE.  The events selected are from the dry, warm 

1987, and the wet, warm 2006 snow seasons.  Because the 1987 snow season was warm 

(1.5°C above average) and dry (532 mm, 65% of average), it received little snow (peak 

SWE was 263 mm) and was sensitive to temperature increase.  The warm, wet 2006 snow 

season was the most sensitive to warming, because it was already warm and most snow 

season precipitation was mixed.  Under that condition, even a small change in 

temperature will have a large impact on SWE and the SWI hydrograph.  

 



 138 

6.4.1. 1987 Mixed Rain-Snow, ROS 

 Event (3/5/1987-3/13/1987) 

A mixed precipitation event occurred from March 5 – 13, 1987, ten days before 

peak SWE (see Figure 4.10).  At the beginning of the storm, conditions were warm and 

almost all of the March 5 – 7 precipitation fell as rain as dew point temperatures were at 

or above 0°C.  From March 8 – 13 conditions cooled, dew point temperatures fell below 

0°C, with precipitation becoming mixed and finally turning to snow. Total basin 

precipitation during the storm period was 26 mm of which 38% (10 mm) was rain.  Note 

that while this seems like a small event, during the dry conditions of the 1987 snow 

season, it represented 5% of total precipitation, and 6% of total rainfall. 

This was one of the largest events of the 1987 snow season.  Simulated SWE 

decreased from 232 mm to 208 mm during March 5 – 7 and thereafter increase to 219 

mm by the end of storm period. Total SWI generated during the storm period was 37 mm 

(8% of the snow season total) of which 29 mm was generated during the first two days.  

Under the cold scenario (Figure 4.10a), the storm become snow dominated, with 

no rain, causing an increase in SWE from 264 to 286 with negligible SWI. However, 

under the warm scenario, the rain-fraction of storm precipitation increased to 61% and 

resulted in a decrease in SWE from 127 to 93 mm with storm-total SWI of 61 mm.  As 

shown in Figure 4.10c, energy flux is slightly more negative than the base condition 

under the cold scenario, but of much lower magnitude, and nearly in balance under the 

warm scenario.  
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Figure 4.10:  Weather, precipitation and energy flux conditions during the March 5 – 13, 1987 mixed precipitation event for 

a) base, b) -2°C, and c)  +2°C simulations. 
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6.4.2. 2006 Mixed Rain-Snow, ROS  

Event (4/3/2006-4/15/2006) 

Between April 3 – 15, 2006, a mixed rain-snow event occurred, spanning the 

April 11 date of peak SWE (see Figure 4.11). Total basin precipitation during this storm-

period was 62 mm of which about 37% (23 mm) was rain. This event accounted for about 

6% of snow season precipitation, and 7% of snow season rainfall.  The period from April 

3 – 11 was moderate to cold, with 52 mm precipitation, only about 29% (15 mm) of 

which was rain. Basin average SWE increased from 583 mm to 622 mm (which was peak 

SWE for the 2006 snow season).  During this initial period of the storm only 12 mm of 

SWI was generated. As the storm progressed, conditions become warmer. Between April 

12 – 15, air temperature during both day and night was above freezing. Dew point 

temperatures were also above freezing until April 14, and nearly 85% of the precipitation 

(8 mm out of 9 mm) during this period fell as rain. SWE decreased to 595 mm and a total 

of 35 mm of SWI was generated over the period of the storm. 

 Cold scenario (Figure 4.11a) total storm period precipitation decreased to 60 mm, 

only 10% of which was rain.  SWE increased gradually through the end of the storm 

period from 896 to 950 mm.  Only 2 mm of SWI is simulated for the storm period and the 

event caused the date of peak SWE to shift from April 11 to April 17 under the cold 

scenario.  

Under the warm scenario (Figure 4.11c), precipitation during the storm period 

becomes rain dominated.  Total storm period precipitation increases to 66 mm with the 

reduction in wind redistribution, 89% (58 mm) of which was rain.  SWE continuously 



 
1
4
1
 

Figure 4.11:  Weather, precipitation and energy flux conditions during the April 3 – 15, 2006 mixed precipitation event for 

a) base, b) -2°C, and c)  +2°C simulations. 
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decreased from 293 to 226 mm, 147 mm of SWI was produced during the storm period 

and the event caused the date of peak SWE to shift from April 11 to April 1. 

 

7. Summary and Conclusions 

The five snow seasons selected for analysis represent a large range of variability 

in basin climate (temperature, humidity, wind and precipitation – rain and snow) ranging 

from wet to dry and warm to cold.  Base-condition simulations over the RME catchment 

using these forcing data show an equally large range of variability for the development of 

the seasonal snowcover, snow distribution, timing and magnitude of peak SWE, SWI, 

and snowmelt.   

Simulations using the -2°C and +2°C scenarios show critical changes in basin 

SWE associated with climate warming.  In general, the seasonal snowcover is less 

sensitive to cold scenarios than warm.  Cold scenario simulations resulted in an increase 

in basin SWE, a decrease in early SWI, a delay in soil and groundwater recharge required 

to initiate streamflow, and a concentration of SWI in late spring and early summer.  In 

general, these shifts were small (a 14-26% increase in peak SWE, a delay in the date of 

200 mm SWI by 9 – 56 days, and 50% SWI of 5 – 23 days), the proportion of SWI 

occurring prior to peak SWE by about ½, and a SWI hydrograph not that different from 

the base condition. The one exception was the 2006 where the cold scenario simulation 

was substantially different from the base condition, with peak SWE increasing by 50%, a 

delay in the date of 200 mm SWI by 137 days, the date of 50% SWI shifting to 19 days 

later, and the proportion of SWI that occurred prior to peak SWE reduced from 35% to 

5%. 
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The seasonal snowcover showed a much greater sensitivity to warm scenario 

simulations.  In all snow seasons, warm scenario simulations produced about half the 

SWE produced by the base condition, shift of 10 – 41 days earlier for the date of peak 

SWE, 20 – 163 days earlier for the 200 mm SWI date, 28-73 days earlier for the 50% 

SWI date and an increase of 28 – 30% for dry years and 47 – 61% for wet years in the 

proportion of SWI occurring prior to peak SWE.  The 1986 and 2006 snow seasons were 

particularly sensitive to warm scenario conditions.  Storms during these snow seasons 

were close to the freezing temperature (0°C) so the warm scenario had the affect of 

decreasing peak SWE by 63% and 52%, and shifting the date of 50% SWI to 73 and 61 

days earlier, and increasing the proportion of SWI that occurred prior to peak SWE to 61 

and 59% respectively. Nearly half the base condition SWE deposited during the 1986 

snow season resulted from a very large storm in February.  For the warm scenario, most 

of this event became rain.  Again 2006 was different from the other simulation years, 

with precipitation throughout the snow season being a mix of rain and snow.  For both 

1986 and 2006, the warm scenario simulations produce very different SWI hydrographs 

from the base condition with strong shifts to earlier timing for SWI.   

If conditions are relatively cold, particularly during storms, SWE, the seasonal 

snowcover and the SWI hydrograph will be less affected by changes in temperature.  

However, if conditions are warm during storms, SWE, the seasonal snowcover and the 

SWI hydrograph will be strongly affected by temperature change.  Hydrologically the 

most critical climate warming effect is change in precipitation phase, because that will 

have an immediate impact on the SWI hydrograph.  As we see from the base, -2°C and 

+2°C scenario simulations, converting warm snow to cold snow or cold rain to warmer 
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rain has a relatively small impact on SWI hydrographs.  However, converting snow to 

rain has the potential to significantly change SWI hydrographs.  This is particularly 

evident in years where the basin SWE is based largely on a single, very large event, such 

as 1986, or a warm snow season consisting of mixed rain and snow, such as 2006.   

If we compare simulation results from the 1984 and 2006 snow seasons (Figures 

4.5, 4.6, and 4.7), which received similar season total precipitation and generated similar 

season total SWI, we see that a warm 1984 is much like the base condition in 2006, and a 

cold 2006 is much like the base condition in 1984.  If the warming trends predicted by 

IPCC (2007) and indicated in Chapter 3, are correct, in the future we would expect more 

years similar to 2006 than 1984. As shown by this modeling experiment, under the right 

conditions, the effect of a small change in temperature and dew point is not gradual.  If 

warming trends continue, the changes in the seasonal snowcover will not be gradual, but 

will be sudden and dramatic like those shown for the warming scenario simulation of 

1986 and 2006.   

This is illustrated by the detailed analysis of the ROS events in section 6.4.  

Historically, like much of the western US, the largest RCEW floods have been mid-

winter ROS events (Pierson et al. 2001).  These have the effect of removing much if not 

all of the seasonal snowcover, by a combination of condensation and advective melt 

(Marks et al. 1998, 2001a).  Climate warming will likely increase the occurrence of these 

events.  The analysis presented in section 6.4 and Figures 4.10 and 4.11 illustrates how a 

small change in temperature and dew point can shift a mixed rain/snow event to either all 

snow, or all rain, with significant impacts on the seasonal snowcover and the generation 

of SWI. 
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The spatial results presented in Figures 4.6, 4.7, 4.8 and 4.9 illustrate the 

importance of snow redistribution to the hydrology of RME. As we can see for both the 

base condition and the cold scenario images, the source of late spring and early summer 

SWI is SWE re-deposited into drift and sheltered areas of the catchment.  As snow turns 

to rain, re-deposition is reduced or eliminated, SWE is more uniformly distributed over 

the catchment, SWI is shifted to earlier in the year, and less water is available during the 

growing season. 

The snowcover development and timing of melt water release from the RME 

basin is critical for sustaining the ecosystem of the RECW as in case of most of the 

western United States. These simulations show that if the regional climate continues to 

warm, snowcover over the RME basin will be reduced and timing of streamflow will 

shift towards earlier in the year. As most of the streamflow during the growing season 

comes from the snowmelt from the headwater catchments such as RME, earlier timings 

of streamflow can adversely affect water availability during the growing seasons when 

the demand for water is at its peak. Therefore future water management strategies of the 

region will need to be account for this alteration in the hydrologic regime. 
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CHAPTER 5 

SUMMARY 

1. The Automated Precipitation Correction Program 

An Automated Precipitation Correction Program (APCP) was developed to 

remove mechanical noise signals from high frequency weighing-recording precipitation 

gauge data. The APCP precipitation correction utility was successfully used to process 

data collected during 1997 to 2006 water years at 22 dual gauge (two National Weather 

Service (NWS) weighing-recording gauges, one unshielded and the other shielded with 

Alter-type shield, located in close proximity) (Hamon 1971, 1973) stations, located in 

Reynolds Creek Experimental Watershed (RCEW). 

Comparison of data processed by the APCP to the ‘Rainfall Analyzer’(a semi-

automated graphical technique previously used to process precipitation data collected at 

RCEW) at 11 dual gauge stations for 2002-2004 water years shows that data processed 

using APCP display smaller mean and standard deviation of error than RA. Being an 

automated technique, APCP eliminates operator biases and generate reproducible results. 

Time required to process raw high frequency precipitation data using the APCP is also 

significantly less than the graphical RA approach (few minutes against 2-3 days per 

station year), which is important in extensively instrumented watersheds like RCEW.  

Though APCP was developed to remove mechanical noise signals from weighing-

recording precipitation gauge data, the utility was also successfully used to filter soil 

moisture content data collected using TDR. This demonstrates that the APCP uses a 
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robust filtering approach and can be applied on other continuous data sources with minor 

adjustments.   

 

2. Trend Analysis of Long-Term Hydro-Climatic Data 

Carefully processed hydro-climate data of temperature, humidity, precipitation, 

snow, soil temperature, soil moisture, and streamflow, collected from 1962 to 2006 at 

several locations of RCEW, have been analyzed for temporal trends. Statistical 

significance of the observed trends has been tested using Mann-Kendall statistical test 

(Hirsh and Slack 1984; Lettenmaier et al. 1994; Yue et al. 2002). Significant trends of 

rise in temperatures have been found at all elevations of RCEW with minimum 

temperature increasing at a faster rate than the maximum temperature.  

Though precipitation and streamflow data show no significant annual change with 

large year-to-year variability, seasonal shifts in streamflow has been observed with 

increase in winter and early spring and decrease in late spring and summer. The strongest 

seasonal shift in streamflow is observed at the highest elevation Reynolds Mountain East 

(RME) weir which is almost entirely driven by the snowmelt. The shift in streamflow 

becomes damped at mid and low elevation weirs.  

There was no change in seasonal distribution of precipitation but the phase of 

precipitation has changed significantly at all elevations with more precipitation falling as 

rain than snow. Critical changes in precipitation regime have occurred at low and mid 

elevations of RCEW where precipitation regime has changed from snow dominated to 

rain dominated over the period of record. Snow is still the dominant form of precipitation 
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at high elevations of RCEW but the proportion of rain during the snow season
13

 has 

increased indicating increased frequency of rain-on-snow (ROS) events.  

Analysis of snow water equivalent (SWE) data indicate decline in April 1, May 1 

and Peak SWE depths as well as earlier occurrence of peak SWE. Trends are largest and 

most significant at low elevations while at high elevations trends are small and 

statistically non-significant. Soil temperature and moisture data indicate reduction in 

number of soil freeze days and earlier occurrence of plant-water stress.  

These analyses also demonstrate that the hydrologic sensitivity to the warming 

climate has a strong correlation with elevation, and though greatest increase in 

temperatures occurred at high elevation site in RCEW, it has caused minimum change in 

hydrologic cycle in comparison to mid and low elevations of RCEW. Difference in 

hydrologic sensitivity to warming climate at different elevation range is probably due to 

the fact that despite increase in temperatures, average winter temperatures at high 

elevations still remain well below freezing point. Therefore precipitation at high 

elevations of RCEW is still dominated by snow. While at low and mid elevations, where 

average winter temperatures generally remain near to the freezing point, even smaller 

increase in temperature has caused a greater change in snow deposition and melt pattern.  

 The observed changes in climate and hydrology over RCEW are agreement with 

the trends of increasing temperature (IPCC 2007; Trenberth et al. 2007), declining 

mountain snow accumulation (Mote 2003a&b, 2006; Mote et al. 2005; Hamlet et al. 

2005; Regonda et al. 2005), decreasing fraction of snow in total precipitation (Aguado et 

                                                 
13

 A snow season is defined as the 9-month period from October 1 to June 30. Hence, the 1984 snow season 

represents period from October 1, 1983 to June 1, 1984 
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al. 1992; Dettinger and Cayan 1995; Huntington et al. 2004; Regonda et al. 2005; 

Knowles et al. 2006) and earlier timings of snowmelt and streamflow (Cayan et al. 2001; 

Stewart et al. 2004, 2005; Regonda et al. 2005) observed over most of the western USA. 

But results of this study not only indicate that the hydro-climate of RCEW and similar 

regions of the northwest USA has been substantially altered by warming climate but also 

that the response to warming climate varies with elevation in these mountain basins. 

 

3. Sensitivity of Seasonal Snowcover to Warming Climate 

Snowcover development and generation of melt water at headwater catchments of 

the RCEW are critical for basin ecosystems. Weather patterns at the RCEW are highly 

variable and are subjected to wet-dry precipitation cycles and warm-cold phases. This 

natural climate variability causes important year-to-year differences in patterns of 

snowcover development and melt.  

The sensitivity of the seasonal snowcover at the RME basin, a headwater 

catchment of the RCEW, is evaluated at five snow seasons (1984, 1986, 1987, 2001, and 

2006).  These snow seasons represent three wet, and two dry years, with 1984 being cold 

and wet, 1986 cool and wet, 1987 warm and dry, 2001 cool and dry, and 2006 warm and 

wet. To evaluate the impact of natural climate variability, differences in simulated 

patterns of snow deposition, accumulation and melt between these years were assessed.  

To evaluate the snowcover sensitivity to changes in climate conditions, further 

simulations were conducted based on warm and cold scenarios.  These scenarios were 

developed by modifying the base forcing data by +/- 2°C, keeping the precipitation mass 
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constant, but making associated adjustments to humidity, thermal and solar radiation, and 

snow redistribution. 

Meteorological data from the two long-term weather stations in RME were used 

to define the base-condition weather and precipitation conditions and to generate 

distributed forcing surfaces to drive a DEM based snowcover energy and mass balance 

model, Isnobal (Marks et al. 1999a&b). Apart from obvious year-to-year variation in 

total volume of precipitation, snow accumulation and surface water input due to 

differences in precipitation, base-condition simulations showed substantial differences in 

key hydrologic parameters such as development of snowcover, snow distribution, timing 

and magnitude of peak SWE, and volume and timing of surface water input
14

 (SWI). 

During dry snow seasons (1987 and 2001) peak SWE accumulation was about a half of 

that of during wet snow seasons (1984, 1986, and 2006). Complete melt out occurred 

about a month earlier in dry snow seasons than wet snow seasons.  

SWI shows good correlation to stream discharge once soils reach saturation 

during the snowmelt. Most of the SWI generated prior to the initiation of snowmelt is 

infiltrated into the soil and used to recharge ground water. Comparison of cumulative 

snow season SWI and measured stream discharge shows that in cold and wet snow 

seasons (1984 and 1986) stream discharge was a significant fraction (90% and 87%, 

respectively) of simulated SWI. In the warm and wet 2006 snow season stream discharge 

was only 67% of the SWI generated because it was preceded by 6 dry years and had 

many pre-snowmelt rain and ROS events. In dry snow seasons (1987 and 2001), stream 

discharge was only 44% and 42% of simulated SWI, respectively, because a much larger 

                                                 
14

 Surface water input (SWI) is defined as the input of melt-water or rain at the soil surface. 
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fraction of SWI was required to bring the soil to saturation prior to the initiation of 

streamflow.  

The timing of peak SWI varied between the simulated snow seasons. In wet and 

cold snow seasons (1984 and 1986) peak SWI occurred in late May-early June while in 

dry snow seasons (1987 and 2001) peak SWI occurred in April. The warm and wet 2006 

snow season had two SWI peaks, one in December due to early season rain and ROS 

events, and the other in May. 

To test the sensitivity of the snowcover development and melt to changing climate 

conditions, cold and warm scenarios were developed for each snow season, based on 

adjustment in air temperatures by -2°C and +2°C, and associated adjustments in dew 

point temperatures, thermal radiation, snow redistribution and snow albedo decay. 

Results from cold scenario simulations indicate that colder conditions result in more 

snow and less rain, increase in SWE, later timing of peak SWE and later timing of peak 

SWI. On the other hand warm scenarios resulted in a change to less snow and more rain, 

a decrease in SWE, earlier timing of peak SWE and earlier timing of peak SWI.  

In general, the seasonal snowcover shows smaller changes in SWE accumulation 

and the timing of melt under cold than warm scenarios with the exception of 2006. In all 

the snow seasons except 2006 most mid-winter precipitation fell as snow.  Therefore 

there was little change in precipitation phase from rain to snow under the cold scenarios, 

which resulted only a small change in snow accumulation. Under the warm scenarios 

many snow events were converted to mixed rain-snow or all rain events, causing 

substantial changes in snow deposition. In the 2006 snow season, many rain and ROS 

events occurred under the base condition.  Because of this the 2006 snow season 
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displayed about the same sensitivity in snow accumulation and melt under warm and cold 

scenarios.  

Comparison of the base, -2°C and +2°C simulations indicate that the impact of 

warm or cold conditions on SWE and SWI hydrographs is small when there is no change 

in phase of precipitation. However a change in phase of precipitation from snow to rain 

or vise versa causes a significant change in SWE accumulation and SWI hydrographs. 

The impact of change in precipitation phase was illustrated by analysis of two mixed 

rain-snow and ROS events occurred near the peak SWE accumulation in 1987 and 2006 

snow seasons. Under cold scenario both these events became snow dominated, causing 

increased SWE accumulation and decreased SWI when compared to base simulation. 

Under the warm scenario, both events showed an increase in the rain fraction of 

precipitation, decrease in SWE accumulation and increase in generated SWI.  

Results of these simulations illustrate the sensitivity of the seasonal snowcover to 

changing climate conditions, and show that climate warming will substantially alter 

hydrologic cycle of RME and probably the entire RCEW. The frequency of ROS events 

will increase, with reduced snow cover and earlier timing of SWI timings if climate 

continues to warm as predicted. Historically, the largest floods at RCEW have occurred 

due to mid winter ROS events (Pierson et al. 2001). Therefore the frequency of mid-

winter floods may increase due to increased ROS frequency.  Earlier melt and SWI (and 

streamflow) will cause reduction in water availability during the dry summer period when 

water demand is at its peak. Results of this study will be help water managers of the 

region adapt to and prepare for altered hydrologic regimes that are likely under predicted 

climate warming.  
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APPENDIX A 

 

THE AUTOMATED PRECIPITATION CORRECTION PROGRAM (APCP) 

The Automated Precipitation Correction Program (APCP) is a program written in 

Visual Basic 6.0. APCP was developed to remove mechanical noise signals (such as 

bucket maintenance, oscillations due to wind and temperature variation, intermittent 

noise, and data gaps) present in high frequency precipitation data collected using 

weighing-recording precipitation gauges. Figure A.1 shows the graphical user interface 

of the ‘Single Gauge’ version of APCP.  

 

 

Figure A.1: Graphical user interface of ‘Single Gauge’ version of APCP 

 

The Reynolds Creek Experimental Watershed (RCEW) operates a network of 

dual gauge installations for better measurement of precipitation after wind related 

undercatch. The ‘Dual Gauge’ version of APCP was written to correct precipitation data 

collected using dual gauge system from mechanical errors and repeats the similar steps to 

remove mechanical errors from the additional data column as in ‘Single Gauge’ version. 
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The graphical user interface of the ‘Dual Gauge’ version of APCP is presented in Figure 

A.2.  

 

 

Figure A.2: Graphical user interface of the ‘Dual Gauge’ version of APCP 

Mechanical noise signals present in precipitation data collected using weighing-

recording gauges can be identified as out of range data values, intermittent noise, bucket 

maintenance (bucket decanting and bucket recharge), episodic noise (oscillations due to 

wind) and periodic noise (oscillations due to diurnal temperature variation). User defined 

parameters for APCP include: out of range value indicator, bucket decanting limit, bucket 

recharge limit, noise limit and output file time interval (optional). APCP scans the data 

and checks the variation in consecutive records within the user-defined limits in two 

separate cycles. In the first scanning cycle, APCP removes high magnitude noise signals 

such as out of range data values, bucket decanting, bucket recharge, and intermittent 

noise. In the second scanning cycle, APCP removes low magnitude noise signals such as 
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oscillations due to wind and diurnal temperature fluctuations. APCP uses a user defined 

‘Noise’ limit to separate high magnitude noise signals from low magnitude noise signals.  

The ‘Single Gauge’ version of APCP requires input data file with three data 

columns: Day of year, time of day (two digits of hour and two digits of minute, for 

example 1030 represents 10:30 AM), and measured gauge catch (Figure A.3a). Input file 

for ‘Dual Gauge’ version of APCP is formatted with shielded gauge catch in column 

three and unshielded gauge catch in column four (Figure A.3B).  

User-defined parameters for APCP should be selected based on careful 

observation of raw data and field notes. The parameter ‘Noise’ limit should be selected 

such that it is smaller than the minimum change caused by the high magnitude noise 

signals but greater than the maximum change caused by the low magnitude noise signals 

(for each individual gauge). The ‘Bucket Decanting’ and ‘Bucket Recharge’ limits should 

be selected such that they are slightly less than the minimum change in precipitation data 

due to ‘Bucket Decanting’ and ‘Bucket Recharge’ respectively but always greater than 

the ‘Noise’ limit (for each individual gauge). Out of range data values occur due to 

linkage error between gauge-data logger assembly during which data logger records very 

large positive or negative number (such as 9999, -6999 etc.). The ‘Out of range data 

value’ identifier should be selected based on data logger settings.  
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Figure A.3: Input files for a) Single Gauge and b) Dual Gauge version of APCP 

  

Many hydrologic models and applications require continuous time series of 

precipitation data at a fixed time interval (such as hourly, 3 hourly etc.). By default APCP 

generates output file following the time series of input file, but precipitation data at any 

regular time interval can be generated by selecting the option ‘Fixed Interval’ and 

specifying the time interval in minutes in adjoining text box. Figure A.4 presents output 

a) Single Gauge 

 

b) Dual Gauge 
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file generated by the ‘Dual Gauge’ version of APCP at the default time interval (Figure 

A.4a) and at hourly time interval (Figure A.4b).  

 

 

 

Figure A.4: Output file from ‘Dual Gauge’ version of APCP at a) Default time interval 

and b) Hourly time interval. 

 

 

a) Default time interval b) Hourly time interval 
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Programming code of ‘Single Gauge’ version of APCP 

 The program for the ‘Single Gauge’ version of APCP is presented below. In the 

‘Dual Gauge’ version of APCP scanning cycles 1 and 2 are repeated for additional 

column of precipitation data.  

Option Explicit 

     

‘Declaration of variables 

    Dim i, j, k, n, p As Long 

    Dim S, MM As Integer 

    Dim InputYearFile As String 

    Dim OuputYearFile As String 

    Dim a As String, Myarray() As String 

    Dim DayOfYear() As Integer 

    Dim TimeOfDay() As Integer 

    Dim CumPPT() As Double 

    Dim FinalCumPPT() As Double 

    Dim FinalT As Long 

    Dim Records, RecordLength As Long 

    Dim StartTime As Date, TimeInterval As Double 

    Dim Hour, Minute As Integer 

    Dim NoData, MaxLimit As Double 

    Dim NextRecord, PreviousRecord As Long 

    Dim BucketDump, Recharge As Double 

    Dim Time() As Date 

    Dim Diff, ConsDiff1, ConsDiff2, ConsDiff3, ConsDiff4 As Double 

    Dim PPT() As Double 

    Dim PPT_B() As Double 

    Dim PPT_E() As Double 

    Dim CPPT() As Double, CPPTCrr() As Double 

    Dim FinalCPPT() As Double, FinalPPT() As Double 

    Dim FinalTime() As Date 

    Dim Final() As Double 

    Dim Noise As Double 

     

Private Sub cmdCancle_Click() 

    End 

End Sub 

 

Private Sub cmdOK_Click() 

    On Error Resume Next 

        ‘Input files/ File Name 
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        InputYearFile = txtInputYearFile.Text 

         

        ‘Output files/ File Name 

        OuputYearFile = txtOutputYearFile.Text 

         

        i = 0 

        j = 0 

         

        ‘Assigning the bucket dump value as critical value 

        BucketDump = CDbl(txtBucketDump.Text) 

         

        ‘Note: bucket dump value should be slightly smaller then the smallest variation 

        ‘due to bucket dump. But it should be greater then critical ‘Noise’ limit 

         

        ‘Added on 10/4/05 to accommodate sudden increase due to bucket recharge 

        Recharge = CDbl(txtrecharge.Text) 

         

        ‘Critical Shielded or Unshielded gauge Noise limit 

        ‘Note: noise value should be smaller then both bucket recharge and bucket dump 

        Noise = CDbl(txtCritical.Text) 

 

    ‘Checking whether the files are in correct format 

     

    If InputYearFile = “” Then 

        MsgBox “Input file is not valid” 

        Exit Sub 

    Else 

        Open InputYearFile For Input As #1 

    End If 

     

    If OuputYearFile = “” Then 

        MsgBox “Please enter a valid output file name” 

        Exit Sub 

    Else 

        Open OuputYearFile For Output As #3 

    End If 

     

    ‘Counting the length of records in the input file 

    Do 

        Line Input #1, a 

         

            i = i + 1 

     

    Loop Until EOF(1) 
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    Records = i         ‘Note: Length of records = Records-1 

     

    Seek #1, 1          ‘Go back to beginning of input file 

     

    i = 0 

     

    ‘Allocating memory to the arrays to store data records 

    ReDim DayOfYear(Records – 1) 

    ReDim TimeOfDay(Records – 1) 

    ReDim CumPPT(Records – 1) 

    ReDim CPPT(Records – 1) 

    ReDim CPPTCrr(Records – 1) 

    ReDim PPT(Records – 1) 

    ReDim Time(Records – 1) 

     

    ‘Storing data in arrays  

    Do 

        Line Input #1, a 

        a = “ “ + a 

        a = Replace(a, “        “, “,”) 

        a = Replace(a, “       “, “,”) 

        a = Replace(a, “      “, “,”) 

        a = Replace(a, “     “, “,”) 

        a = Replace(a, “    “, “,”) 

        a = Replace(a, “   “, “,”) 

        a = Replace(a, “  “, “,”) 

        a = Replace(a, “ “, “,”) 

        Myarray = Split(a, “,”) 

            DayOfYear(i) = Val(Myarray(1))  ‘Stores Day of year 

            TimeOfDay(i) = Val(Myarray(2))  ‘Stores Time  

            CumPPT(i) = Val(Myarray(3))  ‘Stores recorded precipitation 

             

Hour = Int(TimeOfDay(i) / 100) 

            Minute = TimeOfDay(i) Mod 100 

            Time(i) = DayOfYear(i) + Hour / 24 + Minute / (24 * 60) 

             

            i = i + 1 

    Loop Until EOF(1) 

    

    Close #1 

 

    ‘Variable to store out of range data value        

    NoData = CDbl(txtNoData.Text)   

     

‘Checking whether first value is out of range data value 
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    If CumPPT(0) = NoData Then 

    ‘If first (few) value(s) are out of range data value(s) then find the first acceptable data              

‘value 

        n = 1 

        While CumPPT(n) = NoData Or CumPPT(n) < 0 

            n = n + 1 

        Wend 

        For j = 0 To n – 1 

 

        ‘And replace all the out of range data values with first acceptable data value 

            CumPPT(j) = CumPPT(n) 

        Next 

    End If 

     

    ‘Removing out of range data values from the records 

    For i = 1 To Records – 1 

 

        If CumPPT(i) = NoData Then 

 

 ‘If out of range data value(s) is found then 

            ‘Find Previous and Next CumPPT values which are acceptable            

            p = i – 1 

            While CumPPT(p) < 0 

                p = p – 1 

            Wend 

             

            n = i + 1 

            While CumPPT(n) = NoData Or CumPPT(n) < 0 

               n = n + 1 

            Wend 

             

            If CumPPT(p) – CumPPT(n) > BucketDump Or CumPPT(n) – CumPPT(p) > 

Recharge Then 

 

                ‘BucketDump of BucketRecharge is associated with out of range data values 

                For j = p + 1 To n – 1 

                    CumPPT(j) = CumPPT(p) 

                Next 

            Else 

 

                ‘There is no BucketDump of BucketRecharge during the period of out of range  

                ‘data values. Distribute the difference of previous and next acceptable data  

                ‘values over the period of out of range data values. 

                For j = p + 1 To n – 1 

                    CumPPT(j) = CumPPT(p) + (j – p) * (CumPPT(n) – CumPPT(p)) / (n – p) 
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                Next 

            End If 

        End If 

         

    Next 

         

    CPPT(0) = 0 

     

    PPT(0) = 0 

     

    ‘Scanning cycle 1: Removal of High magnitude noise signals 

 

    For i = 1 To Records – 1 

        If Abs(CumPPT(i – 1) – CumPPT(i)) > Noise Then 

 

            ‘Change in CumPPT values greater than the ‘Noise’ limit 

            ‘beginning of high magnitude noise signal 

            ‘End of noise signal is assumed when at least 5 successive values show less  

            ‘variation than the noise limit 

            n = i     

            Do 

                Diff = CumPPT(i – 1) – CumPPT(n) 

                ConsDiff1 = CumPPT(n) – CumPPT(n + 1) 

                ConsDiff2 = CumPPT(n + 1) – CumPPT(n + 2) 

                ConsDiff3 = CumPPT(n + 2) – CumPPT(n + 3) 

                ConsDiff4 = CumPPT(n + 3) – CumPPT(n + 4) 

                n = n + 1 

            Loop Until (Abs(ConsDiff1) < Noise And Abs(ConsDiff2) < Noise And 

Abs(ConsDiff3) < Noise And Abs(ConsDiff4) < Noise) 

            If Diff > BucketDump Or Diff < -Recharge Then 

 

                ‘It is a Bucket Dump or Bucket Recharge event, No precipitation during noise 

                For j = i To n – 1 

                    PPT(j) = 0 

                Next j 

                i = n – 1 

            ElseIf Abs(Diff) < Noise Or Diff > 0 Then 

 

                ‘Noise Signal: Sudden increase or decrease then comes back approximately to  

                ‘original. Intermittent noise: Uniformly distribute the difference in  

                ‘precipitation before and after the noise signal over the period of noise 

                For j = i To n – 1 

                    PPT(j) = (CumPPT(n – 1) – CumPPT(i – 1)) / (n – i) 

                Next j 
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                i = n – 1 

                 

            Else 

               ‘Sudden change may be associated with high intensity precipitation event 

                For j = i To n – 1 

                    PPT(j) = CumPPT(j) – CumPPT(j – 1) 

                Next j 

                i = n – 1 

             

            End If 

        

        Else 

 

       ‘Not a high magnitude noise   

            PPT(i) = CumPPT(i) – CumPPT(i – 1) 

        End If 

         

    Next i 

          

    CPPT(0) = CumPPT(0) 

     

    For i = 1 To Records – 1 

        CPPT(i) = CPPT(i – 1) + PPT(i) 

         

    Next i 

     

    ReDim PPT_B(Records – 1) 

    ReDim PPT_E(Records – 1) 

 

    ‘End Scanning cycle 1     

 

    ‘Scanning cycle 2:Removing small noises:  

    ‘Modified on 10/5/2005 

    ‘Smoothing loop is modified form a one step procedure to a three step procedure 

    For i = 0 To Records – 1 

        PPT_B(i) = PPT(i) 

        PPT_E(i) = PPT(i) 

    Next 

     

    ‘Smoothing loop that begins with the starting of the file 

    If PPT_B(1) < 0 Then 

        PPT_B(2) = PPT_B(1) + PPT_B(2) 

        PPT_B(1) = 0 

    End If 

    If PPT_B(2) < 0 Then 
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        If PPT_B(1) + PPT_B(2) + PPT_B(3) < 0 Then 

            PPT_B(3) = PPT_B(1) + PPT_B(2) + PPT_B(3) 

            PPT_B(1) = 0 

            PPT_B(2) = 0 

        Else 

            PPT_B(1) = (PPT_B(1) + PPT_B(2) + PPT_B(3)) / 3 

            PPT_B(2) = PPT_B(1) 

            PPT_B(3) = PPT_B(1) 

        End If 

    End If 

     

    For i = 3 To Records – 3 

        If PPT_B(i) < 0 Then 

            If PPT_B(i – 2) + PPT_B(i – 1) + PPT_B(i) + PPT_B(i + 1) + PPT_B(i + 2) < 0 

Then 

                PPT_B(i + 2) = PPT_B(i – 2) + PPT_B(i – 1) + PPT_B(i) + PPT_B(i + 1) + 

PPT_B(i + 2) 

                PPT_B(i – 2) = 0 

                PPT_B(i – 1) = 0 

                PPT_B(i) = 0 

                PPT_B(i + 1) = 0 

            Else 

                PPT_B(i – 2) = (PPT_B(i – 2) + PPT_B(i – 1) + PPT_B(i) + PPT_B(i + 1) + 

PPT_B(i + 2)) / 5 

                PPT_B(i – 1) = PPT_B(i – 2) 

                PPT_B(i) = PPT_B(i – 2) 

                PPT_B(i + 1) = PPT_B(i – 2) 

                PPT_B(i + 2) = PPT_B(i – 2) 

            End If 

        End If 

         

    Next i 

     

    ‘Smoothing that begins form the end of file: added 10/5/05 

     

    If PPT_E(Records – 1) < 0 Then 

        PPT_E(Records – 2) = PPT_E(Records – 1) + PPT_E(Records – 2) 

        PPT_E(Records – 1) = 0 

    End If 

    If PPT_E(Records – 2) < 0 Then 

        If PPT_E(Records – 1) + PPT_E(Records – 2) + PPT_E(Records – 3) < 0 Then 

            PPT_E(Records – 3) = PPT_E(Records – 1) + PPT_E(Records – 2) + 

PPT_E(Records – 3) 

            PPT_E(Records – 1) = 0 

            PPT_E(Records – 2) = 0 
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        Else 

            PPT_E(Records – 1) = (PPT_E(Records – 1) + PPT_E(Records – 2) + 

PPT_E(Records – 3)) / 3 

            PPT_E(Records – 2) = PPT_E(Records – 1) 

            PPT_E(Records – 3) = PPT_E(Records – 1) 

        End If 

    End If 

     

    For i = Records – 3 To 3 Step -1 

        If PPT_E(i) < 0 Then 

            If PPT_E(i – 2) + PPT_E(i – 1) + PPT_E(i) + PPT_E(i + 1) + PPT_E(i + 2) < 0 

Then 

                PPT_E(i – 2) = PPT_E(i – 2) + PPT_E(i – 1) + PPT_E(i) + PPT_E(i + 1) + 

PPT_E(i + 2) 

                PPT_E(i + 2) = 0 

                PPT_E(i – 1) = 0 

                PPT_E(i) = 0 

                PPT_E(i + 1) = 0 

            Else 

                PPT_E(i – 2) = (PPT_E(i – 2) + PPT_E(i – 1) + PPT_E(i) + PPT_E(i + 1) + 

PPT_E(i + 2)) / 5 

                PPT_E(i – 1) = PPT_E(i – 2) 

                PPT_E(i) = PPT_E(i – 2) 

                PPT_E(i + 1) = PPT_E(i – 2) 

                PPT_E(i + 2) = PPT_E(i – 2) 

            End If 

        End If 

         

    Next i 

     

    ‘Taking average of smoothened values 

     

    For i = 0 To Records – 1 

        PPT(i) = (PPT_B(i) + PPT_E(i)) / 2 

    Next 

     

    PPT(0) = 0 

     

    If PPT(1) < 0 Then PPT(1) = 0 

     

    If PPT(Records – 1) < 0 Then PPT(Records – 1) = 0 

     

    If PPT(Records – 2) < 0 Then PPT(Records – 2) = 0 
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    CPPTCrr(0) = 0 

     

    For i = 1 To Records – 1 

        CPPTCrr(i) = CPPTCrr(i – 1) + PPT(i) 

         

    Next i 

     

    n = 0 

    If optSame.Value = True Then 

 

        ‘Printing the output File following the time format of input file 

        For i = 0 To Records – 1 

            Print #3, Format(DayOfYear(i), “000”); Tab(6); Format(TimeOfDay(i), “0000”); 

Tab(11); Format(CPPTCrr(i), “0.00”) 

        Next 

 

        ‘Closing the output file 

        Close #3 

        RecordLength = Records   

    Else 

 

        ‘Printing the output file at the specified time interval 

        TimeInterval = CDbl(txtInterval.Text)  ‘Specified time interval in minutes 

        RecordLength = (CLng(Time(Records – 1) – Time(0)) * 24 * 60) / TimeInterval 

         

        ‘Assigning arrays to store data at regular time interval 

        ReDim FinalTime(RecordLength – 1) 

        ReDim Final(RecordLength – 1) 

        ReDim FinalCumPPT(RecordLength – 1) 

        ReDim FinalCPPT(RecordLength – 1) 

        ReDim FinalPPT(RecordLength – 1) 

                 

        FinalTime(0) = Time(0) 

 

        For i = 1 To RecordLength – 1 

            FinalTime(i) = FinalTime(i – 1) + TimeInterval / (60 * 24) 

        Next 

        j = 0 

        i = 0 

 

        Do 

            If Abs(FinalTime(j) – Time(i)) < 0.000001 Then 

                Final(j) = CPPTCrr(i) 

                FinalCumPPT(j) = CumPPT(i) 

                FinalCPPT(j) = CPPT(i) 
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                If j = 0 Then 

                    FinalPPT(j) = 0 

                Else 

                    FinalPPT(j) = Final(j) – Final(j – 1) 

                End If 

                 

                FinalT = Int((FinalTime(j) – Int(FinalTime(j))) * 24) * 100 

                MM = (Cint((((FinalTime(j) – Int(FinalTime(j))) * 24) – Int((FinalTime(j) – 

Int(FinalTime(j))) * 24)) * 60)) 

 

                If MM > 59.99 Then 

                    FinalT = FinalT + 100 

                    If FinalT = 2400 Then FinalT = 0 

                Else 

                    FinalT = FinalT + MM 

                End If 

 

                ‘Printing output file if value is measured at regular time interval 

                Print #3, Format(Int(FinalTime(j) + 0.000001), ”000”); Tab(6); Format(FinalT, 

”0000”); Tab(11); Format(Final(j), ”0.00”) 

                 

                i = i + 1 

                j = j + 1 

                                 

            Else 

                If Time(i – 1) < FinalTime(j) And FinalTime(j) < Time(i) Then 

                     

                    Final(j) = CPPTCrr(i – 1) + (CPPTCrr(i) – CPPTCrr(i – 1)) * (FinalTime(j) – 

Time(i – 1)) / (Time(i) – Time(i – 1)) 

                     

                    FinalCumPPT(j) = CumPPT(i – 1) + (CumPPT(i) – CumPPT(i – 1)) * 

(FinalTime(j) – Time(i – 1)) / (Time(i) – Time(i – 1)) 

                     

                    FinalCPPT(j) = CPPT(i – 1) + (CPPT(i) – CPPT(i – 1)) * (FinalTime(j) – 

Time(i – 1)) / (Time(i) – Time(i – 1)) 

                     

                    If j = 0 Then 

                        FinalPPT(j) = 0 

                    Else 

                        FinalPPT(j) = Final(j) – Final(j – 1) 

                    End If 

                 

                    FinalT = Int((FinalTime(j) – Int(FinalTime(j))) * 24) * 100 
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                    MM = (Cint((((FinalTime(j) – Int(FinalTime(j))) * 24) – Int((FinalTime(j) – 

Int(FinalTime(j))) * 24)) * 60)) 

 

                    If MM > 59.99 Then 

                        FinalT = FinalT + 100 

                        If FinalT = 2400 Then FinalT = 0 

                    Else 

                        FinalT = FinalT + MM 

                    End If 

     ‘Printing output file by taking weighted average of value before and after the  

                ‘time if values is not measured at time interval 

                    Print #3, Format(Int(FinalTime(j) + 0.000001), ”000”); Tab(6); 

Format(FinalT, ”0000”); Tab(11); Format(Final(j), ”0.00”) 

                 

                    j = j + 1 

                Else 

                    i = i + 1 

                End If 

            End If 

        Loop While (i < Records) 

        Close #3 

    End If 

 

End Sub 

 

Private Sub cmdStartYear_Click() 

    dlgOpen.ShowOpen 

    If dlgOpen.FileTitle <> “” Then 

        txtInputYearFile.Text = dlgOpen.FileName 

        txtOutputYearFile.Text = Replace(txtInputYearFile.Text, “.rfp”, “.rfc”) 

    Else 

        MsgBox (“Not a valid file name”) 

    End If 

End Sub 

 

Private Sub cmdWaterYear_Click() 

    dlgOpen.ShowOpen 

    If dlgOpen.FileTitle <> “” Then 

        txtOutputYearFile.Text = dlgOpen.FileName 

    Else 

        MsgBox (“Not a valid file name”) 

    End If 

End Sub 
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Private Sub optConstInterval_Click() 

    If optConstInterval.Value = True Then 

        txtInterval.Enabled = True 

        txtInterval.BackColor = &H80000005 

    End If 

End Sub 

 

Private Sub optSame_Click() 

    If optSame.Value = True Then 

        txtInterval.Text = “” 

        txtInterval.Enabled = False 

        txtInterval.BackColor = &H8000000F      

    End If 

End Sub 
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APPENDIX B 

 

THE DUAL GAUGE WIND CORRECTION PROGRAM 

Systematic errors, such as wind induced undercatch, wetting losses and 

evaporation affect all types of precipitation gauge measurements. These errors are 

especially significant in the case of solid precipitation. Of the systematic errors in solid 

precipitation measurements, wind-induced undercatch is the greatest and introduce as 

much as a 50-90% bias in precipitation measurement. Other systematic errors are 

relatively small and introduce only 2-3% bias in precipitation measurement (Goodison et 

al. 1998; Hamon 1971, 1973; Yang et al. 1998). To address the problem of wind induced 

under-catch, the dual gauge precipitation measurement system was developed in late 

1960’s and installed at the Reynolds Creek Experimental Watershed (RCEW) (Hamon 

1971, 1973). The dual gauge system at RCEW consists of two National Weather Service 

(NWS) weighing-recording bucket precipitation gauges, one unshielded and the other 

shielded with a modified Alter shield, located in close proximity.  

Hamon (1971, 73) developed instrumentation and formulation for the dual gauge 

system. It was based on the hypothesis that since the wind effect is reduced by the use of 

shield, actual precipitation can be computed if both shielded and unshielded catches are 

known. The analytical model developed was as follows: 
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Equation (1) and (2) result in following equation which is independent of wind 

speed and temperature.  
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where, 

 S = Shielded gauge catch 

 U = Unshielded gauge catch 

 A = Actual precipitation 

 W = Wind Speed 

 Ti = Temperature index 

 a, b, and ‘B’ = coefficients 

Hamon (1972) set the value of coefficient ‘B’ at 1.8 based on studies at several 

dual gauge precipitation sites at RCEW which is used to obtain actual (wind corrected) 

precipitation.   

A program in Visual Basic 6.0 is written to implement dual gauge wind correction 

algorithm. The program assumes that two precipitation events are distinct if separated by 

a 6 hour period of no precipitation, following the existing criteria used in preprocessing 

precipitation data collected at RCEW up to 1996 water year (Hanson 2001). The 

graphical user interface of the program is presented in Figure B.2.  
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Figure B.2: Graphical user interface of the Dual Gauge Wind Correction program 

 

The input file should contain hourly records of precipitation data, after removal of 

mechanical errors, with four columns containing day of year, time of day (two digits of 

hour and two digits of minute), shielded gauge catch and unshielded gauge catch in 

respective order (Figure B.3a). This input file can be generated using the ‘Dual Gauge’ 

version of the Automated Precipitation Correction Program (APCP) by selecting the 

option ‘Fixed Interval (min)’ and specifying ‘60’ in the adjoining text box. The output 

file generated by the program contain hourly records of precipitation data with columns 

of day of year, time of day, shielded gauge catch, unshielded gauge catch and wind 

corrected precipitation in respective order (Figure B.3b). 
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Figure B.3: a) Input file for (generated using ‘Dual Gauge’ version of APCP) and b) 

Output file generated by the Dual Gauge Wind Correction program. 

 

Programming code of the ‘Dual Gauge Wind Correction’ program 

Option Explicit 

 

‘Declaration of variables 

    Dim DualGaugeInputFile As String, DualGaugeOutputFile As String 

    Dim i As Long, j As Long, B As Double, Records As Long, S As Long, E As Long 

    Dim DayofYear() As Integer, TimeofDay() As Integer 

    Dim CPPTS() As Double, CPPTUS() As Double, CPPTWindAdjusted() As Double 

a) Input File b) Output File 
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    Dim CumPPTS As Double, CumPPTUS As Double 

    Dim PPTS() As Double, PPTUS() As Double, PPTWindAdjusted() As Double 

    Dim Note() As String 

    Dim a As String, MyArray() As String 

    Dim Time() As Date 

    Dim R As Double 

    Dim Hour As Integer, Minute As Integer 

     

Private Sub cmdCancel_Click() 

    frmDualGauge.Visible = False 

    frmWindCorrection.Visible = True 

End Sub 

 

Private Sub cmdInputFile_Click() 

 

    dlgOpen.ShowOpen 

    If dlgOpen.FileTitle <> “” Then 

        txtDualGaugeInput.Text = dlgOpen.FileName 

    Else 

        MsgBox (“Not a valid file name”) 

    End If 

 

End Sub 

 

Private Sub cmdOutputFile_Click() 

    dlgOpen.ShowOpen 

    If dlgOpen.FileTitle <> “” Then 

        txtDualGaugeOutput.Text = dlgOpen.FileName 

    Else 

        MsgBox (“Not a valid file name”) 

    End If 

End Sub 

 

Private Sub cmdOK_Click() 

     

    On Error Resume Next 

 

        ‘Input files/ File Name 

        DualGaugeInputFile = txtDualGaugeInput.Text 

         

        ‘Output files/ File Name 

        DualGaugeOutputFile = txtDualGaugeOutput.Text 

         

        i = 0 

        j = 0 
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        B = CDbl(txtB.Text) 

 

        ‘B is the constant which was set at 1.7 by (Hamon 1971) and then based on further 

research studies was set at 1.8 (Hamon 1972) which is used at RCEW. 

                 

    If DualGaugeInputFile = “” Then 

        MsgBox “Input file is not valid” 

        Exit Sub 

    Else 

        Open DualGaugeInputFile For Input As #1 

    End If 

     

    If DualGaugeOutputFile = “” Then 

        MsgBox “Please enter a valid output file name” 

        Exit Sub 

    Else 

        Open DualGaugeOutputFile For Output As #2 

    End If 

             

    ‘Counting the length of records in the input file 

    Do 

        Line Input #1, a 

        i = i + 1 

    Loop Until EOF(1) 

     

    Records = i         ‘Note: Length of records = Records-1 

     

    Seek #1, 1          ‘Go back to beginning of input file 

     

    i = 0 

    

    ‘Allocating space of data arrays holding records 

    ReDim DayofYear(Records – 1) 

    ReDim TimeofDay(Records – 1) 

    ReDim CPPTS(Records – 1) 

    ReDim CPPTUS(Records – 1) 

    ReDim CPPTWindAdjusted(Records – 1) 

    ReDim PPTS(Records – 1) 

    ReDim PPTUS(Records – 1) 

    ReDim PPTWindAdjusted(Records – 1) 

    ReDim Note(Records – 1) 

     

    Do 

        Line Input #1, a 
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        a = “ “ + a 

        a = Replace(a, “          “, “,”) 

        a = Replace(a, “         “, “,”) 

        a = Replace(a, “        “, “,”) 

        a = Replace(a, “       “, “,”) 

        a = Replace(a, “      “, “,”) 

        a = Replace(a, “     “, “,”) 

        a = Replace(a, “    “, “,”) 

        a = Replace(a, “   “, “,”) 

        a = Replace(a, “  “, “,”) 

        a = Replace(a, “ “, “,”) 

        MyArray = Split(a, “,”) 

         

            DayofYear(i) = Val(MyArray(1))     

            TimeofDay(i) = Val(MyArray(2)) 

            CPPTS(i) = Format(Val(MyArray(3)), “0.0”) 

            CPPTUS(i) = Format(Val(MyArray(4)), “0.0”) 

 

            Hour = Int(TimeofDay(i) / 100) 

            Minute = TimeofDay(i) Mod 100 

            Time(i) = DayofYear(i) + Hour / 24 + Minute / (24 * 60) 

             

            i = i + 1 

    Loop Until EOF(1) 

    Close #1 

     

    PPTS(0) = 0 

    PPTUS(0) = 0 

     

    For i = 1 To Records – 1 

        PPTS(i) = CPPTS(i) – CPPTS(i – 1) 

        PPTUS(i) = CPPTUS(i) – CPPTUS(i – 1) 

    Next i 

     

    ‘Implementation of Dual Gauge Correction (Hamon 1971, 1973) 

 

    ‘Precipitation Events are assumed to be separated if there is no precipitation for at least 

6 hrs. 

 

    PPTWindAdjusted(0) = 0 

    For i = 1 To Records – 1 

        If PPTS(i) > 0.01 Or PPTUS(i) > 0.01 Then 

 

            ‘atleast one gauge is recording precipitation 

            ‘start of an precipitation event 
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Note(i) = “Start” 

            S = i           ‘Marker to store start of event 

            E = i           ‘Marker to store end of event 

             

            ‘Find the end of the event: End of precipitation event is assumed if there is no 

precipitation during next 6 hours 

 

            Do 

                If PPTS(E + 1) + PPTUS(E + 1) > 0.01 Then 

                    E = E + 1 

                ElseIf PPTS(E + 2) + PPTUS(E + 2) > 0.01 Then 

                    E = E + 2 

                ElseIf PPTS(E + 3) + PPTUS(E + 3) > 0.01 Then 

                    E = E + 3 

                ElseIf PPTS(E + 4) + PPTUS(E + 4) > 0.01 Then 

                    E = E + 4 

                ElseIf PPTS(E + 5) + PPTUS(E + 5) > 0.01 Then 

                    E = E + 5 

                     

                Else 

 

                    ‘End of precipitation event 

                    Note(E) = “END” 

                End If 

            Loop Until E = Records – 1 Or Note(E) = “END” 

         

        ‘Now calculate total shielded and unshielded gauge precipitation during the 

precipitation event 

            CumPPTS = 0 

            CumPPTUS = 0 

             

            For j = S To E 

                CumPPTS = CumPPTS + PPTS(j) 

                CumPPTUS = CumPPTUS + PPTUS(j) 

            Next 

         

         ‘Now find the ratios to compute wind corrected precipitation 

        ‘Note: ‘upper limit of the Ratio [R =(S/U)^B] for the event is restricted at 5.6 (based 

on figures presented in Hamon (1973) as in some cases due to extreme wind or 

malfunctioning of  either gauge shielded gauge may record significantly more 

precipitation than unshielded gauge.  

 

            If CumPPTS >= 0.1 And CumPPTUS >= 0.1 Then 

                If CumPPTS > CumPPTUS Then 
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                ‘If storm total of shielded gauge catch is greater than unshielded gauge catch 

                    R = (CumPPTS / CumPPTUS) ^ B 

                    If R >= 5.6 Then R = 5.6                  

                Else 

 

                ‘If storm total of shielded gauge catch is less than or equal to unshielded gauge 

catch 

                    R = (CumPPTS + CumPPTUS) / (2 * CumPPTUS) 

                End If 

                 

                For j = S To E 

                    PPTWindAdjusted(j) = PPTUS(j) * R 

                Next 

                     

            Else 

 

                ‘One gauge is recording precipitation while other is not 

                ‘May be due to trace precipitation or melt or other reasons 

                ‘Computed precipitation is assumed as the average of the two gauges 

                 

                For j = S To E 

                    PPTWindAdjusted(j) = (PPTS(j) + PPTUS(j)) / 2 

                Next 

            End If 

             

            i = E + 1 

        Else 

            PPTWindAdjusted(i) = 0 

        End If 

    Next 

     

    CPPTWindAdjusted(0) = 0 

    For i = 1 To Records – 1 

        CPPTWindAdjusted(i) = CPPTWindAdjusted(i – 1) + PPTWindAdjusted(i) 

    Next 

     

    For i = 1 To Records – 1 

PPTWindAdjusted(i) = Format(CPPTWindAdjusted(i), “0.0”) –

Format(CPPTWindAdjusted(i – 1), “0.0”) 

    Next 

     

    For i = 0 To Records – 1 

 

    ‘Print the output file 
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            Print #2, Format(DayofYear(i), ”000”); Tab(6); Format(TimeofDay(i), ”0000”); 

Tab(11); Format(PPTS(i), ”0.0”); Tab(18); Format(PPTUS(i), ”0.0”); 

Tab(25); Format(PPTWindAdjusted(i), ”0.0”); Tab(32); Note(i) 

    Next 

    Close #2 

End Sub 
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April 25, 2008 

 

Anurag Nayak 

340 N 500 E Apt # 3, Logan, UT 

Email: anurag.nayak@aggiemail.usu.edu 

 

Dear Dr. Chandler, 

 

I am in the process of preparing my Dissertation in the Biological and Irrigation 

Engineering Department at Utah State University. I hope to complete in spring 2008. I 

am requesting your permission to include the paper in which you are a co-author, titled 

“Objective Sub-Daily Data Correction for Weighing Bucket Type Precipitation Gauge 

Measurements”, submitted to the Water Resources Research journal, as Chapter 2 in my 

dissertation.  

I will include appropriate citations to your work as shown and copyright and reprint 

rights information in a special appendix.  

Please indicate your approval of this request by signing in the space provided, and attach 

any other form or instructions necessary to confirm permission.  

If you have any questions, please send me an email massage at the above address. Thank 

you for your assistance 

 

Anurag Nayak 

 

 

I hereby give permission to Anurag Nayak to reprint the requested article as Chapter 2 in 

his dissertation. 

 

Signed________________________________________________ 

Print Name____________________________________________ 



 191 

April 30, 2008 

 

Anurag Nayak 

340 N 500 E Apt # 3, Logan, UT 

Email: anurag.nayak@aggiemail.usu.edu 

 

Dear Dr. Marks, 

 

I am in the process of preparing my Dissertation in the Biological and Irrigation 

Engineering Department at Utah State University. I hope to complete in spring 2008. I 

am requesting your permission to include the paper in which you are a co-author, titled 

“Objective Sub-Daily Data Correction for Weighing Bucket Type Precipitation Gauge 

Measurements”, submitted to the Water Resour. Res. Journal, as Chapter 2 in my 

dissertation.  

I will include appropriate citations to your work as shown and copyright and reprint 

rights information in a special appendix.  

Please indicate your approval of this request by signing in the space provided, and attach 

any other form or instructions necessary to confirm permission.  

If you have any questions, please send me an email massage at the above address. Thank 

you for your assistance 

 

Anurag Nayak 

 

 

I hereby give permission to Anurag Nayak to reprint the requested article as Chapter 2 in 

his dissertation. 

 

Signed________________________________________________ 

Print Name____________________________________________ 



 192 

April 30, 2008 

 

Anurag Nayak 

340 N 500 E Apt # 3, Logan, UT 

Email: anurag.nayak@aggiemail.usu.edu 

 

Dear Dr. McNamara, 

 

I am in the process of preparing my Dissertation in the Biological and Irrigation 

Engineering Department at Utah State University. I hope to complete in spring 2008. I 

am requesting your permission to include the paper in which you are a co-author, titled 

“Objective Sub-Daily Data Correction for Weighing Bucket Type Precipitation Gauge 

Measurements”, submitted to the Water Resour. Res. Journal, as Chapter 2 in my 

dissertation.  

I will include appropriate citations to your work as shown and copyright and reprint 

rights information in a special appendix.  

Please indicate your approval of this request by signing in the space provided, and attach 

any other form or instructions necessary to confirm permission.  

If you have any questions, please send me an email massage at the above address. Thank 

you for your assistance 

 

Anurag Nayak 

 

 

I hereby give permission to Anurag Nayak to reprint the requested article as Chapter 2 in 

his dissertation. 

 

Signed________________________________________________ 

Print Name____________________________________________ 



 193 

April 30, 2008 

 

Anurag Nayak 

340 N 500 E Apt # 3, Logan, UT 

Email: anurag.nayak@aggiemail.usu.edu 

 

Dear Dr. Seyfried, 

 

I am in the process of preparing my Dissertation in the Biological and Irrigation 

Engineering Department at Utah State University. I hope to complete in spring 2008. I 

am requesting your permission to include the paper in which you are a co-author, titled 

“Objective Sub-Daily Data Correction for Weighing Bucket Type Precipitation Gauge 

Measurements”, submitted to the Water Resour. Res. Journal, as Chapter 2 in my 

dissertation.  

I will include appropriate citations to your work as shown and copyright and reprint 

rights information in a special appendix.  

Please indicate your approval of this request by signing in the space provided, and attach 

any other form or instructions necessary to confirm permission.  

If you have any questions, please send me an email massage at the above address. Thank 

you for your cooperation. 

 

Anurag Nayak 

 

 

I hereby give permission to Anurag Nayak to reprint the requested article as Chapter 2 in 

his dissertation. 

 

Signed________________________________________________ 

Print Name____________________________________________ 



 194 

CURRICULUM VITAE 

 

Anurag Nayak 

Education:  

Ph.D. in Irrigation Engineering, Utah State University, Logan, UT, 2008. 

M. Tech. in Soil and Water Conservation Engineering, Indian Institute of 

Technology, Kharagpur, WB, India, 2003. 

 

B. Tech. in Agricultural Engineering, Jawaharlal Nehru Krishi Vishwa Vidyalaya, 

Jabalpur, MP, India, 2001.  

 

Experience: 

Internship as support hydrologist in NWRC-ARS-USDA, and Center for Ecohydraulic 

Research, University of Idaho, Boise, ID, August 2007-December 2007. 

 

Graduate Research Assistant, Utah State University, Logan, UT, January 2004- June 

2007. 

 

Research Assistant in Precision Farming Development Project, Indian Institute of 

Technology, Kharagpur, WB, India, February 2003-August 2003. 

  

Research Fellowship, Indian Institute of Technology, Kharagpur, WB, India, July 2001-

January 2003. 

 

Publications: 

 

Nayak, A., Chandler, D. G., Marks, D., McNamara, J. P., and Seyfried, M. (2008). 

"Objective sub-daily data correction for weighing bucket type precipitation gauge 

measurements." Water Resour. Res., Submitted. 

Bonta, J. V., and Nayak, A. (2008). "Characterizing dry times between storms in 

mountainous areas." Trans. ASABE, Submitted. 

Flerchinger, G. N., Marks, D., Hardegree, S. P., Nayak, A., Winstral, A. H., 

Seyfried, M. S., Pierson, F. P., and Clark, P. E. (2007)."45 Years of climate and 

hydrologic research conducted at the Reynolds Creek Experimental Watershed." 

Environmental and Water Resources: Milestones in Engineering History.  J.R. 

Rogers Ed., Sponsored by ASCE Environmental and Water Resources Institute 

(EWRI) National History & Heritage Committee. ASCE, Reston, VA, 135-143. 


	The Effect of Climate Change on the Hydrology of a Mountainous Catchment in the Western United States: A Case Study at Reynolds Creek, Idaho
	Recommended Citation

	The Effect of Climate Change on the Hydrology of a Mountainous Catchment in the Western United States: A Case Study at Reynolds Creek, Idaho

