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Foundation for an Energy-Vorticity Turbulence Model  
with Application to Flow near Rough Surfaces* 

W. F. Phillips,† E. B. Fowler,‡ and D. F. Hunsaker§ 
Utah State University, Logan, Utah 84322-4130 

Based on a more direct analogy between turbulent and molecular transport, a foundation 
is presented for an energy-vorticity turbulence model.  Whereas traditional k-ε , k-ω, and k-ζ  
models relate the eddy viscosity to a dissipation length scale associated with the smaller 
eddies having the highest strain rates, the proposed model relates the eddy viscosity to a 
mean vortex wavelength associated with the larger eddies primarily responsible for turbulent 
transport.  A rigorous development of the turbulent-energy-transport equation from the 
Navier-Stokes equations includes exact relations for the viscous dissipation and molecular 
transport of turbulent kinetic energy.  Application of Boussinesq’s analogy between 
turbulent and molecular transport leads to a transport equation, which shows neither 
molecular nor turbulent transport of turbulent energy to be simple gradient diffusion.  The 
new turbulent-energy-transport equation contains two closure coefficients; a viscous-
dissipation coefficient and a turbulent-transport coefficient.  To help evaluate closure 
coefficients and provide insight into the energy-vorticity turbulence variables, fully rough 
pipe flow is considered.  For this fully developed flow, excellent agreement with experimental 
data for velocity profiles and friction factors is attained over a wide range of closure 
coefficients, provided that a given relation between the coefficients is maintained. 

Nomenclature 

0λA  = empirical coefficient, Eqs. (98) and (101) 

1λA  = empirical coefficient, Eqs. (98) and (114) 

10λA  = empirical coefficient, Eqs. (102) and (114) 

11λA  = empirical coefficient, Eqs. (103) and (114) 

12λA  = empirical coefficient, Eqs. (104) and (114) 

13λA  = empirical coefficient, Eqs. (105) and (114) 

0λB  = empirical coefficient, Eqs. (98) and (115) 

00λB  = empirical coefficient, Eqs. (106) and (115) 

01λB  = empirical coefficient, Eqs. (107) and (115) 

02λB  = empirical coefficient, Eqs. (108) and (115) 

03λB  = empirical coefficient, Eqs. (109) and (115) 

1λB  = empirical coefficient, Eqs. (98) and (116) 

10λB  = empirical coefficient, Eqs. (110) and (116) 

11λB  = empirical coefficient, Eqs. (111) and (116) 

2λB  = empirical coefficient, Eqs. (98) and (117) 
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20λB  = empirical coefficient, Eqs. (112) and (117) 

21λB  = empirical coefficient, Eqs. (113) and (117) 

fC  = Fanning friction factor also called the skin-friction coefficient 

70−C  = empirical coefficients, Eqs. (94) and (95) 

40−C  = empirical coefficients, Eqs. (104), (108), and (112) 

1εC , 2εC  = turbulence model closure coefficients, Eqs. (7) and (8) 

1ζC – 5ζC  = turbulence model closure coefficients, Eqs. (27) and (28) 

1ωC , 2ωC  = turbulence model closure coefficients, Eqs. (17) and (18) 

λC  = turbulence model closure coefficient, Eq. (85) 

µC  = turbulence model closure coefficient, Eqs. (3) and (8) 

νC  = turbulence model closure coefficient, Eqs. (78) and (81) 
D  = pipe diameter 

30−D  = empirical coefficients, Eq. (95)  
E  = wall damping function, Eq. (10) 

1f , 2f  = wall damping functions, Eq. (10) or (21) 

kf  = wall damping function, Eq. (20) 

µf  = wall damping function, Eq. (9) or (19) 

og  = standard acceleration of gravity at sea level 
J




 = Jacobian tensor for a vector field 
k  = turbulent kinetic energy per unit mass, Eq. (1) 

sk  = equivalent sand-grain roughness 
+
sk  = wall-scaled dimensionless roughness, called the roughness Reynolds number, ντ ss kuk =+  
+
wallk  = dimensionless proportionality coefficient, Eq. (97) 

sk̂  = pipe-scaled dimensionless roughness, Rkk ss /ˆ =  

k  = mean turbulent radius of gyration, Eq. (77) 
p  = instantaneous local pressure 
p  = mean local pressure 
p~  = fluctuating local pressure, ppp −≡~  
p̂  = total hydrostatic pressure, V⋅∇++≡ µρ 3

2ˆ Zgpp o  
p̂  = mean total hydrostatic pressure, V⋅∇++≡ µρ 3

2ˆ Zgpp o  
p
~
ˆ  = fluctuating total hydrostatic pressure, V~~~

ˆ 3
2 ⋅∇+≡ µpp  

p̂  = pseudo mean pressure, ])([ˆ
3
2 V⋅∇++++≡ to kZgpp ννρρ  

R  = pipe radius 

sR̂  = change of variables, )(ˆ ss kRR γ=  
r  = radial coordinate measured outward from the pipe centerline 
r̂  = pipe-scaled dimensionless coordinate, Rrr /ˆ =  
S




 = strain-rate tensor for a vector field 
S  = magnitude of the mean strain-rate tensor, Eq. (56) 
S~  = magnitude of the fluctuating strain-rate tensor, Eq. (57) 
t  = time 

τu  = shear velocity, 21)( ρττ wu =  
V  = instantaneous local velocity vector 

mV  = bulk velocity 
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V  = mean velocity vector 

zV  = axial component of the mean velocity vector 
V~  = fluctuating velocity vector, VVV −≡~  
V  = magnitude of the instantaneous local velocity vector 
V  = magnitude of the mean velocity vector 
V~  = magnitude of the fluctuating velocity vector 

zyx VVV ~,~,~  = Cartesian components of the fluctuating velocity vector 
y  = normal coordinate measured into the fluid from a wall 

+y  = wall-scaled dimensionless coordinate, ντ yuy =+  
ŷ  = pipe-scaled dimensionless coordinate, Ryy /ˆ =  
Z  = geopotential altitude, )( HRHRZ EE += , H  is geometric altitude and RE is the radius of the Earth 
γ  = Nikuradse constant 
δ




 = Kronecker delta 
δ  = deviation function, Eqs. (94) and (95) 
ε  = turbulent-energy-dissipation parameter, Eq. (2) 

oε  = wall damping function, Eq. (11) 

νε  = turbulent-energy-dissipation parameter, oεεεν −≡  
ε~  = exact turbulent-energy dissipation per unit mass, Eq. (59) 
ζ  = turbulent-energy-dissipation parameter in the Robinson-Hassan k-ζ  turbulence model, Eq. (22) 
ζ  = mean fluctuating enstrophy, Eq. (80) 
κ  = von Kármán constant 
λ  = mean vortex wavelength, Eq. (83) 
µ  = dynamic molecular viscosity 

tµ  = dynamic eddy viscosity 
ν  = kinematic molecular viscosity 

tν  = kinematic eddy viscosity 
ρ  = fluid density 

kσ  = turbulence model closure coefficient, Eqs. (6), (8), (18), (28), and (52) 

εσ  = turbulence model closure coefficient, Eqs. (7) and (8) 

ζσ  = turbulence model closure coefficient, Eqs. (27) and (28) 

ωσ  = turbulence model closure coefficient, Eqs. (17) and (18) 
τ


  = turbulent Reynolds stress tensor, Eq. (29) 

wτ  = pipe wall shear stress 
Ω  = mean vorticity vector, V×∇=Ω  
Ω  = magnitude of the mean vorticity vector, 21)( ΩΩ ⋅=Ω  
ω  = turbulent-energy-dissipation frequency, )( kCµεω ≡  

+ω  = wall-scaled dimensionless dissipation frequency, 2
τωνω u=+  

ω~  = root mean square fluctuating vorticity, Eq. (68) 

I.  Introduction 
any of the turbulence models that are now commonly used for computational fluid dynamics (CFD) are based 
on the analogy between molecular and turbulent transport that was first proposed by Boussinesq.1  The 

majority of these turbulence models are usually classified as either k-ε , k-ω, or k-ζ  models.  Conventional k-ε , k-ω, 
and k-ζ  turbulence models are often thought of as being fundamentally different.  Yet, in a larger sense, these three 
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model classifications could all be thought of as energy-dissipation models.  This is because all such models are 
based on the hypothesis that Boussinesq’s eddy viscosity is proportional to the product of the root mean square 
fluctuating velocity, or ,21k  and the dissipation length scale ε23k .  The parameters k and ε  are defined in terms of 
the fluctuating velocity as 

 2
2
1

2
1 ~~~ Vk =⋅≡ VV  (1) 

 )~()~( VJVJ








⋅≡ νε  (2) 

where V~ is the fluctuating velocity vector, )~(VJ




 is its Jacobian tensor, and the overscore denotes an ensemble mean. 
 The eddy-viscosity model that is the foundation for all commonly used k-ε , k-ω, and k-ζ  turbulence models is 

 εν µ
2kCt =  (3) 

where µC  is a dimensionless closure coefficient that is nearly universally accepted as being equal to 0.09.  The k-ε  
turbulence models use Eq. (3) directly.  The k-ω turbulence models use the change of  variables )( kCµεω ≡  to 
transform Eq. (3) to the equivalent relation given by ων kt = .  Similarly, the k-ζ  turbulence models use the change 
of variables νεζ ≡  to transform Eq. (3) to its k-ζ  equivalent, )(2 ζνν µ kCt = .  The commonly used k-ε , k-ω, and  
k-ζ  turbulence models are all based on the hypothesis that the characteristic length scale for turbulent transport is 
proportional to the characteristic length scale for turbulent-energy dissipation. 
 The k-ε  turbulence model that is the foundation for most modern Boussinesq-based turbulence models is that  
of Jones and Launder.2  In addition to the algebraic equation for the kinematic eddy viscosity that is given by  
Eq. (3), the Jones-Launder turbulence model comprises the following equations for incompressible flow; the 
ensemble-averaged continuity equation, 

 0=⋅∇ V  (4) 

the Boussinesq-based Reynolds-averaged-Navier-Stokes (RANS) equations, 

 )]()(2[ˆ)( VSVVV 



tp
t

ννρ +⋅∇+∇−=∇⋅+
∂
∂  (5) 

the Boussinesq-based turbulent-energy-transport equation, 

 ])[()()(2 kk
t
k

ktt ∇+⋅∇+−⋅=∇⋅+
∂
∂ σννεν VSVSV









 (6) 

and a turbulent-dissipation-transport equation obtained by analogy with Eq. (6) 

 ])[()()(2
2
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t
VSVSV
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The commonly used closure coefficients for the k-ε  model are 

 3.1,0.1,92.1,44.1,09.0 21 ===== εεε σσµ kCCC  (8) 

 In this form, the Jones-Launder k-ε  turbulence model does not exhibit the proper behavior near a solid surface.  
Near a no-slip boundary the turbulent velocity fluctuations and turbulent transport are suppressed by the proximity 
of the solid surface.  Modeling this suppression accurately is critical to obtaining accurate predictions for the wall 
shear stress and heat transfer. 
 In the attempt to provide realistic results near a smooth solid surface, the Jones-Launder k-ε  model is often 
implemented with the incorporation of what are commonly called wall damping functions.  In a general form, these 
wall damping functions are added to Eq. (3), Eq. (7), and the definition of ε , 
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 νµµ εν 2kfCt =  (9) 
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 (10) 

 oεεε ν +=  (11) 

A variety of k-ε  turbulence models have been proposed, which differ only in the form of the wall damping functions 
µf , 1f , 2f , E, and oε .  To complete any k-ε  model of this form, the wall damping functions are specified as 

prescribed functions of ν, ,V  k, ,νε  and the normal coordinate y, measured into the fluid from the wall.  The wall 
damping functions used for the k-ε  model are simply empirical corrections that are added to force the model to agree 
more closely with near-wall experimental data.  Although several variations for the k-ε  wall damping functions have 
been proposed,3–7 none have been completely successful. 
 The k-ω turbulence models that are commonly used for CFD are built on exactly the same dissipation-based 
eddy-viscosity model that is given in Eq. (3), where k and ε  are defined in Eqs. (1) and (2).  These commonly used 
k-ω turbulence models are based on applying a simple change of variables to Eq. (3), i.e., 

 )( kCµεω ≡  (12) 

Examining the dimensions of k and ε  from the definitions in Eqs. (1) and (2), we see that ω is a frequency, which is 
directly proportional to the dissipation parameter ε .  The change of variables defined in Eq. (12) applied to Eq. (3) 
yields an algebraic equation for the kinematic eddy viscosity in terms of only the turbulent kinetic energy per unit 
mass, k, and the turbulent-energy-dissipation frequency, ω, 

 ων kt =  (13) 

In addition to this algebraic equation for the kinematic eddy viscosity, the k-ω turbulence model proposed originally 
by Kolmogorov8 has been refined to comprise the following equations for incompressible flow; the continuity 
equation combined with the Boussinesq-RANS equations, 

 0=⋅∇ V  (14) 

 )]()(2[ˆ)( VSVVV 
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the Boussinesq-based turbulent-energy-transport equation obtained by applying the change of variables defined in 
Eq. (12) to Eq. (6), 

 ])[()()(2 kkCk
t
k

ktt ∇+⋅∇+−⋅=∇⋅+
∂
∂ σννων µVSVSV









 (16) 

and a dissipation-frequency-transport equation obtained by analogy with Eq. (16), 

 ])[()()(2 2
21 ωσννωωνωω

ωωω ∇+⋅∇+−⋅=∇⋅+
∂
∂

tt C
k

C
t

VSVSV








 (17) 

The closure coefficients differ slightly from one version of the model to another and have changed as the model  
has evolved over the past six decades.  In the original k-ω model, Kolmogorov8 assumed 1ωC = 0 and he did not 
include the molecular diffusion term.  The closure coefficients often used for the k-ω model9,10 are 

 0.2,0.2,072.0,52.0,09.0 21 ===== ωωωµ σσ kCCC  (18) 

 It should be noted that the turbulence variable ω, which is defined in Eq. (12) and referred to here as the 
dissipation frequency, is commonly called the specific dissipation rate.  However, a specific property is defined 
traditionally to be a property per unit mass, so the expression specific dissipation rate could be easily confused with 
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the dissipation rate per unit mass.  Hence, because ω is a frequency defined directly from the viscous dissipation 
parameter ε  using Eq. (12), we shall continue to refer to ω as the dissipation frequency.   
 As is the case for the k-ε  model, the standard k-ω model does not exhibit the proper behavior near a solid wall.  
By direct analogy with what has been done with the k-ε  model, the k-ω model can also be implemented with the 
incorporation of wall damping functions.  Although this terminology is not commonly used with the k-ω model, to 
emphasize similarities between the low-Reynolds-number corrections used for the k-ω model and those used for the 
k-ε  model, here we will use exactly the same notation and terminology for both models.  Adding wall damping 
functions to Eqs. (13), (16), and (17) yields 

 ων µ kft =  (19) 

 ])[()()(2 kkfCk
t
k

ktkt ∇+⋅∇+−⋅=∇⋅+
∂
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 (21) 

To complete any k-ω turbulence model in this form, the wall damping functions µf , kf , 1f , and 2f , could be 
specified as prescribed functions of ν, ,V  k, and ω.  As an example of a k-ω turbulence model that includes such 
wall damping functions, consider what is commonly called the Wilcox 1998 k-ω model,9 which is implemented in 
FLUENT.10  Although Wilcox9 uses different notation, his k-ω formulation is easily rearranged into the format of 
Eqs. (19)–(21), see Phillips, Hunsaker, and Spall.11  As is the case for the k-ε  model, these wall damping functions 
are simply empirical corrections, which are employed to force the model to agree more closely with near-wall 
experimental data. 
 For the most recent advancements in the k-ω model, including wall boundary conditions for rough and 
hydraulically smooth surfaces, see Wilcox.12,13  As Wilcox points out, the ability to implement rough-wall boundary 
conditions is a key advantage of the k-ω parameterization over the k-ε  parameterization. 
 There is also another change of variables that has been less commonly applied to the k-ε  turbulence model.   
This is based on a turbulence variable called enstrophy, which is commonly interpreted to be the mean squared 
magnitude of the fluctuating vorticity.  Although this was presented as the physical interpretation of ζ  in their 
original development of the k-ζ  turbulence model, Robinson et al.14,15 defined the approximate turbulent-energy 
dissipation as ζνε ≡ , which constitutes a simple change of variables from the k-ε  model, i.e., 

 νεζ ≡  (22) 

Robinson et al.14,15 applied this change of variables to Eq. (3) to obtain an algebraic equation for the kinematic eddy 
viscosity in terms of the turbulent kinetic energy per unit mass, k, the molecular viscosity, ν , and their so called 
turbulent enstrophy, ζ , 

 )(2 ζνν µ kCt =  (23) 

In addition to this algebraic equation for the kinematic eddy viscosity, the Robinson-Hassan k-ζ  turbulence model 
comprises the following equations for incompressible flow; the continuity equation combined with the Boussinesq-
RANS equations, 

 0=⋅∇ V  (24) 

 )]()(2[ˆ)( VSVVV 
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the Boussinesq-based turbulent-energy-transport equation obtained by applying the change of variables defined in 
Eq. (22) to Eq. (6), 
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 (26) 
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and a modeled turbulent-enstrophy-transport equation, 
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where V×∇=Ω  and ΩΩ ⋅=2Ω .  The closure coefficients used for the k-ζ  model are 

 
46.11,8.11,20.9,70.0

,37.2,84.0,40.0,50.1,09.0

65

4321

====

=====

ζ

µ

σσζζ

ζζζζ

kCC
CCCCC

 (28) 

II.  The Traditional Turbulent-Energy-Transport Equation 
 The turbulent-energy-transport equation that is used in the traditional k-ε , k-ω, and k-ζ  turbulence models is 
commonly developed from the Navier-Stokes equations and the definition of the specific Reynolds stress tensor 
(i.e., the Reynolds stress tensor divided by the fluid density), 
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Multiplying the vector Navier-Stokes equation by the fluctuating velocity vector, taking the ensemble average, and 
adding the resulting tensor equation to its transpose yields a differential transport equation for the Reynolds stress 
tensor.  From the definitions in Eqs. (1) and (29), the turbulent kinetic energy per unit mass, k, is the negative of 
one-half the trace of the specific Reynolds stress tensor.  Hence, the turbulent-energy-transport equation is 
commonly obtained from the negative of one-half the trace of the specific Reynolds-stress-transport equation.  For 
the case of compressible flow with constant dynamic viscosity, this yields 
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 The left-hand side of Eq. (30) is the mean substantial derivative of k, which is the time rate of change of the 
specific turbulent kinetic energy for a fluid element as it moves with the mean flow.  The first term on the right-hand 
side of Eq. (30) is known as the production, because it is the rate at which specific kinetic energy is transferred from 
the mean flow to the turbulent fluctuations.  The second term on the right is commonly referred to as the dissipation 
per unit mass, because it is usually approximated as being the rate at which specific turbulent kinetic energy is 
converted to thermal energy through viscous dissipation.  The third and fourth terms on the right-hand side of   
Eq. (30) are called dilatation terms because they account for interchange between turbulent kinetic energy and 
thermal energy resulting from fluid expansion or compression.  The fifth term on the right-hand side of Eq. (30) 
arises from molecular diffusion, which is the transport of specific turbulent kinetic energy resulting from the 
molecular motions within the fluid.  The remaining terms in Eq. (30) are usually called turbulent transport terms, 
because they include the transport of specific turbulent kinetic energy that results from the turbulent fluctuations. 
 The production term in Eq. (30) can be expressed in terms of the eddy viscosity, mean velocity, and specific 
turbulent kinetic energy by using the Boussinesq hypothesis, which yields 

 δτ








 )()(2 3
2 VVS ⋅∇+−= tt k ννρ  (31) 

Applying Eq. (31), the first term on the right-hand side of Eq. (30) can be written as 
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The last term in Eq. (32) is zero for incompressible flow and it is sometimes neglected even for compressible flow.  
The approximate dissipation term in Eq. (30) is simply the parameter ε  defined in Eq. (2), which is related to ω and 
ζ  through Eqs. (12) and (22), i.e., 

 ζνωεν µ ≡≡≡⋅ kC)~()~( VJVJ








 (33) 

The dilatation terms in Eq. (30) are zero for incompressible flow, and even for compressible flow they are 
commonly assumed to be negligible except for the case of flows with high supersonic mean Mach numbers.  
Accordingly, the third and fourth terms on the right-hand side of Eq. (30) are usually neglected for turbulence 
models in common use today, 

 0)~()~(~ 2
3
1 ≅⋅∇−⋅∇ VV νρp  (34) 

The turbulent transport terms in Eq. (30) are typically combined and modeled as a pure gradient-diffusion process, 
which is analogous to the molecular diffusion term in Eq. (30).  Thus, it is usually assumed that the terms in the 
square brackets on the last line of Eq. (30) can be combined and modeled as 

 kpV kt ∇−=⋅∇−+ )(~)~(~~~~
3
12

2
1 σµµρ VVVV  (35) 

where kσ  is a closure coefficient usually treated as a known scalar constant.  Using Eqs. (32)–(35) in Eq. (30) yields 
the traditional modeled version of the turbulent-kinetic-energy-transport equation, which is used with the traditional 
k-ε , k-ω, and k-ζ  turbulence models.  For incompressible flow this results in Eqs. (6), (16), and (26). 

III.  An Alternate Turbulent-Energy-Transport Equation 
 Most turbulence models that utilize a version of the turbulent-kinetic-energy-transport equation given by Eq. (30) 
are based on the approximation that the turbulence parameter ε , which is defined in Eq. (2), is the dissipation of 
turbulent kinetic energy per unit mass.  In general, this is not the case.  We now consider an alternative formulation 
of the transport equation for turbulent kinetic energy, which leads to the exact expression for viscous dissipation. 
 The turbulent-energy-transport equation can be alternately developed from the mechanical energy equation, 
which is obtained by taking the dot product of the fluid velocity vector with the Navier-Stokes equations written in 
vector form.  The Navier-Stokes equations can be written as 

 )(ˆ)](2[)( ρµρ ∇+∇−⋅∇=
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Taking the dot product of Eq. (36) with the fluid velocity vector yields 
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which is readily rearranged using the mathematical identity )( 2
2
1 VdVdV =  to give 
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Expanding the first term on the right-hand side of Eq. (38) in Cartesian coordinates and rearranging produces the 
mathematical identity 
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Hence, the dot product of the Navier-Stokes equation with the fluid velocity vector can be written as what is called 
the mechanical energy equation for a Newtonian fluid 
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The first term on the right-hand side of Eq. (40) accounts for molecular transport of mechanical energy.  This 
divergence term describes the rate at which mechanical energy is transported from one point to another within the 
fluid as a result of molecular motion.  The last term in Eq. (40) is exactly the viscous dissipation of mechanical 
energy per unit volume.  This same term, with the opposite sign, also appears as a source term in the thermal-
energy-transport equation.  It is exactly the volumetric rate at which mechanical energy is converted to thermal 
energy through the process of viscous dissipation. 
 Writing the instantaneous velocity and pressure in Eq. (40) as the sum of the mean and fluctuating components 
and taking the ensemble average results in 
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Similarly, from the ensemble average of Eq. (36), the Reynolds-averaged Navier-Stokes equations can be written in 
vector notation as 
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Taking the dot product of this equation with the mean velocity vector, applying the mathematical identity given in 
Eq. (39), and rearranging yields the mean mechanical energy equation 
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After applying the mathematical identities 
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to Eq. (43), we obtain 
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Subtracting Eq. (46) from Eq. (41) gives 
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Applying the mathematical identities 
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to Eq. (47) yields 
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From the continuity equation, the definition of the Reynolds stress tensor, and the definition of the total hydrostatic 
pressure, we have the well known relations 
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Hence, the turbulent-energy-transport equation can be rearranged as 
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 The first three terms on the right-hand side of Eq. (50) are exactly the volumetric production, viscous 
dissipation, and pressure dilatation for turbulent kinetic energy, respectively.  The next term is the molecular 
transport of turbulent kinetic energy per unit volume.  The last term on the right-hand side of Eq. (50) accounts for 
the volumetric turbulent transport of turbulent kinetic energy.  The only approximation that was made in the 
development of Eq. (50) is that of a Newtonian fluid. 
 It is important to recognize from Eq. (50) that molecular transport of  turbulent kinetic energy is not a simple 
gradient diffusion process.  The contribution from the first part of the molecular transport term, k∇µ , is gradient 
diffusion.  However, the contribution from the remaining portion of this term, τ



⋅∇ν , is not necessarily gradient 
diffusion.  Accordingly, even if we accept the Boussinesq analogy between molecular and turbulent transport, we 
should not expect turbulent transport of  kinetic energy to be a simple gradient diffusion process in general. 
 Using only mathematical identities, it can be shown that Eq. (50) is mathematically equivalent to Eq. (30) under 
the assumption of constant dynamic viscosity, which is an assumption used in the development of Eq. (30) but not 
in the development of Eq. (50).  However, the comparison shows that the turbulence variable ε  defined in Eq. (2) is 
not precisely the dissipation of turbulent kinetic energy per unit mass.  Using only mathematical identities and the 
definition of the Reynolds stress tensor, the turbulence variable ε  can be written in terms of the exact dissipation per 
unit mass, i.e., 
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 (51) 

The first term on the right-hand side of Eq. (51) is exactly the viscous dissipation of turbulent kinetic energy per 
unit mass, which is obtained by dividing the second term on the right-hand side of Eq. (50) by the fluid density, ρ .  
The second term on the right-hand side of Eq. (51) cancels one of the dilatation terms in Eq. (30) to produce the 
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pressure dilatation that appears in Eq. (50).  The remaining divergence term on the right-hand side of Eq. (51) 
accounts for transport, not dissipation.  Thus, we see that the turbulence variable ε  is not exactly the viscous 
dissipation of turbulent kinetic energy per unit mass and the fifth term on the right-hand side of Eq. (30) does not 
comprise the total contribution from molecular transport. 
 Applying Boussinesq’s analogy between molecular and turbulent transport to the turbulent transport term in  
Eq. (50) suggests 
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and Eq. (50) becomes 
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For this Boussinesq model, the Reynolds stress tensor is given by Eq. (31) and 
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Applying Eqs. (32) and (54) to Eq. (53) results in an alternate version of the Boussinesq-based turbulent-energy-
transport equation, 
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where S  and S~ are the magnitudes of the mean and fluctuating components of the strain-rate tensor, respectively, 
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For incompressible flow, Eq. (55) reduces to 
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 Although the third term on the right-hand side of Eq. (55) is exactly the volumetric dissipation of turbulent 
kinetic energy, it remains an unknown function of the turbulent velocity fluctuations.  To close this formulation, we 
must have an additional equation to relate this dissipation to the other turbulence parameters and the mean flow. 
 If  we were to close this formulation by following what was done in the development of  the traditional k-ε  
turbulence model, then this volumetric dissipation could simply be written in terms of the unknown dissipation per 
unit mass, which is obtained by dividing the third term on right-hand side of Eq. (55) by the fluid density, ρ , 
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Using Eq. (59) in Eq. (55) and neglecting the pressure dilatation term, as was done in the development of Eq. (6), 

 0)~(~ ≅⋅∇ Vp  (60) 

we obtain an alternate version of the turbulent-energy-transport equation that could be used to replace Eq. (6) 
in any conventional k-ε  turbulence model, 
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The tilde over the symbol ε  in Eq. (61) is simply used to indicate that this is the exact dissipation per unit mass, as 
defined in Eq. (59), and not the approximate dissipation per unit mass, defined in Eq. (2).  Nevertheless, 
conventional k-ε  turbulence models are based on the assumption that ε  is the dissipation per unit mass.  Thus, ε  and 
ε~ could be used interchangeably in conventional k-ε  turbulence models. 
 As an alternative to traditional k-ε  turbulence models, the dissipation term that appears in Eqs. (50) and (55) can 
be mathematically rearranged using the mathematical identity 
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The last term in Eq. (62) can be expanded using the mathematical identity  
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to yield the equivalent mathematical identity 
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Using Eq. (64) in Eq. (59), the exact turbulent-energy dissipation per unit mass can be written as 
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Using the definition of the specific Reynolds stress tensor from Eq. (29), the second ensemble mean on the right-
hand side of Eq. (65) can be written as 
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Using Eq. (66) in Eq. (65), the exact turbulent-energy dissipation per unit mass can be expressed as 

 
]}[{

][
~)~()(2)~(~

)~()~()~(2~

2
3
42

2
3
1

VVV

VVSVS

⋅∇+⋅∇⋅∇−⋅∇+=

⋅∇−⋅≡

ρων

νε

τ












 (67) 

where ω~ is the root mean square of the fluctuating vorticity, 
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The three components of dissipation that are seen in Eq. (67) are referred to as 
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After using Eq. (67) in Eq. (50), the turbulent-energy-transport equation can be written as 
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 (69) 

Because only mathematical identities were used to obtain Eq. (69) from Eq. (50), these two equations are equivalent.  
The only approximation that was made in the development of  Eq. (69) is that of a Newtonian fluid. 
 Applying Boussinesq’s analogy between molecular and turbulent transport of kinetic energy to Eq. (69) gives 
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Using Eqs. (32) and (54) in Eq. (70) produces the Boussinesq-transport equation 
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Huang et al.16 have shown that the dilatational dissipation rate and other terms involving the divergence of the 
fluctuating velocity are negligibly small, at least up to supersonic mean Mach numbers of  3.  Hence, Eq. (71) is 
closely approximated as 
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The three lines on the right-hand side of Eq. (72) are production, dissipation, and the combination of molecular and 
turbulent transport, respectively. 
 Equation (72) is mathematically identical to Eq. (61).  The difference between Eq. (61) and Eq. (72) is only the 
form in which the turbulent-energy dissipation per unit mass has been written.  In Eq. (61), this viscous dissipation 
is simply treated as an unknown turbulence variable, which is defined in Eq. (59).  In Eq. (72), the viscous 
dissipation of turbulent energy per unit mass has been related to the root-mean-square (RMS) fluctuating vorticity, 
through the mathematical identity in Eq. (67).  Because the RMS fluctuating vorticity is also an unknown function 
of the turbulent fluctuations, the difference between Eq. (61) and Eq. (72) is simply a change of variables.  From 
Eqs. (54) and (67), after neglecting the fluctuating dilatational terms, this change of variables is 
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where S~ is the RMS fluctuating strain rate and ω~ is the RMS fluctuating vorticity. 
 At first, it may appear that the change of variables in Eq. (73) provides no gain whatsoever.  Equation (61) was 
originally written in terms of three unknown functions of the turbulent fluctuations; the eddy viscosity, tν , the 
specific turbulent kinetic energy, k, and the exact turbulent dissipation per unit mass, ε~.  With the application of   
Eq. (73), we have simply replaced the unknown turbulent dissipation with the unknown RMS turbulent vorticity, 
while retaining the unknown eddy viscosity and specific turbulent kinetic energy. 
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 There are two fundamental advantages to this reparameterization of the turbulent-energy-transport equation.  
First, vorticity is a solenoidal function of the flow field.  In other words, the divergence of vorticity is always zero, 

0)( =×∇⋅∇ V .  This can provide a significant simplifying advantage in the development of a transport equation for 
ω~, which is not available for the development of an ε~ transport equation.  A second and more subtle advantage to 
the change of variables defined by Eq. (73) is that vorticity is a well-understood function of any fluid flow field.  
The turbulent dissipation, on the other hand, does not have such a fundamental physical interpretation. 
 In the form of either Eq. (61) or Eq. (72), the turbulent-energy-transport equation provides one differential 
equation in three unknown turbulence variables.  Completing either formulation requires the addition of two more 
equations.  The ultimate accuracy of the complete turbulence model depends on how well the modeled equations 
capture the physics of the actual turbulent flow.  For incompressible flow, the form of the turbulent-energy-
transport equation given by Eq. (61) reduces to 
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Completing this formulation requires two additional equations relating the eddy viscosity, tν , the specific turbulent 
kinetic energy, k, and the exact turbulent dissipation per unit mass, ε~.  Similarly, for incompressible flow, the form 
of the turbulent-energy-transport equation given by Eq. (72) becomes 
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Completing this formulation requires two additional equations relating the eddy viscosity, tν , the specific turbulent 
kinetic energy, k, and the RMS fluctuating vorticity, ω~. 

IV.  Concerns with Traditional Dissipation-Based Turbulence Models 
 At this point we can identify six possible concerns with the traditional k-ε , k-ω, and k-ζ  turbulence models that 
are commonly used for CFD. 

1. The dissipation length scale used to obtain Eqs. (3), (13) and (23) is that associated with the smaller turbulent 
eddies having the highest strain rates per unit kinetic energy; not that associated with the larger energy-
bearing eddies, which are primarily responsible for turbulent transport. 

2. The transport equations given by Eqs. (7), (17), and (27) were obtained simply from dimensional analysis and 
analogy with the turbulent-energy-transport equation.  They were not developed in a rigorous manner from 
the Navier-Stokes equations. 

3. The so called turbulent-energy dissipation per unit mass, ε , which is defined in Eq. (2) and used in Eq. (6) 
and in the development of both Eq. (16) and Eq. (26), is not equal to the true dissipation of turbulent kinetic 
energy per unit mass, which is specified exactly in Eq. (59). 

4. Because the approximate turbulent-energy dissipation per unit mass, ε , that is used in the traditional k-ε , k-ω, 
and k-ζ  turbulence models includes a portion of the total molecular transport, the so called molecular 
transport terms that are used in Eqs. (6), (16), and (26) do not include the total molecular transport of 
turbulent kinetic energy per unit mass. 

5. Because a part of the molecular transport was neglected in the development of Eqs. (6), (16), and (26), 
subsequent application of Boussinesq’s analogy between molecular and turbulent transport also results in 
neglecting a portion of the turbulent transport of turbulent kinetic energy per unit mass. 

6. Using the dissipation length scale to define the eddy viscosity as was done in Eqs. (3), (13) and (23) predicts 
a Reynolds stress tensor that is inversely proportional to the molecular viscosity, whereas the definition that is 
given in Eq. (29) shows that the Reynolds stress tensor should not depend directly on molecular viscosity. 

The first three of these concerns are very straightforward and well documented in the literature.12  The last three 
deserve some additional attention. 
 In the original development of the k-ε  turbulence model and in many subsequent presentations of the 
turbulence-energy-transport equation, the parameter ε  that is defined in Eq. (2) is presented as being exactly the 
turbulent-energy dissipation per unit mass.  With this misinterpretation, the molecular diffusion term k2∇ν  is 
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commonly presented as being the total molecular transport of turbulent energy per unit mass.  Although it is now 
generally recognized that ε  is not precisely the turbulent-energy dissipation per unit mass, its continued use is 
typically justified on the grounds that the additional terms shown in Eq. (51) are small compared with the turbulent 
transport terms on the right-hand side of Eq. (30).  On these same grounds one could also justify neglecting the 
additional molecular transport term that appears in Eq. (50) but not in Eq. (30).  In fact, for many turbulent flows, all 
molecular transport can be neglected in comparison with the turbulent transport.  The most significant concern with 
the traditional k-ε , k-ω, and k-ζ  turbulence models is not the lack of precision in defining the dissipation or the 
molecular transport.  A more significant concern is that associated with the application of  Boussinesq’s analogy 
between molecular and turbulent transport to a molecular transport term that has been less than rigorously 
developed. 
 The traditional k-ε , k-ω, and k-ζ  turbulence models are all based on approximating the turbulent transport of  
turbulent kinetic energy as pure gradient diffusion.  For the case of incompressible flow, these models all assume a 
turbulent-kinetic-energy flux given by kkt ∇)( σν .  The more rigorous development used to obtain Eq. (58) suggests 
that improved results for incompressible flow might be obtained by using a turbulent-kinetic-energy flux that is 
specified by 
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This is based on a more direct analogy between turbulent and molecular transport. 
 Perhaps the greatest concern with traditional k-ε , k-ω, and k-ζ  turbulence models is that all fail to exhibit proper 
dependence on molecular viscosity.  From the definition of the Reynolds stress tensor given by Eq. (29), we see that 
the Reynolds stresses depend on only the fluid density and turbulent velocity fluctuations.  They are independent of  
other natural fluid properties such as the molecular viscosity.  Hence, if  the Boussinesq analogy between turbulent 
and molecular transport is strictly followed, the dynamic eddy viscosity should be related to only the fluid density 
and turbulent velocity fluctuations.  The eddy viscosity should not depend directly on molecular viscosity. 
 Because the turbulent-energy-dissipation parameter, ε , is directly proportional to the molecular viscosity as 
shown in Eq. (2), the dissipation length scale ε23k  is inversely proportional to the molecular viscosity.  Thus, 
assuming that the transport length scale is proportional to this dissipation length scale will always result in an 
inverse relation between the turbulent eddy viscosity and the molecular viscosity.  Applying the definition of ε  from 
Eq. (2) to the relation for eddy viscosity given by Eq. (3), yields 
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This violates the fundamental requirement for a consistent Boussinesq model of turbulent transport, which requires 
that ν t must depend on only the turbulent velocity fluctuations, just as the molecular viscosity depends on only the 
molecular velocity fluctuations. 
 For the traditional k-ω turbulence models, the interpretation of ω has been a matter of some controversy.  It is 
sometimes viewed simply as the ratio of the turbulence velocity scale to the turbulence length scale and is assumed 
to depend on only the velocity fluctuations.  Similarly, we could also think of ε  simply as another turbulence 
variable, which depends on only the velocity fluctuations.  These interpretations for ε  and ω resolve the issue of the 
eddy viscosity depending directly on the molecular viscosity when eddy viscosity is defined as either εν µ /kCt

2=  or 
ων /kt = .  However, using these same interpretations when considering the viscous dissipation terms ε  and ωµ kC , 

which appear in Eq. (6) and Eq. (16), respectively, leads to the even more absurd conclusion that viscous dissipation 
is independent of molecular viscosity. 
 The previous statement that, “eddy viscosity should not depend directly on molecular viscosity,” should not be 
taken to imply that molecular viscosity has no effect on the eddy viscosity.  The key word is directly.  Of course, 
molecular viscosity has an indirect effect on the eddy viscosity, because molecular viscosity affects the velocity 
fluctuations through its occurrence in the transport equations.  In fact, there are important turbulent flows where the 
production and dissipation can combine in a particular manner to produce velocity fluctuations that result in an eddy 
viscosity that is nearly inversely proportional to the molecular viscosity, but this is not always the case. 
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V.  An Alternate Turbulent Frequency and Length Scale 
 From the kinetic theory of gases, the kinematic molecular viscosity is found to be proportional to the product of 
the molecular mean free path and the square root of the mean molecular kinetic energy per unit mass.  Following the 
usual analogy with the kinetic theory of gases, the characteristic translational velocity associated with turbulent 
transport is assumed to be proportional to the square root of the specific turbulent kinetic energy, .21k   For traditional 
k-ε , k-ω, and k-ζ  turbulence models, the turbulent length scale associated with turbulent transport is assumed to be 
the dissipation length scale, which is proportional to ε23k , and the frequency associated with turbulent transport is 
assumed to be the dissipation frequency, which is proportional to kε . 
 An alternative to traditional k-ε , k-ω, and k-ζ  turbulence models can be obtained by using the RMS fluctuating 
vorticity, ω~, as the characteristic frequency associated with turbulent transport.  This is attractive, because the 
instantaneous local angular velocity of the fluid element at any point in a flow field is one-half the instantaneous 
local vorticity.  For a fluctuating flow field that has a mean velocity of zero, the mean kinetic energy per unit mass, 
k, can be expressed as either one-half the mean square of the translational velocity, or alternately as one-half the 
mean square of the angular velocity multiplied by the square of an energy-weighted turbulent length scale, which is 
the mean turbulent radius of gyration denoted here as k .  Because the angular velocity is one-half the vorticity, we 
obtain the relation 
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Equation (76) can be simply thought of as the definition of the local mean turbulent radius of gyration, which in 
view of the definition of the RMS fluctuating vorticity in Eq. (68) is 

 ω~8kk ≡
  (77) 

There are other possible ways to define a local turbulence length scale from only the turbulent kinetic energy and the 
RMS fluctuating vorticity.  However, these will differ from the length scale defined in Eq. (77) only by a constant. 
 Continuing to follow the analogy with the kinetic theory of gases, the kinematic eddy viscosity should be 
proportional to the characteristic turbulent length scale multiplied by the characteristic translational velocity.  
Because the energy-weighted turbulent length scale is proportional to ω~21k  and the characteristic translational 
velocity is proportional to 21k , the kinematic eddy viscosity should be proportional to ω~k .  This produces the 
foundation for an energy-vorticity turbulence model, which is based on the following two equations for 
incompressible flow; an algebraic equation for the kinematic eddy viscosity, 

 ων ν
~kCt =  (78) 

and the turbulent-energy-transport equation from Eq. (75), 
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where νC  and kσ  are dimensionless closure coefficients.  Completing this formulation requires one additional 
equation relating the eddy viscosity, tν , the specific turbulent kinetic energy, k, the RMS fluctuating vorticity, ω~, 
and the mean velocity vector, V.  The formulation could be completed by including a vorticity-transport equation 
for the RMS fluctuating vorticity, ω~. 
 Equations (78) and (79) are easily recast in terms of the mean fluctuating enstrophy, which is commonly denoted 
as ζ  and defined to be the mean squared magnitude of the fluctuating vorticity, 

 )~()~(~2 VV ×∇⋅×∇≡≡ ωζ  (80) 

Using Eq. (80) in Eqs. (78) and (79) produces the foundation for a k-ζ  turbulence model, which is based on the 
following two equations for incompressible flow; an algebraic equation for the kinematic eddy viscosity, 
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 21ζν ν kCt =  (81) 

and the turbulent-energy-transport equation obtained by applying Eq. (80) to Eq. (79), 
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Completing this formulation requires one additional equation relating the eddy viscosity, tν , the specific turbulent 
kinetic energy, k, the mean fluctuating enstrophy, ζ , and the mean velocity vector, V.  This formulation could be 
completed by including Eq. (27) from the traditional Robinson-Hassan k-ζ  turbulence model.14,15  Perhaps a more 
promising enstrophy-transport equation for closing the proposed k-ζ  turbulence model can be obtained from the 
DNS-based solenoidal-dissipation model of Kreuzinger, Friedrich, and Gatski.17 
 Equations (78) and (79) can also be reparameterized using a turbulent-transport length scale in place of the RMS 
fluctuating vorticity.  This turbulent-transport length scale can be defined conveniently so that the kinematic eddy 
viscosity is equal to the product of the length scale and the velocity scale.  In view of the definitions in Eqs. (1) and 
(68), this suggests the change of variables 
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where the turbulent-transport length scale, λ , will be referred to here as the mean vortex wavelength.  Applying this 
change of variables to Eqs. (78) and (79) produces the foundation for a k-λ turbulence model, which is based on 
the following two equations for incompressible flow; an algebraic equation for the kinematic eddy viscosity, 

 21kt λν =  (84) 

and the turbulent-energy-transport equation obtained by applying Eq. (83) to Eq. (79), 
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where λC  and kσ  are dimensionless closure coefficients, 2
νλ CC ≡ .  Completing this formulation requires one 

additional equation relating the eddy viscosity, tν , the specific turbulent kinetic energy, k, the mean vortex 
wavelength, λ , and the mean velocity vector, V. 

VI.  The Energy-Vorticity Turbulence Variables in Fully Rough Pipe Flow 
 To complete a two-equation energy-vorticity turbulence model, a second transport equation like that suggested 
by Kreuzinger, Friedrich, and Gatski17 is required; and the closure coefficients in the turbulent-energy-transport 
equation must be evaluated.  Closure coefficients are typically evaluated from well established experimental data.  
One case that is very well documented is fully developed flow in a pipe.  Because the friction factor becomes 
independent of the Reynolds number for fully rough pipe flow, estimating the closure coefficients from data for 
rough surfaces might be more straightforward than using data for smooth surfaces.  In this section, the mean-vortex-
wavelength and RMS-fluctuating-vorticity profiles for fully developed, fully rough pipe flow are inferred from  
Eqs. (84) and (85) combined with experimental data and well established empirical correlations.  This will provide 
some insight into the nature of the energy-vorticity turbulence variables and establish certain relations between the 
closure coefficients. 

A. Friction Factor 
 The foundation for what is known today about turbulent flow in rough pipes is the semi-empirical mixing-length 
theory developed by Ludwig Prandtl and his students.  The rough-wall version of Prandtl’s mixing-length theory is 
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based on experimental data collected by Prandtl’s famous student Johann Nikuradse18 using pipes roughened 
artificially with uniform grains of sand.  Nikuradse’s data for fully rough pipe flow is also the foundation for the 
empirical relations commonly use today for predicting pressure losses in rough pipes; including the Colebrook 
equation,19 which was used to generate the well known Moody chart.20  Based on his experimental results for the 
Darcy friction factor, which is four times the Fanning friction factor often called the skin-friction coefficient, 
Nikuradse18 proposed using the following empirical correlation for fully rough pipe flow: 

 Darcy friction factor 2
102
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τ  (86) 

where R is the pipe radius, Vm is the bulk velocity, and ks is the roughness element size defined to be the screen mesh 
size of the sieve that Nikuradse used to sift the sand.  Equation (86) provided a key result in the development of  our 
current capability to predict pressure losses for turbulent flow through rough pipes, and it is referred to herein as the 
Nikuradse equation.  Equation (86) was the starting point for the development the Colebrook equation19 and the 
associated Moody chart.20  Thus, the Colebrook equation and the Moody chart assume the validity of  the 
Nikuradse equation. 
 The Nikuradse equation is often presented in a form that differs slightly from Eq. (86).  In the original work by 
Nikuradse18 and its subsequent presentation by another of  Prandtl’s famous students, Hermann Schlichting,21 the 
pipe roughness was characterized using the dimensionless roughness ratio, skR .  When Colebrook19 applied the 
Nikuradse equation to his work, he chose to characterize pipe roughness using the dimensionless relative roughness, 

Dks , where D is the pipe diameter.  Thus, the Nikuradse equation was rearranged by Colebrook into the form 
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Rounding the constants to two significant digits yields the most widely accepted form of  the Nikuradse equation, 
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The validity of  Eq. (88) is so widely accepted that today it has become the definition of  surface roughness.  
The roughness of any surface is typically defined in terms of the equivalent sand-grain roughness first introduced 
by Schlichting,22 which is defined to be the value of  ks that gives the correct fully rough limit for the friction factor 
when inserted into Eq. (88).  It should be noted that when Moody20 used the relation developed by Colebrook19 to 
generate the well known Moody chart, he used the symbol ε  to denote Nikuradse’s sand-grain roughness.  Here we 
will continue to use ks to signify the equivalent sand-grain roughness, as was done by Nikuradse18 and Schlichting.21 
 The Nikuradse equation expressed equivalently in Eqs. (86) and (88) provides an accurate means for predicting 
the Darcy friction factor when the Reynolds number is large enough so that the friction factor becomes independent 
of the molecular viscosity.  However, the Nikuradse equation alone provides no information regarding how large the 
Reynolds number must be to make this empirical correlation valid.  From Nikuradse’s data18 on artificially 
roughened pipes, it is commonly accepted that this correlation for fully rough flow is valid whenever the Reynolds 
number based on the shear velocity τu  and the equivalent sand-grain roughness ks, usually called the roughness 
Reynolds number, is greater than about 70.  The Nikuradse equation can be used as a reference when calculating the 
Darcy friction factor for fully rough pipe flows. 
 Of the conventional k-ε, k-ω, and k-ζ  turbulence models, only k-ω models are capable of implementing rough-
wall boundary conditions without employing wall functions.  However, even the current k-ω models are not capable 
of predicting friction factors that agree with experimental data at very high roughness Reynolds numbers, where the 
molecular viscosity is negligible compared to the eddy viscosity throughout the pipe.  The effects of surface 
roughness are incorporated into conventional k-ω turbulence models by altering the surface boundary condition on 
ω.  For example, with his 1998 model, Wilcox23 suggests using the rough-wall boundary condition 
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For his 2006 model, Wilcox24 recommends using 
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A comparison between experimental data18,25 and results obtained from the Wilcox 1998 k-ω model23 is shown in 
Fig. 1 for roughness Reynolds numbers greater than 70.  The Darcy friction factors obtained from the Wilcox 2006 
k-ω model24 are shown in Fig. 2.  To assure that the results shown in Figs. 1 and 2 are grid resolved, converged 
solutions were obtained on coarse, medium, and fine grids, containing 401, 801, and 1601 nodes, respectively.  The 
values of +y  at the first node from the pipe wall in these coarse, medium, and fine grids were 0.4, 0.2, and 0.1, 
respectively.  The Richardson26 extrapolation was then used with these three solutions to obtain the results shown in 
Figs. 1 and 2.  The maximum difference observed between the Richardson26 extrapolation and the solution obtained 
on the fine grid was 1.3 percent for the 1998 model and 0.04 percent for the 2006 model. 
 The 1998 and 2006 codes provided by Wilcox would not converge for high roughness Reynolds numbers, which 
encompasses the region to the right of  the right-hand dashed curves in Figs. 1 and 2.  Along these curves the ratio of 
the eddy viscosity near the pipe wall to the molecular viscosity is nearly constant at about 1.7 for the 1998 model 
and 1.3 for the 2006 model.  As a result, the Wilcox 1998 and 2006 k-ω models cannot be used to predict the 
distributions of the turbulence variables in the fully rough region, where the molecular viscosity is negligible 
compared to the eddy viscosity throughout the pipe.  One important objective for an improved rough-wall turbulence 
model should be the capability to accurately predict the Darcy friction factor at high roughness numbers. 
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Figure 1.  Darcy friction factor, as predicted from the Wilcox 1998 k-ω model.23 
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Figure 2.  Darcy friction factor, as predicted from the Wilcox 2006 k-ω model.24 

B. Mean-Velocity Distribution 
 A sensitive indicator for the effect of surface roughness in a pipe is given by the behavior of the mean velocity 
profile.  Mean-velocity-profile measurements taken by Nikuradse18 in the fully rough limit were found to be in 
excellent agreement with the empirical correlation 
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where y is the normal coordinate measured into the fluid from the pipe wall.  Equation (91) is commonly referred to 
as the law of  the wall for fully rough pipe flow.  A comparison between Eq. (91) and experimental data collected by 
Nikuradse18 is shown in Fig. 3. 
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Figure 3.  Experimental velocity profiles in rough pipes at high Reynolds numbers.18 
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 Obviously, Eq. (91) does not apply over the entire flow field from the pipe wall to the centerline, because it 
satisfies neither the no-slip boundary condition at the pipe wall nor the symmetry boundary condition at the pipe 
centerline.  In order to satisfy these two boundary conditions and provide better agreement with Nikuradse’s 
experimental data while leaving the integral of the velocity profile unchanged, a correction is applied to the law of  
the wall that is given by Eq. (91),27 

 δ++=
0

2 )1ˆˆ(lnˆ
D

yRR
V
V ss

m

z  (92) 

or 

 
2

0
ˆ 

)1ˆˆ(ln1
s

s
z

R
DyR

u
V

κ
δ

κτ
++=  (93) 

A seventh-order corrective function δ  is given by27 
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 (95) 

The eight coefficients in Eq. (94) that are given in Eq. (95) were adjusted to optimize the fit with Nikuradse’s 
velocity profile data for fully rough flow while satisfying the physical constraints imposed on the empirical function 
δ  by the symmetry and no-slip boundary conditions.  The values used for the von Kármán constant, κ , and the 
Nikuradse constant, γ , were also adjusted to optimize the fit with Nikuradse’s velocity profile data.  Hence, we are 
using slightly different values for these constants than the values κ = 0.40 and γ = 0.033, which were used by 
Nikuradse18 and Schlichting.21  The resulting velocity profiles were found to be in good agreement with Nikuradse’s 
experimental data on fully rough pipe flow.  As an example, Fig. 4 shows the velocity obtained from Eqs. (92)–(95) 
compared to the law of the wall and Nikuradse’s experimental data for a roughness ratio, R/ks , of 15.  Because the 
velocity profiles obtained from Eqs. (92)–(95) satisfy the physical boundary conditions and show better agreement 
with experimental data, they can be used in place of  Eq. (91) as an improved reference for the mean velocity 
profiles when evaluating turbulence model closure coefficients for fully rough pipe flows. 
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Figure 4.  Velocity profiles compared to the law of the wall and Nikuradse’s experimental data.18 

C. Mean-Vortex-Wavelength Distribution 
 In order to complete the formulation given by Eqs. (84) and (85), an equation is needed for the mean vortex 
wavelength, λ.  To provide some insight into the nature of the mean vortex wavelength and the RMS fluctuating 
vorticity, Eqs. (84) and (85) can be used in combination with empirical correlations for the friction-factor and the 
mean-velocity profiles, to infer the mean-vortex-wavelength and RMS-fluctuating-vorticity distributions for fully 
developed, fully rough pipe flow. 
 From Eq. (85), the turbulent-kinetic-energy transport equation for axisymmetric fully developed pipe flow is 
given by 
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where 21kt λν = .  This equation contains two unknown coefficients σk and Cλ.  These two coefficients must be 
dimensionless universal constants.  Equation (96) requires a wall boundary condition for the turbulent kinetic 
energy.  The specific turbulent kinetic energy at a rough wall should be proportional to the shear velocity squared, 

 2
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=  (97) 

where +
w alk  is an unknown dimensionless proportionality coefficient.  For incompressible flow, the dimensionless 

parameter, +
w alk , should be a unique function of the roughness Reynolds number.  As the roughness Reynolds 

number approaches zero, +
w alk  should also approach zero.  When the roughness Reynolds number becomes large 

enough, the solution must be independent of molecular viscosity.  Hence, for fully rough flow, the dimensionless 
parameter, +

w alk , must approach a universal constant. 
 An algebraic function for the mean vortex wavelength in fully rough pipe flow is given by27 
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where rRy −= .  This equation contains five unknown coefficients Aλ0, Aλ1, Bλ0, Bλ1, and Bλ2.  At the wall, the 
mean-vortex-wavelength equation reduces to 
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 sRr kA 0λλ =
=  (99) 

For fully rough pipe flow, the value of the mean vortex wavelength at the wall should depend only on the surface 
roughness sk .  Therefore, the coefficient Aλ0 should be a constant.  The remaining four coefficients in the mean-
vortex-wavelength profile, Aλ1, Bλ0, Bλ1, and Bλ2, need not be constants, but can be functions of the flow parameters 
such as the Reynolds number and roughness ratio.  Eight coefficients are associated with Eqs. (96)–(98); the two  
closure coefficients σk and Cλ from the turbulent-kinetic-energy transport equation, the proportionality coefficient 

+
w alk  

from the wall boundary condition, and the five coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 from the empirical algebraic 
relation for the mean vortex wavelength. 
 The eight coefficients σk, Cλ , +

w alk , Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 were evaluated using a computer optimization 
program.28  This optimization program minimizes a fitness parameter that quantifies how close the solution is to a 
target solution.  The target solution is a weighted function based on the friction factor obtained from Eq. (88) and the 
velocity profile given by Eqs. (92)–(95).  This fitness parameter was minimized over the Reynolds-number range 
starting at a roughness Reynolds number of 1000 and continuing up to a bulk Reynolds number as large as 2×109.  
The optimization program used to find the coefficients implements the BFGS algorithm, named after the work of 
Broyden,29 Fletcher,30 Goldfarb,31 and Shanno.32 The resulting algebraic relation for the mean vortex wavelength 
was found to give good agreement with experimental data, provided that σk is in the range 2.0 to 6.0, +

w alk  is in the 
range 0.05 to 1.0, and the following relations between the coefficients are maintained; 
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The twelve constants Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, Bλ10, Bλ11, Bλ20, and Bλ21 are related to the four 
coefficients Aλ1, Bλ0, Bλ1, Bλ2 according to 
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The mean-vortex-wavelength equation, given by Eq. (98), depends on the five coefficients Aλ0, Aλ1, Bλ0, Bλ1, and 
Bλ2, which are obtained from Eqs. (101)–(117). 
 Computational results obtained from this algebraic relation agree with Nikuradse’s experimental data on flow in 
artificially roughened pipes18 as well as more recent experimental data presented by Shockling, Allen, and Smits.25  
For example, Fig. 5 shows a comparison between experimental data for the Darcy friction factor18,25 and results 
obtained from the proposed algebraic relation.  Notice that the current algebraic relation predicts a friction factor 
that becomes independent of Reynolds number as the Reynolds number becomes large.  This is shown in Fig. 5 for 
bulk Reynolds numbers as large as 2×109. 
 Fully rough flow is defined to be the asymptotic high-Reynolds-number limit as the turbulent eddy viscosity ν t 
becomes large compared to the molecular viscosity ν  throughout the flow field.  Because ν t is smallest near the wall, 
the limit for application of the fully rough flow approximation can be evaluated by examining the near-wall behavior 
of ν /νt.  For comparison, three curves of constant (ν /νt)wall are superimposed on the friction-factor results shown in 
Fig. 5.  The dashed curve on the left is the locus of points having an eddy viscosity at the wall equal to the molecular 
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viscosity.  The roughness Reynolds number for all points along this curve is approximately 77.  Along the second 
dashed curve, the eddy viscosity at the wall is 10 times the molecular viscosity and the roughness Reynolds number 
is 766.  The dashed curve on the right is the locus of points where the eddy viscosity at the wall is 100 times the 
molecular viscosity and the roughness Reynolds number is 7658.  At a roughness Reynolds number of  1000, the 
molecular viscosity is nearly 8% of the eddy viscosity at the wall.  For roughness Reynolds numbers below 1000, 
the molecular viscosity becomes more significant, and the fully rough flow approximation breaks down near the 
pipe wall.  For fully rough flow, the velocity profiles compare well with the log law given by Eq. (91), as shown in 
Figs. 6 and 7.  Results similar to those shown in Figs. 5–7 are obtained for any value of σk in the range 2.0 to 6.0 and 
any value of +

w alk  in the range 0.05 to 1.0, provided that the relations given by Eqs. (100)–(117) are maintained. 
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Figure 5.  Darcy friction factor in rough pipes, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 6.  Velocity profiles in fully rough pipe flow, predicted from the k-λ  formulation with the algebraic 
relation for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 7.  Velocity profiles in rough pipes at a roughness Reynolds number of 1000, predicted from the k-λ  
formulation with the algebraic relation for λ , using σk = 4.0 and +

w alk = 0.1. 
 
 Because results obtained from Eqs. (84) and (85) combined with Eqs. (97)–(117) agree well with experimental 
data obtained for the velocity profile and friction factor at high Reynolds numbers, they can be used to predict the 
distributions of the turbulence variables in fully rough pipe flow.  Example profiles for the turbulent kinetic energy, 
mean vortex wavelength, kinematic eddy viscosity, and RMS fluctuating vorticity are presented in Figs.8–11, 
respectively.  Very small variations in the turbulence variable distributions can be seen between the roughness 
Reynolds numbers of 1,000 and 80,000.  This is because, at these high roughness Reynolds numbers, the molecular 
viscosity is negligible when compared to the eddy viscosity throughout the pipe. 
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Figure 8.  Turbulent-kinetic-energy profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 9.  Mean-vortex-wavelength profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 10.  Turbulent-eddy-viscosity profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 11.  RMS-fluctuating-vorticity profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 

VIII.  Conclusions 
 For the case of incompressible flow, Eqs. (84) and (85) provide the foundation for an energy-vorticity RANS 
turbulence model that differs significantly from traditional energy-dissipation models, which include the established 
k-ε , k-ω, and k-ζ  models commonly used for CFD.  Following an analogy with the kinetic theory of gases, the 
development of Eqs. (84) and (85) is based on a more direct analogy between turbulent and molecular transport. 
 Whereas traditional k-ε , k-ω, and k-ζ  turbulence models relate the kinematic eddy viscosity to a dissipation-
based length scale associated with the smaller turbulent eddies having the highest strain rates per unit kinetic energy, 
Eq. (84) relates the kinematic eddy viscosity to an energy-weighted mean vortex wavelength associated with the 
larger energy-bearing eddies that are primarily responsible for turbulent transport.  As can be seen from the 
definitions in Eqs. (1) and (83), the kinematic-eddy-viscosity model hypothesized in Eq. (84) depends on only the 
turbulent velocity fluctuations, just as the molecular viscosity depends on only the molecular velocity fluctuations.  
In contrast, the eddy-viscosity model used in traditional k-ε , k-ω, and k-ζ  turbulence models results in a kinematic 
eddy viscosity that is inversely proportional to the molecular viscosity, which violates a fundamental requirement 
for a Boussinesq model of turbulent transport that is consistent with the definition of the specific Reynolds stress 
tensor given in Eq. (29). 
 The formulation of the turbulent-energy-transport equation that is given in Eq. (85) was developed rigorously 
from the Navier-Stokes equations and includes exact expressions for the viscous dissipation and molecular transport 
of turbulent kinetic energy.  This development shows that molecular transport of turbulent kinetic energy is not a 
simple gradient diffusion process.  Hence, subsequent application of  the Boussinesq analogy between turbulent and 
molecular transport led to the modeled turbulent-transport term in Eq. (85), which is not simple gradient diffusion.  
In contrast, the turbulent-energy-transport equation that is used in traditional k-ε , k-ω, and k-ζ  turbulence models is 
based on approximations for both the viscous dissipation and molecular transport of turbulent kinetic energy.  These 
approximations led to the traditional turbulent-energy-transport equation, which models both the molecular and 
turbulent transport of turbulent kinetic energy as pure gradient diffusion. 
 The eddy-viscosity model and turbulent-energy-transport equation that are proposed here alleviate 5 of the 6 
concerns with traditional RANS-based turbulence models, which are described in Section IV.  The foundational 
equations can be written in terms of the RMS fluctuating vorticity [Eqs. (78) and (79)], the mean fluctuating 
enstrophy [Eqs. (81) and (82)], or the mean vortex wavelength [Eqs. (84) and (85)].  The final concern described in 
Section IV could be addressed by closing the model with a more rigorously developed transport equation such as 
that developed by Kreuzinger, Friedrich, and Gatski.17 



  

29 
 

 The turbulent-energy-transport equation that is given in Eq. (85) contains two unknown closure coefficients; the 
viscous-dissipation coefficient, Cλ , and the turbulent-transport coefficient, σ k.  These coefficients should both be 
dimensionless universal constants.  It has been shown here that excellent agreement with experimental data for 
velocity profiles and friction factors in fully rough pipe flow can be attained over the range of about 2<σ k < 6 and 
0.00001< Cλ < 0.00056, provided that the relation between Cλ  and σ k  that is given in Eq. (100) is maintained. 
 In addition, the turbulent-energy transport equation requires a wall boundary condition for the specific turbulent 
kinetic energy, k.  The specific turbulent kinetic energy at a rough surface should be proportional to the square of  
the friction velocity, uτ , as shown in Eq. (97).  For incompressible flow, the dimensionless proportionality 
coefficient, +

w alk , is expected to be a unique function of the roughness Reynolds number, ksuτ /ν .  As the roughness 
Reynolds number approaches zero, +

w alk  should approach zero as well.  By definition, fully rough flow occurs when 
the roughness Reynolds number is high enough so that the solution becomes independent of molecular viscosity.  
Hence, for fully rough flow, the dimensionless parameter, +

w alk , must approach another universal constant associated 
with the turbulence model.  It has been shown here that excellent agreement with experimental data for fully rough 
pipe flow can be attained over the range of about 0.05< +

w alk < 1.0, provided that certain relations are maintained 
between the mean vortex wavelength, λ , and the dimensionless parameter, +

w alk .  Additionally, results show that the 
formulation can be used to predict the Darcy friction factor for fully rough pipe flow down to a roughness Reynolds 
number as low as about 100, which is much lower than the ratio of molecular viscosity to eddy viscosity at the wall 
would imply. 
 It is important to recognize from the discussion above that excellent agreement with experimental data for fully 
rough pipe flow can be attained over a range of the model constants, which include Cλ , σ k , and the fully rough limit 
for +

w alk .  In terms of future development, this is fortunate, because it provides a great deal of flexibility that can be 
used when tuning the model to agree with experimental data for other turbulent flows. 
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