

Aerosol Climatology over Pseudo-Invariant Calibration Sites: Application for African and Arabian Desert Sites

Bertrand Fougnie, Sophie Lachérade CNES, Toulouse, France

Christophe, Lerebourg, Véronique Brunique ACRI-ST, Sophia & Toulouse, France

CALCON'14

Introduction

• Reminder about desert sites and calibration over PICS

- Methodology
- Data sets
- Processing
- Observations from space data
- Validation using ground data
- Proposed Climatology and Classification
- Conclusion and recommandation

Introduction

- The in-flight calibration of space sensor is necessary to estimate once in orbit the radiometric sensitivity and check its stability with time
- In this context, the use of Pseudo-Invariant Calibration Sites (called PICS) is valuable to address this need
 - as if on-board calibration device is available (need to be validated/supplied)
 - PICS are used to estimate stability but also to cross-calibrate different sensors
- PICS are desert sites, snowy sites, valley...
 - CEOS list of PICS
 - CNES : 20 desert sites + 4 domes in Antarctica
- What is pseudo-invariant with time ?
 - Usually the surface : relatively evident for desert sites as if BRDF effect exist
 - The atmosphere is often assumed stable
 - If not, it is not crucial for long-term trending if repeatable year after year

Introduction

• The cross-calibration approach implemented at CNES (Lachérade et al, 2013) considers :

- geometrical matching between 2 sensors considering : SZA, VZA, RAA
- no constraint on the temporal simultaneity
- 2 measurements from 2 different dates could be matched
- the atmosphere is supposed stable (AOD of 0.2 for a desertic model) in order to consider spectral adjustment between the two sensors to calibrate
- a non stability of the atmosphere may impact the estimated temporal behavior, especially for shorter wavelength

• So what can we do to better understand the atmosphere over PICS ?

- In general, no sunphotometer or field campaigns (except occasionally)
- Today : 15 years of space measurements with different dedicated sensors (for aerosol) →
 A-train since 2002 fully relevant
- Long term archive for Aeronet measurements : not collocated by check the dynamic + consistency

¢ cnes

Definition of desert sites

Aerosols

cloud

In general aerosols are a mixture of

- Fine mode :
 - gas condensation whatever the origin (accumulation mode)
 - radius < less than 1 micron</p>
 - strong spectral variation,
 - moderate directionality, polarization
- Coarse mode :
 - wind action at the surface
 - radius 1-10 microns
 - small spectral variation,

Data source

In general aerosol are a mixture of

- Fine mode : strong spectral variation, moderate directionality, polarization
- Coarse mode : small spectral variation, sensible directionality, small polarization

Aerosol retrieval from Space : The A-Train opportunity = Complementarity

- MODIS-Aqua : pushbroom all the reflective domain VIS/NIR/SWIR
 - known to be able to estimate the total aerosol amount
 - completed by MODIS-Terra archive
- PARASOL only covered VIS/NIR → loss of spectral information
 - but bidirectionality + polarization
 - know to be able to estimate the fine aerosol mode (over land)
- In general, difficulty over very bright targets
 - Not perfect, but representative for this exercice

Aerosol retrieval from ground : AERONET complete characterization

- fine and coarse mode, phase function...
- time series and common radiometric reference + unified data processing
- worldwide network but not everywhere (ocean, deserts...)

The Approach

 The approach was to derive time series over desert sites using archive of space sensors : PARASOL, MODIS-Aqua, MODIS-Terra (16 years)

- Description of typical aerosol load and type
- Consistency / Complementarity between sensors
- Description of the seasonal variability + interannual repeatibility

Use very accurate ground measurements from AERONET (as if not collocated)
 Validate the observed behaviors (seasonal/load/type)

Dataset

• AERONET (GSFC/NASA) : L2 Total and Fine AOD (550nm)

- Daily/monthly for Total + Fine tau550
- Available archive (2000-2014) for each considered site

MODIS (Giovanni) : L3 global "DeepBlue"

- Resolution 1° x1° in netCDF
- AQUA (2002-2013)
 - Daily tau550 (4069 products) no AngExp available
- TERRA (2000-2007)
 - Daily tau550 (2799 products) no AngExp available
- PARASOL (ICARE) : L3 global "Fine mode AOT(550nm)"
 - Resolution 18.5kmx18.5km in HDF
 - PARASOL (2005-2013)
 - Daily tau550 (2905 products) + AngExp

• Computation of monthly mean/median using daily + averaging over the site

• Check that the monthly mean is not dominated by marginal strong events

Processing

Checking of Seasonal

- In general, a temporal variation is observed on monthly mean
- Can it be due to marginal & very strong events that impact the mean situation (statistical effect) ?
- Computation of the monthly median (from daily AOD)

Observations

Typical behavior #1 : Exemple of a seasonal Fine/Coarse inversion

MODIS = Coarse+fine PARASOL = fine

- consistency Terra/Aqua = no macroscopic variation within the day (from 10:30 to 13:30)
- repeatable yearly cycle from 0.1 (Dec.) to 0.5 (June)
- opposite cycle for PARASOL = full inversion of the aerosol type from fine mode (Dec.) to coarse (June)

Source :

- desertic aerosol (~non-spherical coarse mode) dominant in summer
- fine mode dominant in winter → biomass burning influence ?

CALCON'14

¢ cnes

Observations

Typical behavior #2 : Exemple of a seasonal Fine/Coarse dynamic

MODIS = Coarse+fine PARASOL = fine

- consistency Terra/Aqua = no macroscopic
 variation within the day (from 10:30 to 13:30)
 - however some discrepencies...
- small yearly cycle from 0.2 (Dec.) to 0.5 (June)
- opposite cycle for PARASOL = strong variation of the aerosol mixture from mixed (Dec.) to coarse (June)

Source :

- desertic aerosol (~non-spherical coarse mode) dominant in summer
- mixture with fine mode in winter CALCON'14

Typical behavior #3 : Exemple of a seasonal Coarse behavior

1.0

0.8

0.6

0.4

0.2

00 2001

2000

2002 2003

2004

2005

2006

2007

2007

2008

2009

2010

2011

2012

2013 2014

2014

- consistency Terra/Aqua = no macroscopic
 variation within the day (from 10:30 to 13:30)
- repeatable yearly cycle for coarse mode from 0.15 (Dec.) to 0.5 (June)
- no cycle for PARASOL = nearly constant background of fine mode + seasonal coarse mode

Source :

- desertic aerosol (~non-spherical coarse mode) dominant in summer
- fine mode background in addition to coarse

MODIS = Coarse+fine

Observations

Validation – closest station(s)

• Comparison to in-situ AERONET time series - SITES

can we believe the satellites ?

Validation – Regional

Comparison to in-situ AERONET time series – REGIONS

• Satellite statistics computed for a desertic region around sunphotometer

00 CALCON 142003

Date

¢ cnes

Classification

	Seasonal cycle TOTAL	<i>Seasonal</i> <i>cycle</i> Fine mode	<i>Dominant</i> <i>type</i> Winter	<i>Dominant</i> <i>type</i> Summer	Seasonal Change of type
Libya-2, -3, -4 Egypt-1, Sudan-1	small	strong	Fine	Coarse	sensible
Lybia-1	large	small	Fine	Coarse	strong
Mali-1	small	small	Mix	Mix	no
Niger-1, -2, -3	strong	no	Mix	Mix	sensible
Algeria-1, -2 Mauritania-1, -2	strong	small	Mix	Mix	sensible
Arabia-3	strong	strong	Mix	Mix	sensible
Algeria, -3, -4, -5 Arabia-1, -2	strong	strong	Fine	Coarse	complete

CALCON'14

Climatology

• Typical climatology of the 20 desert sites

- Mean annual Total AOD + annual min/max variation
- Same for fine mode

Climatology

• Typical climatology of the 20 desert sites

- Mean annual Total AOD + Mean in winter and Summer
- Change of aerosol model during the year : Percentage of fine mode in AOD

Conclusion

- A representative characterization of aerosol content and type has been derived using satellite data from the A-train. PARASOL and MODIS provided very complementary information for a large time series.
- These tendencies were validated using AERONET ground data
- Seasonal cycles and monthly aerosol contents were characterized for 20 desert sites
 - Different behavior for total and fine mode (often opposite)
 - A typical climatology and classification was proposed
 - Differences Aqua/Terra : significant evolution during the day ?
- Recommendation for cross-calibration over desert sites :
 - The historical 0.2 assumption for AOD is clearly underestimated for all sites
 - + Use of a more realistic aerosol content over the year and for each site
 - + Use of a more realistic aerosol type over the year and for each site
 - → Derive the summary climatology table
 - → Implement it on the operational calibration method (SADE/MUSCLE)
- This approach, i.e. complementary satellite time series + ground validation, could be applied or tested to other Pseudo-Invariant Calibration Sites (PICS) when sunphotometers are not available on the PICS.

Thank you for your attention !