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Decomposed Lifting-Line Predictions and Optimization  
for Propulsive Efficiency of Flapping Wings 

W. F. Phillips* and R. A. Miller† 
Utah State University, Logan, Utah 84322-4130 

and 

D. F. Hunsaker‡ 
Scaled Composites, Mojave, CA 93501-1663 

A decomposed Fourier series solution to Prandtl’s classical lifting-line theory is used to 
predict the lift, induced-thrust, and power coefficients developed by a flapping wing.  A 
significant advantage of this quasi-steady analytical solution over commonly used numerical 
methods is the utility provided for optimizing wing flapping cycles.  The analytical solution 
involves five time-dependent functions that could all be optimized to maximize thrust, 
propulsive efficiency, and/or other performance measures.  Results show that by optimizing 
only two of these five functions, propulsive efficiencies exceeding 97% can be obtained.  
Results are presented for untwisted rectangular wings in pure plunging, rectangular wings 
with linear washout and the minimum-power washout magnitude, and rectangular wings 
with the minimum-power washout distribution and magnitude. 

Nomenclature 

nA  = Fourier coefficients in the series solution to the lifting-line equation 
na  = planform coefficients in the decomposed Fourier series solution to the lifting-line equation 

b = wingspan 
nb  = washout coefficients in the decomposed Fourier series solution to the lifting-line equation 
DiC  = instantaneous wing induced-drag coefficient 
DiC  = mean wing induced-drag coefficient averaged over a complete flapping cycle 

pDC  = wing parasitic-drag coefficient 
LC  = instantaneous wing lift coefficient 
LC  = mean wing lift coefficient averaged over a complete flapping cycle 
LAC  = sinusoidal amplitude for the wing lift coefficient 

α,LC  = wing lift slope, Eq. (15) 
α,

~
LC  = airfoil-section lift slope 

APC  = mean available-power coefficient averaged over a complete flapping cycle 

fPC  = instantaneous flapping-power coefficient required to support the flapping rate p 

fPC  = mean flapping-power coefficient averaged over a complete flapping cycle 
C0–C2 = optimization coefficients, Eqs. (53)–(55) 
c = local wing section chord length 
D = wing drag 
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nd  = plunging coefficients in the decomposed Fourier series solution to the lifting-line equation 
nE  = plunging coefficients in the Fourier series solution for induced drag, Eq. (8) 

ne  = plunging coefficients in the Fourier series solution for induced drag, Eq. (22) 
L~  = local section lift 
M  = number of control points used to define a numerical twist distribution function 
N  = number of terms retained in a truncated infinite series 

fP  = instantaneous power required to support the instantaneous flapping rate p 
p  = angular wingtip rotation rate about the midspan resulting from wing flapping 
p̂  = dimensionless angular wingtip rotation rate about the midspan resulting from wing flapping, pb/(2V∞) 

rmsp̂  = root mean square of the dimensionless flapping rate averaged over a complete flapping cycle 
AR  = wing aspect ratio 
OR  = optimization ratio, Eq. (51) 

S  = wing planform area 
fT  = mean induced thrust developed by wing flapping 

t  = time 
pV  = y component of relative wind resulting from airfoil-section plunging 
∞V  = freestream airspeed 

W = weight 
zyx ,,  = streamwise, upward normal, and spanwise coordinates relative to the quarter chord midspan 

acy  = y coordinate of the airfoil-section aerodynamic center located at the spanwise coordinate z 
α = geometric angle of attack 
αL0 = zero-lift angle of attack 
Γ = wing section circulation 

tγ  = strength of the trailing vortex sheet per unit span 
∆αp = spanwise variation in local angle of attack increment resulting from wing section plunging 

pη  = mean propulsive efficiency averaged over a complete flapping cycle 
θ = change of variables for the spanwise coordinate, Eq. (3) 

aκ  = planform coefficient in the lifting-line relation for required power, Eq. (24) 
bκ  = washout coefficient in the lifting-line relation for required power, Eq. (25) 
Dκ  = planform coefficient in the lifting-line relation for induced drag, Eq. (16) 
DLκ  = washout–lift coefficient in the lifting-line relation for induced drag, Eq. (17) 

ΩκD  = washout coefficient in the lifting-line relation for induced drag, Eq. (18) 
dκ  = plunging coefficient in the lifting-line relation for required power, Eq. (26) 

pLκ  = plunging–lift coefficient in the lifting-line relation for induced drag, Eq. (19) 
pκ  = plunging coefficient in the lifting-line relation for induced drag, Eq. (21) 

pΩκ  = plunging–washout coefficient in the lifting-line relation for induced drag, Eq. (20) 
ρ  = air density 
τ  = sinusoidal period 
φ  = instantaneous flapping dihedral angle 

Aφ  = sinusoidal amplitude for the flapping dihedral angle 
ψ  = spanwise twist distribution function resulting from airfoil-section plunging 
Ω  = total symmetric wing washout angle, geometric plus aerodynamic 

optΩ  = optimum total symmetric wing washout angle, geometric plus aerodynamic 
ω  = spanwise twist distribution function resulting from symmetric wing washout 
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I.   Introduction 
RANDTL’S classical lifting-line theory1,2 can be used to obtain a solution for the spanwise distribution of 
section lift and induced drag generated on a finite wing.  If  the circulation about any spanwise section of the 

wing is Γ (z) and the strength of the trailing vortex sheet per unit span is γ t(z), as shown in Fig. 1, then Helmholtz’s 
vortex theorem and the Kutta–Joukowski law3,4 produce the fundamental lifting-line equation, i.e., 
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In Eq. (1) α  and αL0 are allowed to vary with the spanwise coordinate z to account for wing twist, control surface 
deflection, and airfoil-section plunging that may vary along the span.  Neglecting the effects of sweep and dihedral, 
an analytical solution to Prandtl’s lifting-line equation for a finite wing can be obtained in terms of  a Fourier sine 
series.  For a given wing geometry with a known spanwise distribution of relative wind, the planform shape, c(z), 
the geometric angle of attack, α(z), and the zero-lift angle of attack, αL0(z), are all known functions of the spanwise 
coordinate.  The circulation distribution is written as a Fourier series, the series is truncated to a finite number of 
terms (N), and the Fourier coefficients are determined by forcing the lifting-line equation to be satisfied at N specific 
sections along the span of the wing.  From this solution the circulation distribution is given by 
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where θ  is a change of variables for the spanwise coordinate defined as 
 
 )2(cos 1 bz−≡ −θ  (3) 

After substituting the circulation distribution specified by Eq. (2) into the lifting-line equation given by Eq. (1), the 
Fourier coefficients, An, are obtained from the relation 
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Figure 1.  Prandtl’s model for the section circulation and trailing vortex sheet generated by a finite wing. 
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 Even in the presence of airfoil-section plunging that varies along the wingspan, the lift coefficient predicted by 
lifting-line theory can be obtained from the relation5 
 
 1ARC AL π=  (5) 

where SbRA
2≡  is the wing aspect ratio.  Airfoil-section plunging and wing twist that vary along the span of the 

wing can have a very significant effect on the induced drag predicted by lifting-line theory.  The lifting-line relation 
developed by Phillips5 for predicting the induced-drag coefficient in the presence of airfoil-section plunging can be 
written as 
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or after applying Eq. (5) 
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where the coefficients En are obtained from 
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and )(θpV  is the y component of relative wind resulting from airfoil-section plunging at the spanwise coordinate θ . 
 To prevent boundary layer separation, the local section geometric angle of attack must remain small at all 
spanwise sections of  the wing.  So in the absence of stall, the component of  relative wind normal to the flight path 
that results from airfoil-section plunging must remain small compared to the freestream airspeed.  Boundary layer 
separation must be avoided to maintain high lift-to-drag ratios in forward flight.  Furthermore, within the small-
angle approximation, wing dihedral has no effect on either lift or induced drag.  Hence, for the flapping wings of  
some birds in high-speed forward flight and other flight phases where aerodynamic efficiency and endurance are of  
paramount importance, the lifting-line solution given by Eqs. (2)–(8) could be used. 
 During wing flapping the lift developed on the wing and the vorticity shed from the wing typically change 
periodically with time.  Because the vortex sheet trailing aft of a lifting wing contains a time history of the vorticity 
shed from the wing, the strength of this trailing vortex sheet is not typically constant during wing flapping.  Hence, 
because the trailing vortex sheet has a significant effect on the aerodynamic lift and drag, periodic variations in lift 
can have a significant effect on these forces as well.  Because shed vorticity is carried away from the wing at the 
freestream airspeed, the effect of unsteady lift can be typically neglected during wing flapping when the freestream 
airspeed is large compared with the product of the wing chord length and the flapping frequency.  A two-
dimensional analytical solution first obtained by Theodorsen6 for small-amplitude sinusoidal plunging of an airfoil 
shows that the two-dimensional effects of unsteady lift can be neglected when the product of the airfoil chord length 
and the plunging frequency divided by the freestream airspeed is on the order of 0.1 or less.  Because the lifting-line 
solutions presented here are quasi-steady solutions, the flapping frequency must be low enough and the freestream 
airspeed must be high enough so that this condition is satisfied.5 
 For a finite wing with geometric and/or aerodynamic twist, the lifting-line solution expressed in the form of  
Eqs. (2)–(8) is cumbersome for the evaluation of traditional wing properties, because the Fourier coefficients 
depend on angle of attack and must be reevaluated for each operating condition studied.  A more useful form of the 
lifting-line solution has been presented.7–10  For flapping wings in the absence of control surface deflection, this 
lifting-line solution is based on decomposing the Fourier coefficients, An, using the simple change of variables5 
 
 pdbaA nnLnn ˆ)( root0 +−−= Ωαα  (9) 

The three components on the right-hand side of Eq. (9) are, respectively, the contributions from the wing planform, 
geometric and/or aerodynamic washout, and airfoil-section rotation about the midspan resulting from wing flapping.  
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To satisfy Eq. (4) with the change of  variables given in Eq. (9), the decomposed Fourier coefficients, an, bn, and dn, 
are evaluated from 
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where the functions ω(θ) and ψ (θ) are the spanwise variations in local section aerodynamic angle of attack resulting 
from unit amounts of wing washout and dimensionless rotation about the midspan, respectively.  Similarly, the 
scalar variables root0 )( Lαα − , Ω , and p̂ are, respectively, the magnitudes of the root section aerodynamic angle of  
attack, wing washout, and dimensionless rotation rate about the wing midspan resulting from wing flapping.  The 
variables root0 )( Lαα −  and Ω  are deflection angles in radians, and p̂ is a dimensionless angular rate defined as 

≡p̂ pb/(2V∞), where p is the magnitude of the wingtip rotation rate about the wing midspan.  The function ω(θ) is 
called the washout distribution function10 and the function ψ (θ) is referred to as the plunging distribution function.5 
 For the small-angle wing flapping required to prevent stall in forward flight, the instantaneous lift and induced-
drag coefficients can be predicted using Eqs. (5) and (7), and after applying Eq. (9) and rearranging we obtain5 
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The flapping-power coefficient is defined to be the required power input Pf  divided by SV 3
2
1

∞ρ , and for spanwise 
symmetric wings, the instantaneous flapping-power coefficient required to support the instantaneous symmetric 
flapping rate p as predicted by lifting-line theory is5 
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 In its most general form, the periodic motion associated with wing flapping can be extremely complex.  We 
know from slow-motion video that the wing flapping cycle of many birds can involve time-dependent spanwise 
variations in both twist and sweep, which are coordinated with the periodic flapping motion.  Furthermore, because 
the wings of a bird are multi-jointed, the angular flapping rate may be different across different sections of the same 
semispan, and because the bones and wingtip feathers of a bird’s wing are not rigid, the angular rate could vary 
continuously across each wing semispan.5 
 In addition to the wing planform shape c(z), the lifting-line solution in Eqs. (10)–(26) depends on five separate 
time-dependent functions that describe the details of the flapping cycle, i.e., ω(z,t), ψ (z,t), CL(t), Ω (t), and p̂(t).  
Any or all of these five time-dependent functions could be varied to improve or optimize some measure of  flight 
performance. 
 One advantage of the lifting-line solution presented in Eqs. (10)–(26) is that it allows us to decompose and 
examine separately the contributing factors associated with the lift, drag, and power coefficients, even when the  
wing flapping motion is very complex.  However, to gain insight into the three-dimensional production of induced 
thrust along the span of a flapping wing it is convenient to commence with simple motion and progress to the more 
complex.  Here we start by considering simple rigid-semispan flapping of  an untwisted wing in pure plunging. 
 Because wing flapping is periodic, the mean value of the flapping rate averaged over a complete flapping cycle 
is always zero.  Hence, if the decomposed Fourier coefficients, root aerodynamic angle of attack, and washout 
remain fixed over the flapping cycle, the mean lift coefficient is found from Eq. (13) to be 
 
 ])([ 1root01 Ωααπ baRC LAL −−=  (27) 

and the instantaneous lift coefficient given by Eq. (13) can be written equivalently as 
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where the decomposed Fourier coefficient d1 is obtained from Eq. (12).  This instantaneous lift coefficient is greater 
than the mean value during the downstroke when p̂ is defined to be positive, and it is less than the mean during the 
upstroke when p̂ is negative.  This type of wing flapping is referred to as pure plunging, because the airfoil sections 
of the wing are not rotating in pitch during the flapping cycle.  Using Eqs. (15) and (28) in Eqs. (14) and (23) for the 
case of an untwisted wing yields 
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 To obtain numerical results from Eqs. (29) and (30), the plunging distribution function ψ (θ) must be known.  If  
the semispans are rigid, there can be no bending of either semispan, and the angular rate is constant across each 
semispan.  As shown schematically in Fig. 2, if  the flapping rate is spanwise symmetric about the midspan, the 
plunging distribution function ψ  for small-angle flapping with no semispan bending is given by5 
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Using Eq. (31) in Eq. (22) yields a closed-form relation for the coefficients en for the special case of small-angle 
flapping with no semispan bending,5 i.e., 
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The plunging distribution function given in Eq. (31) is based on defining the magnitude of the flapping rate, p, to be 
positive when the wingtips are moving downward relative to the wing root.  To account for the wing joints and 
elastic deformation of some particular bird’s wing, a more complex function would be required for ψ . 
 Because the mean value of p̂ is zero for periodic flapping, from Eqs. (29) and (30) the mean induced-drag and 
flapping-power coefficients for flapping of an untwisted wing in pure plunging are 
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where rmsp̂  is the root mean square (rms) dimensionless flapping rate.  The first term on the right-hand side of   
Eq. (33) is the induced drag for the same wing geometry with no wing flapping.  The aerodynamic force associated  
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Figure 2.  Change in the local section geometric angle of attack on a bird’s wing resulting from the plunging 
motion associated with wing flapping. 



 Phillips, Miller, and Hunsaker  

8 
 
 

with the second term on the right-hand side of Eq. (33) is always aligned with the direction of flight.  This is the 
mean induced thrust, which is developed by the flapping of an untwisted wing in pure plunging,5 i.e., 
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The mean available propulsive power developed by this wing flapping is simply the product of the mean induced 
thrust and the airspeed.5  Hence, from Eq. (35), the mean available-power coefficient for flapping of an untwisted 
wing in pure plunging is 
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The ideal propulsive efficiency5 for flapping of an untwisted wing in pure plunging is the mean available-power 
coefficient from Eq. (36) divided by the required mean flapping-power coefficient from Eq. (34), i.e., 
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 To maintain steady periodic motion, the mean induced thrust obtained from the second term on the right-hand 
side of  Eq. (33) must balance the induced-drag component that is obtained from the first term on the right-hand side 
of Eq. (33) combined with the mean parasitic drag.  Thus, from Eq. (33), steady periodic flapping of an untwisted 
wing in pure plunging with a constant parasitic-drag coefficient of pDC  requires 
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To maintain constant altitude the mean lift must support the weight, i.e., 
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and the total drag for this untwisted wing in the absence of  wing flapping can be written as 
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Hence, constant-altitude flight of an untwisted wing at a forward speed equal to the minimum-drag airspeed 
without flapping requires 
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 Wing-flapping cycles are often assumed to be sinusoidal.  With this arbitrary assumption, the instantaneous 
dimensionless flapping rate is easily related to the rms dimensionless flapping rate to give  
 
 )2(sinˆ2ˆ rms τπ tpp =  (42) 

Applying Eqs. (38) and (42) to Eqs. (28)–(30) yields the instantaneous lift, induced-drag, and flapping-power coef-
ficients for steady sinusoidal flapping of an untwisted wing in pure plunging.  For example, the lift coefficient is 



 Phillips, Miller, and Hunsaker  

9 
 
 

 )2(sin
)1(

))(1()(
2 2

2
1111,

1 τπ
π

ππ κ
κκκα

tC
R

C
adad

R
C

dRCC L
A

D
D

DLpp

A

L

A
LL p 



 ++

+−+
+=  (43) 

 As an example of steady sinusoidal flapping in pure plunging, consider an untwisted rectangular wing of aspect 
ratio 14 with an airfoil section lift slope of 2π .  Using b/c = 14.0, =α,

~
LC 2π , and ψ (θ) specified by Eq. (31), the 

decomposed Fourier coefficients, an, dn, and en, are obtained from Eqs. (10), (12), and (32), respectively.  Applying 
the results to Eqs. (15), (16), (19), (21), (24), and (26), yields 
 
 =α,LC 5.3154,      =Dκ 0.1191,      =Lpκ 3.6067,      =pκ 0.3357,      =aκ 0.1171,      =dκ 0.01545 

For these computations, we assume a reasonable parasitic-drag coefficient of 0.01 and a flight speed equal to the 
minimum-drag airspeed without flapping.  To maintain airspeed and altitude with sinusoidal flapping, Eq. (38) 
requires =rmsp̂ 0.1323, and Eqs. (41)–(43) yield 
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Results obtained from Eqs. (28)–(30) for this untwisted rectangular wing are shown in Fig. 3.  The ideal propulsive 
efficiency obtained from Eq. (37) for this flapping cycle is 76.5%. 
 From the definition of p̂ combined with Eqs. (39) and (42), the sinusoidal flapping rate can be written as 
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This same sinusoidal flapping motion can be defined by expressing the instantaneous flapping dihedral angle, φ , in 
terms of its sinusoidal amplitude, φA, i.e., 
 
 )2(cos τπφφ tA=  (45) 

Because p is the angular rate at which the dihedral angle is decreasing, from Eq. (45) we obtain 
 
 

t /τ
0.0 0.2 0.4 0.6 0.8 1.0

L
ift

 a
nd

 P
ow

er
 C

oe
ff

ic
ie

nt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
du

ce
d-

D
ra

g 
C

oe
ff

ic
ie

nt

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02CL , Eq. (28) CDi , Eq. (29)

mean CDi = −0.01000

mean CL = 0.6269

CPf , Eq. (30)

mean CPf = 0.02614

 
Figure 3.  Variations in lift, induced-drag, and flapping-power coefficients as predicted by Eqs. (28)–(30) for 
sinusoidal flapping of  an untwisted rectangular wing of aspect ratio 14. 
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 )2(sin2 τπ
τ
φπφ t

dt
dp A=−≡  (46) 

Combining Eqs. (44) and (46), the flapping period required to maintain airspeed at constant altitude with sinusoidal 
flapping can be written as 
 

 
)(ˆ2 rms SW

bC
p L

A

ρ
φπτ =  (47) 

Using the wing planform area and weight of a large golden eagle, with an assumed sinusoidal flapping amplitude of  
±15° (15π/180), a 6-ft2 wing area, and a weight of 9 lbf, the flapping cycle shown in Fig. 3 requires a flapping 
period at standard sea level of  0.90 s and an airspeed of 45 ft/s.  This rectangular wing has a chord length of 0.65 ft, 
so the product of the chord length and the flapping frequency divided by the airspeed is about 0.10, which is 
consistent with the quasi-steady solution.6 

II.   Optimizing Wing Twist for Maximum Propulsive Efficiency 
 To gain insight into the effects of wing twist on the performance of a flapping wing in forward flight, we shall 
now relax the assumptions of  no twist and pure plunging.  However, to isolate the effects of wing twist, we will 
retain the assumptions of sinusoidal flapping and no bending of the wing semispans.  Hence, we shall continue to 
use the time-independent plunging distribution function ψ (z) that is given by Eq. (31).  In addition, we will continue 
to use the sinusoidal flapping rate p̂(t) as given by Eq. (42), and we will maintain a sinusoidal variation in the wing 
lift coefficient CL(t), which is in phase with the flapping rate, i.e., 
 
 )2(sin τπ tCCC LALL +=  (48) 

To maintain this sinusoidal variation in wing lift coefficient for arbitrary variations in the washout functions ω(z,t) 
and Ω (t), Eqs. (13) and (15) require that the root aerodynamic angle of attack must be varied over the flapping cycle 
to maintain the relation 
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A bird or ornithopter could accomplish this in flight by rotating the wing semispans and/or coordinating a periodic 
motion of the tail with that of the wing. 
 The instantaneous induced-drag coefficient predicted by lifting-line theory during small-angle wing flapping 
can be evaluated from Eq. (14), and the instantaneous flapping-power coefficient required to support small-angle 
flapping of spanwise symmetric wings is obtained from Eq. (23).  Hence, when the induced drag produced by wing 
flapping is negative, the instantaneous power input per unit induced thrust could be minimized by minimizing the 
negative dimensionless ratio that is given by 
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For example, the instantaneous washout magnitude Ω (t) that requires minimum power input per unit induced thrust 
for any given values of ω(z,t), ψ (z,t), CL(t), and p̂(t) can be obtained by differentiating the ratio defined in Eq. (50) 
with respect to Ω , setting the result to zero, and solving for Ω .  However, p̂ is always zero at two instants during a 
flapping cycle, and the denominator on the right-hand side of Eq. (50) is always zero when p̂ is zero, independent 
of ω(z,t), Ω (t), ψ (z,t), and CL(t).  This is not a problem for the optimization with respect to Ω (t), because this 
optimization can be carried out analytically.  On the other hand, for numerical optimization with respect to ω(z,t), it 
is more convenient to define a slightly different dimensionless optimization ratio. 
 For the purpose of either analytical or numerical optimization of wing twist, when computing derivatives of the 
right-hand side of Eq. (50) with respect to the wing twist parameters, p̂ and CL are held constant.  Hence, the 
instantaneous power input per unit induced thrust can be minimized equivalently by minimizing the dimensionless 
ratio that is defined by multiplying Eq. (50) through by LA CpR ˆ4π , i.e., 
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The instantaneous washout magnitude Ω (t) that requires minimum power input per unit induced thrust for any given 
values of ω(z,t), ψ (z,t), CL(t), and p̂(t) could be obtained by differentiating either the ratio defined in Eq. (50) or that 
defined in Eq. (51) with respect to Ω , setting the result to zero, and solving for Ω .  However, notice that in addition 
to the wing coefficients defined in Eqs. (15)–(21) and (24)–(26), the ratio that is defined in Eq. (50) depends on 
three time-dependent operating parameters, Ω (t), CL(t), and p̂(t).  On the other hand, the ratio defined in Eq. (51) 
depends on only the wing coefficients and two operating parameters, LL CC Ωα,  and LL CpC ˆ,α .  Hence, from the 
ratio defined in Eq. (51), the instantaneous operating parameter LL CC Ωα,  that requires minimum power input per 
unit induced thrust for any given values of ω(z,t), ψ (z,t), and LL CpC ˆ,α  can be obtained from 
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where 
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Depending on c(z), ω(z,t), ψ (z,t), CL(t), and p̂(t), either of the two roots obtained from Eq. (52) could be the one of 
interest, which produces net mean thrust and minimizes the required power input per unit induced thrust.  The root 
that is not of interest for this purpose may correspond to a power generation mode, which yields negative power 
input and positive induced drag.  Because thrust generation yields negative induced drag and positive power input, 
both roots could result in negative values of the ratio defined in Eq. (50).  Furthermore, the power generation mode 
can result in a negative value of this ratio that is less than that associated with the thrust generation mode.  Hence, 
the sign preceding the square root in Eq. (52) must be chosen carefully. 
 For the case of wing flapping with linear washout and no semispan bending, both the washout distribution 
function ω and the plunging distribution function ψ  are time independent and equal5 
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Applying Eq. (56) to Eqs. (11) and (12) yields 
 
 nn db =  (57) 

and using Eqs. (57), (17)–(21), and (24)–(26) in Eqs. (54) and (55) results in 
 
 021 == CC  (58) 

Hence, after applying Eqs. (53), (57), and (58) to Eq. (52), we find that for the special case of wing flapping with 
linear washout and no semispan bending, the instantaneous amount of wing washout LL CC Ωα,  that requires 
minimum power input per unit induced thrust for any given value of LL CpC ˆ,α  can be obtained from 
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 If  both the lift coefficient and the flapping rate are sinusoidal and in phase, p̂(t) and CL(t) can be obtained from 
Eqs. (42) and (48), respectively.  Using these relations and Eq. (52) in Eq. (14), with the minimum-power washout 
magnitude maintained over the flapping cycle, the instantaneous induced-drag coefficient can be computed at 
each instant in the flapping cycle for any given values of  ω(z,t), ψ (z,t), LC , CLA, and rmsp̂ .  The mean induced-drag 
coefficient is computed from numerical integration of the results obtained from Eq. (14), and rmsp̂  is obtained by 
numerically finding the value that gives pi DD CC −= .  The mean flapping-power coefficient is then computed from 
numerical integration of the results obtained from Eq. (23). 
 Using the time-independent linear washout and plunging distribution functions ω and ψ  as specified by Eq. (56) 
combined with the same wing planform and sinusoidal lift coefficient that were used to obtain the results shown in 
Fig. 3 produces 
 
 =0C 52.209,      =1C 0.0,      =2C 0.0, 
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and the results shown in Fig. 4.  Notice that by maintaining the minimum-power washout magnitude at each instant 
during the flapping cycle, we have reduced the required mean flapping-power coefficient from 0.02614 to 0.02194.  
This reduction in required power results from a substantial reduction in torque with only a slight reduction in 
induced thrust for a given value of rmsp̂ .  To maintain airspeed and altitude with sinusoidal flapping, the rms 
flapping rate is increased slightly from =rmsp̂ 0.1323 to =rmsp̂ 0.1492, which reduces the flapping period at standard 
sea level from 0.90 s to 0.80 s.  The net result is an increase in the ideal propulsive efficiency for this flapping cycle 
from 76.5% to 91.2%. 
 The periodic motion associated with the flapping cycle shown in Fig. 3 is pure plunging, i.e., the airfoil sections 
of the wing are not rotating in pitch during the flapping cycle.  On the other hand, the flapping cycle shown in Fig. 4 
is composed of  a combination of periodic plunging and pitching motion.  As the airfoil sections of this wing plunge 
and heave periodically at a rate that depends on both the spanwise coordinate and time, these sections are also 
rotating in pitch at a rate that varies with z and t.  The instantaneous angle that the zero-lift line for each airfoil  
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Figure 4.  Lift, induced-drag, and flapping-power coefficients for a rectangular wing of aspect ratio 14 with 
sinusoidal flapping, linear washout, and the minimum-power washout magnitude. 
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section makes with the freestream is the local aerodynamic angle of attack, which is the root aerodynamic angle of  
attack less the product of the washout distribution function and the washout magnitude, i.e., (α −αL0)root − ωΩ.  For 
the wing flapping cycle shown in Fig. 4, the root aerodynamic angle of attack is specified by Eq. (49), the washout 
distribution function is given by Eq. (56), and the washout magnitude is obtained from Eq. (59). 
 The easiest way to visualize the combined plunging–pitching motion associated with the flapping cycle shown 
in Fig. 4 is from slow-motion video.  However, some insight into this complex motion can be gained by examining 
the plunging and pitching separately.  The section plunging motion can be described simply in terms of the variation 
with time t of the y coordinate of the airfoil-section aerodynamic center located at the spanwise coordinate z.  
Within the small angle approximation, this section plunging varies linearly with z and is sinusoidal in t, i.e., 
 
 )2(cos||),( τπφ tztzy Aac =  (60) 

For small dihedral amplitudes, the local angle of attack increment that results from this plunging motion is also 
approximated as a linear function of z and a sinusoidal function of t, i.e., 
 
 )2(sin||ˆ8),( rms τπα∆ tbzptzp =  (61) 

This is the angle between the freestream and the instantaneous local relative wind, at the spanwise coordinate z and 
time t.  The variation in this plunging angle of attack increment with z and t is shown in Fig. 5. 
 The section pitching motion that is superimposed on this plunging motion depends on z and t as shown in Fig. 6.  
The curve in the right-hand view of this figure, which is labeled “wing root” and corresponds to z/b=0.00, shows 
how the root aerodynamic angle of attack specified by Eq. (49) varies with time.  The difference between this root 
aerodynamic angle of attack and that for any other wing section is the local section twist, which is shown in Fig. 7.  
Notice in Fig. 6 that the local aerodynamic angle of attack is less than that for the root over the entire downstroke.  
Because washout is defined traditionally to be positive twist, the instantaneous wing twist shown in Fig. 7 is positive 
whenever the local aerodynamic angle of attack is less than that for the root.  Therefore, we see from both Fig. 6 and 
Fig. 7 that the washout is positive over the entire downstroke and negative over much of  the upstroke.  The wingtip 
curve in the right-hand view of Fig. 7 that corresponds to z/b=0.50 is the washout magnitude Ω (t) obtained from 
Eq. (59). 
 The relative section angle of attack shown in Fig. 8 is defined here to be the instantaneous angle that the zero-
lift line for each airfoil section makes with the local section relative wind.  This is an effective aerodynamic angle of 
attack for each airfoil section, which is obtained simply by adding the plunging angle of attack increment that is 
shown in Fig. 5 to the freestream aerodynamic angle of attack that is shown in Fig. 6.  Notice from the results shown 
in Fig. 8 that this effective aerodynamic angle of attack is always greatest at the wing root and decreases linearly 
from the root to the wingtip. 
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Figure 5.  Plunging angle of attack increment for a rectangular wing of aspect ratio 14 with sinusoidal 
flapping, linear washout, and the minimum-power washout magnitude. 
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Figure 6.  Pitching motion for a rectangular wing of aspect ratio 14 with sinusoidal flapping, linear washout, 
and the minimum-power washout magnitude. 
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Figure 7.  Instantaneous wing twist for a rectangular wing of aspect ratio 14 with sinusoidal flapping, linear 
washout, and the minimum-power washout magnitude. 
 
 

z /b
0.0 0.1 0.2 0.3 0.4 0.5

R
el

at
iv

e 
Se

ct
io

n 
A

ng
le

 o
f A

tt
ac

k 
(d

eg
re

es
)

0

5

10

15

t /τ  = 0.75

0.55, 0.95

0.65, 0.85

0.60, 0.90

0.70, 0.80

0.00, 0.50, 1.00

0.05, 0.45

0.10, 0.40
0.15, 0.35

0.20, 0.30
t /τ  = 0.25

t /τ
0.0 0.2 0.4 0.6 0.8 1.0

 
 

 
 

 

0

5

10

15
z/b = 0.00, wing root

z/b = 0.50, wingtip
z/b = 0.40

z/b = 0.20
z/b = 0.30

z/b = 0.10

 
Figure 8.  Relative section angle of attack for a rectangular wing of aspect ratio 14 with sinusoidal flapping, 
linear washout, and the minimum-power washout magnitude. 
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 If  the washout magnitude Ω (t) is varied over the flapping cycle such that Eq. (52) is always satisfied using the 
appropriate root, the resulting flapping cycle will produce maximum possible propulsive efficiency for any arbitrary 
set of the functions c(z), ω(z,t), ψ (z,t), CL(t), and p̂(t).  However, it should be noted that this maximum is not 
necessarily a global maximum unless the functions ω(z,t), ψ (z,t), CL(t), and p̂(t) are also optimized for maximum 
propulsive efficiency.  For example, it is possible to improve the propulsive efficiency over that obtained for the 
flapping cycle shown in Figs. 4–8 by optimizing the product ω(z,t)Ω (t) to minimize the ratio defined in Eq. (51). 
 To demonstrate how the product ω(z,t)Ω (t) can be optimized for minimum required power per unit induced 
thrust, a variable twist distribution was defined using M control points spaced along the span of the wing.  With M 
always chosen to be odd, one control point was placed at each wingtip, another at the midspan, and the intermediate 
control points were spaced uniformly in θ .  The control-point values used for the twist distribution ω(z,t)Ω (t) were 
constrained to be spanwise symmetric and 0.0 at the midspan.  The (M−1)/2 unknown values of ω(z,t)Ω (t) at the 
remaining control points were treated as independent scalar variables, to be evaluated from numerical optimization.  
The values used for the ω(z,t)Ω (t) product between control points were evaluated using linear interpolation in θ.  At 
each instant in time during the flapping cycle, the (M−1)/2 unknown control-point values of the ω(z,t)Ω (t) product 
were found using a computer optimization algorithm.11,12  This optimization software minimizes a single fitness 
parameter, which in this case was chosen to be the ratio defined in Eq. (51).  The optimization software used to find 
the control-point values of the ω(z,t)Ω (t) product implements the BFGS algorithm, named after the work of  
Broyden,13 Fletcher,14 Goldfarb,15 and Shanno.16 
 To assure that the numerical solutions were grid resolved, independent solutions were obtained using coarse and 
fine grids. The coarse-grid solutions used M =19 and N =39.  For the fine-grid solutions M =39 and N =199 were 
used.  Over the range of parameters studied, the coarse-grid solutions for propulsive efficiency were found to agree 
with the fine-grid solutions to within 0.03%.  For the temporal variations, both 50 and 100 time steps per cycle were 
used with second-order trapezoidal numerical integration.  Over the range of parameters studied, the 50 time-step 
solutions for propulsive efficiency were found to agree with the 100 time-step solutions to within 5×10−10%. 
 Using this numerical optimization with sinusoidal flapping and the plunging distribution function ψ (z) for no 
semispan bending given by Eq. (31), combined with the same wing planform and sinusoidal lift coefficient that were 
used to obtain the results shown in Figs. 3 and 4, produces the results shown in Figs. 9–13.  Comparing the flapping 
cycle shown in Fig. 4 with that shown in Fig. 9, we find that by maintaining the minimum-power twist distribution–
magnitude product ω(z,t)Ω (t) at each instant during the flapping cycle, we have gained a small additional reduction 
in the required mean flapping-power coefficient from 0.02194 to 0.02174.  To maintain airspeed and altitude with 
sinusoidal flapping, the rms flapping rate is decreased slightly from =rmsp̂ 0.1492 to =rmsp̂ 0.1467.  The net result is 
a slight increase in the ideal propulsive efficiency for this flapping cycle from 91.2% to 92.0%. 
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Figure 9.  Lift, induced-drag, and flapping-power coefficients for a rectangular wing of aspect ratio 14 with 
sinusoidal flapping and the minimum-power twist distribution–magnitude product. 
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Figure 10.  Plunging angle of attack increment for a rectangular wing of aspect ratio 14 with sinusoidal 
flapping and the minimum-power twist distribution–magnitude product. 
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Figure 11.  Pitching motion for a rectangular wing of aspect ratio 14 with sinusoidal flapping and the 
minimum-power twist distribution–magnitude product. 
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Figure 12.  Instantaneous wing twist for a rectangular wing of aspect ratio 14 with sinusoidal flapping and the 
minimum-power twist distribution–magnitude product. 
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Figure 13.  Relative section angle of attack for a rectangular wing of aspect ratio 14 with sinusoidal flapping 
and the minimum-power twist distribution–magnitude product. 
 
 
 For the results shown in Fig. 4, the time-independent linear washout distribution function specified by Eq. (56) 
was used with the minimum-power washout magnitude obtained from Eq. (52).  The results shown in Fig. 9 were 
obtained using the time-varying minimum-power twist distribution–magnitude product ω(z,t)Ω (t), which is shown 
in Fig. 12.  As was the case for the flapping cycle used to obtain the results shown in Fig. 4, the small-angle section 
plunging motion with no semispan bending as described by Eqs. (60) and (61) was used to obtain the results shown 
in Fig. 9.  The section pitching motion that was superimposed on this plunging motion varies with z and t as shown 
in Fig. 11, and the relative section angle of attack for this flapping cycle is shown in Fig. 13.   
 Results similar to those shown in Figs. 9–13 were obtained for 13 rectangular wings with aspect ratios ranging 
from 8.0 to 20.0 in steps of 1.0.  Figure 14 shows the ideal propulsive efficiency for these 13 numerically optimized 
wings compared with the analytical solutions obtained for pure plunging and for linear washout with the minimum-
power washout magnitude.  At an aspect ratio of 20, the numerically optimized solution predicts an ideal propulsive 
efficiency in excess of 97%.  For aspect ratios of 12 and above, ideal propulsive efficiencies of 90% or more are 
predicted for the numerically optimized solutions, and efficiencies of 95% or more are predicted for aspect ratios of 
17 and higher. 
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Figure 14.  Propulsive efficiency as a function of aspect ratio for rectangular wings with sinusoidal flapping. 
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III.   Conclusions 
 The periodic flapping motion of a bird’s wing can be very complex, incorporating time-dependent spanwise 
variations in both twist and sweep, which are coordinated with the periodic flapping motion.  Moreover, because the 
wing of a bird is multi-jointed and the bones and wingtip feathers are not rigid, the angular flapping rate can vary 
significantly across the wing semispans.  Although a simple two-dimensional model is commonly used to describe 
the production of thrust by wing flapping, negative lift predicted during the wing upstroke has been of significant 
concern to many who have attempted to explain the physics associated with the flapping flight of birds in the 
Earth’s atmosphere.  One common explanation is that birds must retract their wings slightly or separate their 
feathers on the upstroke to reduce the detrimental effects of this negative lift.  The lifting-line solutions presented 
here have shown that such complex flapping cycles are unnecessary for the efficient production of thrust in forward 
flight.  For high-speed sustained flight and other flight phases where aerodynamic efficiency and endurance are of 
paramount importance, lifting-line theory shows that high propulsive efficiencies can be attained even with a very 
simple pure-plunging flapping cycle.  Furthermore, the lifting-line relation for predicting the induced drag and thrust 
developed by wing flapping can be used for more complex flapping cycles. 
 One advantage of the decomposed lifting-line solution presented here is that it allows us to examine separately 
each of the contributing factors associated with the lift, drag, and power coefficients, even when the wing flapping 
motion is very complex.  Another significant advantage of this quasi-steady analytical solution over commonly used 
numerical methods is the utility provided for optimizing wing flapping cycles.  The decomposed lifting-line solution 
involves five time-dependent functions that could all be optimized to maximize propulsive efficiency, thrust, and/or 
other performance measures.  The optimization study presented here was limited to the optimization of wing twist 
for maximum propulsive efficiency, within the constraints of sinusoidal flapping and no semispan bending. 
 The decomposed lifting-line solutions that are presented here show that the propulsive efficiency associated 
with wing flapping can be very competitive with traditional methods of aircraft propulsion.  Using a pure-plunging 
sinusoidal flapping cycle for untwisted rectangular wings with no semispan bending, the lifting-line solution predicts 
ideal propulsive efficiencies in excess of 80% for wing aspect ratios near 20.  It has been shown here that this 
propulsive efficiency can be significantly increased by using a flapping cycle composed of a combination of  
periodic plunging and pitching motion.  For the case of  time-independent plunging and twist distribution functions, 
a closed-form analytical solution is presented for the instantaneous amount of wing twist that requires minimum 
power input per unit induced thrust.  Within the constraints of sinusoidal flapping, no semispan bending, and linear 
twist, this plunging–pitching motion increases the propulsive efficiency for a rectangular wing of aspect ratio 14 
from 76.5% to 91.2%, relative to pure plunging.  For this same wing planform, a further increase in ideal propulsive 
efficiency to 92.0% was obtained from numerical optimization of  the wing twist distribution–magnitude product at 
each instant in time during the flapping cycle.  For a rectangular wing of aspect ratio 20, this twist-optimized 
flapping cycle produced an ideal propulsive efficiency in excess of 97%. 
 The application of lifting-line theory to flapping wings is not limited to sinusoidal flapping with no semispan 
bending.  It is likely that by allowing the angular flapping rate as well as the wing twist to vary along the wing 
semispan and with time during the flapping cycle, propulsive efficiencies in excess of those presented here could be 
attained.  The decomposed lifting-line solution method presented here could be used to analyze and optimize these 
more complex flapping cycles.  Furthermore, by using numerical lifting-line solutions, the effects of variable sweep 
on propulsive efficiency could be investigated as well. 
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