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Identification of Factors Affecting Bovine Somatic Cell Nuclear Transfer  

Efficiency and Characterization of Transcriptional Profiles  

of Nuclear Transfer Embryos and Cotyledons 

by 

Kenneth Ivan Aston, Doctor of Philosophy 

Utah State University, 2007 

Major Professor: Dr. Kenneth L. White 
Department: Animal, Dairy, and Veterinary Sciences 
  

Since the production of the first sheep by somatic cell nuclear transfer a great deal 

of effort has been made to improve efficiency and to understand nuclear reprogramming 

mechanisms. Unfortunately efficiency remains low, and nuclear reprogramming 

mechanisms remain uncharacterized. The objectives of this research were to identify 

factors associated with somatic cell nuclear transfer efficiency and to analyze the 

transcriptome of blastocyst-stage clone and control embryos and cotyledonary tissue in 

an effort to elucidate mechanisms responsible for the low developmental efficiency and 

high post-implantation losses. 

The experiments reported here identify factors including oocyte source and timing 

of activation following nuclear transfer that yield improved efficiencies. It was 

determined the use of cow oocytes for somatic cell nuclear transfer results in improved in 

vitro development and increased pregnancy rates. These data further indicate prolonged 

exposure of the donor nucleus to pre-activated oocyte cytoplasm results in increased 

nuclear fragmentation and reduced developmental efficiency in vitro. 



  iv 
Several aberrantly expressed genes were identified in nuclear transfer 

blastocysts and cotyledons that could impact cloning efficiency. Major histocompatibility 

complex I and down-regulator of transcription 1 were overexpressed in nuclear transfer 

blastocysts, and retinol binding protein 1 was overexpressed in nuclear transfer 

cotyledons. The functions of these genes in immune response, transcriptional regulation, 

and retinol binding and transport make them attractive candidates for further nuclear 

transfer research. 

Expression levels of six developmentally important genes were analyzed in 

various stages of preimplantation nuclear transfer embryos by real-time polymerase chain 

reaction to determine the timing of nuclear reprogramming following nuclear transfer. 

Five of the six genes were aberrantly expressed multiple developmental stages, however 

by the blastocyst stage only one gene was aberrantly expressed. These data indicate 

reprogramming is delayed in nuclear transfer embryos resulting in over- or under-

expression of developmentally important genes during early embryogenesis. 

These experiments report factors associated with improved nuclear transfer 

efficiency; provide insight into potential mechanisms for low developmental rates, 

abnormal placentation, and fetal loss of clones; and characterize the timing of nuclear 

reprogramming following somatic cell nuclear transfer.    

         (216 pages)  
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CHAPTER 1 

REVIEW OF LITERATURE 

Cloning by nuclear transfer (NT) involves the removal of DNA from an oocyte, 

yielding a cytoplast, followed by the transfer of foreign DNA (nucleus) into the cytoplast, 

thus producing an oocyte with the full complement of DNA and the potential to produce 

a living organism. Somatic cell nuclear transfer (SCNT) involves nuclear transfer with a 

differentiated cell. While relatively simple in principle, SCNT requires a dramatic 

remodeling and reprogramming of DNA following transfer of the differentiated cell or 

nucleus into a host cytoplast in order for the DNA to be converted from its differentiated 

state to a totipotent, embryonic state. Consequently, while research in the field of SCNT 

continues at a rapid pace, understanding the mechanisms involved in the reprogramming 

process as well as methods for improved efficiencies of SCNT development remain 

somewhat elusive.  

A Brief History of Cloning 

   The NT procedure was first devised by the German Nobel Laureate Hans 

Spemann in 1938 when he proposed an experiment involving the insertion of a nucleus 

into an enucleated oocyte. The idea was not pursued, however, because he did not have 

the equipment required to perform such an experiment (Spemann 1938). Briggs and King 

were the first to successfully utilize NT in the production of live offspring from metazoan 

cells. They reported the successful production of Northern Leopard Frog, Rana pipiens, 

tadpoles via NT in May of 1952 (Briggs and King 1952). Continued research by this 

same group later concluded that developmental potential of NT embryos declined as cells 

from increasingly more developed embryos were utilized for NT (King and Briggs 1956). 
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In 1966 frog larval nuclei were used to successfully produce fertile Xenopus frogs 

(Gurdon and Uehlinger 1966). The first attempts with SCNT in frogs provided evidence 

that somatic cells from a variety of sources including skin (Gurdon et al. 1975), 

lymphocytes (Wabl et al. 1975), erythrocytes (DiBerardino and Hoffner 1983), 

leukocytes, and erythroblasts (Di Berardino and Orr 1992)  were able to de-differentiate 

and yield morphologically normal tadpoles, however none of these tadpoles survived to 

adulthood. These results showed the potential of differentiated cells to derive numerous 

different cell types in a complex organism; however, the question remained whether adult 

cells could be reprogrammed back to totipotency.  

 Success with NT in mammals was not reported until the 1980’s. Initially 

experiments involving the transfer of pronuclei from one mouse embryo to another 

proved successful in producing live births, however they were unable to produce viable 

embryos beyond the blastocyst stage using blastomeres from cleavage-staged embryos as 

nuclear donors (McGrath and Solter 1984). Finally in 1986 Willadsen reported the 

production of completely viable sheep embryos derived from the transfer of 8- and 16-

cell blastomeres to enucleated oocytes that result in the birth of live lambs (Willadsen 

1986). In 1987, Prather et al. used essentially the same procedure to produce live cattle 

(Prather et al. 1987). Over the next few years, a number of other species successfully 

cloned from cells of preimplantation embryos followed including mice, rats, rabbits, pigs, 

goats, and monkeys (Di Berardino 2001). In an effort to stretch the envelope of NT and 

produce a larger number of genetically identical offspring, generational cloning or serial 

NT was implemented (Stice and Keefer 1993; Westhusin et al. 1991; Willadsen 1989). 

This technology involved producing embryonic clones then harvesting blastomeres from 
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those first generation clones and producing a second generation of clones by the same 

process. This could be repeated for several generations potentially resulting in several 

thousand cloned embryos derived from a single embryo. With continuing advances in 

nuclear transfer technology, the question remained: could offspring be produced by NT 

from differentiated cells? A number of embryonic stem cell-like lines were produced 

from mice (Piedrahita et al. 1990), cattle (Stice et al. 1996), sheep (Notarianni et al. 

1991), and pigs (Notarianni et al. 1990), but attempts at producing cloned animals from 

stem cell-like lines proved ineffective (Stice et al. 1996; Tsunoda and Kato 1993). 

 Based on early work with somatic cells and cultured stem cell-like cells it was 

believed that it was not possible to produce viable offspring from adult cells; however, in 

1994 Sims and First came a step closer reporting the successful production of cloned 

calves using inner cell mass (ICM) cells cultured in vitro for up to 28 days (Sims and 

First 1994). In 1996 Campbell et al. announced the production of five cloned sheep 

derived from in vitro cultured, putative differentiated ICM cells (Campbell et al. 1996b). 

The success with cultured cells was closely followed by the announcement of the birth of 

Dolly, the first cloned animal derived from an adult cell (Wilmut et al. 1997). The 

announcement of Dolly was significant in that it demonstrated a differentiated mammary 

cell derived from an adult animal was able to be reprogrammed to an embryonic state and 

give rise to a complete and healthy animal.  Since the first successful SCNT experiments 

in sheep, the technology has been applied in the production of a number of other species 

including mice (Wakayama et al. 1998), cattle (Wells et al. 1999), goats (Baguisi et al. 

1999), pigs (Polejaeva et al. 2000), mouflon sheep (Loi et al. 2001), rabbits (Chesne et al. 

2002), mules (Woods et al. 2003), cats (Shin et al. 2002b), rats (Zhou et al. 2003), a deer 
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(unpublished), horses (Galli et al. 2003b), a dog (Lee et al. 2005), and ferrets (Li et al. 

2006b), and the list continues to grow. 

Status of Somatic Cell Nuclear  

Transfer Technology  

While an incredible amount of research has focused on SCNT, and progress 

continues, the molecular events underlying the successful conversion of a differentiated 

somatic cell to a totipotent embryonic cell with the capacity to derive a healthy and 

normal animal remain poorly understood. Further, the efficiency with which this process 

occurs successfully remains very low. While it is difficult to ascertain the overall 

efficiencies due to differences in protocols, embryo transfer criteria, and data presentation 

the overall efficiency of SCNT across species based on the number of embryos produced 

is believed to be less than 5% (Campbell et al. 2005). In cattle approximately 10-15% of 

SCNT embryos transferred develop to term (Oback and Wells 2007). 

In addition to the problems associated with poor efficiency following SCNT 

including lower rates of development to the blastocyst stage in vitro (Chapter 2; Arat et 

al. 2003; Bhuiyan et al. 2004) lower rates of pregnancy establishment (Hill et al. 2000; 

Powell et al. 2004), and higher rates of pregnancy loss (Heyman et al. 2002) a number of  

other differences between SCNT and control embryos and fetuses have been reported. 

These include abnormal chromosome constitutions and higher incidence of aneuploidy in 

SCNT embryos (Bureau et al. 2003; Shi et al. 2004), abnormal gene expression patterns 

in SCNT embryos (Daniels et al. 2000; Han et al. 2003; Li et al. 2006a; Santos et al. 

2003) and fetuses (Hill et al. 2002; Schrader et al. 2003), delayed and incomplete 

demethylation followed by aberrant re-methylation of DNA in SCNT embryos and 
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fetuses (Kang et al. 2001; Kang et al. 2002; Kang et al. 2003; Mann et al. 2003; Shi and 

Haaf 2002; Young and Beaujean 2004) and altered patterns of  histone acetylation in 

SCNT embryos and fetuses (Enright et al. 2003; Enright et al. 2005; Santos et al. 2003), 

and abnormal placentation often characterized by enlarged placentomes, edematious 

membranes, and hypovascularization of placentomes (Constant et al. 2006; Heyman et al. 

2002; Hoffert et al. 2005; Oishi et al. 2006). Given the complexity of the SCNT process, 

it is not surprising that a variety of different factors can affect efficiency.  

Factors Affecting SCNT Efficiency 

The inefficiencies associated with SCNT likely stem largely from deficiencies in 

the reprogramming process following NT. Following the transfer of a differentiated cell 

or nucleus into an enucleated oocyte, the DNA must be reprogrammed from a cell-type-

specific gene expression pattern to a totipotent embryonic-cell state. Modifications to the 

epigenetic state of the DNA are required in order for this to occur. 

Numerous factors can have an impact on the efficiency of nuclear reprogramming 

following nuclear transfer. These factors include the state and source of the donor cell, 

cytoplast source and quality, timing and methods of manipulation and activation, and 

embryo culture conditions. Evaluation of the literature associated with SCNT suggests 

that most if not all deficiencies associated with the low efficiency in cloning stem from 

failures or deficiencies in epigenetic reprogramming. 

State and Source of the Donor Cell 

A variety of donor cell types have been utilized to successfully produce cattle by 

SCNT including mammary (Kishi et al. 2000), adult and fetal skin (Hill et al. 2000), lung, 
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muscle (Powell et al. 2004), and granulosa (Wells et al. 1999) cells. Some reports 

indicate certain somatic cell types or culture conditions result in more efficient 

development following SCNT (Batchelder et al. 2005; Collas et al. 1992; Kasinathan et 

al. 2001; Lei et al. 2003; Powell et al. 2004), however there is no consensus as to the best 

somatic cell type or culture conditions for SCNT (Campbell et al. 2005). It has been 

proposed that cloning efficiency may be inversely correlated with the degree of donor 

cell differentiation (Jaenisch et al. 2002; Oback and Wells 2002). This is supported by the 

fact that embryonic cells and early fetal cells are generally more efficient in NT than 

adult somatic cells (Oback and Wells 2007). Contrary to expectation, NT with stem cells 

does not generally result in improved efficiency (Amano et al. 2001; Ono et al. 2001) and 

in fact can result in reduced efficiency compared with differentiated cells (Sung et al. 

2006). The reasons for the reduced efficiency of SCNT using adult stem cells are 

unknown. Additional research is required in order to more fully characterize the factors 

associated with donor cell epigenetic status that result in improved SCNT efficiency.       

Attempts have been made to improve the efficiency of NT by manipulation of the 

donor cell prior to NT. One approach is treatment of donor cells to change DNA 

methylation or histone acetylation levels to more closely approximate levels found in in 

vitro fertilized (IVF) embryos. The DNA methyl-transferase inhibitor 5-aza-2'-

deoxycytidine has been utilized to reduce DNA methylation levels in the transferred 

nucleus, and Trichostatin A, a histone deacetylase inhibitor has been used to increase 

histone acetylation (Enright et al. 2003; Enright et al. 2005; Shi et al. 2003). These 

approaches have demonstrated reduced DNA methylation and increased histone 

acetylation in preimplantation NT embryos, but to date, no report addressing the viability 
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of transferred embryos exists. Synchronization of donor cells using roscovitine, a cyclin 

dependent kinase 2-inhibitor has been reported to improve SCNT efficiency (Gibbons et 

al. 2002; Miyoshi et al. 2006).  

While it is clear donor cell type, culture conditions, and donor cell treatment can 

affect the efficiency of SCNT embryo development, it remains unclear what cell types, 

culture conditions and treatments result in the most efficient development following 

SCNT and by what mechanism such factors impact development.    

Cytoplast Source and Quality 

The recipient cytoplast likely has a more profound impact on the success of NT 

than the donor cell simply because it makes a more significant contribution to the 

reprogramming process. This is supported by the observation that SCNT  utilizing 

fertilized oocytes or oocytes activated prior to NT does not support in vitro development 

(Tani et al. 2001). In the early bovine embryo rRNA is not transcribed until the 4-cell 

stage (Viuff et al. 1998), and high transcriptional activity is not observed until the 8- to 

16-cell stage (Bilodeau-Goeseels and Panich 2002; Memili et al. 1998), so events of early 

embryogenesis are almost completely dependent on maternal transcripts and oocyte 

proteins. Differences in the developmental capacity of fetal, calf, and adult oocytes in 

IVF experiments have been noted by several groups (Pujol et al. 2004; Rizos et al. 2005) 

demonstrating important differences in developmental capacity depending on the source 

of oocytes. 

Little research has been done to evaluate the mechanisms by which differences in 

oocytes result in altered SCNT outcomes; however, it has been well established that calf 

oocytes differ from cow oocytes, and embryos derived from calf oocytes following IVF 
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are less developmentally competent than IVF embryos resulting from cow oocytes 

(Damiani et al. 1996; de Paz et al. 2001; Gandolfi et al. 1998; Khatir et al. 1998; 

Levesque and Sirard 1994; Majerus et al. 2000; Revel et al. 1995; Salamone et al. 2001).  

Studies of pre-pubertal calf oocytes have indicated they differ from cow oocytes 

in several important ways. It has been reported that IVF embryos derived from calf 

oocytes develop slower in vitro, arrest more frequently at the 9-cell stage, and exhibit a 

longer lag phase before maternal to zygotic transition (Majerus et al. 2000). Calf oocytes 

also undergo nuclear maturation at a slower rate than cow oocytes (Khatir et al. 1998). 

Gandolfi et al. (1998) reported that calf oocytes are smaller in diameter, metabolize 

glutamine and pyruvate at a lower rate during the first three h of IVM, and exhibit a 

decline in protein synthesis earlier as compared with cow oocytes (Gandolfi et al. 1998). 

Other groups have also reported different patterns of protein synthesis between cow and 

calf oocytes (Gandolfi et al. 1998; Levesque and Sirard 1994; Salamone et al. 2001). Calf 

oocytes contain more microvilli on their cell surface and more endocytic vesicles than 

cow oocytes, while cow oocytes contain a larger superior mitochondrial population than 

calf oocytes (de Paz et al. 2001). Numerous reports have indicated that fewer calf oocytes 

develop to blastocyst as compared with cow oocytes in IVF, parthenogenetic, and NT 

experiments (Damiani et al. 1996; Levesque and Sirard 1994; Majerus et al. 2000; Revel 

et al. 1995; Salamone et al. 2001). Additional work by Revel et al. (1995) indicated that a 

much lower pregnancy rate results from the transfer of blastocysts derived from calf 

oocytes (1 of 23 recipients; 4%) compared to cow-oocyte-derived blastocysts (10 of 26 

recipients; 38%). In this experiment, the single pregnancy established from calf embryos 

resulted in a full-term live calf (Revel et al. 1995). This indicates that although the overall 
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developmental competence of calf oocytes is much lower, some oocytes derived from 

pre-pubertal animals do have the capacity to direct development to term.     

 While many studies have evaluated the differences in developmental competence 

between cow and pre-pubertal calf oocytes fertilized in vitro, less attention has been 

given to potential differences between cow and heifer oocytes. There are several reports 

of differences between cow and heifer oocytes in terms of numbers of oocytes per ovary 

and in vitro developmental efficiency. Researchers have reported fewer oocytes collected 

from cows than from heifers following slaughter (Moreno et al. 1992) and also in 

conjunction with ovum pick up (Rizos et al. 2005). Researchers also compared the 

number and quality of oocytes from slaughtered crossbred beef heifers under 30 months 

and cows over 4 years old (Rizos et al. 2005). There were no differences observed in the 

number of oocytes collected per ovary; however, following IVF significantly more cow 

oocytes developed to the blastocyst stage on day 8 as compared to heifer oocytes (46.5% 

and 33.4%, respectively). In their experiment, heifer oocytes were further divided into 

groups based on the age of the donor (12-18 months, 19-24 months, and 25-30 months). 

There was no difference in development to the blastocyst stage between the three age 

groups (35.0%, 35.2%, and 36.5%, respectively). The superiority of cow oocytes over 

heifer oocytes in terms of development to blastocyst following IVF (27.5% and 16.4%, 

respectively) was also reported (Zhang et al. 1991). One group evaluated the 

developmental potential of oocytes collected from cows of different ages and found no 

significant difference in blastocyst yield between oocytes from 1-3 year old cows 

compared with oocytes from cows older than 3 years (Mermillod et al. 1992). A study 

involving the collection of oocytes from a slaughtered, Bovine Spongiform 
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Encephalopathy (BSE)-infected herd also compared development to the blastocyst 

stage using oocytes collected from heifers and cows. Cow oocytes developed into grade-

one blastocysts at a slightly higher efficiency than heifer oocytes (14.6% and 10.2% 

respectively) however the difference was not significant (Galli et al. 2003a).  

In addition to the scarcity of research evaluating the developmental competence 

of heifer oocytes, very little research has been done to evaluate the effect of oocyte 

source on bovine SCNT.  Two studies have evaluated the developmental competence of 

calf oocytes used in SCNT. Both reported lower rates of development to the 2-cell and to 

blastocyst stages compared with development using cow oocytes. In one study, cleavage 

of NT embryos was 75% with cow oocytes and 69% with calf oocytes, and blastocyst 

development was 21% and 9% respectively (Mermillod et al. 1998). A second study 

reported cleavage rates of 67% and 22% and blastocyst rates of 20% and 5% using cow 

and calf oocytes, respectively (Salamone et al. 2001).  

 In the environment of the recipient cytoplast following NT, the donor nucleus 

undergoes dramatic changes that result in the restoration of totipotency to a differentiated 

nucleus in a process referred to as nuclear reprogramming.  

The same machinery that is involved in chromatin modifications following 

fertilization is likely recruited for reprogramming of the donor nucleus following NT. 

Nuclear reprogramming of the donor cell following SCNT involves nuclear envelope 

breakdown (NEBD) and premature chromosome condensation (PCC; Barnes et al. 1993; 

Campbell et al. 1996a; Czolowska et al. 1984), followed by erasure of epigenetic 

modifications to DNA including changes in histone acetylation (Nakao 2001) and DNA 

methylation (Kang et al. 2003; Shi et al. 2003). Since maternal transcripts are responsible 
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for the events of early embryonic development (Telford et al. 1990), and given the 

events that occur naturally following fertilization, nuclear reprogramming is likely 

mediated by factors in the oocyte cytoplasm emphasizing the importance of selecting 

optimal oocytes for SCNT. While the effect of oocyte source and status on SCNT 

efficiency have not been extensively studied it is clear that these factors can have a 

profound impact on success. Indeed, the duration of in vitro maturation (Zakhartchenko 

et al. 2001), the exposure time of the donor nucleus to oocyte cytoplasm (Wells et al. 

1998), and differences in mitosis/meiosis/maturation-promoting factor (MPF) and 

mitogen activated protein (MAP) kinase levels within the oocyte (Lee and Campbell 

2006) have all been demonstrated to impact SCNT efficiency. MAP kinase within the 

oocyte has been shown to be involved in a number of different epigenetic reprogramming 

processes including histone deacetylase phosphorylation (Galasinski et al. 2002), histone 

H3 phosphorylation (Clayton and Mahadevan 2003) and changes in histone acetylation-

dependent DNA methylation (Gregory et al. 2001). With the extensive involvement of 

the oocyte cytoplasm on nuclear reprogramming it is clear that the oocyte can have a 

profound impact on SCNT efficiency. 

Oocyte maturation is another important factor in successful SCNT. As expected, 

in vivo matured oocytes have been shown to perform better for SCNT than in vitro 

matured oocytes (Wells et al. 1997), however collection of in vivo matured oocytes from 

livestock species is labor intensive, not cost effective, and therefore impractical for 

application in most SCNT programs. Continued research on the effect of oocyte source as 

well as maturation conditions on SCNT efficiency is required, along with further research 

to elucidate mechanisms associated with specific aspects of reprogramming.  
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Methods of Manipulation and Activation 

A great deal of research has evaluated numerous manipulation and activation 

protocols in an effort to develop methods resulting in improved SCNT efficiencies. 

SCNT typically involves the removal of DNA from a mature oocyte (enucleation) 

followed by the injection of a donor cell or nucleus either in the perivitelline space (donor 

cell), the space between the oocyte plasma membrane and the zona pellucida, or directly 

into the oocyte cytoplasm (nucleus). Injection of the cell into the perivitelline space 

requires a subsequent fusion step in order to fuse the donor cell and oocyte membranes 

and introduce the donor nucleus into the oocyte cytoplasm. Usually following, but 

sometimes preceding NT, activation of the embryo is required in order to signal the 

oocyte to initiate cell division. In the case of natural fertilization, the interaction between 

the sperm and the oocyte triggers this activation event, but with SCNT a synthetic 

activation is required. A variety of methods have been employed for manipulation and 

activation of SCNT embryos with varying degrees of success.  

The most common method for enucleation employs the use of a small polished 

glass holding pipette to keep the oocyte stationary and an enucleation pipette that is used 

to pierce the zona pellucida and plasma membranes and aspirate both the DNA within the 

cytoplasm of the oocyte and the associated first polar body (Li et al. 2004). Other 

methods include chemically-induced enucleation using etoposide  (Elsheikh et al. 1998), 

etoposide in conjunction with cycloheximide (Fulka and Moor 1993), and ethanol with 

demecolcine (Ibanez et al. 2003). While these methods greatly facilitate the enucleation 

process, development of NT embryos following chemically-induced enucleation remains 

lower than development of mechanically enucleated oocytes (Gasparrini et al. 2003). 
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Zona-free cloning methods have also been employed successfully in bovine and 

porcine SCNT (Oback et al. 2003; Peura 2003; Vajta et al. 2001). This method does not 

require micromanipulation and has the potential to be automated, but the culture 

requirements for zona-free embryos are more problematic than for manually manipulated 

embryos and for this reason has not found wide acceptance in the field (Vajta et al. 2005). 

Researchers have evaluated the effect of manipulation and activation of oocytes in 

various stages of meiosis on SCNT efficiency. Two predominant methods have been 

successfully utilized for NT. The first is a protocol in which the donor nucleus is 

transferred into a pre-activated, enucleated cytoplast. The other protocol involves the 

transfer of a donor nucleus into a metaphase II (MII)-arrested cytoplast followed by 

subsequent activation. The latter protocol results in much more efficient development to 

blastocyst in bovine NT and is therefore most frequently used (Shin et al. 2002a). The 

extremely low in vitro efficiency using pre-activated cytoplasts has precluded the transfer 

and pregnancy evaluation of pre-activated SCNT embryos so no data exist reporting post-

transfer developmental potential.   

In addition to the effects of manipulation methods and timing of the NT on SCNT 

efficiency, timing and method of activation has been shown to impact efficiency. Several 

groups have shown that the duration of exposure of the donor nucleus to oocyte 

cytoplasm affects in vitro development. Exposure of transferred nuclei to cytoplasm for 

less than 30 min prior to activation yielded significantly lower blastocyst development 

than 2 h exposure (Liu et al. 2001). However, excessive exposure of the donor DNA to 

oocyte cytoplasm results in lower rates of in vitro development in cloned embryos (Akagi 

et al. 2001). Most recently, Choi et al. demonstrated that in vitro development of bovine 
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NT embryos to blastocyst decreased as time in hold was increased from one to five h 

(Choi et al. 2004). However, little data exist indicating the viability to term of SCNT 

embryos based on timing of activation following exposure of the transferred nuclei to 

recipient cytoplasm until publication of results contained in this dissertation. The 

mechanisms underlying the differences observed in development rates based on the 

duration of cytoplasmic exposure prior to activation remain obscure. 

Following normal fertilization, activation by the sperm elicits regular, repetitive 

intracellular calcium transients. Activation results in resumption of meiosis, cortical 

granule release, decondensation of the sperm nucleus, and formation of male and female 

pronuclei. As the donor cell does not have the capacity to activate the oocyte, artificial 

means of activation are required. Early on it was discovered that mature oocytes could 

undergo parthenogenetic activation in the absence of the male gamete using a number of 

physical and chemical methods (Kaufman and Gardner 1974).  A number of 

parthenogenetic activation protocols have been applied successfully to SCNT. A short, 

high voltage electrical pulse can be used to create transient pores in cellular membranes 

allowing the influx of calcium from extra-cellular pools (Zimmermann and Vienken 

1982). Treatment with Ca2+ ionophores such as ionomycin result in the influx of Ca2+  as 

well as the release of Ca2+  from intracellular  stores (Steinhardt et al. 1974). Exposure of 

the embryo to 7% ethanol has been used in mice to induce Ca2+ release and activation 

(Ilyin and Parker 1992). Inhibition of protein synthesis using agents such as 

cycloheximide or puromycin induces activation in mouse (Siracusa et al. 1978) and 

human oocytes (Balakier and Casper 1993), however more efficient activation occurs 

with a combination of calcium stimulus in conjunction with protein synthesis inhibition 
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(Presicce and Yang 1994; Tanaka and Kanagawa 1997). While a number of methods 

have been demonstrated for activation of bovine SCNT embryos, none of the present 

alternatives closely mimic physiological activation following fertilization, and none stand 

out as being significantly better than the rest (Atabay et al. 2003; Bhak et al. 2006; Hill et 

al. 1999a; Yamazaki et al. 2005).  Substantial research evaluating the post-transfer 

developmental potential of SCNT embryos generated by different activation protocols is 

lacking. There is certainly a need for continued and substantially more research effort 

evaluating the long term developmental impacts of various oocyte activation protocols in 

SCNT outcomes. 

Embryo Culture 

Another critical and relatively deficient component in the SCNT process is 

embryo culture. Following NT and activation, bovine embryos are generally cultured in 

vitro for 6-7 day prior to transfer. To date no in vitro embryo culture system rivals in vivo 

culture in terms of development efficiency and embryo quality when considering the 

outcome of any assisted reproduction approach. Bovine SCNT embryos have been 

successfully cultured in a number of different media. Typical media used for bovine 

SCNT include CR1aa (Rosenkrans and First 1994), Synthetic Oviductal Fluid (SOF) 

(Brandao et al. 2004), and G1/G2 medium (Krisher et al. 1999). Attempts to improve in 

vitro development efficiency of bovine IVF and SCNT embryos have resulted in a wide 

variety of culture media and culture environments. The use of a monolayer of co-culture 

cells was shown in the mid-1980s to improve the developmental rates of both in vivo- and 

in vitro-produced bovine embryos cultured for various periods of time (Kuzan and 

Wright 1982). Fukui determined in 1991 that embryos not cultured with co-culture cells 
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grew better in environments with less than 20% oxygen (Fukui et al. 1991). While 

great strides have been made to improve bovine embryo culture conditions, culture 

conditions remain sub-optimal for both IVF embryos and SCNT embryos. Currently, 

under the best conditions, rates of development of bovine IVF and SCNT embryos to 

blastocyst remain about 40%. Even more troubling is the more frequent occurrence of 

complications during pregnancy associated with in vitro-cultured embryos as compared 

with in vivo-produced (IVP) embryos. While increased occurrence of complications 

during pregnancy is likely associated with in vitro culture, the problems occur more 

frequently in SCNT pregnancies than in IVF pregnancies. Increased incidences of large 

offspring syndrome (LOS), characterized by abnormally large fetuses, extended gestation 

length, and difficult parturition, and hydrallantois, a condition associated with excessive 

accumulation of allantoic fluid, have been associated with both IVF and SCNT 

pregnancies (Young et al. 1998), however the severity and frequency of both LOS and 

hydrallantois is significantly greater following SCNT (Constant et al. 2006; Hill et al. 

1999b; Lawrence et al. 2005). The problems common to IVF and SCNT pregnancies are 

most likely a consequence of the in vitro culture conditions and specifically the presence 

of serum or bovine serum albumin (BSA) in the culture medium (Lazzari et al. 2002).  

These observations have provided increased impetus to develop completely 

defined media and further improved culture conditions in which to culture embryos (Lim 

et al. 2007). The elimination of the need for co-culture cells, serum, and BSA, which 

introduce variability as well as many uncharacterized factors into the culture, has been a 

focus of much research. Sequential media such as G1/G2 in which different media are 

used at different stages in the culture process are also being developed in an effort to 
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further mimic physiological conditions. Despite the progress made thus far, sub-

optimal embryo culture conditions remain a contributing problem to the inefficiencies 

associated with SCNT.  

Epigenetics 

Epigenetics refers to stable and heritable changes in gene expression beyond the 

scope of conventional genetics. In other words, gene expression in a cell is not controlled 

exclusively by the DNA sequence, but also by these stable “epigenetic” influences to 

specific genes (Jaenisch and Bird 2003). In addition to their importance in differentiation 

of tissue types during development, epigenetic alterations can also arise randomly or as a 

result of environmental influence (Issa 2000). The genome adapts to developmental or 

environmental cues either by post-synthetic modification to DNA or by modification of 

proteins associated with DNA. It is believed that epigenetic modifications have arisen 

and evolved as a genome defense against viruses and other parasitic sequences (Matzke 

et al. 1999). Cellular differentiation occurs as a consequence of epigenetic modifications 

imposed upon the genome. These epigenetic modifications direct the expression patterns 

of cell-type-specific genes; therefore SCNT necessitates the reprogramming of the donor 

cell carrying cell-type specific epigenetic modifications in order for every cell type to be 

derived from a once-differentiated donor cell. It is widely believed that incomplete or 

improper epigenetic reprogramming following SCNT results in the low efficiency as well 

as the phenotypic problems observed in clones. 

Epigenetic Mechanisms  

A variety of epigenetic modifications to DNA and its associated proteins have 



  18 
been characterized. These modifications can serve either to silence expression or to 

enhance transcription of specific genes. Predominant epigenetic modifications include 

DNA methylation, and modifications to histones including methylation, acetylation, 

ribosylation, phosphorylation, and ubiquitination. 

DNA methylation. In 1975, Holliday and Pugh suggested DNA methylation might 

be a mechanism whereby a stable pattern of gene expression is maintained through 

mitosis (Holliday and Pugh 1975). More recently, it has been shown that methylation of 

DNA usually, though not always, has a silencing effect on chromatin (Wolffe and Matzke 

1999). Methylation is a post-synthetic modification that generally occurs at the 5’-

position of cytosines of the CpG dinucleotide.  

While the protein(s) involved in active demethylation during early development 

have not yet been characterized, several proteins have been implicated in cytosine 

methylation (Jaenisch and Bird 2003). These DNA methyltransferases (Dnmt) function to 

methylate cytosines by catalyzing the transfer of CH3 from S-adenosylmethionine to 

carbon 5 of cytosine (Strathdee and Brown 2002). The methyltransferase family includes 

Dnmt 1, Dnmt 1o, Dnmt 2, Dnmt 3a, Dnmt 3b, and Dnmt 3L.  

Some understanding of the functions of these proteins has been gained through 

the study of mice with mutations of the various Dnmt genes. Dnmt 1 (Li et al. 1992) and 

the oocyte-specific isoform Dnmt 1o (Howell et al. 2001) exhibit a high binding affinity 

for hemi-methylated DNA and are responsible for the maintenance of methylation on the 

newly synthesized strand of DNA. A mutation in Dnmt 2 (Okano et al. 1998) yields no 

phenotypic change, perhaps owing to a redundancy in the developmentally critical system 

of DNA methylation. In Drosophila Dnmt 2 has been shown to have non-CpG 
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methylation activity (Lyko et al. 2000). Dnmt 3a and Dnmt 3b (Okano et al. 1999) are 

present at high levels in the early mouse embryo and are responsible for global de novo 

methylation  subsequent to active and passive demethylation in the paternal and maternal 

genomes, respectively following fertilization. Dnmt 3L functions in concert with Dnmt 

3a and Dnmt 3b in establishing proper maternal imprinting (Bourc'his et al. 2001). 

It is still somewhat unclear how the seemingly minor modification of DNA 

methylation can have such a profound impact gene expression. There are several 

proposed models for its influence: methylation may prevent the binding of protein 

regulators to their targets, involvement of regulatory proteins that bind only to methylated 

DNA, or methylation of DNA changes its structural properties (Urnov and Wolffe 2001). 

There is data to suggest that all three models may play roles, but regulatory 

proteins that bind only methylated DNA have been studied most extensively. A group of 

four proteins known as methylated-DNA binding domain proteins  (MBD1-MBD4) have 

been shown to preferentially bind to the CpG dinucleotide in which the cytosine is 

methylated (Hendrich et al. 2001). MBD1, MBD2, and MBD3 function as transcription 

repressors (Bird and Wolffe 1999), while MBD4 is a protein involved in mismatch repair 

(Hendrich et al. 1999). Gene targeting in mice of different Mbd genes results in effects 

ranging in severity from defective maternal behavior to lethality depending on the MBD 

targeted (Hendrich et al. 2001).  

Histone modifications. In addition to DNA methylation as an epigenetic 

modification, histone modifications also function as epigenetic marks to the genome. 

Covalent modifications to histones such as methylation, acetylation, phosphorylation, 

ADP ribosylation, and ubiquitination have a direct impact on chromatin structure, which 
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in turn acts as a modulator of gene expression (Goll and Bestor 2002). Histones are the 

primary proteins responsible for the packaging of genomic DNA. The basic repeating 

unit of chromatin is the nucleosome. The nucleosome consists of 146 bp of DNA 

wrapped around a core composed of eight histones- two copies each of H2A, H2B, H3, 

and H4 (Kornberg and Lorch 1999).  

 Post-translational modifications to histones are mediated by histone-modifying 

and chromatin-modifying enzymes. Examples of these enzymes are histone 

acetyltransferases (HATs), deacetylases (HDACs), and histone methyltransferases 

(HMTs). The complex array of histone modifications observed experimentally gave rise 

to the histone code hypothesis- the idea that histone modifications may be interdependent 

and together they impact chromatin structure in such a way as to affect gene activation or 

inactivation (Strahl and Allis 2000). Each of the four core histones can be modified at a 

variety of sites. The number of different modifications and the multiple sites at which the 

modifications can occur yields an incredibly large number of possible combinations, 

which has made characterization of the histone code quite difficult. 

Genomic imprinting. Epigenetic modifications are also responsible for genomic 

imprinting, a mechanism whereby one of the two copies of a gene within a genome is 

silenced and only one remains active. At least 45 imprinted genes have been identified in 

the mouse, and of these genes, about 80% are clustered with other imprinted genes. 

Initially, imprints are established during spermatogenesis and oogenesis. After 

fertilization, while most genes are demethylated and re-methylated, imprinted genes 

maintain their native methylated or demethylated state throughout the reprogramming 

process. During early embryonic development, the imprints are erased in the germ cells 
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then re-established later in development (Reik et al. 2001). 

As with other epigenetic modifications, genomic imprinting probably arose in 

response to parasitic DNA. It is possible that gene sequences located near these regions 

of foreign DNA were silenced as an extension of the normal epigenetic silencing of 

neighboring sequences. Imprints established in this way that conferred a selective 

advantage were propagated, and others were eliminated (Barlow 1993). 

X-chromosome inactivation. An interesting epigenetic mechanism has evolved in 

mammals to compensate for differences in X-linked gene dosage between males (XY) 

and females (XX). In placental mammals and marsupials, one of the X chromosomes is 

inactivated by modification of chromosome architecture. The modifications that 

inactivate the chromosome include DNA methylation and histone deacetylation. 

Interestingly, the decision of which X-chromosome to inactivate in the embryo proper is 

random, whereas in extra-embryonic tissues, the paternal X is always chosen for 

inactivation (Park and Kuroda 2001). 

Epigenetic Reprogramming 

Following Fertilization 

A dramatic demonstration of the dynamic involvement of epigenetics in 

development is demonstrated by the reprogramming events that occur during germ cell 

and early embryonic development in mammals. During germ cell development the 

genomes of both the sperm and the egg are globally demethylated then re-methylated- 

prior to meiosis in the male (Davis et al. 2000) and during the oocyte growth phase of 

meiotic arrest in the female, so that prior to fertilization, sperm and egg genomes are 

much more highly methylated than somatic cells (Obata et al. 1998). At fertilization, 
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sperm chromatin is actively demethylated, possibly by direct removal of the methyl 

group from the cytosine (Bhattacharya et al. 1999) or by exchange of the 5-

methylcytosine with unmethylated cytosine via base excision (Weiss et al. 1996). The 

mechanisms responsible for active demethylation of the paternal genome following 

fertilization remain uncharacterized (McLay and Clarke 2003) although enzymatic 

catalysis is most likely involved (Morgan et al. 2005). The maternal genome is also 

demethylated during early development, but in a passive, replication-dependent manner, 

such that the original DNA retains its methylation, but newly replicated strands are not 

methylated. This global demethylation is subsequently followed by de novo methylation 

of the genome starting at the 8- to 16-cell stage in bovine embryos and the blastocyst 

stage in mice resulting in differentiation of cell lineages during development (Reik et al. 

2001). 

The successes achieved following SCNT suggest the same oocyte components 

that are involved in the reprogramming events observed following fertilization can also 

be utilized to de-differentiate a somatic cell and return it to a totipotent embryonic state. 

The epigenetic modifications to the chromatin of a fibroblast distinguish it from an 

embryonic cell or any other cell type. Following SCNT, the epigenetic state of the donor 

cell is reprogrammed such that its epigenetic state closely resembles that of an embryonic 

cell. 

Epigenetic Reprogramming  

Following SCNT 

Epigenetic reprogramming is essential in order for SCNT be successful. During 

nuclear reprogramming epigenetic marks are erased from the donor nucleus genome, 
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resulting in an erasure of tissue-specific gene expression patterns effectively resetting 

the cell to a totipotent state (Santos and Dean 2004). Studies evaluating the epigenetic 

status of embryos following SCNT have demonstrated deficiencies in epigenetic 

reprogramming frequently occur. These deficiencies are made manifest in several ways 

including changes in histone modifications, DNA methylation patterns, and gene 

expression. 

Several studies have evaluated differences in epigenetic modifications following 

SCNT. Hypermethylation of lysine 9 on histone H3 (H3-K9) as well as DNA 

hypermethylation was reported in the majority of bovine preimplantation SCNT embryos 

in one study (Santos et al. 2003). A number of studies evaluating the reprogramming 

dynamics of epigenetic modifications in vitro following NT have also been reported. 

Evaluation of DNA methylation patterns in developing NT embryos indicates 

demethylation and remethylation events are not always faithfully recapitulated in the 

mouse (Chung et al. 2003; Mann et al. 2003; Shi and Haaf 2002) and the cow (Bordignon 

et al. 2001; Dean et al. 2001; Kang et al. 2002). It is also clear that histone acetylation is 

sometimes aberrant in bovine SCNT embryos (Enright et al. 2003). This incomplete 

epigenetic reprogramming is the predominant explanation for the frequent aberrant gene 

expression in NT embryos and the subsequent failures in development (Santos et al. 

2003). 

Immunofluorescent staining of bovine NT embryos with an antibody directed 

against 5-methyl-cytosine by Dean et al. (2001) demonstrated the occurrence of active 

demethylation of the donor chromatin shortly after fusion similar to the active 

demethylation of sperm chromatin observed following fertilization (Dean et al. 2001). 
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However, de novo methylation occurred starting in 4-cell NT embryos as compared to 

normal bovine embryos, which exhibit de novo methylation at the 8- to 16-cell stage 

(Dean et al. 2001; Reik and Dean 2001). The enzymes responsible for DNA 

demethylation may follow a pattern of activity similar to maturation promoting factor 

(MPF) with high activity prior to activation and a diminishing of activity following 

activation. Further research will be required to determine those dynamics, but based on 

one study there appears to be a critical window of time in which active demethylation can 

occur following fusion (Dean et al. 2001). The idea of this critical window between 

fusion and activation is supported by the work of Bourc'his et al. (2001) in which active 

demethylation was not observed when activation was performed at the time of fusion 

(Bourc'his et al. 2001).  

Other studies have focused on epigenetic reprogramming of specific genes 

following SCNT. Evaluation of methylation patterns of imprinted genes following SCNT 

indicates methylation errors at imprinted loci are common (Humpherys et al. 2002; Mann 

et al. 2003; Mann et al. 2004). In addition, errors in X-inactivation (Eggan et al. 2000; 

Jiang et al. 2007; Xue et al. 2002) and failures to activate important pluripotency genes 

have been observed in SCNT embryos (Boiani et al. 2002; Bortvin et al. 2003). Critical 

errors in the fundamental epigenetic state of chromatin during early development 

following SCNT are likely the foundation for the numerous other deficiencies observed 

in clones (Fulka and Fulka 2007).  

Nuclear Organization and Gene  

Expression Following SCNT 

In addition to the requirement for correct epigenetic reprogramming, it is also 
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necessary that a diploid chromosome constitution be maintained to ensure proper 

development. In order for proper ploidy to be maintained in a NT embryo, donor cell 

chromosomes must be condensed prior to activation, and following activation, a single 

pronucleus should appear as the chromatin decondenses in preparation for DNA 

replication. 

MPF is an enzyme that is highly active in the MII oocyte and is a key factor in 

nuclear remodeling prior to activation or fertilization. MPF is a protein kinase composed 

of two proteins, cyclin and p34cdc2 (Gautier et al. 1990). The active kinase is responsible 

for the resumption of mitosis or meiosis. Prior to activation or fertilization in the MII-

arrested oocyte, MPF activity is high then following activation its activity declines 

rapidly (Campbell et al. 1993a).  Several significant morphological changes occur in the 

donor nucleus following NT into cytoplasts with high MPF activity. These changes 

include NEBD and PCC (Campbell et al. 1996a; Czolowska et al. 1984). Following these 

two events, the nuclear envelope is reformed, and DNA synthesis commences (Campbell 

et al. 1993b).  

 NEBD is essential for cytoplasmic spindle microtubules to gain access to 

chromosomes prior to resumption of meiosis or mitosis. MPF, at least in part, facilitates 

the breakdown of the nuclear membrane by phosphorylation of nuclear lamins resulting 

in their depolymerization (Peter et al. 1990). Phosphorylation of nuclear pore complex 

subunits further destabilizes the nuclear envelope (Macaulay et al. 1995). More recently it 

has been proposed that mechanical tearing of the lamina by microtubules might work in 

conjunction with phosphorylation events to break down the nuclear envelope (Beaudouin 

et al. 2002).  
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As the name implies, PCC involves the condensation of chromatin, which 

occurs prematurely in the donor nucleus. It has been demonstrated that when an s-phase 

nucleus undergoes PCC, the chromatin appears pulverized (Schwartz et al. 1971). 

Additionally, an increased incidence of chromosomal abnormalities in s-phase nuclei that 

underwent PCC has been reported (Collas et al. 1992). Several studies have reported 

problems with nuclear organization and ploidy following SCNT (Alberio et al. 2001; Li 

et al. 2005; Wakayama et al. 2003). 

In addition to problems associated with nuclear organization following SCNT, a 

number of groups have reported aberrant expression of genes in SCNT embryos and 

fetuses, an additional manifestation of incomplete or improper epigenetic 

reprogramming. One study used microarray analysis to compare global gene expression 

profiles of bovine somatic donor cells, SCNT blastocysts, IVF blastocysts, and IVP 

blastocysts. Based on these studies it was determined that a significant amount of 

reprogramming has occurred by the blastocyst stage as SCNT expression profiles 

resembled profiles for control embryos generated by IVF and artificial insemination (AI)  

much more closely that their progenitor donor cells (Smith et al. 2005). The study 

reported 50 genes differentially expressed between SCNT and IVP blastocysts, an 

indication that, while a substantial amount of reprogramming has occurred properly in the 

conversion of a somatic cell epigenetic pattern to that of an embryo; there are still 

deficiencies in the reprogramming process. Another study evaluated the transcriptome of 

mouse SCNT and IVP embryos during the first two cell cycles. During the second cell 

cycle over 1000 genes were differentially expressed in SCNT embryos indicating the 

reprogramming process occurs over several cell cycles, and the divergence in gene 
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expression patterns narrows greatly by the blastocyst stage (Vassena et al. 2007a). 

Numerous other studies report aberrant gene expression in SCNT embryos (Beyhan et al. 

2007; Li et al. 2006a; Vassena et al. 2007b), placentas (Oishi et al. 2006; Patel et al. 

2004), conceptuses (Moore et al. 2007; Schrader et al. 2003), and neonates (Jiang et al. 

2007; Li et al. 2007).   

Summary 

A great deal of research and effort has been focused on SCNT over the past 

decade, and while progress continues, SCNT is still very inefficient in terms of rates of 

development in vitro and to a greater extent survival to term. A growing body of data 

supports the idea that a common thread between nearly all deficiencies associated with 

SCNT is inappropriate epigenetic reprogramming of the somatic cell nucleus as manifest 

by genes being expressed when they should not be, not expressed when they should be, 

or most commonly expressed at altered levels. The efficiency and fidelity with which 

epigenetic reprogramming occurs is undoubtedly affected by all of the factors discussed 

in this review including factors associated with the donor cell and cytoplast, manipulation 

and activation procedures, and embryo culture conditions. An increased understanding of 

how each of these factors impacts epigenetic reprogramming and further improvements 

in each of these areas will continue to result in increased SCNT efficiency.   

Research Goals and Possible Applications of Project 

 The focus of my research includes two primary objectives associated with bovine 

SCNT; first to characterize factors associated with the process of SCNT that impact 
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efficiency, specifically oocyte source and activation timing, and second to characterize 

gene expression differences between SCNT and control embryos and placental tissues.  

In the first objective I determined that the use of oocytes derived from cows in 

SCNT results in greatly improved rates of development to term compared with heifer 

oocytes. I also found that prolonged exposure of the somatic nucleus to oocyte cytoplasm 

prior to activation results in nuclear fragmentation and reduced embryonic viability.  

The subsequent gene expression studies revealed a variety of genes 

inappropriately expressed in SCNT embryos and placentomes. Global gene expression 

analysis of SCNT and AI blastocysts as well as fibroblast donor cells substantiated 

previous findings as well as revealed a novel subset of aberrantly-expressed genes in 

SCNT embryos. Microarray analysis of the fetal component of the placenta associated 

with maternal/fetal nutrient exchange, the cotyledon, revealed a smaller subset of 

differentially expresses genes. Of note, major histocompatibility complex I and down-

regulator of transcription 1 were overexpressed in SCNT embryos and retinol binding 

protein 1 was overexpressed in SCNT cotyledons. 

Comparisons of embryonic and fibroblast transcriptomes provided a large list of 

differentially expressed genes from which six developmentally important genes were 

selected for more detailed analysis. For this analysis Quantitative Reverse Transcriptase 

PCR (Q-RT-PCR) was utilized to evaluate the expression levels of genes in various 

stages of SCNT and IVF. For five of the six genes analyzed, aberrant expression was 

detected in multiple developmental stages, however by the blastocyst stage only one gene 

was aberrantly expressed in nuclear transfer embryos. This data indicate reprogramming 

is delayed in nuclear transfer embryos resulting in over- or under-expression of 
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developmentally important genes during early embryogenesis however the majority of 

aberrant expression is rectified by the blastocyst stage. These experiments provided a 

detailed analysis of reprogramming dynamics following SCNT for a group of 

developmentally important genes. 

Somatic cell nuclear transfer offers promise for many different applications 

including rescue of endangered species, production of animals with genetically superior 

traits, biopharmaceutical production, xenotransplantation applications, and stem cell 

production. As SCNT efficiency increases the utility of the process will lend to further 

advances in these applications. In addition, an understanding of the factors that affect 

SCNT efficiency will offer insights into the complex and poorly understood field of 

epigenetic reprogramming. The complex processes by which epigenetic modifications are 

initiated and propagated and the mechanisms by which these modifications effect gene 

expression are beginning to be characterized. There remains, however, much to be 

learned in this area including understanding how specific environmental cues function to 

bring about epigenetic changes and how specific genes are targeted for silencing or 

activation by epigenetic controls. Continued research in the field of epigenetics will 

undoubtedly open doors to increased understanding in many related fields. 
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CHAPTER 2  

THE DEVELOPMENTAL COMPETENCE OF BOVINE NUCLEAR  

TRANSFER EMBRYOS DERIVED FROM COW 

 VERSUS HEIFER CYTOPLASTS 
1
 

Abstract  

Due to its economic importance, the production of cattle by nuclear transfer has 

been a primary research focus for many researchers during the past few years. While 

many groups have successfully produced cattle by nuclear transfer, and progress in this 

area continues, nuclear transfer remains a very inefficient technology. This study 

evaluates the effect of the oocyte source (cow and heifer) on the developmental 

competence of nuclear transfer embryos. In order for nuclear transfer to be successful, a 

differentiated donor cell must be reprogrammed and restored to a totipotent state. This 

reprogramming is probably accomplished by factors within the oocyte cytoplasm. This 

study indicates that oocytes derived from cows have a greater capacity to reprogram 

donor cell DNA following nuclear transfer as compared to heifer oocytes based on in 

vitro development to the 2-cell stage and to the compacted morula/blastocyst stages. 

Nuclear transfer embryos derived from cow oocytes resulted in significantly higher rates 

of pregnancy establishment than embryos derived from heifer oocytes and resulted in 

higher pregnancy retention at 90 and 180 days and a greater number of term deliveries. 

Following delivery more calves derived from cow oocytes tended to be healthy and 

normal than those derived from heifer oocytes. The differences in developmental 

                                                 
1
 Published in Animal Reproduction Science. 95(3-4):234-43 (2006). Kenneth I Aston, Guang-

Peng Li, Brady A Hicks, Benjamin R Sessions, Barry J Pate, Douglas S Hammon, 
Thomas D Bunch, Kenneth L White.  
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efficiency between nuclear transfer embryos derived from cow and heifer cytoplasts 

demonstrate that subtle differences in oocyte biology can have significant effects on 

subsequent development of nuclear transfer embryos. 

Introduction 

Successful somatic cell nuclear transfer (NT) has been achieved in domestic 

animals and rodents as reported by the birth of offspring. The overall efficiency
 
of this 

technique, however, remains low, generally less than 2% (Hill 2002). A high frequency
 
of 

early post-implantation developmental arrest and abortion occurs, especially in cattle. 

The exact mechanism(s)
 
contributing to losses are still unclear. Epigenetic alterations 

(Cezar et al. 2003; Wrenzycki et al. 2001), and chromosomal abnormalities (Burgoyne et 

al. 1991; Li et al. 2004a; Li et al. 2004b) likely contribute to developmental failure.  

Following the transfer of a differentiated nucleus into an enucleated MII oocyte 

the nucleus is disassembled, an event involved in reprogramming the differentiated donor 

nucleus to a totipotent embryonic state. This disassembly involves nuclear envelope 

breakdown (NEBD) and premature chromosome condensation (PCC), mediated by high 

levels of mitosis/meiosis/maturation-promoting factor (MPF) in the oocyte cytoplasm 

(Barnes et al. 1993; Campbell et al. 1996; Czolowska et al. 1984). These events are 

followed by erasure of epigenetic modification of DNA including changes in histone 

acetylation (Nakao 2001) and DNA methylation (Kang et al. 2003; Shi et al. 2003a). 

Since maternal transcripts are responsible for the events of early embryonic development 

(Telford et al. 1990), nuclear reprogramming is presumably mediated by factors in the 

oocyte cytoplasm.  
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A number of studies have been undertaken to evaluate reprogramming 

dynamics in vitro following NT. Evaluation of DNA methylation patterns in developing 

NT embryos indicates demethylation and remethylation events are not always faithfully 

recapitulated in the mouse (Chung et al. 2003; Mann et al. 2003; Shi and Haaf 2002) and 

the cow (Bordignon et al. 2001; Dean et al. 2001; Kang et al. 2002). It is also clear that 

histone acetylation is sometimes aberrant in bovine NT embryos (Enright et al. 2003). 

This incomplete epigenetic reprogramming is the predominant explanation for the 

frequent aberrant gene expression in NT embryos and the subsequent failures in 

development (Santos et al. 2003).  

Improvements in NT efficiency will require an understanding of the factors that 

result in improved reprogramming. Two elements of the NT process likely have an effect 

on reprogramming efficiency: the state of the donor cell/nucleus and a suitable recipient 

cytoplast.  

Attempts have been made to improve the efficiency of NT by manipulation of the 

donor cell prior to NT. One approach is treatment of donor cells to change DNA 

methylation or histone acetylation levels to more closely approximate levels found in IVF 

embryos. The DNA methyl-transferase inhibitor 5-aza-2'-deoxycytidine (Aza-C) has been 

utilized to reduce DNA methylation levels in the transferred nucleus, and Trichostatin A 

(TSA), a histone deacetylase inhibitor has been used to increase histone acetylation 

(Enright et al. 2003; Enright et al. 2005; Shi et al. 2003b). These approaches have 

demonstrated reduced DNA methylation and increased histone acetylation in 

preimplantation NT embryos, but no report addressing the viability of transferred 

embryos exists.  
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The recipient cytoplast likely has a more profound impact on the success of NT 

than the donor cell simply because it makes a more significant contribution to the 

reprogramming process. In the early bovine embryo rRNA is not transcribed until the 4-

cell stage (Viuff et al. 1998), and high transcriptional activity is not observed until the 8-

16-cell stage (Bilodeau-Goeseels and Panich 2002; Memili et al. 1998), so events of early 

embryogenesis are almost completely dependent on maternal transcripts and oocyte 

proteins. Differences in developmental capacity of fetal, calf, and adult oocytes in IVF 

experiments have been noted by several groups (Pujol et al. 2004; Rizos et al. 2005) 

demonstrating important differences in developmental capacity depending on the source 

of oocytes. The present study was designed to examine the differences in developmental 

capacity in vitro and in vivo of NT embryos derived from cow versus heifer cytoplasts.  

Materials and Methods 

Unless otherwise noted, all reagents used were obtained from MP Biomedicals 

(Irvine, CA). 

Donor Cell Culture 

Donor cell lines were established from nine separate animals. Five cell lines were 

derived from lung tissue collected from slaughtered steers at approximately 18 months of 

age. The other four cell lines were derived from ear biopsy of dairy cows greater than 

three years of age. Tissues were washed thoroughly in Flush Medium; Hank’s Balanced 

Salt Solution supplemented with 2% Fetal Bovine Serum (FBS) and antibiotics. 

Following the wash, tissue was minced, suspended in DMEM/Ham's F12 (1:1) 

supplemented with 15% FBS and antibiotics, seeded in 25 cm
2
 tissue culture flasks, and 

cultured at 39˚C in a humidified atmosphere of 5% CO
2
 in air for several days. Upon 
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establishment of primary tissue outgrowths, cells were harvested and used to seed 

additional flasks. Primary cell lines were expanded then harvested in tissue culture 

medium containing 10% DMSO and stored in liquid N
2
 until use in NT.  Frozen/thawed 

cells were grown to 80-100% confluence then passaged for use as nuclear donors. Cells 

from passages 1-10 were used for NT. Donor cell type (lung and ear), cell line, and 

passage number were distributed evenly across oocyte groups such that an equivalent 

proportion of embryos from each cell line and passage was produced using heifer and 

cow oocytes and subsequently transferred. This was done in order to avoid confounding 

effects brought about by donor cell variation between groups. 

Oocyte Collection and Maturation 

Heifer and cow ovaries were collected from the abattoir and oocytes were 

aspirated into 50-mL centrifuge tubes from 3-8 mm follicles using an 18-gauge needle 

connected to a vacuum pump. Oocytes with evenly shaded cytoplasm and intact layers of 

cumulus cells were selected and washed in PB1 supplemented with 3 mg/mL BSA. 

Washed oocytes were then transferred into maturation medium; M199 containing 10% 

fetal bovine serum (FBS; HyClone Laboratories, Logan, UT), 0.5 µg/mL FSH (Sioux 

Biochemicals, Sioux City, IA), 5 µg/mL LH (Sioux Biochemicals), and 100 U/mL 

penicillin/ 100 µg/mL streptomycin (HyClone Laboratories, Logan, UT) and cultured for 

18-21 h prior to NT.  

Nuclear Transfer 

Nuclear transfer was performed according to established protocols common to 

this laboratory (Li et al. 2004b; Wells et al. 1999) with the following modifications. 

Briefly, enucleations were performed on matured MII bovine oocytes 18-21 h after the 
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initiation of maturation. Manipulations were performed in calcium- and magnesium-

free PB1 supplemented with 3mg/ml fatty acid-free BSA and 7.5µg/ml cytochalasin B. 

Fusions of NT couples were performed in mannitol fusion medium by two electric DC 

pulses of 2.2 kV/cm for 30 microseconds. Fused embryos were activated at 24 h after the 

onset of maturation by exposure to 5 µM ionomycin for 5 min followed by five h 

incubation in cycloheximide at a concentration of 10 µg/ml.   

Embryo Culture 

After activation, embryos were cultured on a monolayer of bovine cumulus cells 

in 50 µL drops of CR2 containing 3% FBS overlaid with mineral oil. The embryos were 

cultured at 39˚ C in a humidified atmosphere of 5% CO
2
 in air for 7-8 days, and media 

was changed and development evaluated approximately every 48 h. 

Embryo Transfer 

On Day 6 or 7, compacted morulae and blastocysts were shipped overnight in 

equilibrated CR2 at 38.5 ˚ C to the site of transfer. One to four embryos (average 1.9) 

were transferred nonsurgically to cows synchronized + 1 day to the stage of the embryos. 

Equal numbers of embryos per recipient were transferred from both cow and heifer 

groups.  

Pregnancy Evaluation 

Pregnancy was detected by trans-rectal ultrasound between days 25 and 30, and 

pregnant recipients were checked by ultrasound or palpation at approximately 30-day 

intervals to confirm ongoing pregnancies. 
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Statistical Analysis 

Data were pooled from at least 15 replicates per group for the in vitro 

development studies. Chi-square analysis was used to determine differences in cleavage, 

development to the compacted morula/blastocyst stages, and pregnancy establishment 

and maintenance. Unless otherwise noted, a probability of P<0.05 was considered 

statistically significant. 

Results 

NT embryos derived from cow oocytes developed to the 2-cell and compacted 

morula/blasocyst stages (79.5% and 26.5%, respectively) at a higher rate than those from 

heifer oocytes (59.8% and 14.8%, respectively, P<0.001; Table 2-1). Further, transferred 

morulae/blastocysts produced from cow oocytes established pregnancy at a higher rate 

than heifer oocyte-derived embryos, and pregnancies were retained at a higher rate at 90 

and 180 days and to term (P<0.025; Table 2-2 and FIG. 2-1). The difference in pregnancy 

rates at 60 days approaches significance (P<0.1) Pregnancy rates for cow oocyte-derived 

embryos at were 51.3% at 25 days, 38.5% at 60 days, 28.2% at 90 days, 28.2 at 180 days, 

and 25.6% at term. In contrast, pregnancy rates from heifer oocyte-derived NT embryos 

were 29.2% at 25 days, 23.1% at 60 days, 7.7% at 90 days, 3.1% at 180 days, and 3.1% at 

term.  It is also interesting to note that the differences in pregnancy retention are not 

simply the result of a higher proportion of embryos establishing pregnancy. When 

pregnancy retention is evaluated based on the number of initial pregnancies established, 

the difference in pregnancy retention approaches significance at 90 days when 26.3% of 

initial pregnancies are ongoing in the heifer group and 55.0% of pregnancies from the 

cow group were ongoing (P<0.1) The difference is significant (P<0.01) at 180 days 
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(10.5% for heifer and 55.0% for cow) and at term (10.5% for heifer and 50.0% for 

cow). At birth nine of the ten calves derived from cow oocytes were apparently normal 

and healthy while in the heifer group only one of the two calves that reached term was 

healthy. This difference approaches significance at P<0.20. 

Table 2-1. In vitro development of NT embryos derived from cow and heifer 

cytoplasts.  

Oocyte source No. Fused No. Cleaved (%)a No. Compacted Morulae/Blastocysts (%)a 

Heifer 1746 1044 (59.8)a 259 (14.8)a 
Cow 479 381 (79.5)b 127 (26.5)b 

Values with different superscripts within each column are different (P<0.001). 
a Percentage of fused embryos. 

Table 2-2. Rates of pregnancy establishment and retention throughout gestation of 

NT embryos derived from cow and heifer cytoplasts. 

Pregnancies     

Oocyte 

Source 

Total 
Transfers 

25 days (%)a 

 
60 days (%)a 

 
90 days (%)a 

 
180 days (%)a 

 
Term (%)a 

 
Healthy at 
birth (%)b 

Heifer 65 19 (29.2)a 15 (23.1)     5 (7.7)a     2 (3.1)a     2 (3.1)a 1 (50.0) 

Cow 39 20 (51.3)b 15 (38.5) 11 (28.2)b 11 (28.2)b 10 (25.6)b 9 (90.0) 

Values with different superscripts within each column are different (P<0.025) 

a Percentage of total transfers. 
b Percentage of term calves. 
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Figure 2-1. Pregnancy rates throughout gestation following transfer of NT embryos 
derived from cow and heifer cytoplasts. 
a, b Values with different superscripts within each column are different (P<0.025). 

Discussion 

 These data indicate that there are important differences between cow and heifer 

oocytes which make cow oocytes more suitable for use in bovine NT. Understanding the 

differences between cow and heifer oocytes and how those differences affect the 

efficiency of development following NT is an important step in improving the reliability 

of the process. Little research has been done to evaluate these differences, however it has 

been well established that calf oocytes differ from cow oocytes, and embryos derived 

from calf oocytes following IVF are less developmentally competent than IVF embryos 

derived from cow oocytes (Damiani et al. 1996; de Paz et al. 2001; Gandolfi et al. 1998; 

Khatir et al. 1998; Levesque and Sirard 1994; Majerus et al. 2000; Revel et al. 1995; 
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Salamone et al. 2001). These studies may offer insights into potential differences 

between cow and heifer oocytes.  

Studies of pre-pubertal calf oocytes have indicated they differ from cow oocytes 

in several important ways. It has been demonstrated that IVF embryos derived from calf 

oocytes develop slower in vitro, arrest more frequently at the 9-cell stage, and exhibit a 

longer lag phase before maternal to zygotic transition (Majerus et al. 2000). Calf oocytes 

also undergo nuclear maturation at a slower rate than cow oocytes (Khatir et al. 1998). 

Gandolfi et al. reported that calf oocytes are smaller in diameter, metabolize glutamine 

and pyruvate at a lower rate during the first three h of IVM, and exhibit a decline in 

protein synthesis earlier as compared with cow oocytes (Gandolfi et al. 1998). Other 

groups have also reported different patterns of protein synthesis between cow and calf 

oocytes (Gandolfi et al. 1998; Levesque and Sirard 1994; Salamone et al. 2001). Calf 

oocytes contain more microvilli on their cell surface and more endocytic vesicles than 

cow oocytes, while cow oocytes contain a larger superior mitochondrial population than 

calf oocytes (de Paz et al. 2001). Numerous reports have indicated that fewer calf oocytes 

develop to blastocyst as compared with cow oocytes in IVF, parthenogenetic, and NT 

experiments (Damiani et al. 1996; Levesque and Sirard 1994; Majerus et al. 2000; Revel 

et al. 1995; Salamone et al. 2001). Additional work by Revel et al. indicated that a much 

lower pregnancy rate results from the transfer of blastocysts derived from calf oocytes (1 

of 23 recipients; 4%) compared with cow-oocyte-derived blastocysts (10 of 26 recipients; 

38%). The single pregnancy established from calf embryos resulted in a full-term live 

calf (Revel et al. 1995). This indicates that although the overall developmental 

competence of calf oocytes is much lower, some oocytes derived from pre-pubertal 

animals do have the capacity to direct development to term.     
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 While many studies have evaluated the differences in developmental 

competence between cow and pre-pubertal calf oocytes fertilized in vitro, less attention 

has been given to potential differences between cow and heifer oocytes. There are several 

reports of differences between cow and heifer oocytes in terms of numbers of oocytes per 

ovary and in vitro developmental efficiency. Researchers have reported fewer oocytes 

collected from cows than from heifers following slaughter (Moreno et al. 1992) and also 

in conjunction with ovum pick up (Rizos et al. 2005). Rizos et al. also compared the 

number and quality of oocytes from slaughtered crossbred beef heifers under thirty 

months and cows over four years old (Rizos et al. 2005). They found no differences in the 

number of oocytes collected per ovary, however following IVF significantly more cow 

oocytes developed to blastocyst on day 8 as compared to heifer oocytes (46.5% and 

33.4% respectively). In their experiment heifer oocytes were further divided into groups 

based on the age of the donor (12-18 months, 19-24 months, and 25-30 months). There 

was no difference in blastocyst development between the three age groups (35.0%, 

35.2%, and 36.5%, respectively) The superiority of cow oocytes over heifer oocytes in 

terms of development to blastocyst (27.5% and 16.4%, respectively) was also reported by 

Zhang et al. (Zhang et al. 1991). Mermillod et al. evaluated the developmental potential 

of oocytes collected from cows of different ages and found no significant difference in 

blastocyst yield between oocytes from 1-3 year old cows compared with oocytes from 

cows older than three years old (Mermillod et al. 1992). A study involving the collection 

of oocytes from a slaughtered, Bovine Spongiform Encephalopathy (BSE)-infected herd 

also compared rates of development to blastocyst of oocytes collected from heifers and 

cows. Cow oocytes developed to grade-one blastocysts at a slightly higher rate than 

heifer oocytes (14.6% and 10.2%, respectively) however the difference was not 
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significant (Galli et al. 2003). We are not aware of any study evaluating the quality of 

NT embryos derived from cow and heifer oocytes following transfer.   

 In addition to the scarcity of research evaluating the developmental competence 

of heifer oocytes, very little research has been done to evaluate the effect of oocyte 

source on bovine NT.  Two studies have evaluated the developmental competence of calf 

oocytes used in NT. Both reported lower rates of development to the 2-cell stage and to 

blastocyst compared with development using cow oocytes. In one study, cleavage of NT 

embryos was 75% with cow oocytes and 69% with calf oocytes, and blastocyst 

development was 21% and 9%, respectively (Mermillod et al. 1998). A second study 

reported cleavage rates of 67% and 22% and blastocyst rates of 20% and 5% using cow 

and calf oocytes, respectively (Salamone et al. 2001). 

 Similar to the data from NT studies using calf oocytes, the present study indicates 

that cow oocytes are superior to heifer oocytes in directing development of NT couplets 

in vitro. In vitro development to transferable compacted morula/blastocyst stage between 

the two groups differs significantly [Table 1 (14.8% for heifer and 26.5% for cow)], and 

the differences are further amplified following transfer to recipients (Table 2-2 and FIG. 

2-1). The development of heifer oocyte-derived NT embryos to blastocyst offers evidence 

that in vitro development alone is not a reliable indicator of overall embryo quality. 

While it is clear that in vitro development is not the best indicator, often it is not feasible 

to transfer embryos to evaluate quality. More reliable and efficient measures of embryo 

quality must be developed to assist in pre-transfer selection of NT embryos with high 

developmental competence.  

 In the environment of the recipient cytoplast following NT, the donor nucleus 

undergoes dramatic changes that result in the restoration of totipotency to a differentiated 
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nucleus in a process referred to as nuclear reprogramming. Events similar to those that 

occur during reprogramming of the donor cell can be observed in sperm and oocyte DNA 

following fertilization. Prior to fertilization, sperm and oocyte genomes are much more 

highly methylated than somatic cells (Obata et al. 1998). At fertilization, sperm 

chromatin is actively demethylated, possibly by direct removal of the methyl group from 

the cytosine (Bhattacharya et al. 1999) or by exchange of the 5-methylcytosine with 

unmethylated cytosine via base excision (Weiss et al. 1996). The maternal genome is also 

demethylated during early development, but in a passive, replication-dependent manner. 

This global demethylation is subsequently followed by de novo methylation of the 

genome starting at the 8-cell stage in bovine embryos and the blastocyst stage in mice 

resulting in differentiation of cell lineages during development (Reik et al. 2001).  

The same machinery that is involved in chromatin modifications following 

fertilization is likely recruited for reprogramming of the donor nucleus following NT. 

Nuclear reprogramming of the donor cell following NT involves nuclear envelope 

breakdown (NEBD) and premature chromosome condensation (PCC; Barnes et al. 1993; 

Campbell et al. 1996; Czolowska et al. 1984), followed by erasure of epigenetic 

modifications to DNA including changes in histone acetylation (Nakao 2001) and DNA 

methylation (Kang et al. 2003; Shi et al. 2003b). Since maternal transcripts are 

responsible for the events of early embryonic development (Telford et al. 1990), and 

given the events that occur naturally following fertilization, nuclear reprogramming is 

likely mediated by factors in the oocyte cytoplasm. The results of this study demonstrate 

the profound impact differences in the source of the oocyte can have on development of 

bovine NT embryos in vitro and in vivo.  
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 The improved efficiency in NT using cow oocytes reflects more efficient 

reprogramming of the donor nucleus, which leads to slightly improved development in 

vitro and higher rates of pregnancy establishment and retention throughout gestation. 

Determining the inherent differences between cow and heifer oocytes will offer insights 

into transcripts or proteins that are potentially important in the process of nuclear 

reprogramming. 

Conclusion 

These data demonstrate that when possible cow oocytes should be utilized for 

bovine NT experiments over heifer oocytes. The present study also indicates that heifer 

oocytes are capable of reprogramming donor nuclei and producing live NT offspring, 

albeit at a much lower rate. Understanding the molecular and physiological differences 

between cow and heifer oocytes will provide valuable insights into factors that are 

important in nuclear reprogramming. This could open doors to improvements in oocyte 

selection or maturation parameters and ultimately result in improved efficiency in the 

currently very inefficient process of bovine NT.   
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CHAPTER 3  

EFFECT OF THE TIME INTERVAL BETWEEN FUSION AND ACTIVATION 

ON NUCLEAR STATE AND DEVELOPMENT IN VITRO AND IN VIVO OF 

BOVINE SOMATIC CELL NUCLEAR TRANSFER EMBRYOS 

Abstract 

This study indicated that prolonged exposure of donor cell nuclei to oocyte 

cytoplasm prior to activation resulted in abnormal chromatin morphology, and reduced 

development to compacted morula/blastocyst stages in vitro, however following transfer 

of embryos to recipients there was no difference in pregnancy rates throughout gestation. 

Chromatin morphology was evaluated for embryos held 2.0, 3.0, 4.0, and 5.0 h between 

fusion and activation. In embryos held 2.0 h, 15/17 (88.2%) embryos contained 

condensed chromosomes, while only 12/24 (50.0%) embryos held 3.0 h exhibited this 

characteristic. The proportion of embryos with elongated or fragmented chromosomes 

tended to increase with increased hold time. While 15/19 (78.9%) of embryos held 2.0 h 

developed a single pronucleus 6 h after activation, only 8/22 (36.4%) had 1 pronucleus 

after a 4.0 h hold. Embryos held 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 h cleaved at rates of 

207/281 (73.7%), 142/166 (85.5%), 655/912 (71.8%), 212/368 (57.6%), 406/667 

(60.9%), 362/644 (56.2%), and 120/228 (52.6%) respectively. Further development to 

compacted morula/blastocyst stage occurred at rates of 78/281 (27.8%), 42/166 (25.3%), 

264/912 (28.9%), 79/368 (21.5%), 99/667 (14.8%), 94/644 (14.6%), and 27/228 (11.8%) 

respectively. Embryos held <2.5 h between fusion and activation established pregnancies 

in 18/66 (27.3%) of recipients, while embryos held >2.5 h established pregnancies at a 

rate of 17/57 (29.8%). This study indicates holding bovine nuclear transfer embryos <2.5 
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h between fusion and activation results in improved nuclear morphology and increased 

development to compacted morula/blastocyst, and results in pregnancy rates equivalent to 

embryos held >2.5 h. 

Introduction 

Successful somatic cell nuclear transfer (NT) has been achieved in domestic 

animals and rodents as reported by the birth of offspring. The overall efficiency
 
of this 

technique, however, remains low, generally less than 2% (Hill 2002). A high frequency
 
of 

early post-implantation developmental arrest and abortion occurs, especially in cattle. 

The exact mechanism(s)
 
contributing to losses are still unclear. Epigenetic alterations 

(Cezar et al. 2003; Wrenzycki et al. 2001), and chromosomal abnormalities (Burgoyne et 

al. 1991; Li et al. 2004a; Li et al. 2004b) likely contribute to developmental failure.  

Following the transfer of a differentiated nucleus into an enucleated MII oocyte, 

the nucleus is disassembled, an event involved in reprogramming the differentiated donor 

nucleus to a totipotent embryonic state. This disassembly involves nuclear envelope 

breakdown (NEBD) and premature chromosome condensation (PCC), mediated by high 

levels of mitosis/meiosis/maturation-promoting factor (MPF) in the oocyte cytoplasm 

(Barnes et al. 1993; Campbell et al. 1996; Czolowska et al. 1984). These events are 

followed by erasure of epigenetic modification of DNA including changes in histone 

acetylation (Nakao 2001) and DNA methylation (Kang et al. 2003; Shi et al. 2003). Since 

maternal transcripts are responsible for the events of early embryonic development 

(Telford et al. 1990), nuclear reprogramming is presumably mediated by factors in the 

oocyte cytoplasm.  
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Several groups have shown that the duration of exposure of the donor nucleus 

to oocyte cytoplasm following NT affects in vitro development, however the conclusions 

are mixed. Some reports have indicated a prolonged exposure to the oocyte cytoplasm 

prior to activation may be beneficial in promoting embryo development for bovine (Wells 

et al. 1999; Wells et al. 1998) and murine NT (Wakayama et al. 1998). Another study 

reported the exposure of transferred nuclei to cytoplasm for less than 30 min prior to 

activation yielded significantly lower blastocyst development than a 2-h exposure (Liu et 

al. 2001). Conversely, other research indicates excessive exposure of the donor DNA to 

oocyte cytoplasm results in lower rates of in vitro development in cloned embryos (Akagi 

et al. 2001). Most recently, Choi et al. demonstrated that in vitro development of bovine 

NT embryos to blastocyst decreased as time in hold was increased from 1 to 5 h (Choi et 

al. 2004).  

Given the conflicting data on the subject we have evaluated the effect of timing 

between fusion and activation on NT development. The present study was designed to 

examine the effect of different time intervals between fusion and activation on structure 

of the transferred nucleus and embryonic development in vitro and in vivo.      

Materials and Methods 

Unless otherwise noted, all reagents used were obtained from ICN Biochemicals. 

Donor cell culture 

Primary bovine fibroblast cultures were established from either lung tissue or ear 

biopsy. Previous data have demonstrated no difference in in vitro development between 

lung- and ear-derived donor cells (Kato et al. 2000). Tissues were washed thoroughly and 

minced, suspended in DMEM/Ham's F12 (1:1) (Hyclone Laboratories, Logan, UT) 
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supplemented with 15% fetal bovine serum (FBS; HyClone Laboratories, Logan, UT) 

and 100 U/mL penicillin/ 100 µg/mL streptomycin (HyClone Laboratories), seeded in 25 

cm
2
 tissue culture flasks, and cultured at 39˚C in a humidified atmosphere of 5% CO

2
 in 

air for several days. Cells were then harvested in tissue culture medium containing 10% 

DMSO and stored in liquid N
2 
until use in NT.  Frozen/thawed cells were grown to 80-

100% confluence and passages 2-16 were used as nuclear donors.  

Oocyte Maturation 

Maturation of bovine oocytes was performed as described previously (Li et al. 

2004a; Li et al. 2004b). Briefly, cumulus oocyte complexes (COC) were aspirated from 

3-8 mm follicles using an 18-gauge needle from ovaries collected from a local abattoir.  

Only those with uniform cytoplasm and intact layers of cumulus cells were selected and 

matured in TCM 199 containing 10% FBS, 0.5 µg/mL FSH (Sioux Biochemicals, Sioux 

City, IA), 5 µg/mL LH (Sioux Biochemicals), and 100 U/mL penicillin/ 100 µg/mL 

streptomycin for 18-22 h.  

Nuclear Transfer 

Following maturation, cumulus cells were removed by vortexing COC in PB1 

(calcium and magnesium containing phosphate buffered saline [HyClone Laboratories, 

Logan, UT], 0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/mL BSA) medium 

containing 10 mg/mL hyaluronidase. Oocytes with a first polar body were used as 

recipient cytoplasts. Enucleation was employed to remove the first polar body and 

metaphase plate, and single cells were subsequently transferred to the perivitelline
 
space 

of recipient cytoplasts.  Fusions of NT couplets were performed in mannitol fusion 
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medium (Wells et al. 1999) by two electric DC pulses of 2.2 kV/cm for 25 

microseconds. Following fusion, embryos were held in CR2 medium supplemented with 

3% FBS for 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 h prior to activation. Fused embryos were 

activated between 23 and 25 h after the onset of maturation by exposure to 5 µM 

ionomycin for 5 min followed by five h incubation in 10µg/ml cycloheximide.  

Nuclear and Microtubule Assessment 

by Immunofluorescent Staining 

 
Reconstructed embryos were fixed 2.0, 3.0, 4.0, and 5.0 h after fusion. Some 

embryos activated 2.0 and 4.0 h after fusion were fixed 6.0 h after initial activation to 

evaluate pronuclear morphology. Immunofluorescent staining was performed as reported 

(Zhu et al. 2003) with some modifications. Briefly, embryos were fixed with 3.7% (w/v) 

paraformaldehyde
 
in PBS overnight at 4°C. Fixed embryos were extracted in PBS 

containing 1% (w/v) Triton X-100 and 0.3% BSA for 1.0 h at 37°C. After two washes 

with PBS containing 0.01% Triton X-100, embryos were blocked
 
in PBS containing 150 

mM glycine and 1% Triton X-100 for 1.0 h at 37°C. The embryos were then incubated 

for 1.0 h at 37°C in a mouse monoclonal
 
antibody against α-tubulin (Sigma, T-5168) 

diluted 1:100 in PBS. They were then washed with PBS and incubated in fluorescein 

isothiocyanate-labeled goat-anti-mouse IgG (Southern Biotechnology Associate, Inc. 

Birmingham, AL 35226. Cat No. 1030-02) diluted 1:100 in PBS for 1.0 h at 37°C. 

Chromatin
 
was stained with 10 µg/ml of propidium iodide.

 
Finally, embryos were 

mounted on slides with a solution of glycerol and PBS (1:1). The samples were examined 

under a Zeiss epifluorescent microscope (Carl Zeiss Optical, Inc., Chester, Virginia, 

USA). Images were captured by digital camera with the PIXERA Viewfinder Program 

(Pixera Corporation, Los Gatos, California, USA).
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Embryo Culture 

After activation, embryos were cultured under mineral oil in 50 µL droplets of 

CR2 with 3% FBS on a monolayer of bovine cumulus cells at 39°C in an atmosphere of 

5% CO
2
 in air for 6-7 days. Medium was changed every 48 h. Cleavage and compacted 

morula/blastocyst rates were recorded 48 h and 6-7 days post-activation, respectively. 

Embryo Transfer 

On Day 6 or 7, compacted morulae and blastocysts were shipped overnight in 

equilibrated CR2 at 38.5 ˚ C to the site of transfer. One to two embryos were transferred 

nonsurgically to cows synchronized + 1 day to the stage of embryonic development. 

Pregnancy was detected by trans-rectal ultrasound at embryonic d 25-30. 

Statistical Analyses 

Data were pooled from at least four replicates per group for the in vitro 

development studies. Chi-square analysis was used to determine differences in cleavage 

and development to the compacted morula stage between hold times. Differences in 

remodeling and nuclear morphology between groups were analyzed using Student's t-test. 

Unless otherwise noted, a probability of P<0.05 was considered statistically significant. 

Results 

Nuclear Morphology 

When the pre-activation reconstructed embryos were examined 2.0 h after fusion 

the majority of the embryos (88%, 15/17) possessed condensed chromosomes (Fig. 3-1a) 

or a chromosome array resembling the maternal metaphase plate (metaphase-like 

chromosomes, Fig. 3-1b), which was significantly higher (P<0.05) than embryos 
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examined 3 h after fusion (50%, 12/24). The proportion of the embryos possessing 

elongated or scattered chromosomes tended to increase with increasing time between 

fusion and activation (Table 3-1). Eighty-two percent of the embryos held 4.0 to 5.0 h 

between fusion and activation possessed elongated (Fig. 3-1c, d) or scattered (Fig. 3-1e) 

chromosomes.  

Table 3-1. Remodeling of transferred bovine somatic cells at various times after 

fusion.  

Time after fusion (h) No. embryos 
examined 

Nuclear remodeling types (%) 

 Condensed Chr.   Metaphase-like  Elongated Chr.    Scattered. Chr.            PN          

2 
 
3 
 
4 
 
5 

17 
 
24 
 
25 
 
25 

    9 (52.9)
a 
               6 (35.3)

b
             2 (11.8)

c
                                                                

 
     2 (8.3)

c
               10 (41.7)

a
            9 (37.5)

b
           3 (12.5)

b
 

 
                                   2 (8)

c
                12 (48)

a
               9 (36)

a
                  2 (8) 

  
                                   2 (8)

c
                 9 (36)

b
               11(44)

a 
                3 (12) 

a,b,c
 Values with different superscripts in the same column differ from each other at 

P<0.05. 

 

Of embryos observed 6.0 h after activation, 78.9% of the embryos activated 2.0 h 

after fusion developed a single pronuclear structure (PN), which was significantly higher 

than those activated 4.0 h after fusion (36.4%; Table 3-2). Of the embryos activated 4.0 h 

after fusion 63.6% possessed 2 or more PN (Fig. 3-1f-i). 

Table 3-2. Nuclear morphology of bovine NT embryos 6 h after activation. 
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Activation time post-fusion (h) No. embryos 

examined 
Pronucleus (PN) status (%) 

        1PN                 2PN               3PN            4-8 PN       Scattered Chr. 

2 
 
4 

19 
 
22 

    15 (78.9)
a
           3 (15.8)          1 (5.3)             0                       0 

 
     8 (36.4)

b
            4 (18.2)          2 (9.0)        6 (27.3)            2 (9.0) 

a, b
 Values with different superscripts in the same column differ from each other at P<0.05. 

 

 

Figure 3-1. Nuclear remodeling and morphology of bovine nuclear transferred 

embryos. A-E, remodeling of nuclei after fusion. A. Condensed chromosomes, small 
microtubule aster existed among chromatin; B, metaphase-like chromosomes with 
strongly stained microtubules; C and D, elongated chromosomes and microtubules 
connecting the chromosomes; E, scattered chromosomes. From F to I, the representatives 
of 1 PN, 2 PN, 3 PN, 7 PN, respectively, after activation of fused nuclear transferred 

embryos. Bars represent 10µm. 
 

Embryo Development In Vitro and In Vivo  

Cleavage of embryos derived from groups activated 1.0-2.0 h after fusion (71.8%-

85.5%) was significantly higher (P<0.01) than embryos held 2.5-4.0 h between fusion 

and activation (52.6%-60.9%; Fig. 3-2 & Table 3-3). The compacted morula/blastocyst 

development of embryos activated 1.0-2.5 h post fusion (21.5%-28.9%) was higher 
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(P<0.01) than embryos activated after 3.0-4.0 h post fusion (11.8%-14.8%; Fig. 3-2 & 

Table 3-3).  Following transfer of the cloned compacted morulae/blastocysts to recipients 

no differences were observed in d 30 pregnancy rates between embryos held <2.5 h (18 

pregnancies/66 transfers (27.3%)) and embryos held >2.5 h (17 pregnancies/57 transfers 

(29.8%)).  Pregnancy retention was evaluated around days 60, 90, 180, and term, and no 

differences in pregnancy retention were observed at any stage of gestation with 3 calves 

being born in the <2.5 h group and 1 calf being born in the >2.5 h group. 
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Figure 3-2. In vitro development of bovine NT embryos based on time between 

fusion and activation. 
a, b, c

 Values with different superscripts in the same group differ from each other at P<0.01. 
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Table 3-3. In vitro development of bovine NT embryos with different hold times. 

Time in hold (h) No. cultured No. cleaved (%) No. compacted morulae/blastocysts (%) 

1.0 281 207 (73.7)
b
 78 (27.7)

ab
 

1.5 166 142 (85.5)
a
 42 (25.3)

ab
 

2.0 912 655 (71.8)
b
 264 (28.9)

a
 

2.5 368 212 (57.6)
c
 79 (21.5)

b
 

3.0 667 406 (60.9)
c
 99 (14.8)

c
 

3.5 644 362 (56.2)
c
 94 (14.6)

c
 

4.0 228 120 (52.6)
c
 27 (11.8)

c
 

a, b, c
 Values with different superscripts in the same column differ from each other at 

P<0.01. 

Discussion 

In order for NT to be successful the donor nucleus must be properly 

reprogrammed. During nuclear reprogramming epigenetic marks are erased from the 

donor nucleus genome, resulting in an erasure of tissue-specific gene expression patterns 

and effectively resetting the cell to a totipotent state (Santos and Dean 2004). Our studies 

indicate that timing between fusion and activation probably has a critical impact on 

reprogramming.  

Studies evaluating DNA methylation patterns in developing NT embryos indicate 

demethylation and re-methylation events are not always faithfully recapitulated in the 

mouse (Chung et al. 2003; Mann et al. 2003; Shi and Haaf 2002) and the cow (Bourc'his 

et al. 2001; Dean et al. 2001; Kang et al. 2002). It is also clear that histone acetylation is 

sometimes aberrant in bovine NT embryos (Santos et al. 2003). This incomplete 

epigenetic reprogramming is the predominant explanation for the frequent aberrant gene 

expression in NT embryos and the subsequent failures in development (Santos et al. 

2003).  

The mechanisms responsible for DNA demethylation may follow a pattern of 
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activity similar to MPF with high activity prior to activation and a diminishing of 

activity following activation. Further research will be required to determine those 

dynamics, but based on the study by Dean et al. there appears to be a critical window of 

time in which active demethylation can occur following fusion (Dean et al. 2001). The 

idea of this critical window between fusion and activation is supported by the work of 

Bourc'his et al. in which active demethylation was not observed when activation was 

performed at the time of fusion (Bourc'his et al. 2001). 

Nuclear remodeling is an important element in the process of reprogramming that 

must occur in NT embryos. Our research as well as the research of others has 

demonstrated that chromatin remodeling and blastomere ploidy frequently deviates from 

normal following NT in various species including cattle (Booth et al. 2003; Bureau et al. 

2003; Li et al. 2004a; Li et al. 2004b) rabbits (Shi et al. 2004), and pigs (Kim et al. 2005). 

Several significant morphological changes occur in the donor nucleus following NT into 

cytoplasts with high MPF activity. These changes include nuclear envelope breakdown 

(NEBD) and premature chromosome condensation (PCC) (Campbell et al. 1996; 

Czolowska et al. 1984). Following these two events, the nuclear envelope is re-formed, 

and DNA synthesis commences (Campbell et al. 1993). Aberrations or deficiencies in 

these events might result in some of the problems associated with early development in 

NT embryos.  

Figures 3-1-C and 3-1-D show elongated chromosome sets. It is clear how these 

cells might end up with 2-3 PN (as in Figures 3-1-G and 3-1-H) following activation as 

areas where microtubules are thinner are likely more prone to depolymerization and 

fragmentation. This is supported by the fact that more elongated chromosome sets were 

observed with increased time after fusion and more embryos displayed multiple PN when 
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held four h between fusion and activation as compared with embryos activated two h 

after fusion. Likewise, a scattered chromosome arrangement as observed in Figure 3-1-E 

would result in multiple PN following activation. It is also probable that those embryos 

with more than one PN following activation will result in nuclear fragmentation and 

unbalanced chromosome constitutions. 

The amount of time the donor nucleus is exposed to oocyte cytoplasm prior to 

activation is critical in subsequent development of NT embryos. Based on our data, it 

appears that prolonged exposure to arrested MII oocyte cytoplasm results in more 

frequent structural abnormalities in nuclear material, manifesting itself as elongated 

chromatin prior to activation and the development of multiple pronuclei following 

activation.     

While it is important to note that the number of morphologically “normal” 

embryos prior to activation (embryos with compacted or metaphase-like chromosomes) 

and following activation (single PN) declines when embryos are held longer than 3.0 h 

prior to activation, it is also noteworthy that some embryos held longer do appear normal 

and develop to compacted morula/blastocyt. Our data also indicate that those embryos 

that develop to compacted morula have an equal probability of establishing and 

maintaining pregnancy regardless of hold time, indicating that most embryos negatively 

affected by a prolonged hold time will stop developing prior to reaching compacted 

morula stage.   

This study evaluated the effect of the duration of exposure of the donor nucleus to 

MII oocyte cytoplasm prior to activation on nuclear structure, in vitro development, and 

pregnancy rates post-transfer. The data indicate that prolonged exposure to oocyte 

cytoplasm results in more embryos with elongated or scattered chromosomes prior to 
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activation as well as fewer embryos developing a single PN 6.0 h after activation. We 

found that a hold between 1.0 and 2.0 h results in higher in vitro development and lower 

rates of nuclear fragmentation. While in vitro development declines and fragmentation 

increases with increased hold time, those embryos that develop to compacted morula or 

blastocyst are equally likely to establish pregnancy following transfer. Based on this data, 

embryos that are chromosomally compromised probably cease development prior to 

reaching compacted morula stage. The data further indicates that 1 h between fusion and 

activation provides the donor nucleus with sufficient exposure to MII cytoplasm to 

initiate critical reprogramming events and that longer than 2 h results in reduced viability 

of embryos in vitro.  

 The process of nuclear reprogramming during NT is extremely complex and, as 

yet, not well understood. There are undoubtedly numerous proteins involved in the 

process of de-differentiation that occurs in NT. Even under conditions where proper 

chromosomal composition is maintained NT efficiency is still quite low. This indicates 

that while compromised chromosomal composition is a factor that reduces NT efficiency, 

improper epigenetic reprogramming of the donor nucleus probably has a greater impact 

on NT efficiency. Further research evaluating the molecular machinery involved in 

nuclear reprogramming prior to and following activation will pave the way to a better 

understanding of the mechanisms of nuclear reprogramming and the development of new 

strategies to improve the efficiency of the process. 
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CHAPTER 4 

GLOBAL GENE EXPRESSION ANALYSIS OF BOVINE SOMATIC  

CELL NUCLEAR TRANSFER BLASTOCYSTS  

AND COTYLEDONS 

Abstract 

Low developmental competence of bovine somatic cell nuclear transfer (SCNT) 

embryos is a universal problem. Abnormal placentation has been commonly reported in 

SCNT pregnancies from a number of species. The present study employed Affymetrix 

bovine expression microarrays to examine global gene expression patterns of SCNT and 

in vivo produced (AI) blastocysts as well as cotyledons from day-70 SCNT and AI 

pregnancies. SCNT and AI embryos and cotyledons were analyzed for differential 

expression. Also in an attempt to establish a link between abnormal gene expression 

patterns in early embryos and cotyledons, differentially expressed genes were compared 

between the two studies. Microarray analysis yielded a list of 28 genes differentially 

expressed between SCNT and AI blastocysts and 19 differentially expressed cotyledon 

genes. None of the differentially expressed genes were common to both groups, although 

major histocompatibility complex I (MHCI) was significant in the embryo data and 

approached significance in the cotyledon data. This is the first study to report global gene 

expression patterns in bovine AI and SCNT cotyledons. The embryonic gene expression 

data reported here adds to a growing body of data that indicates the common occurrence 

of aberrant gene expression in early SCNT embryos. 
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Introduction 

The inefficiency associated with bovine SCNT has greatly limited its utility in a 

number of applications including production agriculture, conservation biology, and bio-

pharmaceutical research. While it is difficult to ascertain the overall efficiencies due to 

differences in protocols, embryo transfer criteria, and data presentation the overall 

efficiency of SCNT across species based on the number of embryos produced is less than 

5% (Campbell et al. 2005). In cattle, approximately 10-15% of SCNT embryos 

transferred develop to term (Oback and Wells 2007). 

A growing amount of data indicates the inefficiencies associated with SCNT 

largely result from deficiencies in nuclear reprogramming of the somatic nucleus 

following NT. Following the transfer of a differentiated cell or nucleus into an enucleated 

oocyte, the DNA must be reprogrammed from a cell-type-specific gene expression 

pattern to a totipotent embryonic-cell state. Modifications to the epigenetic order of the 

DNA are required in order for this to occur.  

The oocyte is well equipped to direct the nuclear reprogramming following 

normal fertilization, but less efficient at reprogramming somatic cells following SCNT. 

At fertilization, sperm chromatin is actively demethylated, and the maternal genome is 

demethylated in a passive, replication-dependent manner. This global demethylation is 

subsequently followed by de novo methylation of the genome starting at the 8- to 16-cell 

stage in bovine embryos and the blastocyst stage in the murine resulting in differentiation 

of cell lineages during development (Reik et al. 2001). Histone modifications are altered 

in a similar fashion following fertilization (Dean et al. 2003). A recent study analyzed the 

involvement of twenty-four chromatin factors (CFs) including transcription factors and 
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nuclear binding proteins in reprogramming following fertilization in the mouse. 

Shortly after fertilization nearly all CFs were removed from chromatin, and shortly after 

pronuclear formation CFs are re-established on the chromatin in what is described as an 

“erase-and-rebuild strategy” (Sun et al. 2007). 

A growing body of evidence supports the idea that SCNT inefficiency is a result 

of incomplete nuclear reprogramming. Differences in gene expression of embryos 

(Daniels et al. 2000; Han et al. 2003; Li et al. 2006; Santos et al. 2003) and fetuses (Hill 

et al. 2002; Schrader et al. 2003), as well as aberrant DNA methylation (Kang et al. 2001; 

Kang et al. 2002; Kang et al. 2003; Mann et al. 2003; Shi and Haaf 2002; Young and 

Beaujean 2004) and histone acetylation (Enright et al. 2003; Enright et al. 2005; Santos et 

al. 2003) in embryos and fetuses have all been reported previously. A follow-up study on 

the involvement of CFs on nuclear reprogramming evaluated the dynamics of the same 

CFs following SCNT and found similar patterns of CF removal and re-establishment in 

the somatic nucleus, but with some differences associated with timing and efficiency. In 

the case of control embryos, early development was characterized by a nearly complete 

removal of CFs from the DNA and export from the nucleus followed by sequential re-

establishment of the CFs. In SCNT embryos, even after removal of the majority of CFs, 

some remained associated with DNA throughout early development, an indication of 

incomplete reprogramming (Gao et al. 2007). Epigenetic changes associated with 

differentiation of somatic cells likely make them more difficult to reprogram following 

SCNT. 

A common phenotypic problem with bovine SCNT pregnancies is abnormal 

placentation. SCNT pregnancies are often noted to have larger and fewer placentomes 
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than controls (Constant et al. 2006; Heyman et al. 2002; Hill et al. 1999; Hoffert et al. 

2005; Oishi et al. 2006). Deficiencies in fetal-maternal nutrient and waste exchange 

contribute to the high rates of pregnancy failure and post-partum loss (Constant et al. 

2006; Heyman et al. 2002; Hill et al. 2000; Hill et al. 1999). 

Based on the growing amount of data implicating deficient nuclear 

reprogramming in many of the problems associated with SCNT, along with the apparent 

involvement of abnormal placentation in SCNT pregnancy loss, we conducted a series of 

experiments to evaluate global gene expression patterns in SCNT and AI blastocysts and 

cotyledons, the fetal contribution to the placentome. 

Materials and Methods 

Donor Cell Culture 

Primary bovine fibroblast cultures were established from lung tissue. Tissues 

were washed thoroughly and minced, suspended in DMEM/Ham's F12 (1:1) (Hyclone 

Laboratories, Logan, UT 84321) supplemented with 15% fetal bovine serum (FBS; 

HyClone Laboratories) and 100 U/ml penicillin/ 100 µg/ml streptomycin (HyClone 

Laboratories), seeded in 25 cm2 tissue culture flasks, and cultured at 39˚C in a humidified 

atmosphere of 5% CO2 in air for several days. Cells between passages one and four were 

then harvested and re-suspended in tissue culture medium containing 10% DMSO, 

frozen, and stored in liquid N2 until use in SCNT.  Prior to SCNT, cells were thawed and 

grown to 80-100% confluence. Cells were treated with trypsin (.25%) and resuspended in 

manipulation medium for use in SCNT. 
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Oocyte Maturation 

Maturation of bovine oocytes was performed as described previously (Li et al. 

2004a; Li et al. 2004b). Briefly, cumulus oocyte complexes (COC) were aspirated from 

3-8 mm follicles using an 18-gauge needle from ovaries collected from a local abattoir.  

Only those oocytes with uniform cytoplasm and intact layers of cumulus cells were 

selected and matured in TCM 199 containing 10% FBS, 0.5 µg/ml FSH (Sioux 

Biochemicals, Sioux City, IA 51250), 5 µg/ml LH (Sioux Biochemicals), and 100 U/ml 

penicillin/ 100 µg/ml streptomycin for 18-22 h.  

SCNT Embryo Production 

Following maturation, cumulus cells were removed from oocytes by vortexing 

COC in PB1 (calcium and magnesium containing phosphate buffered saline [HyClone 

Laboratories], 0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/ml BSA) medium 

containing 10 mg/ml hyaluronidase. Oocytes with a first polar body were used as 

recipient cytoplasts. Enucleation was employed to remove the first polar body and 

metaphase plate, and single cells were subsequently transferred to the perivitelline space 

of recipient cytoplasts.  Fusions of NT couplets were performed in mannitol fusion 

medium (Wells et al. 1999) by two electric DC pulses of 2.2 kV/cm for 25 microseconds. 

Following fusion, embryos were held in CR2 medium supplemented with 3% FBS for 1-

2 h prior to activation (Rosenkrans and First 1994). Fused embryos were activated 

between 23 and 25 h after the onset of maturation by exposure to 5 µM ionomycin for 5 

min followed by five h incubation in 10µg/ml cycloheximide. For the purposes of the 

microarray experiments we produced three groups of ten grade 1-2 blastocysts from a 
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single cell line. For real-time PCR (Q-PCR) validation, an additional three groups of 

five embryos were produced. Embryos were placed in RNAlater RNA stabilization 

reagent (Ambion Inc., Austin, TX 78744) and stored at -20° C until RNA extraction.   

AI Embryo Production 

Control embryos for microarray studies were collected from super-ovulated cows 

using established protocols. Donor cows were synchronized using the EAZI-BREED™ 

CIDR® vaginal progesterone implant. The CIDR was used for 10 days followed by an 

I.M. injection of 50 mg Lutalyse (5ml at 10 mg/ml). Animals were bred by artificial 

insemination (AI) the morning following standing heat and again 12 and 24 h after 

standing heat. Seven days after the initial breeding, embryos were collected from donor 

animals by intra-uterine flush using embryo filters. Following collection, embryos were 

rinsed in flush medium, placed in RNAlater (Ambion Inc.) and stored at -20° C until 

RNA extraction. Three groups of ten grade 1 and 2 blastocysts were collected for the 

microarray studies, and an additional three groups of five embryos were collected for Q-

PCR validation. 

Cotyledon Collection 

 Control pregnancies were established by artificial insemination of CIDR-

synchronized cows, and SCNT pregnancies were established by non-surgical embryo 

transfer of day 7-8 SCNT blastocysts. Pregnancies were verified by ultrasound at 

approximately embryonic day-30 and again at day-60. On day 69-70 post-insemination 

/activation, recipient animals were slaughtered at a local abattoir. Cotyledonary tissue 

was collected within thirty min of slaughter, snap frozen and stored in cryovials in liquid 
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N2 until RNA extraction. Cotyledons were collected from three AI pregnancies and 

four SCNT pregnancies.   

RNA Extraction 

RNA extraction from embryos. Total RNA was extracted and DNA was digested 

with DNase I from AI and NT embryos using the RNAqueous micro kit (Ambion Inc.) 

according to manufacturer’s recommendations with modifications. Prior to RNA 

extraction each sample was spiked with 50 µg yeast tRNA as a carrier. The RNA was 

eluted from the RNAqueous column using two 20-µl volumes of prel volumes of pre-warmed (75° C) 

elution solution. Following RNA purification microarray samples were reduced to 3-5 µl 

using speed vacuum centrifugation in order to yield a sufficient RNA concentration for 

amplification using the Affymetrix 2-round labeling kit. All of the RNA extracted from 

the first three groups of ten AI and SCNT embryos was utilized for the microarray 

experiments, and a second group of embryos was collected and RNA-extracted for Q-

PCR validation. In order to obtain sufficient RNA for Q-PCR reactions, the RNA was 

amplified using the TargetAmp 2-Round Amplification Kit 2.0 (Epicentre, Madison, WI 

53713). Amplified RNA was reverse-transcribed and stored at -20ºC until Q-PCR 

analysis. 

RNA extraction from cotyledons. Cotyledons were removed from liquid N2, and 

approximately 30 mg of tissue was placed in RLT Buffer (Qiagen Inc., Valencia, CA 

91355) containing beta-mercapto ethanol (βME) and subsequently homogenized using a 

rotor stator homogenizer. The RNA extraction was performed using the RNeasy Mini 

RNA Extraction Kit (Qiagen) according to manufacturer’s recommendations.   



  99 
Microarray Expression Studies 

 For the embryo microarray studies, previous experience as well as personal 

communications with other researchers indicated RNA concentration- and quality-

determination using the nanodrop and bioanalyzer are ineffective with RNA extracted 

from embryos, so preliminary checks of RNA were not performed on embryonic RNA. 

Blastocyst stage bovine embryos contain approximately 2 ng total RNA, in order to attain 

sufficient quantities of RNA for hybridization on Affymetrix GeneChips a two-round 

labeling protocol was used. Following the two-round labeling procedure RNA quantity 

and integrity were assessed using an Agilent 2100 Bioanalyzer.  Following quality 

assessment, labeled RNA was hybridized to the Affymetrix bovine microarray chip and 

subsequently scanned according to manufacturer’s protocols. Microarray analysis of 

cotyledons was also performed according to manufacturer’s protocols. Since sufficient 

RNA could be obtained from cotyledons, single-round labeling was used rather than the 

two-round labeling. Following microarray analysis, Q-PCR of cotyledon RNA and 

amplified blastocyst RNA was used to validate microarray data. 

Reverse Transcription and SYBR Green Q-PCR 

Reverse transcription was performed using Superscript III Reverse Transcriptase 

(Invitrogen, Carlsbad, CA 92008) with random primers. The cDNA was stored at -20°C 

until use. SYBR Green real-time PCR (Abgene, Rochester, NY 14610) was used to 

validate differential expression of genes in cotyledons and blastocysts that was 

determined, by microarray analysis, to be differentially expressed. Each real-time PCR 

reaction was performed in duplicate. Q-PCR was performed in white thin-walled 96-well 

plates. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal 
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control housekeeping gene as it has been determined to be the most reliable 

housekeeping gene in bovine pre-implantation embryos (Robert et al. 2002). Primers for 

Q-PCR analysis (Table 4-1) were designed using Primer3 primer-design software (Rozen 

and Skaletsky 2000). A standard PCR protocol with a 15µL reaction volume was used. 

The reactions consisted of Absolute™ QPCR SYBR® Green PCR Master Mix (Abgene) 

containing fluorescein reference dye, forward and reverse primers at 200-300 nM final 

concentration and 1 µL diluted template cDNA. The same PCR protocol was used for all 

primers: 15 min at 95°C for activation of the hot start Thermo-Start® DNA Polymerase; 

40 cycles of 95°C for 15 sec, 58°C for 30 sec, and 72°C for 15 sec (data collection step), 

then 95°C for 30 sec followed by an 80-cycle melt curve initiated by 30 sec at 55°C with 

a temperature increase of 0.5°C each cycle. 

Statistical analysis 

 Analysis of cotyledon microarray data. After RMA (Irizarry et al. 2003) 

preprocessing the limma/eBayes model (Smyth 2004) was applied to the data to test for 

differential expression between controls and clones. As all of the clones were bulls, and 

two of the controls were heifers, a gender covariate was added to the model. The results 

of this preliminary probeset-level analysis did not yield any significant genes when 

controlling the false discovery rate at 0.05.  

The inability of more traditional probeset-level models to detect significance in 

these data motivated a consideration of various probe-level models, which have 

performed favorably in previous applications (Bolstad 2004). RMA background 

correction and quantile normalization was performed, and again the limma/eBayes model 



  101 
with the gender covariate was applied to the data. By analyzing the data in this 

manner, a number of genes were determined to be differentially expressed after 

controlling the false discovery rate (FDR) at 0.05 (adjusted p-value [q]<0.05). 

Analysis of embryo microarray data. Similar to the cotyledon data, after RMA 

(Irizarry et al. 2003) preprocessing the limma/eBayes model (Smyth 2004) was fit to the 

data to test for differential expression between controls and clones.  Unlike the cotyledon 

data, after controlling the FDR at 0.05 differentially expressed genes were found using 

the probeset-level data (q<0.05). 

Q-PCR analysis. The delta-delta Ct method (∆∆Ct) was used for real-time PCR 

data evaluation (Livak and Schmittgen 2001). Data was normalized for differing amounts 

of input cDNA using ∆Ct (Ct for the GAPDH housekeeping gene minus Ct for the gene 

of interest). Next, ∆∆Ct was calculated by subtracting the ∆Ct of each sample from the 

∆Ct of a reference cDNA sample. The n-fold increase or decrease in expression levels of 

each gene at each embryonic stage was calculated using the formula 2-∆∆Ct. Pair-wise 

comparisons between SCNT- and AI-∆∆Ct values were performed for each gene using 

the Student’s t-test. A probability of P<0.05 was considered significant. 
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Table 4-1 Details for primer sequences used in SYBR Green Q-PCR analyses. 

Primer name Sequence forward, reverse (5'-3') 

Size 

(bp)  Primer name Sequence forward, reverse (5'-3') 

Size 

(bp)  

Primers used in both experiments Embryo primers 

GAPDH  GATTGTCAGCAATGCCTCCT 240 LOC511508  TGGCACACGTTGTTGATTTT 171 
 TTGAGCTCAGGGATGACCTT   GATGAAGCAAAGGGACCAAA  
MHCI JSP.1  TCCTTGTCACTGGAGCTGTG 240 LOC510084  TTCTTGGGGTGTTCTGCTTT 237 
 ACAGACGCATTCAGATGCAG   CGGAGGACACTGGTTTTGTT  
LOC540552  TGTTGGAGTTGTTCCTTGCT 115 LOC614726  TGGACCGTGTAGGAAAAAGG 169 
 ACAGCCACAAAAATGTCCTG   AGCACTCAGCCCACAAACTT  
LOC533044  TTACGTTTTCAACGGCTGTG 235 S-N33  TCGTGGCAGAGTCACACATT 192 
 TCACTGGCCAAACACCATAA   GGTAGCCGTGGTACTTGGAA  

Cotyledon primers LOC616217  CAGTTTTTAATGCGCAAGCA 209 

LOC782061  CAAGCAGCTGGAGAAGATCC 201  AAGCTGTCTTTCTGGGCAAA  
 TCCAAGAGAAAGGGGAGGTT  IER3  GCAAGCACCCAGAACTAAGC 154 
MGC142541 TGTGGAAGTTTCTGCACTGG 199  TTCCCCGAATCTTCACAGAC  
 CATGTTTGGCAGCTTAGCAA  TL21877  GGCATTGCTTCCATTTGATT 247 
LOC613334 GCAGTGAAAATGCTGATGGA 216  CAATGAGAAACAGAGGAAAATCG  
 CTCTCAGAGGGGCAAAACAG  DR1  TGCTTAGGTTGCATTGGTTG 207 
RBP1  CGACTTTACCGGGTACTGGA 207  TGCCATTTCAAAGGAAGCAT  
 TCAAACTCCTTCCCAACCTG  TL24300  TCCCTGGAAGTGTTTCCAAC 202 
MGC139085 CTCCCTGAACTGGCATTCTC 207  TCCTACCCATCAAGAAGCTCA  
 GTTCTGAGGCCCTCTCTCCT  LOC513234  GCGACAGTGGAGACAACAGA 206 
LOC540923 TGCCTGGAGCCAGTCTACTT 244  GAACCTGCACAGGCTTCTTC  
 AGAGGGGCTTCCTAAAGCTG  LOC514267  TGCCTTCATGTTATGCGGTA 201 
MGC142636 GACGCTCACAGAGGAAGACC 175  GCCTTGTGAAAGCACCTCTC  

 GTCGGCTTTCCTCTTCTCCT  MGC152029  TGCCTTTAGCTCATGTCGTG 250 
LOC528380 CCACTTTGCTGCTGACTTGA 210  GGTTCTTTGGTGCGAATTGT  
 GCTGCATTTGACTCAGAAAGG  LOC539967  CAAGGAAGTCCTGCCTTCAG 215 
IL6  TGCAGTCTTCAAACGAGTGG 182  AAGGCTGGCTCCTGTGAATA  
 TAAGTTGTGTGCCCAGTGGA  LOC539627  ACATGGACAAGGCACATTGA 215 
PAG10  GAATGGGACAGTGGTTGCTT 177  ACTGTACCCCAAATCCCACA  
 AAGACAGCAGGAGGCAGTGT  LOC785489  AAGGGGTCTGTGTCTGTTGG 236 
B4GALT1  CAGTGATAGGCCCTCTCTGC 185  TGGGACACACAGCGTACATT  
 GCTTTGATTCTTTGGGGTGA  LOC785058  AGTTGCCCGAAGGTACTGTG 160 
LOC515356 TGTGAGCAGAGACTGGATCG 211  TTCAGTCCAGCTTTCCCAAG  
 AGCTTAGAGGGGGACAGAGC  MGC29463  CAGTGAGGAGGGTGGGATAA 231 
KRT10  CAAAGCTGCCTCCATAGCTC 200  GGGGTTTGGAGTTCAGCATA  
 ATCCCTCAGAATTTCGAGCA  S-Laminin  TCGGGAATCTCTTTGAGGAA 184 

TKDP5  ACGGTGGCTGTAATGGAAAG 230  GAACTTGTGGTGGAGGCATT  
 GGAAAGGAAAAGGCAGGTTC  S-NID-2  CCCTTCTCCAAACTGCTCTG 161 
TKDP3  TATCATCCGTGGTGTGGCTA 246  TCCCTTCTCCAGTCGGTATG  
 GTGCCGTGACCTACCACTTT  LOC786956  CAGAAGAGGTGCTCCCTCAC 178 
TSPAN1  ACCACTGCTGCTGTCGTATG 195  TGAACAGAATGCCAAGGACA  
 GGGCTCTGGAATAGGAGGAC  MGC143403  GGAGAAAGCACACGAAGGAG 167 
LOC514936 AAGCCACTTCAGCCACAGTT 219  CCCCATTGCTAGTGTCCATT  
 AGGAAGGACAAAGGGGAAGA  TL12963  ATGCCACATTGCAAAAGATG 258 
MGC139339 TCCTACGACATCCACTGCAC 192  TGCCCAAACATAGTCTCACA  
 CCCCTACCCTCTCTTGATCC  ANXA1  AAGGCTTTGCTTTCTCTTGC 346 
MGC139527 GCCTTTTTGTTTTCTGTTTGG 209  GACGAGTTCCAATACCCTTCA  
 ATATTGCCAAGGAGCTGGTG  PAH  TGCTTGCTATGAGCACAACC 193 

    GCAGTGGAAGACTCGGAAAG  
   ANXA4  AAATCCATGAAGGGCTTGG 221 
    GGGAATCTTCCTGGGCTTT  
   LOC507982  CAAGCACCCTGACCAACATT 151 
    CCTCCGTGCCCTTAGAGTTT  

 

Results 

By using an array-level model to fit the embryo microarray data, 28 probes 

representing 28 different genes were identified as being differentially expressed (q<0.05) 

with the FDR controlled at 0.05 (Table 4-2). By applying the probe-level model to the 
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cotyledon data only 93 probes had a q-value of less than 1. Of those 93, 22 probes 

representing 19 different genes were identified as significantly differentially expressed 

(q<0.05), controlling the FDR at 0.05 (Table 4-3).  

Table 4-2 Microarray data for blastocyst experiments. 

Gene Symbol Gene Name Fold change Q-value NCBI ID 

Over-expressed in SCNT blastocysts     
LOC540552 hypothetical LOC540552 19.16 0.018 CB534828 
*S-NID-2 similar to NID-2 12.04 0.018 CK770586 
PAH phenylalanine hydroxylase 8.77 0.028 CK849069 

LOC533044 similar to Phosphoserine aminotransferase 1 7.59 0.049 CB166901 
TL21877 Transcribed locus 5.54 0.035 BF707348 
MHCI JSP.1 MHC Class I JSP.1 5.12 0.122 M21044.1 
LOC614726 Similar to adaptor protein Lnk 4.85 0.037 AW670030 
LOC785058 hypothetical protein LOC785058 4.84 0.037 BM433653 
LOC507982 similar to WDSUB1 protein 4.63 0.018 AW307635 
ANXA4 annexin A4 4.19 0.018 M22248.1 
ANXA1 annexin A1 3.74 0.037 NM_175784.2 
*S-N33 strong similarity to protein sp:Q13454 (H.sapiens) N33_HUMAN N33 protein 3.65 0.037 CB534173 
MGC152029 similar to source of immunodominant MHC-associated peptides 3.51 0.037 CK849836 
*S-Laminin similar to Laminin beta-1 chain precursor 3.39 0.037 CK849175 
DR1 down-regulator of transcription 1, TBP-binding (negative cofactor 2) 3.36 0.049 AW356106 
LOC511508 similar to KIAA0438 3.30 0.045 BI536262 

TL12963 transcribed locus 3.24 0.037 CF930841 
LOC785489 similar to O-acyltransferase (membrane bound) domain containing 2 3.04 0.037 AW658325 
MGC143403 similar to coronin, actin binding protein, 1C 3.03 0.037 CB428145 
LOC539967 hypothetical LOC539967 2.88 0.037 BM480824 
MGC29463 hyp protein 2.88 0.028 AU276541 
LOC539627 similar to KIAA0551 protein 2.41 0.037 CB221260 
LOC514267 hypothetical LOC514267 2.23 0.039 CK780156 
LOC786956 hypothetical protein LOC786956 2.20 0.038 CK947614 
LOC510084 similar to ankyrin repeat domain 10 2.05 0.049 CK770463 
TL24300 Transcribed locus 2.01 0.038 BP100594 

Reduced expression in SCNT blastocysts     
LOC513234 similar to ovary-specific acidic protein 3.24 0.038 CK778634 

LOC616217 hypothetical LOC616217 4.38 0.037 BF045590 
IER3 immediate early response 3 4.26 0.037 CK775895 

Table 4-3 Microarray data for cotyledon experiments. 

Gene Symbol Gene Name Fold change Q-value NCBI ID 

Over-expressed in SCNT cotyledons     
PAG10 pregnancy-associated glycoprotein 10 3.90 0.001 NM_176621.2 

TKDP3 trophoblast Kunitz domain protein 3 3.45 0.023 BE682514 
TKDP5 trophoblast Kunitz domain protein 5 3.03 0.002 BP108664 
MGC139527 similar to Sorting nexin-10 2.68 <0.001 CK847894 
IL6 interleukin 6  2.32 0.007 NM_173923.2 
MGC139339 similar to Cell death-inducing DFFA-like effector a 2.24 0.004 CK849502 
B4GALT1 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 2.13 0.001 NM_177512.2 
MHCI JSP.1 MHC Class I JSP.1 1.93 0.253 M21044.1 
LOC540923 similar to plasma glutamate carboxypeptidase 1.89 0.046 BF652540 
TSPAN1 tetraspanin 1 1.86 0.004 CK847262 
LOC540552 hypothetical LOC540552 1.57 0.219 CB534828 

Reduced expression in SCNT cotyledons     
LOC782061 similar to AKR1C1 protein 4.77 0.001 AY135401.1 
LOC613334 similar to Fragile X mental retardation 1 neighbor 2.68 0.001 CK847504 

RBP1 retinol binding protein 1, cellular 2.20 0.012 CK957614 
LOC528380 Hypothetical LOC528380 2.15 0.001 CK771895 
MGC142541 similar to membrane-associated RING-CH protein III 1.99 0.015 BI849604 
LOC515356 similar to Cytochrome b5 domain containing 2 1.82 0.019 CK770131 
MGC142636 similar to carbonyl reductase 3 1.75 0.021 CK778163 
MGC139085 similar to paraoxonase 3 1.74 0.009 CK959273 
KRT10 keratin 10  1.69 0.050 NM_174377.1 
LOC514936 hypothetical LOC514936 1.66 0.006 BM088453 
LOC533044 similar to Phosphoserine aminotransferase 1 1.52 0.434 CB166901 
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Comparison of the lists of differentially expressed genes showed no genes that 

were common to both data sets, however two of the genes that were differentially 

expressed in embryos were among the list of 93 genes whose differential expression 

approached significance in the cotyledon data. In addition MHCI approached significance 

in both data sets. Expression of MHCI was analyzed in embryos and cotyledons because 

it approached significance in both groups and based on previous reports of its over-

expression in cloned bovine placenta (Davies et al. 2004; Hill et al. 2002). In all, 22 

genes were analyzed by Q-PCR in cotyledons, and 29 genes were analyzed in embryos. 

Variability of gene expression levels between biological replicates was considerably 

higher among cotyledons (Figure 4-1). 

Following Q-PCR analysis of embryo cDNA, expression levels were found to 

follow the same trends as microarray data for 25 of the 28 genes, and 9 were significantly 

different based on Q-PCR results (Figure 4-2). In the case of the cotyledons, 19 of the 22 

cotyledon genes followed the same trends as microarray data, however only two were 

significantly different (Figure 4-3). By Q-PCR analysis expression of MHCI was 

determined to be higher in SCNT blastocysts and cotyledons, but the difference was only 

significant in the blastocysts. While microarray-based expression studies are a powerful 

means of generating lists of differentially expressed candidate genes, Q-PCR is widely 

accepted as a more robust test of differential expression. For this reason Q-PCR 

validation is requisite for validation of microarray results. 
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Figure 4-1 Heatmaps for embryo and cotyledon data. (A) 28 significant probe-sets 
from embryo array data plus MHCI probe-set and (B) 22 significant probe-sets from 
cotyledon array data (representing 19 different genes) plus MHCI and two probe-sets 
that approached significance and were common to embryo data set. Control embryos 
and cotyledons are labeled C, and SCNT embryos and cotyledons are labeled NT. 
Dark red represents low expression, and dark blue represents high expression. 

 

Discussion 

For the embryo experiments, 28 genes were determined to be differentially 

expressed between SCNT and AI blastocysts. Q-PCR analysis of those 28 genes verified 

25 followed the same trend as predicted in the microarray data, however the differences 

between SCNT and AI blastocysts were significant for only nine of those genes plus 

MHCI (P<0.05). This disparity could be because only 6 chips were run in the experiment, 

a marginal experiment size for even the best data. A relatively high degree of variability 

between groups was observed in the Q-PCR results. The other factor that might account 

for the validation rate of about 30% is that the RNA for the microarray and Q-PCR 

experiments was derived from two separate embryo collections. This design lends 

additional credibility to the study in that ten of the same genes were found to be 

differentially expressed in both embryo collections. Interestingly, of the genes identified  
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Figure 4-2 Relative gene expression in blastocysts based on Q-PCR analysis. The 
yellow bars represent predicted SCNT expression relative to AI expression based on 
microarray data, blue and maroon bars represent actual expression in SCNT and AI 
blastocysts respectively as determined by Q-PCR. Genes are ordered by significance 
based on microarray data from most-to-least. The y-axis represents scaled expression 
values for purposes of comparison of SCNT, AI, and microarray-predicted SCNT 
expression levels. Error bars represent SEM.                                                              
Note: for scaling purposes, some bars are truncated. Actual values are noted above 
truncated bars.                                                                                                                   
* AI and SCNT gene expression differs significantly based on Q-PCR (P<0.05).              
** Q-PCR results are opposite microarray predictions. 
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Figure 4-3 Relative gene expression in cotyledons based on Q-PCR analysis. The 
yellow bars represent predicted SCNT expression relative to AI expression based on 
microarray data, blue and maroon bars represent actual expression in SCNT and AI 
cotyledons respectively as determined by Q-PCR. Genes are ordered by significance 
based on microarray data from most-to-least.  The y-axis represents scaled expression 
values for purposes of comparison of SCNT, AI, and microarray-predicted SCNT 
expression levels.Error bars represent SEM.                                                                     
* AI and SCNT gene expression differs significantly based on Q-PCR (P<0.05).                
** Q-PCR results are opposite microarray predictions. 



  108 
to be differentially expressed by microarray analysis, all but three were over-

expressed in SNCT blastocysts. 

At least two previous studies have evaluated global gene expression differences 

between SNCT and control blastocysts (Smith et al. 2005; Somers et al. 2006). These 

reports as well as the study reported here are similar in that they all report a relatively 

small subset of genes that are differentially expressed between SCNT and control 

blastocysts, indicating the majority of genes are reprogrammed to express the appropriate 

genes at the appropriate levels by the blastocyst stage. One study evaluated global gene 

expression patterns in bovine SCNT, IVF and AI blastocysts as well as expression 

patterns in the donor cells. As expected, the donor cell gene expression patterns were far 

divergent from the expression patterns in any of the blastocysts. Surprisingly SCNT 

embryo expression profiles were more similar to AI embryos than IVF compared to AI. 

Comparing SCNT and AI embryo expression patterns, fifty genes were found to be 

differentially expressed while 198 genes were differentially expressed between AI and 

IVF embryos (Smith et al. 2005). A similar study evaluating global gene expression 

differences between bovine SCNT and IVF embryos reported 164 differentially 

expressed genes (Somers et al. 2006). In the present study twenty eight genes were found 

to be differentially expressed between SCNT and AI blastocysts. Q-PCR validation 

seemed to follow similar patterns as well. The first study selected six genes for validation 

by Q-PCR, and five were reported to validate microarray results, however statistical 

treatment is not discussed (Smith et al. 2005). In the other study seven genes were 

evaluated by Q-PCR, and of the seven only two were found to be significantly different 

(Somers et al. 2006). The disparity between microarray and Q-PCR results reported in 
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these two papers illustrate the importance of comprehensive Q-PCR validation of 

microarray experiments. Accordingly, we applied Q-PCR analysis to every gene 

determined by microarray analysis to be differentially expressed.  

Interestingly, there do not appear to be any differentially expressed genes 

common between these three studies. Likewise, there does not seem to be much 

consensus between other gene expression studies evaluating expression differences 

between SCNT and control bovine blastocysts (Daniels et al. 2000; Li et al. 2006; 

Niemann et al. 2002; Oishi et al. 2006; Wrenzycki et al. 2004). The lack of concensus 

between studies does not indicate any study is flawed; rather it emphasizes the need for 

continued research to better understand the factors that affect gene expression following 

SCNT. The impact of differences in nuclear transfer protocols and culture conditions on 

gene expression likely explains the lack of consensus between experiments (Wrenzycki et 

al. 2001).  

Ten genes were verified by Q-PCR to be significantly different in SCNT 

blastocysts. The majority of those genes are not well-annotated, but several were 

identified as being similar to genes in other species. Genes similar to osteonidogen (Nid-

2), Laminin beta-1 (Lamb1), adaptor protein Lnk, tumor suppressor candidate 3 (N33), 

and O-acyltransferase domain containing 2 (Oact2) were all identified as differentially 

expressed as well as three hypothetical proteins- LOC540552, LOC786956, and 

LOC785058. In addition, down-regulator of transcription 1 (Dr1) and MHCI were 

identified by Q-PCR as significantly different. In every case, these genes were over-

expressed in SCNT embryos.  

NID-2 and LAMB1 have been shown to be important in development of the 
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basement membranes (Kohfeldt et al. 1998). Adaptor protein Lnk is a broad inhibitor 

of a number of growth factor and cytokine signaling pathways (Buza-Vidas et al. 2006). 

N33 is a putative tumor suppressor involved in regulation of cell proliferation (Sun et al. 

2004). The functions of Oact2, LOC540552, LOC786956, and LOC785058 are unknown. 

DR1 binds to the TATA binding protein (TBP) and blocks the binding of RNA 

polymerases II and III. In this way, DR1 can act as a potent transcriptional regulator 

(White et al. 1994). If Dr1 is commonly over-expressed in SCNT embryos it could have a 

profound impact on transcriptional regulation in early embryos. MHCI molecules are 

important for antigen presentation associated with cell mediated immunity. The over-

expression of MHCI in the bovine SCNT placenta has been reported previously and is 

proposed as a factor in the frequent losses in bovine SCNT pregnancies (Hill et al. 2002). 

MHCI expression has not been previously reported in bovine embryos. Evaluation of 

MHCI expression in cotyledons found expression to be higher in SCNT cotyledons 

compared with AI but not significantly.  

Of the 19 genes predicted to be different between SCNT and AI cotyledons, only 

two were verified to be significantly different by Q-PCR. This again reflects a large 

degree of variability between samples. In fact, greater variability was observed between 

cotyledon expression patterns than between embryo expression patterns. This is likely 

due to the fact that multiple embryos were pooled to reduce variability in the microarray 

and Q-PCR experiments, and cotyledons were analyzed individually. In addition, the 

blastocysts were all subjected to essentially the same environment- in vitro culture 

conditions for SCNT embryos and pre-implantation uterine environment for AI embryos. 

Cotyledons were collected from different dams, and factors such as condition of the dam 
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or nutrient demands of the fetus could easily impact gene expression in cotyledons. 

The probe-level model did not prove to be a highly effective means of detecting 

differentially expressed genes in the cotyledon experiments. Nevertheless, two genes 

were validated by Q-PCR to be significantly different, and these genes might be of 

physiological importance. A gene similar to carbonyl reductase 3 (Cbr3) was found to be 

under-expressed, and retinol binding protein 1 (Rbp1) was over-expressed in day-70 

SCNT cotyledons. CBR3 is a cytosolic enzyme that catalyzes the reduction of 

prostaglandins, steroids and other carbonyls (Forrest and Gonzalez 2000). The function 

of CBR3 has not yet been characterized in the placenta. RBP1 serves as the carrier 

protein for retinol (vitamin A), a vitamin critical for normal embryonic development. 

Either an excess or a deficiency in vitamin A can result in embryonic defects (Cohlan 

1953; Ross et al. 2000). 

The physiological relevance of the genes determined by microarray analysis and 

Q-PCR to be differentially expressed in SCNT blastocysts and cotyledons has not yet 

been elucidated. Continued research evaluating the role of these genes in development is 

required, however several of the genes merit further research based on function; in 

particular Dr1, MHCI, and Rbp1.  

The data presented here as well as in a number of other studies evaluating gene 

expression differences between clones and controls all lend support to the idea that 

incomplete epigenetic reprogramming lies at the heart of poor SCNT efficiency. 

Unfortunately a large degree of variability is observed in every aspect of SCNT, from 

rates of in vitro development to differences in pregnancy establishment and maintenance 

rates. The variability even extends to phenotypes of genetically identical cloned offspring 
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(Lee et al. 2004). It can arise from differences in manipulation or culture conditions 

(Wrenzycki et al. 2001), donor cell type (Batchelder et al. 2005; Powell et al. 2004), 

oocyte source (Chapter 2; Miyoshi et al. 2003), and a host of other factors. Continued 

global gene expression studies under a variety of conditions will shed light on some of 

the factors most important in the nuclear reprogramming process as well as offer insights 

into the complex and poorly characterized field of epigenetic reprogramming. Until the 

factors affecting reprogramming efficiency are better characterized or methods for 

augmentation of epigenetic reprogramming are developed, it is unlikely SCNT efficiency 

will improve to any great degree.  
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CHAPTER 5 

ABERRANT EXPRESSION OF TRANSCRIPTION FACTORS AND OTHER 

GENES IN VARIOUS STAGES OF PREIMPLANTATION BOVINE 

 SOMATIC CELL NUCLEAR TRANSFER EMBRYOS 

Abstract 

Based on microarray data comparing gene expression of fibroblast donor cells and 

bovine somatic cell nuclear transfer (SCNT) and in vivo produced (AI) blastocysts, a 

group of genes including several transcription factors was selected for expression studies. 

Using SYBR green-based real-time PCR (Q-PCR) the expression levels of POU domain 

class 5 transcription factor (Oct4), snail homolog 2 (Snai2), annexin A1 (Anxa1), 

thrombospondin (Thbs), tumor-associated calcium signal transducer 1 (Tacstd1), and 

transcription factor AP2 gamma (Tfap2c) were evaluated in bovine fibroblasts, oocytes, 

embryos 30 min post-fusion (SCNT), 12 h post-fertilization/activation, as well as 2-cell, 

4-cell, 8-cell, morula, and blastocyst-stage in vitro fertilized (IVF) and SCNT embryos. 

For every gene except Oct4, levels of expression were indistinguishable between IVF and 

SCNT embryos at the blastocyst stage, however in many cases expression of these genes 

during stages prior to blastocyst differed significantly. Altered levels of gene expression 

early in development likely have developmental consequences downstream. These results 

indicate that experiments evaluating gene expression differences between control and 

SCNT blastocysts may underestimate the degree of difference between clones and 

controls and further offer insights into the dynamics of gene reprogramming following 

SCNT. 
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Introduction 

 While SCNT has been successfully applied to a large and growing number of 

species since Dolly, the success rate of the technology in producing live, healthy 

offspring is quite low. In cattle approximately 10-15% of transferred SCNT embryos 

result in live births (Oback and Wells 2007). Following transfer of a donor cell or nucleus 

into an enucleated oocyte, cell-type-specific epigenetic marks must be removed from 

chromatin as the DNA is transformed from a differentiated state to the totipotent state 

required for proper embryo development in the process of nuclear reprogramming. The 

oocyte is well-equipped to perform this process on maternal and paternal DNA following 

fertilization; however, it often seems to be insufficient for reprogramming a differentiated 

donor cell following SCNT. Inefficient or incomplete nuclear reprogramming of the 

donor nucleus is generally recognized as a major cause for the low success rates observed 

with SCNT (Beyhan et al. 2007; Bourc'his et al. 2001; Dean et al. 2003). This hypothesis 

is supported by a number of publications that report a variety of deficiencies in nuclear 

reprogramming of SCNT embryos including differences in global DNA methylation 

(Bourc'his et al. 2001; Dean et al. 2001; Kang et al. 2002; Shi and Haaf 2002) and histone 

modifications (Enright et al. 2003; Enright et al. 2005) as well as many reports of 

aberrant gene expression in cloned embryos (Chapter 4; Beyhan et al. 2007; Bortvin et al. 

2003; Li et al. 2006; Niemann et al. 2002; Smith et al. 2005; Somers et al. 2006).  

Incomplete nuclear reprogramming following SCNT is manifest in a variety of 

ways. Low rates of development and pregnancy establishment (Hill et al. 2000; Powell et 

al. 2004) as well as high rates of pregnancy failure throughout gestation (Heyman et al. 

2002) and frequent postnatal loss are obvious indicators of deficiency in the SCNT 
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process. Additionally, a variety of abnormalities can be observed in SCNT embryos, 

fetuses, placentas, and neonates. Differences in cell number and cell allocations have 

been observed in SCNT embryos as well as increased incidence of aneuploidy and 

fragmented nuclei (Booth et al. 2003; Li et al. 2004a; Li et al. 2005a). Following embryo 

transfer and pregnancy establishment a number of factors likely contribute to the high 

rates of pregnancy failure. Abnormal placentation has been reported in a number of 

species following SCNT (Constant et al. 2006; Fletcher et al. 2007; Hashizume et al. 

2002; Ogura et al. 2002). In addition, fetal overgrowth (Constant et al. 2006), 

hydroallantois (Lawrence et al. 2005), stillbirth, respiratory and circulatory problems 

(Hill et al. 1999), and liver malformations have all been observed in clones (Li et al. 

2005b).  Most of these problems may directly result from the primary problem of 

improper placentation. 

A number of studies have undertaken to characterize abnormal gene expression 

patterns following SCNT; however the majority of the studies have evaluated gene 

expression in blastocysts, fetal tissues or placental tissues. Many studies have evaluated 

the expression levels of specific genes important in early development in SCNT 

blastocysts by Q-PCR. The list of genes reported to be differentially expressed in SCNT 

blastocysts includes Mash2, DNMT1, Hsp 70.1, IFNτ, Cx43 (Niemann et al. 2002), Oct4 

(Boiani et al. 2002), G6PD, Xist, Pgk (Wrenzycki et al. 2002),several imprinted genes 

including IGF2 (Han et al. 2003), H19 and Snrpn (Mann et al. 2003), and many others. It 

is important to note that factors such as activation protocol, stage of donor cells, and 

culture conditions all impact gene expression in SCNT blastocysts (Wrenzycki et al. 

2001).    
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Evaluation of global gene expression patterns in bovine SCNT blastocysts 

(Beyhan et al. 2007; Smith et al. 2005), placental tissue (Oishi et al. 2006) and liver 

(Herath et al. 2006; Schrader et al. 2003) have also reported a number of differentially 

expressed genes. Surprisingly these studies generally find fewer than 100 differentially 

expressed genes when compared with controls. In global gene expression studies little-to-

no consensus exists in the lists of differentially expressed genes, likely a consequence of 

different SCNT protocols utilized by different researchers.  

A recent report evaluating global gene expression of mouse SCNT embryos 

during the first two cell cycles illustrates the importance of evaluating gene expression 

differences in early preimplantation embryos prior to the blastocyst stage in order to 

appreciate the scope of the problems in gene expression following SCNT. It was found 

that during the second cell cycle over 1000 genes were differentially expressed between 

SCNT and control embryos indicating the reprogramming process occurs over several 

cell cycles, and the divergence in gene expression patterns narrows greatly by the 

blastocyst stage (Vassena et al. 2007).  

While various studies report differential gene expression between SCNT and 

control tissues, they do not attempt to determine the point in development when 

expression levels in the SCNT tissues diverged from controls, nor do they address the 

question of timing of reprogramming events. These questions are important in elucidating 

mechanisms involved in epigenetic reprogramming following SCNT with the ultimate 

goal of improving the efficiency of SCNT. Two recent studies evaluated the mechanisms 

and timing of nuclear reprogramming globally following normal fertilization (Sun et al. 

2007) and SCNT (Gao et al. 2007). Localization and activity of 20 different chromatin 
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factors including transcription factors and transcriptional regulators was evaluated 

through early preimplantation development, and it was determined that in the case of 

normal fertilization and SCNT an “erase-and-rebuild” strategy for epigenetic 

modifications was employed. This strategy involves the global removal of chromatin 

factors prior to pronuclear formation followed by re-association of the factors after 

pronuclear formation. While the mechanisms of epigenetic reprogramming were found to 

be similar for IVF and SCNT embryos, the erasure of epigenetic marks as well as the re-

establishment of new modifications was found to be both incomplete and delayed in 

SCNT embryos (Gao et al. 2007).    

The inefficiencies associated with SCNT, numerous reports of abnormal 

epigenetic reprogramming manifest by gene specific and global gene expression 

differences in SCNT embryos and fetal tissues, as well as the extremely limited 

understanding of epigenetic reprogramming mechanisms following SCNT all provided 

impetus for the present study. The aim of this study was to evaluate the dynamics of 

nuclear reprogramming by measuring the relative levels of transcript abundance through 

various stages of preimplantation development of several developmentally important 

genes known to undergo a high degree of change in expression following SCNT. This 

work was undertaken in an effort to gain insight into the timing of gene expression 

regulation following SCNT with the ultimate goal of elucidating reprogramming 

mechanisms. This is the first study to report detailed stage-by-stage gene expression 

levels in preimplantation bovine SCNT embryos.  
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Materials and Methods 

Donor Cell Culture 

Primary bovine fibroblast cultures were established from either lung tissue or ear 

biopsy. Previous data have demonstrated no difference in in vitro development between 

lung- and ear-derived donor cells (Kato et al. 2000). Tissues were washed thoroughly and 

minced, suspended in DMEM/Ham's F12 (1:1) (Hyclone Laboratories, Logan, UT 

84321) supplemented with 15% fetal bovine serum (FBS; HyClone Laboratories) and 

100 U/ml penicillin/ 100 µg/ml streptomycin (HyClone Laboratories), seeded in 25 cm2 

tissue culture flasks, and cultured at 39˚C in a humidified atmosphere of 5% CO2 in air 

for several days. Cells between passages one and four were then harvested and re-

suspended in tissue culture medium containing 10% DMSO, frozen, and stored in liquid 

N2 until use in microarray experiments or SCNT.  Prior to gene expression studies cells 

were thawed and expanded from about three million cells to approximately twenty seven 

million cells through two passages.  Cells utilized for SCNT were treated with trypsin 

(.25%) and resuspended in manipulation medium prior to use. 

Oocyte Maturation 

Maturation of bovine oocytes was performed as described previously (Li et al. 

2004a; Li et al. 2004b). Briefly, cumulus-oocyte-complexes (COCs) were aspirated from 

3-8 mm follicles using an 18-gauge needle from ovaries collected from a local abattoir.  

Only those oocytes with uniform cytoplasm and intact layers of cumulus cells were 

selected and matured in TCM 199 containing 10% FBS, 0.5 µg/ml FSH (Sioux 

Biochemicals, Sioux City, IA 51250), 5 µg/ml LH (Sioux Biochemicals), and 100 U/ml 



  126 

penicillin/ 100 µg/ml streptomycin for 18-22 h.  

SCNT Embryo Production 

Following maturation, cumulus cells were removed from oocytes by vortexing 

COCs in PB1 (calcium- and magnesium-containing phosphate buffered saline [HyClone 

Laboratories], 0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/ml BSA) medium 

containing 10 mg/ml hyaluronidase. Oocytes with a first polar body were used as 

recipient cytoplasts. Enucleation was employed to remove the first polar body and 

metaphase plate, and single cells were subsequently transferred to the perivitelline space 

of recipient cytoplasts.  Fusions of NT couplets were performed in mannitol fusion 

medium (Wells et al. 1999) by two electric DC pulses of 2.2 kV/cm for 25 microseconds. 

Following fusion, embryos were held in CR2 medium supplemented with 3% FBS for 1-

2 h prior to activation (Rosenkrans and First 1994). Fused embryos were activated 

between 23 and 25 h after the onset of maturation by exposure to 5 µM ionomycin for 5 

min followed by five h incubation in 10µg/ml cycloheximide. For the purposes of the 

microarray experiments we produced three groups of ten grade 1-2 blastocysts from a 

single cell line. For the Q-PCR studies, three groups of five embryos each were collected 

at each embryonic stage to be analyzed. Embryos were placed in RNAlater RNA 

stabilization reagent (Ambion Inc., Austin, TX 78744) and stored at -20° C until RNA 

extraction.   

AI Embryo Production 

Control embryos for microarray studies were collected from super-ovulated cows 

using established protocols. Donor cows were synchronized using the EAZI-BREED™ 
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CIDR® vaginal progesterone implant. The CIDR was used for ten days followed by 

an I.M. injection of 50 mg Lutalyse (PGF2α) (5 ml at 10 mg/ml). Animals were bred by 

artificial insemination (AI) the morning following standing heat and again twelve and 

twenty-four h after standing heat. Seven days after the initial breeding, embryos were 

collected from donor animals by intra-uterine flush using embryo filters. Following 

collection embryos were rinsed in flush medium, placed in RNAlater (Ambion Inc.) and 

stored at -20° C until RNA extraction. Three groups of ten grade 1 and 2 blastocysts were 

collected for the microarray studies. 

IVF Embryo Production 

IVF embryos were collected for the Q-PCR component of the study. 

Cyropreserved bovine semen (Hoffman AI, Logan, UT) was thawed and live sperm were 

separated by centrifugation on a 45%/95% layered Percoll gradient. Motile spermatozoa 

obtained by this method were diluted in fert-TALP to a final concentration of 1.0 X 106 

per ml (Reed et al. 1996). Capacitation occurred in fert-TALP containing heparin at a 

concentration of 10 µg/ml. In vitro matured oocytes were fertilized in vitro for 18-20 h at 

39°C in 5% CO2 and air.  After the fertilization period, oocytes were vortexed in a 15-ml 

conical centrifuge tube containing 1 ml of PB1 2 min 40 sec to completely remove 

cumulus cells.  Embryos were co-cultured with cumulus cells in CR2 medium 

supplemented with 3% FBS (Rosenkrans and First 1994) at 39°C in 5% CO2 in air. Three 

groups of five embryos each were collected at each embryonic stage to be analyzed. 

Embryos were rinsed through several drops of PB1 and through a single drop of 
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RNAlater then placed in RNAlater (Ambion Inc.) and stored at -20° C until RNA 

extraction.   

RNA Extraction 

 RNA extraction from donor cells. Cells were harvested by trypsinization, washed 

with cell culture medium (DME/F12 1:1 supplemented with 15% Defined FBS [Hyclone 

Laboratories] and Penicillin/Streptomycin) followed by a second wash with PBS. 

Washed cells were pelleted and resuspended in RLT Buffer (Qiagen Inc., Valencia, CA 

91355) containing beta-mercapto ethanol (βME) and subsequently homogenized using a 

syringe with a 21-gauge needle. RNA extraction was performed using the RNeasy Mini 

RNA Extraction Kit (Qiagen) according to manufacturer’s recommendations.   

RNA extraction from embryos. Total RNA was extracted and DNA was digested 

with DNase I from AI, IVF, and NT embryos using the RNAqueous micro kit (Ambion 

Inc.) according to manufacturer’s recommendations with modifications. Prior to RNA 

extraction each sample was spiked with 50 µg yeast tRNA as a carrier. The RNA was 

eluted from the RNAqueous column using two 20 µl volumes of prel volumes of pre-warmed (75° C) 

elution solution. Following RNA purification, microarray samples were reduced to 3-5 µl 

using speed vacuum centrifugation in order to yield sufficient RNA concentration for 

amplification using the Affymetrix 2-round labeling kit, and Q-PCR samples were 

immediately reverse-transcribed and stored at -20ºC until Q-PCR analysis. 

Microarray Expression Studies 

For the embryo microarray studies previous experience as well as personal 

communications with other researchers indicated RNA concentration- and quality-
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determination using the nanodrop and bioanalyzer are ineffective with RNA extracted 

from embryos, so preliminary checks of RNA were not performed on embryonic RNA. 

Blastocyst stage bovine embryos contain approximately 2 ng total RNA so in order to 

attain sufficient quantities of RNA for hybridization on Affymetrix GeneChips a two-

round labeling protocol was used. After the two-round labeling procedure RNA quantity 

and integrity were assessed using an Agilent 2100 Bioanalyzer.  Following quality 

assessment labeled RNA was hybridized to the Affymetrix bovine microarray chip and 

subsequently scanned according to manufacturer’s protocols. Microarray analysis of 

donor cells was also performed according to manufacturer’s protocols. Since sufficient 

RNA could be obtained from donor cells, single-round labeling was used instead of the 

two-round labeling. Following microarray analysis, Q-PCR of un-amplified SCNT and 

IVF blastocyst cDNA was used to verify the differential expression of the six genes of 

interest was real and not simply an artifact of the differences in labeling protocols. 

Selection of Target Genes 

Initially bovine SCNT and in vivo produced (AI) embryos (three groups of ten 

embryos each SCNT and AI) along with several fibroblast donor cell lines were subjected 

to microarray analysis to measure the degree of reprogramming that occurs between the 

time of nuclear transfer and the blastocyst stage. Following microarray analysis (see 

Chapter 4), several genes were selected for further analysis based on degree of change as 

well as physiological importance. Thbs and Snai2 underwent dramatic down-regulation 

following SCNT and Anxa1 underwent moderate down-regulation. Tacstd1 and Oct4 

were of interest because they were highly expressed in blastocysts and expressed at low 

levels or not at all in fibroblast donor cells. While Tfap2c was not represented on the 
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microarray, this gene was known based on previous work in our laboratory to be 

unexpressed in fibroblasts and strongly expressed in blastocysts.  

Reverse Transcription and  

SYBR Green Q-PCR 

Reverse transcription was performed using Superscript III Reverse Transcriptase 

(Invitrogen, Carlsbad, CA 92008) with random primers.  Optizyme Recombinant RNase 

Inhibitor (Fisher Scientific, Fair Lawn, NJ 07410) was utilized at a concentration of 1 

unit per µl during the reverse transcription of embryonic RNA. The cDNA was stored at  

-20°C until use. 

SYBR Green real-time PCR (Abgene, Rochester, NY 14610) was used to 

characterize relative expression levels of Thbs, Snai2, Anxa1, Tacstd1, Oct4, and Tfap2c 

in fibroblast cells and IVF and SCNT embryos. Expression levels were analyzed by at 

various stages following fertilization or activation. Following SCNT, embryos 30 min 

and 12 h post-activation and at the 2-cell, 4-cell, 8-cell, morula, and blastocyst stages 

were analyzed. The thirty min-post-activation group was analyzed to establish a base-line 

level of transcript abundance for each gene against which other stages could be 

compared. An IVF thirty min-post-fertilization group was not collected because 

fertilization times can vary following insemination, so the embryos collected would 

exhibit unacceptable variability in terms of fertilization status and timing (Kim et al. 

2002). IVF embryos were analyzed 16 h post-insemination (approximately 12 h post-

fertilization), and at the 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Embryos were 

pooled in groups of five to provide sufficient RNA for reverse transcription and Q-PCR 

analysis without the need for linear amplification, and the pooling of embryos served to 
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minimize variability between replicates. Q-PCR was performed in white thin-walled 

96-well plates, and each Q-PCR reaction was performed in triplicate. Glyceraldehyde-3-

phosphate dehydrogenase (Gapdh) was used as the internal control housekeeping gene as 

it has been determined to be the most reliable housekeeping gene in bovine pre-

implantation embryos (Robert et al. 2002). Primers for Gapdh, Thbs, Snai2, Anxa1, 

Tacstd1, Oct4, and Tfap2c (Table 5-1) were designed using Primer3 primer-design 

software (Rozen and Skaletsky 2000). A standard PCR protocol with a 15µL reaction 

volume was used. The reactions consisted of Absolute™ QPCR SYBR® Green PCR 

Master Mix (Abgene) containing fluorescein reference dye, forward and reverse primers 

at 200-300 nM final concentration and 1 µL diluted template cDNA. The same PCR 

protocol was used for all primers: 15 min at 95°C for activation of the hot start Thermo-

Start® DNA Polymerase; 40 cycles of 95°C for 15 sec, 58°C for 30 sec, and 72°C for 15 

sec (data collection step), then 95°C for 30 sec followed by an 80-cycle melt curve 

initiated by 30 sec at 55°C with a temperature increase of 0.5°C each cycle. 

Table 5-1 Details for genes analyzed and sequences of primers used in Q-PCR analyses. 

Gene Primer name Primer sequence (5’-3’) 
Fragment size 

(bp) 
Position on 

cDNA 
NCBI RefSeq 

GAPDH 
GAPDH left 
GAPDH right 

GATTGTCAGCAATGCCTCCT 
TTGAGCTCAGGGATGACCTT 

240 
500 
720 

NM_001034034 

THBS 
THBS left 
THBS right 

ACACGACTGCAACAAGAACG 
GGTTGGGGCAATTATCCTTT 

200 
2108 
2288 

NM_174196 

SNAI2 
SNAI2 left 
SNAI2 right 

GGCATTTTGTCTTGTGCTGA 
TGCAATGTGCTTTTTGCTTC 

214 
1038 
1232 

NM_001034538 

ANXA1 
ANXA1 left 
ANXA1 right 

AAGGCTTTGCTTTCTCTTGC 
GACGAGTTCCAATACCCTTCA 

346 
608 
933 

NM_175784 

TACSTD1 
TACSTD1 left 
TACSTD1 right 

CCAGGAAGGATGTGTGTGTG 
GAGCCCGTCATTATTCTGGA 

214 
284 
478 

NM_001035290 

OCT4 
OCT4 left 
OCT4 right 

GTTTTGAGGCTTTGCAGCTC 
CTCTCCAGGTTGCCTCTCAC 

184 
856 
1020 

NM_174580 

TFAP2C 
TFAP2C left 
TFAP2C right 

CTGCTCAGTCCCTGGAAGAC 
AAGGTACGGCCACCATTTTT 

162 
897 
1039 

NM_001075509 
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Statistical analysis 

 Microarray. The raw intensity data from the twelve microarray chips were 

preprocessed together using the RMA algorithm (Irizarry et al. 2003).  The limma/eBayes 

test (Smyth 2004) was used to test for differential expression between the six donor cell 

samples and the six embryo samples.  The Benjamini-Hochberg adjustment (Benjamini 

and Hochberg 1995) was applied to the resulting P-values, and the false discovery rate 

(FDR) was controlled at 0.01. 

 Q-PCR. The delta-delta Ct method (∆∆Ct) was used for real-time PCR data 

evaluation (Livak and Schmittgen 2001). Data was normalized for differing amounts of 

input cDNA using ∆Ct (Ct for the Gapdh housekeeping gene minus Ct for the gene of 

interest). Next, ∆∆Ct was calculated by subtracting the ∆Ct of each sample from the ∆Ct 

of a reference liver cDNA sample run in each plate. The n-fold increase or decrease in 

expression levels of each gene at each embryonic stage was calculated using the formula 

2-∆∆Ct. Pair-wise comparisons were performed using the Student’s t-test. A probability of 

P<0.05 was considered significant. 

Results 

Microarray Analysis 

After applying the Benjamini-Hochberg adjustment (Benjamini and Hochberg 

1995) to the p-values resulting from the comparison of chips from six donor cell lines 

with six embryo chips (three SCNT and three AI) using the limma/eBayes test (Smyth 

2004) for differential expression and controlling the FDR at 0.01, there were 10,942 

probe sets (out of 24,128) called significantly differentially expressed between fibroblast 
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donor cells and all embryos. Figure 5-1 is a volcano plot of the fibroblast/embryo 

comparison. Figure 5-2 is a heatmap of five of the genes selected for further analysis. 

TFAP2C was not represented on the microarray chip. 

 

 
 

 
 

Figure 5-1 Volcano plot summarizing 
results, with points colored by density. 
Points above the reference line 
correspond to probe sets called 
significant when controlling the FDR at 
0.01.  Five of the genes selected for 
further evaluation are highlighted. The 
highlighted points are, left to right:  
Thbs, Snai2, Anxa1, Oct4, Tacstd1 

Figure 5-2 Heatmap of five genes of 
interest. The color scale is from dark red 
for low expression values to dark blue for 
high expression values. The columns are 
labeled ‘E’ for embryo and ‘D’ for donor 
cell samples. 

 

Q-PCR Analysis 

 The expression levels of Thbs, Snai2, Anxa1, Tacstd1, Oct4, and Tfap2c were 

analyzed by Q-PCR in various stages of SCNT and IVF embryos as well as donor cells. 

For every gene except Tacstd1 there were differences in expression levels between SCNT 

and IVF embryos in multiple embryonic stages. Interestingly, these differences were 

generally rectified by the blastocyst stage so SCNT and IVF embryos were 

indistinguishable at the blastocyst stage for every gene except Oct4 which was expressed 
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at a lower level in SCNT embryos at every stage of development. The results of the 

Q-PCR experiments are represented graphically in figure 5-3. 

Thbs, Anxa1, and Snai2 exhibit similar patterns of gene regulation following 

SCNT although the timing differs for each gene. In each case expression remains higher 

in SCNT embryos than IVF embryos through several cell cycles- through the 4-cell stage 

for Thbs1, through the 8-cell stage for Anxa1 and through the morula stage for Snai2. In 

the case of Thbs1, expression is the same between SCNT and IVF embryos at the 8-cell, 

morula, and blastocyst stages, Anxa1 expression is equivalent at morula and blastocyst, 

and Snai2 expression remains higher in SCNT embryos until the blastocyst stage when it 

is abruptly shut off. Tacstd1, Tfap2c, and Oct4 all require transcriptional induction as 

embryos develop to blastocyst. In general patterns of expression in SCNT embryos 

closely resemble those of IVF controls with some important differences. Expression 

levels of Tacstd1 do not differ between SCNT and IVF embryos at any stage, however 

Tfap2c and Oct4 both exhibit differential expression patterns. Tfap2c is detectable at the 

8-cell stage in SCNT embryos but not until morula in IVF embryos, and while expression 

is induced earlier in SCNT embryos it is under-expressed in SCNT morulae. Tfap2c 

expression declines significantly between morula and blastocyst stages in IVF embryos 

and declines to a lesser degree in SCNT morulae so that expression levels are equivalent 

at the blastocyst stage. Of the six genes analyzed, Oct4 is the only one differentially 

expressed at the blastocyst stage. In fact, Oct4 expression is significantly higher in IVF 

embryos at every stage analyzed except in 4-cell embryos where the difference 

approaches significance (P=0.082).    
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Figure 5-3 Relative expression of genes based on Q-PCR. Yellow and blue bars 
represent SCNT and IVF embryos respectively. Green bars represent donor cells and 
oocytes. Lowercase superscripts compare SCNT embryos, and uppercase superscripts 
compare IVF embryos between stages. Stages with unlike superscripts are different 
(P<0.05). Asterisk indicates expression levels between SCNT and IVF embryos of the 
same stage differ (P<0.05). The stage with highest expression for each gene is scaled to 
1.0 on the y-axis, and other stages are scaled accordingly. Abbreviations are: Fibroblast 
(Fib), Oocyte (Oo), 30 min post-fusion (30m), 12 h post-fusion/fertilization (12h), 2-cell 
(2c), 4-cell (4c), 8-cell (8c), Morula (Mor), Blastocyst (Bl). 
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Discussion 

 The microarray studies indicate that a substantial amount of reprogramming of the 

donor cell genome has occurred by the blastocyst stage. Microarray analysis of donor cell 

expression patterns compared with SCNT and AI blastocysts combined found differential 

expression of 10,942 probe sets. Remarkably, by the blastocyst stage, a similar analysis 

comparing SCNT and AI blastocysts found only 28 probe sets differentially expressed 

(see Chapter 4). These results are quite similar to previously published results (Smith et 

al. 2005). Despite the apparent efficiency with which the somatic cell genome is 

reprogrammed by the blastocyst stage, of the six genes analyzed by Q-PCR, five were 

differentially expressed at two or more stages prior to blastocyst formation. These results 

indicate a substantial amount of time is required for the SCNT expression profile to 

“catch up” with the profile of control embryos. This is not surprising given the fact that 

the oocyte is designed to reprogram gamete nuclei, and the epigenetic modifications to 

somatic cells are much different than those of germ cells. The remarkable thing is the 

adaptability of the oocyte cytoplasm to successfully reprogram a variety of different 

somatic cell types- albeit inefficiently. A recent study evaluating the global transcriptome 

of murine SCNT embryos during the first two cell cycles also indicated a large degree of 

aberrant gene expression in early mouse SCNT embryos. It was also found that 

transcription of the donor cell genome continues during the first cell cycle when the 

embryonic genome is typically silenced (Vassena et al. 2007).  

  The genes analyzed by Q-PCR were selected because they exhibited dynamic 

changes in gene expression in SCNT embryos and because of their important biological 

functions in early development and differentiation. OCT4 is a homeodomain transcription 
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factor and a hallmark of undifferentiated stem cells. Reduced expression of Oct4 has 

been shown in mouse embryos (Niwa et al. 2000) and human embryonic stem cells 

(Matin et al. 2004) to result in trophoblast differentiation. Conversely, over-expression of 

the gene results in differentiation of primitive endoderm and mesoderm (Niwa et al. 

2000). Precise expression levels of Oct4 are clearly important in proper early embryonic 

development. SNAI2 is a member of the Snail family of transcription factors that also has 

important roles in early development (Cobaleda et al. 2007). It has been shown to be 

required for gastrulation, epithelial-mesenchymal transition, and cell survival in the 

mouse (Sefton et al. 1998). TACSTD1 is believed to be important in directing cell 

migration during early development in zebrafish (Villablanca et al. 2006). TFAP2C is a 

transcription factor that appears to be an important regulator of trophoblast development 

and differentiation (Li and Kellems 2003). Tfap2c-null mice die around embryonic day 

7.5 as a result of malformation of extra-embryonic membranes (Auman et al. 2002; 

Winger et al. 2006). THBS is a secreted glycoprotein involved in cell migration and 

proliferation and is apparently important in ossification, and neural and lung development 

(Iruela-Arispe et al. 1993). ANXA1 is a calcium and phospholipid binding protein which 

has been shown to be involved in membrane trafficking, cell division, and differentiation. 

Annexins are expressed in a broad range of tissue types, possibly indicating they play 

important roles in basic cell physiology (Gerke and Moss 2002). 

 Each of the genes analyzed is functionally important during early development, 

and even transient expression differences could potentially have negative consequences 

downstream. Complete nuclear reprogramming following SCNT would result in 

expression profiles in SCNT embryos that mirror IVF profiles. This is not the case for 
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any of the genes analyzed except for Tacstd1. Quantitative analysis of these genes 

only at the blastocyst stage would indicate, with the exception of Oct4, that proper 

reprogramming has occurred. Studies that evaluate gene expression only at the blastocyst 

stage might underestimate the scope of reprogramming deficiencies following SCNT. 

The importance of the early embryonic expression levels of the genes analyzed in this 

study remains to be seen, but it is probable that any divergence from normal expression 

levels at any stage of development and for any amount of time has a negative effect on 

the health of the embryo. The fact that Tacstd1 was expressed normally in SCNT 

embryos indicates that some genes may be more amenable to reprogramming following 

SCNT than others. Understanding the properties of genes that make them more 

reprogrammable might offer insights into nuclear reprogramming mechanisms. 

Thbs, Snai2, and Anxa1 were all highly abundant transcripts in fibroblast donor cells, and 

consequently expression continued at an above-normal level in early SCNT embryos. 

This observation is in agreement with previous reports of ectopic expression of 

fibroblast-specific genes following SCNT (Ng and Gurdon 2005). Following SCNT 80-

90% of non-histone proteins are removed from somatic nuclei effectually erasing the 

somatic cell transcription program (Gurdon et al. 1979). This is followed by re-

establishment of an embryonic transcription program by numerous chromatin factors 

(CFs) (Gao et al. 2007). Incomplete erasure of epigenetic modifications prior to CF re-

establishment is likely the cause of these patterns of over-expression. Likewise, the 

differential expression of Tfap2c and Oct4 might be caused by similar deficiencies in the 

process of epigenetic erasure or the subsequent process of epigenetic re-establishment 

(Gao et al. 2007).       
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The present study further characterizes the deficiencies associated with 

nuclear reprogramming following SCNT. In addition to aberrant gene expression 

(Chapter 4; Arnold et al. 2006; Herath et al. 2006; Hill et al. 2002; Humpherys et al. 

2002; Li et al. 2005b; Niemann et al. 2002)  and incomplete or inefficient epigenetic 

modification (Alberio and Campbell 2003; Cezar et al. 2003; Enright et al. 2003; Kang et 

al. 2001; Kremenskoy et al. 2006; Santos et al. 2003) following SCNT it is apparent from 

this study as well as the work by Vassena et al. (2007) that the earliest embryonic stages 

in SCNT embryos are highly divergent from control embryos in terms of transcriptional 

profiles. The fact that these highly aberrant transcriptional profiles can be almost 

completely rectified by the blastocyst stage following SCNT and a portion of these 

embryos have the capacity to develop normally to term reflects the incredible plasticity of 

the oocyte in its reprogramming activities. Great strides have been made in understanding 

the molecular mechanisms associated with nuclear reprogramming following SCNT, and 

continued progress will ultimately lead to improved SCNT efficiency as well as increased 

understanding of universal epigenetic mechanisms associated with cancer and stem cell 

biology as well as early development.   
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CHAPTER 6  

GENETIC REPROGRAMMING OF TRANSCRIPTION FACTOR AP-2γ  IN  IN 

BOVINE SOMATIC CELL NUCLEAR TRANSFER  

PREIMPLANTATION EMBRYOS  

AND PLACENTOMES 

Abstract 

Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite 

a tremendous amount of research devoted to its improvement over the past decade. 

Frequent early and mid-gestational losses are commonly accompanied by placental 

abnormalities. A transcription factor, activating protein AP-2γ , has been shown to be , has been shown to be 

necessary for proper placental development in the mouse. We first evaluated the 

expression of the gene coding for AP-2 γ  (Tfap2c) in several bovine fibroblast donor cell  (Tfap2c) in several bovine fibroblast donor cell 

lines and found it was not expressed. Subsequently we determined the expression profile 

of Tfap2c in oocytes and various stages of pre-implantation in vitro fertilized (IVF) 

embryos. Tfap2c was undetectable in oocytes and early embryos and was detectable at 

relatively high levels in morula and blastocyst IVF embryos. The lack of expression in 

oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage 

in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the 8-cell stage, 

two days earlier than control embryos. Control embryos first expressed Tfap2c at the 

morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No 

differences in expression were detected at the blastocyst stage.  To determine whether 

Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated 

its expression in cotyledons and caruncles of SCNT and control pregnancies between 
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days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased 

between days 55 and 90, while expression in cotyledons was relatively consistent over 

that same period. Expression levels in SCNT tissues were not different from controls. 

This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, 

which may have developmental consequences resulting from genes influenced by Tfap2c, 

but expression was not different at the blastocyst stage and in placentomes.    

Introduction 

Since the first report of successful SCNT in sheep over a decade ago (Campbell et 

al. 1996) a great deal of research has focused on SCNT in a variety of species. While new 

species are added to the list of those successfully produced by SCNT on a regular basis, 

very few advancements have been made to improve the efficiency of the process. The 

underlying mechanisms behind the low efficiencies associated with SCNT are widely 

believed to be incomplete nuclear reprogramming of the somatic cell following nuclear 

transfer. During nuclear reprogramming epigenetic marks are erased from the donor 

nucleus genome, resulting in an erasure of tissue-specific gene expression patterns 

effectively resetting the cell to a totipotent state (Santos and Dean 2004). Studies 

evaluating the epigenetic status of embryos following SCNT have demonstrated 

deficiencies in epigenetic reprogramming frequently occur as manifest by aberrant gene 

expression in preimplantation embryos (Arnold et al. 2006; Daniels et al. 2000; Han et al. 

2003; Li et al. 2006; Santos et al. 2003) and fetuses (Arnold et al. 2006; Hill et al. 2002; 

Schrader et al. 2003). 

The beginnings of differentiation in the preimplantation bovine embryo occur at 

the morula stage, and differentiation is visibly apparent by the blastocyst stage, 
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characterized by the inner cell mass (ICM) that will develop into the embryo proper 

and the surrounding trophoblast cells that give rise to extra-embryonic tissues. A number 

of studies have found aberrant gene expression in bovine SCNT embryos at the blastocyst 

stage (Daniels et al. 2000; Somers et al. 2006). Abnormal phenotypes associated with 

SCNT likely arise as a result of incomplete nuclear reprogramming giving rise to altered 

gene expression levels during early preimplantation development. 

A prominent abnormal phenotype observed in SCNT pregnancies from a variety 

of species is that of abnormal placentation. In cloned mice, abnormally large placentas 

resulting from placental hyperplasia of basal or spongiotrophoblast layers has been 

reported (Ogura et al. 2002; Ono et al. 2001). Reduced development of the 

spongiotrophoblast layer has also been observed in murine SCNT pregnancies 

(Wakisaka-Saito et al. 2006). Placental abnormalities associated with SCNT in ruminant 

species include reduced numbers and enlargement of placentomes, avascularization or 

hypovascularization, hydroallantois, and hyperplasia of fetal membranes (De Sousa et al. 

2001; Hashizume et al. 2002; Hill et al. 2000; Wells et al. 1999). Poor placental 

development has been reported to be a primary contributor to pregnancy failure following 

SCNT (De Sousa et al. 2001; Fletcher et al. 2007; Heyman et al. 2002; Hill et al. 2000; 

Loi et al. 2006). 

Several groups have evaluated differential gene expression as a causative 

mechanism for the frequently observed placental abnormalities. One group evaluated 

expression patterns in blastocysts of several genes important in early placental 

development. In this study ERR2, Cdx2, and Acrogranin were aberrantly expressed in 

some of the SCNT embryos, and methods employed in the nuclear transfer process 

altered expression patterns (Hall et al. 2005). Differences in mRNA expression levels for 
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prolactin-related protein-1 (Prp-1), placental lactogen (Pl), and pregnancy associated 

glycoproteins-1 (Pag-1) and -9 (Pag-9) were reported in placental tissues of SCNT 

pregnancies between 30 and 100 days of gestation compared with controls (Patel et al. 

2004). Another study evaluated expression levels of genes important in trophoblast 

proliferation (Mash2), differentiation (Hand1), and function (Ifn-τ  and Pag and Pag-9) in d-17 

preimplantation embryos and d-40 post-implantation cotyledons. They reported increased 

expression of Mash2 and reduced expression of Hand1 in SCNT embryos. In addition, 

Pag-9 mRNA was undetectable in SCNT embryos but expressed in IVF and AI control 

embryos. Evaluation of mRNA expression in cotyledonary tissue found both Mash2 and 

Hand1 to be over-expressed in SCNT pregnancies (Arnold et al. 2006). Other groups 

have evaluated binucleate cell (BNC) populations in SCNT-derived cotyledons with 

mixed results. In ruminant species BNCs present at the fetomaternal interface play 

critical roles in pregnancy maintenance by producing and secreting proteins necessary for 

pregnancy establishment and maintenance such as Pl, Prps, and Pags (Hashizume et al. 

2007). BNCs in ruminant species are analogous to trophoblast giant cells (TGCs) in mice 

and are believed to arise from endoreplication and acytokinesis of mononucleate cells 

(MNCs) (Nakano et al. 2002). Increased numbers (Ravelich et al. 2004), normal numbers 

(Hoffert et al. 2005), and reduced numbers (Arnold et al. 2006) of BNCs have all been 

reported in bovine SCNT placentomes, so the involvement of BNCs in abnormal 

placental development and function in bovine SCNT pregnancies is unclear. 

Another gene shown to be critical in differentiation of extra-embryonic tissues 

and expressed in TGCs in mice is Tfap2c which codes for the transcription factor AP-2γ   

(Auman et al. 2002). The AP-2 family of transcription factors includes AP-2 α , β , γ , and δ . , β , γ , and δ . , γ , and δ . , and δ . . 

AP-2 proteins have been shown to be involved in regulation of cell proliferation, 
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differentiation, and tumor progression (Auman et al. 2002). AP-2γ  in particular has  in particular has 

been demonstrated to be intimately involved in proper placental development and 

function. In the mouse, AP-2γ  is expressed in the oocyte, and the maternally is expressed in the oocyte, and the maternally-derived 

transcript persists through the 2-cell stage. As maternal transcript declines rapidly zygotic 

transcription of the gene is initiated, so AP-2γ  is present at relatively high levels through  is present at relatively high levels through 

the blastocyst stage (Winger et al. 2006). The transcription factor has been shown in mice 

to be required for normal development of extra-embryonic membranes, and Tfap2c
-/-
 mice 

fail to develop a functional placenta and generally do not survive beyond 7.5 days post-

coitus (d.p.c.) (Auman et al. 2002; Winger et al. 2006). Normal embryos at 7.5 d.p.c. 

contained 50-60 TGCs, while mutant embryos contained as few as two. In addition, 

disorganization of extra-embryonic ectoderm, lack of exocoelemic and ectoplacental 

cavity formation, and reduced or absent ectoplacental cones were reported (Auman et al. 

2002; Winger et al. 2006). In a recent study analyzing global gene expression patterns in 

bovine placenta throughout gestation Tfap2c was found to be expressed in MNCs but not 

in BNCs, an important difference between murine and bovine Tfap2c expression 

(Ushizawa et al. 2007). 

Given the importance of Tfap2c demonstrated in murine placental development 

along with the numerous reports of placental abnormalities in bovine SCNT pregnancies, 

we undertook to investigate the involvement of Tfap2c in early embryonic development 

and placental function in cattle. The goal of the present study was to evaluate expression 

patterns of Tfap2c in control preimplantation embryos and placental tissues as well as 

donor cells, SCNT embryos, and placental tissues collected from SCNT pregnancies in 

order to determine whether aberrant expression of the transcription factor might be 

implicated in the abnormal placental development observed in bovine SCNT pregnancies. 



  154 
We characterized temporal expression patterns of Tfap2c in early stages of 

preimplantation bovine IVF and SCNT embryos and in cotyledonary and caruncular 

tissue derived from AI and SCNT pregnancies between days 55 and 90 of gestation.  

Tfap2c expression was analyzed in fibroblast donor cells, oocytes, and in IVF and 

SCNT embryos 12 h post-fertilization/activation and at the 2-cell, 4-cell, 8-cell, morula, 

and blastocyst stages. This work was undertaken in an effort to gain insight into the 

timing of gene expression regulation following SCNT with the ultimate goal of 

elucidating reprogramming mechanisms. Tfap2c expression was futher analyzed in 

SCNT and control cotyledons and caruncles between 55 and 90 days gestation. This is 

the first study to report detailed stage-by-stage gene expression levels in preimplantation 

bovine SCNT embryos as well as the first to evaluate Tfap2c expression in SCNT 

placental tissues.  

Materials and Methods 

Donor Cell Culture 

Primary bovine fibroblast cultures were established from lung tissue. Tissues 

were washed thoroughly and minced, suspended in DMEM/Ham's F12 (1:1) (Hyclone 

Laboratories, Logan, UT 84321) supplemented with 15% fetal bovine serum (FBS; 

HyClone Laboratories) and 100 U/mL penicillin/ 100 µg/mL streptomycin (HyClone 

Laboratories), seeded in 25 cm
2
 tissue culture flasks, and cultured at 39˚C in a humidified 

atmosphere of 5% CO
2
 in air for several days. Cells between passages one and four were 

then harvested and re-suspended in tissue culture medium containing 10% DMSO and 

stored in liquid N
2 
until use in SCNT.  Prior to SCNT cells were thawed and grown to 80-

100% confluence. Cells were subsequently harvested by trypsinization and re-suspended 
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in manipulation medium for use in SCNT. 

Oocyte Maturation 

Maturation of bovine oocytes was performed as described previously (Li et al. 

2004a; Li et al. 2004b). Briefly, cumulus oocyte complexes (COC) were aspirated from 

3-8 mm follicles using an 18-gauge needle from ovaries collected from a local abattoir.  

Only those oocytes with uniform cytoplasm and intact layers of cumulus cells were 

selected and matured in TCM 199 containing 10% FBS, 0.5 µg/mL FSH (Sioux 

Biochemicals, Sioux City, IA 51250), 5 µg/mL LH (Sioux Biochemicals), and 100 U/mL 

penicillin/ 100 µg/mL streptomycin for 18-22 h.  

SCNT Embryo Production 

Following maturation, cumulus cells were removed from oocytes by vortexing 

COC in PB1 (calcium and magnesium containing phosphate buffered saline [HyClone 

Laboratories], 0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/mL BSA) medium 

containing 10 mg/mL hyaluronidase. Oocytes with a first polar body were used as 

recipient cytoplasts. Enucleation was employed to remove the first polar body and 

metaphase plate, and single cells were subsequently transferred to the perivitelline
 
space 

of recipient cytoplasts.  Fusions of NT couplets were performed in mannitol fusion 

medium (Wells et al. 1999) by two electric DC pulses of 2.2 kV/cm for 25 microseconds. 

Following fusion, embryos were held in CR2 medium supplemented with 3% FBS for 1-

2 h prior to activation. Fused embryos were activated between 23 and 25 h after the onset 

of maturation by exposure to 5 µM ionomycin for 5 min followed by 5 h incubation in 

10µg/ml cycloheximide. Three groups of five embryos each were collected at each 
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embryonic stage to be analyzed. Embryos were placed in RNAlater RNA stabilization 

reagent (Ambion Inc., Austin, TX 78744) and stored at -20° C until RNA extraction.   

IVF Embryo Production 

Cyropreserved bovine semen (Hoffman AI, Logan, UT) was thawed and live 

sperm were separated by centrifugation on a 45%/95% layered Percoll gradient. Motile 

spermatozoa obtained by this method were diluted in fert-TALP to a final concentration 

of 1.0 X 10
6
 per ml (Reed et al. 1996). Capacitation occurred in fert-TALP containing 

heparin at a concentration of 10 µg/ml. In-vitro matured oocytes were fertilized in vitro 

for 18-20 h at 39°C in 5% CO
2
 and air.  After the fertilization period, oocytes were 

vortexed in a 15-ml conical centrifuge tube containing 1 ml of PB1 2 min 40 sec to 

completely remove cumulus cells.  Embryos were co-cultured with cumulus cells in CR2 

medium supplemented with 3% FBS (Rosenkrans and First 1994) at 39°C in 5% CO
2
. 

Three groups of five embryos each were collected at each embryonic stage to be 

analyzed. Embryos were rinsed through several drops of PB1 and through a single drop 

of RNAlater then placed in RNAlater (Ambion Inc.) and stored at -20° C until RNA 

extraction.   

Cotyledon and Caruncle Collection 

 Control pregnancies were either established by artificial insemination of CIDR-

synchronized cows or collected from the abattoir and aged based on crown-rump 

measurements, and SCNT pregnancies were established by non-surgical embryo transfer 

of day 7-8 SCNT blastocysts. Pregnancies were monitored by ultrasound around 

embryonic day-30 and again around day-60 and day-90. Recipient animals were 
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slaughtered at a local abattoir. Cotyledon and caruncle tissues were collected within 

thirty min of slaughter, snap frozen and stored in cryovials in liquid N
2
 until RNA 

extraction. Cotyledons were collected from nine control pregnancies (days 54, 56, 60, 69, 

70, 75, 83, 90, and 91) and seven SCNT pregnancies (days 69, 70(3), 89(2), and 90).   

RNA Extraction 

RNA extraction from embryos. Total RNA was extracted and DNA was digested 

with DNase I IVF, and NT embryos using the RNAqueous micro kit (Ambion Inc.) 

according to manufacturer’s recommendations with modifications. Prior to RNA 

extraction each sample was spiked with 50 µg yeast tRNA as a carrier. RNA was eluted 

from the RNAqueous column using two 20-µl volumes of prel volumes of pre-warmed (75° C) elution 

solution. Following RNA purification samples were immediately reverse-transcribed and 

stored at -20ºC until Q-PCR analysis. 

RNA extraction from cotyledons and caruncles. Cotyledons were removed from 

liquid N
2
, and approximately thirty mg of tissue was placed in RLT Buffer (Qiagen Inc., 

Valencia, CA 91355) containing beta-mercapto ethanol (βME) and subsequently 

homogenized using a rotor stator homogenizer. RNA extraction was performed using the 

RNeasy Mini RNA Extraction Kit (Qiagen) according to manufacturer’s 

recommendations.   

Reverse Transcription and  
SYBR Green Q-PCR 

Reverse transcription was performed using Superscript III Reverse Transcriptase 

(Invitrogen, Carlsbad, CA 92008) with random primers. cDNA was stored at -20°C until 

use. SYBR Green real-time PCR (Abgene, Rochester, NY 14610) was used to evaluate 
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Tfap2c expression in cotyledons, caruncles and preimplantation embryos. Each real-

time PCR reaction was performed in duplicate. Q-PCR was performed in white thin-

walled 96-well plates. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was be 

used as the internal control housekeeping gene as it has been determined to be the most 

reliable housekeeping gene in bovine preimplantation embryos (Robert et al. 2002). 

Primers for Q-PCR analysis were designed using Primer3 primer-design software (Rozen 

and Skaletsky 2000). The primer sequences were as follows: GAPDH forward: GAT 

TGT CAG CAA TGC CTC CT, GAPDH reverse: TTG AGC TCA GGG ATG ACC TT, 

Tfap2c forward: CTG CTC AGT CCC TGG AAG AC, and Tfap2c reverse: AAG GTA 

CGG CCA CCA TTT TT. A standard PCR protocol with a 15µL reaction volume was 

used. The reactions consisted of Absolute™ QPCR SYBR® Green PCR Master Mix 

(Abgene) containing fluorescein reference dye, forward and reverse primers at 200 nM 

final concentration and 1 µL diluted template cDNA. The same PCR protocol was used 

for all primers: 15 min at 95°C for activation of the hot start Thermo-Start® DNA 

Polymerase; 40 cycles of 95°C for 15 sec, 58°C for 30 sec, and 72°C for 15 sec (data 

collection step), then 95°C for 30 sec followed by an 80-cycle melt curve initiated by 30 

sec at 55°C with a temperature increase of 0.5°C each cycle. 

Statistical Analysis 

The delta-delta Ct method (∆∆Ct) was used for real-time PCR data evaluation 

(Livak and Schmittgen 2001). Data was normalized for differing amounts of input cDNA 

using ∆Ct (Ct for the GAPDH housekeeping gene minus Ct for the gene of interest). 

Next, ∆∆Ct was calculated by subtracting the ∆Ct of each sample from the ∆Ct of a 
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reference cDNA sample. The n-fold increase or decrease in expression levels of each 

gene at each embryonic stage was calculated using the formula 2
-∆∆Ct

. Pair-wise 

comparisons between SCNT- and AI-∆∆Ct values were performed for each gene using 

the Student’s t-test. A probability of P<0.05 was considered significant. 

Results 

Tfap2c Expression in Fibroblast  
Donor Cells 

Initially several fibroblast donor cell lines which have been used successfully in 

our laboratory were analyzed for Tfap2c expression. Tfap2c was not detected in any of 

the cell lines analyzed. Figure 6-1 indicates pregnancy rates and rates of development to 

term of SCNT embryos derived from the cell lines analyzed. Twenty or more embryo 

transfers were performed for each of the cell lines represented. Subsequent analysis of 

gene expression was performed on embryos and placental tissue derived from the cell 

line labeled “444”. 
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Figure 6-1 Pregnancy rates of four fibroblast cell lines analyzed for the expression of 
Tfap2c. White bars represent the proportion of pregnancies detected at embryonic day-
30, and black bars represent proportion of embryo transfers resulting in term deliveries.  
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Tfap2c Expression in Preimplantation IVF  
and SCNT Embryos 

Oocytes and embryos were pooled in groups of five to provide sufficient RNA for 

reverse transcription and Q-PCR analysis without the need for linear amplification, and 

the pooling of embryos served to minimize variability between replicates. Unlike Tfap2c 

expression in murine oocytes and preimplantation embryos, the transcript was not 

detectable by Q-PCR analysis in bovine oocytes or early preimplantation SCNT or 

control embryos. In control embryos the gene was first detectable in morulae at high 

levels. Transcript abundance declined quite dramatically between morula and blastocyst. 

In contrastTfap2c expression in SCNT embryos was detectable approximately 48 h 

earlier in 8-cell embryos. While expression increased between 8-cell and morula, Tfap2c 

expression was significantly lower in SCNT morulae compared with IVF. Expression 

declined in to a lesser degree in SCNT blastocysts, so at the blastocyst stage Tfap2c 

expression was equivalent to IVF embryos (Figure 6-2).    
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Figure 6-2 Relative expression of Tfap2c in early preimplantation embryos. White 
bars represent SCNT embryos, and black bars represent IVF embryos. 
*- Expression differs significantly within stages between IVF and SCNT embryos. 
(P<0.05) 
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Tfap2c Expression in AI and SCNT Cotyledons and Caruncles 

 Between days 55 and 85 of gestation Tfap2c expression remained constant in 

cotyledons (Figure 6-3) whereas expression increased in caruncles over the same time 

period (Figure 6-4). Tfap2c expression was higher in cotyledons than caruncles at every 

stage analyzed however, the difference in expression between the two tissues decreased 

as pregnancy progressed. SCNT and AI caruncles and cotyledons did not differ 

significantly in Tfap2c expression levels based on Q-PCR analysis. 

Discussion 

 Thirty-day and term pregnancy rates of SCNT embryos derived from the four 

donor cell lines analyzed were similar to those reported by other laboratories (Oback and 

Wells 2007). Tfap2c transcript was not detectable by Q-PCR in any of the bovine 

fibroblast cell lines analyzed. Previously it was reported that Tfap2c is likewise not 

expressed in mouse embryo fibroblasts (Winger et al. 2006).  
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Figure 6-3 Relative expression of Tfap2c 
in cotyledons. White bars represent 
SCNT, and black bars represent AI. 
SCNT placental tissues were not available 
for analysis at day 55. 
a-Bars with unlike subscripts are different 
(P<0.05) 
*-Ranges for the above time points are 54-
60, 69-75, and 83-91. 

Figure 6-4 Relative expression of Tfap2c 
in caruncles. White bars represent SCNT, 
and black bars represent AI. SCNT 
placental tissues were not available for 
analysis at day 55. 
b-Bars with unlike subscripts are different 
(P<0.05) 
*-Ranges for the above time points are 54-
60, 69-75, and 83-91. 

 

Subsequent analysis of Tfap2c expression in oocytes and control preimplantation 

revealed several important differences from previous reports in the mouse. Tfap2c was 

not detectable in bovine oocytes nor was it expressed in early preimplantation embryos. 

The first stage in which Tfap2c was detectable in bovine IVF embryos was morula, 

where it was highly expressed. It remained detectable in control bovine blastocysts but at 

a reduced level. In the mouse Tfap2c is expressed in oocytes and at relatively constant 

levels in oocytes, 2-cell and 4-cell embryos, morulae, and blastocysts (Winger et al. 

2006). 

 Following fertilization maternal proteins and mRNAs direct embryo development 

until zygotic genome activation (ZGA). Following ZGA many of the maternal RNAs are 

degraded, and gene expression and embryo development are primarily under the control 

of the zygotic genome (Schier 2007). ZGA occurs at the 2-cell stage in mice (Zeng and 

Schultz 2005) and at the 8-cell stage in cattle (Memili and First 2000), however a limited 

amount of zygotic transcription occurs prior to ZGA (Schultz 2002). Analysis of Tfap2c 
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expression in mouse preimplantation embryos has demonstrated that the transcript 

present prior to ZGA is maternally derived, and following ZGA, maternal Tfap2c 

declines rapidly, and zygotic Tfap2c is actively transcribed (Winger et al. 2006). The 

differences in Tfap2c expression in murine and bovine preimplantation embryos likely 

reflect the differences in timing of ZGA.  

During the earliest stages of cell division and differentiation the embryonic 

program utilizes unique mechanisms of gene regulation. Experiments utilizing luciferase 

reporter genes under the control of a thymidine kinase promoter with and without an 

enhancer site provided the first evidence for a transcriptionally repressive state 

characterized by an increased requirement for enhancers in preimplantation mouse 

embryos following ZGA (Wiekowski et al. 1991). Attenuated response to promoters and 

increased dependence on enhancers for transcriptional activation has also been reported 

in rabbit preimplantation embryos (Christians et al. 1994). Other studies have 

demonstrated a shift in TATA box requirements of some genes in preimplantation 

embryos. While differentiated cells generally utilize TATA-containing promoters to drive 

gene expression, TATA-less promoters seem to be more efficiently used following ZGA 

(Davis and Schultz 2000). Significantly, Tfap2c expression has been shown to be under 

the control of a TATA-less promoter (Li and Kellems 2003). The expression patterns 

observed in preimplantation bovine embryos suggest Tfap2c expression is tightly 

regulated in the early embryo. Its function as a transcription factor regulated by a TATA-

less promoter as well as its precise and rapid induction at the morula stage suggest its 

important involvement in early differentiation events. 

The unique expression profiles of Tfap2c in fibroblasts, oocytes, and 

preimplantation embryos as well as the functional importance of AP-2 γ  as a transcription  as a transcription 
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factor critical for placental development and function compelled us to evaluate its 

expression in preimplantation SCNT embryos. Since Tfap2c is not detectable in donor 

cells or oocytes, any subsequent expression in SCNT embryos must be a consequence of 

some reprogramming event following SCNT. The timing of the induction of the 

transcription factor in SCNT embryos is certainly important for proper embryo 

development and differentiation. 

We analyzed Tfap2c expression in preimplantation SCNT embryos and found the 

gene to be detectable in 8-cell embryos- about 48 h prior to the first detectable expression 

in IVF embryos. Expression increased between the 8-cell stage and morula, but transcript 

abundance in SCNT morulae was less than half that of IVF morulae. The decline in 

Tfap2c expression between morula and blastocyst SCNT embryos was less marked than 

in IVF embryos so that by the blastocyst stage Tfap2c expression was equivalent in IVF 

and SCNT embryos.  

The early induction of Tfap2c in SCNT embryos as well as lower expression in 

SCNT morulae is likely indicative of abnormal gene regulation during the critical period 

of ZGA. While the differences in Tfap2c expression observed between SCNT and IVF 

preimplantation embryos appear relatively minor, and no difference in expression of the 

gene is observed in IVF and SCNT embryos by the blastocyst stage, these transient 

differences could have a profound impact the expression of a host of other genes 

important in early development. Early studies involving the characterization of the 

transcriptional control following ZGA suggested broad and somewhat indiscriminate 

genome activation, however, more recent transcriptional profiling studies indicate ZGA is 

a tightly controlled event in which a very specific sub-set of genes important in early 
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development are activated, particularly genes involved in transcription and RNA 

processing (Ko et al. 2000; Wang et al. 2004; Zeng and Schultz 2005).    

Subtle differences in timing and levels of expression of transcription factors such 

as Tfap2c in early preimplantation embryos could affect the timing and level of 

expression of numerous other genes downstream. Analysis of Tfap2c transcript 

abundance at various stages of preimplantation development further demonstrates that 

while expression analysis in blastocysts may indicate proper reprogramming has occurred 

following SCNT, expression analysis in earlier embryonic stages might indicate the 

opposite to be true. Global expression analysis of cloned mouse embryos during the first 

two cell cycles indicated differential gene expression in early SCNT embryos might be 

the rule rather than the exception (Vassena et al. 2007).  Given the apparent precision by 

which gene expression is controlled following ZGA, it is clear that perturbations in 

timing of gene expression may be as important developmentally as aberrant expression in 

SCNT blastocyst-stage embryos. 

Numerous reports of abnormal placental development in SCNT pregnancies exist. 

In cattle, reduced numbers of abnormally large placentomes have been observed. In 

addition hypovascularization and hyperplasic fetal membranes as well as increased 

incidence of hydroallantois have been reported (Hashizume et al. 2002; Hill et al. 2000). 

Various studies have reported abnormal gene expression in SCNT-derived placentas 

(Arnold et al. 2006; Oishi et al. 2006; Patel et al. 2004). Other groups have evaluated 

binucleate cell (BNC) populations in SCNT-derived cotyledons with mixed results. 

Increased numbers (Ravelich et al. 2004) normal numbers (Hoffert et al. 2005) and 

reduced numbers (Arnold et al. 2006) of BNCs have all been reported in SCNT 

placentomes. As BNCs are derived from MNCs, evaluation of expression of a MNC-



  166 
derived transcript in SCNT placental tissue might offer insight into the problems 

associated with SCNT placental function.  

The expression of Tfap2c was analyzed in control and SCNT cotyledons and 

caruncles to determine whether aberrant expression might account for some of the 

abnormalities commonly associated with SCNT placentomes. Our analysis of Tfap2c 

expression in control cotyledons and caruncles substantiated a recent report (Ushizawa et 

al. 2007). The transcript was detected in both cotyledons and caruncles collected from 

pregnancies between days 55 and 90. In agreement with the previous report, Tfap2c was 

expressed at constant levels in all cotyledons analyzed, while expression in caruncles 

increased steadily over the same period. These patterns of expression (constant in 

cotyledons and increasing in caruncles) have been shown to continue at least through day 

250 gestation (Ushizawa et al. 2007). By day-250, expression levels are equivalent 

between cotyledons and caruncles. Interestingly, Tfap2c expression in cotyledons and 

caruncles derived from SCNT pregnancies around day-70 and day-90 was very closely 

correlated with Tfap2c expression in controls, an indication that Tfap2c expression levels 

in placentomes are probably not a causative agent in abnormal SCNT placentation. As 

Tfap2c expression was found to be exclusive to MNCs (Ushizawa et al. 2007), similar 

levels of Tfap2c expression in SCNT and control placentomes likely indicates normal 

MNC number and function in SCNT placentomes, at least in the context of this study. 

The normal levels of Tfap2c expression in SCNT cotyledons and caruncles does 

not preclude its involvement in the placental abnormalities frequently observed in bovine 

SCNT pregnancies. As discussed previously, aberrant expression of transcription factors 

in early embryos could have numerous downstream consequences. It is likely the gene 

expression profiles during early differentiation have a greater impact on placental 
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morphology and function than expression in differentiated placental tissue. In order 

for proper placental development to occur the initial signals for placental differentiation 

must be present. Reduced placentome numbers and altered function are certainly 

consequences of inappropriate gene expression prior to implantation when differentiation 

of trophectodermal lineages along with embryo-uterine signaling results in the union of 

fetal and maternal tissues and the establishment of placentomes. In cattle, implantation is 

initiated around day-25 gestation (Hashizume 2007), so correct expression of genes 

involved in placental function and implantation prior to this time are of critical 

importance in proper placental function. Further research of gene expression in pre- and 

peri-implantation bovine SCNT-derived tissues will be important in elucidating genes 

expression patterns associated with abnormal placentation.      

The data presented here provides impetus for the continued evaluation of gene 

expression in early preimplantation SCNT embryos prior to the blastocyst stage, 

particularly genes associated with ZGA. Clearly there remains a great deal we do not 

understand in regards to mechanisms involved in nuclear reprogramming and the 

functional importance of timing of gene expression during early embryogenesis, and 

continued research in this area will help in answering these questions. In addition this 

data offers important insights into potential roles of Tfap2c in early embryonic 

development and placentome function. Functional studies in cattle will be important in 

elucidating the roles of Tfap2c in development and differentiation of extra-embryonic 

tissues in bovine pregnancies. 
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       CHAPTER 7 

SUMMARY 

A great deal of research over the past decade has been focused on improving the 

efficiency of bovine SCNT, characterizing deficiencies in the process that impact 

efficiency, and finally understanding the mechanisms by which the oocyte successfully 

reprograms somatic cell nuclei to give rise to a complete organism from what was once 

believed to be terminally differentiated cell types. To date, the efficiency of the process 

remains quite low, though limited advances have been made in that regard. Numerous 

studies have added to the growing body of information regarding differences between 

SCNT and control embryos and fetuses. These studies have reported differences in 

epigenetic status of SCNT embryos as well as altered patterns of gene expression and 

phenotypic differences in SCNT embryos and fetuses. Advances are being made to 

understand the mechanisms of epigenetic reprogramming employed by the oocyte 

following SCNT, but progress in this area is incremental. 

The experiments reported in this dissertation identify factors associated with 

oocyte source as well as timing of activation following nuclear transfer that result in 

improved efficiencies. In addition, several aberrantly expressed genes are identified in 

somatic cell nuclear transfer blastocysts and cotyledons that could have an impact on 

cloning efficiency. The expression levels of six developmentally important genes were 

analyzed in various stages of preimplantation nuclear transfer embryos using QPCR in 

order to determine the timing of nuclear reprogramming following nuclear transfer. These 

experiments report factors associated with improved bovine somatic cell nuclear transfer 

efficiency, provide insight into potential mechanisms for low developmental rates, 
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abnormal placentation and fetal loss of bovine clones, and characterize the timing of 

nuclear reprogramming in preimplantation embryos of several important genes following 

somatic cell nuclear transfer. 

 Evaluation of embryo development and pregnancy data representing several 

thousand SCNT embryos indicated the time interval between nuclear transfer and 

activation was critical for optimal in vitro embryo development. Further experimentation 

indicated the effect was due, at least in part, to altered chromatin morphology in an 

increasing proportion of embryos as the time interval between fusion and activation 

increased. Embryos activated between one and two h after fusion exhibited higher 

cleavage and compacted morula/blastocyst rates than embryos held three h or longer 

between fusion and activation. We evaluated chromatin structure and pronuclear 

formation in embryos held between two and five h between fusion and activation and 

found normal chromatin condensation occurred at a significantly lower rate in embryos 

held three h or longer prior to fusion. In addition fragmentation of nuclei tended to 

increase with prolonged fusion/activation intervals. Interestingly, embryos that developed 

to compacted morula/blastocyst established pregnancies at equivalent rates following 

embryo transfer. Based on this data we concluded that embryos that are chromosomally 

compromised probably cease development prior to reaching compacted morula stage. 

The data further indicated that 1 h between fusion and activation provides the donor 

nucleus with sufficient exposure to MII cytoplasm to initiate critical reprogramming 

events and that longer than two h results in reduced viability of embryos in vitro. 

Further evaluation of in vitro development and pregnancy data along with 

anecdotal reports from other researchers in the field of bovine SCNT indicated a 

significant affect of oocyte source on SCNT efficiency. We compared in vitro 
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development rates as well as pregnancy rates of SCNT embryos derived from heifer 

oocytes and cow oocytes and found significant improvements in development in vitro and 

in vivo in embryos derived from cow oocytes.  We found a significantly higher 

proportion of embryos derived from cow oocytes cleaved and further developed to 

compacted morula/blastocyst. In addition, following transfer of these embryos to 

recipient animals, a higher initial pregnancy rate and significantly increased pregnancy 

retention was observed. These data demonstrated that when possible cow oocytes should 

be utilized for bovine NT experiments over heifer oocytes. The study also indicated that 

heifer oocytes are capable of reprogramming donor nuclei and producing live SCNT 

offspring, albeit at a much lower rate.  

 A second facet of the research reported in this dissertation was the identification 

of factors associated with deficiencies in nuclear reprogramming that resulted in poor 

SCNT efficiency. As reduced rates of in vitro development and pregnancy establishment 

with SCNT embryos had been reported previously, we undertook to characterize global 

gene expression differences between SCNT and control blastocysts with the goal of 

identifying gene expression differences that might account for the phenotypic differences 

observed. In addition, the common observation in our own research group as well as in 

the literature of abnormal placentation associated with SCNT pregnancies lead us to 

perform similar global gene expression experiments on cotyledonary tissues collected 

from control and SCNT pregnancies. The results of these experiments revealed a 

relatively small number of aberrantly expressed genes in SCNT embryos and cotyledons. 

The most promising genes determined to be differentially expressed in SCNT blastocysts 

were Dr1 and MHCI. DR1 binds to the TATA binding protein (TBP) and blocks the 



  178 
binding of RNA polymerases II and III. In this way, DR1 can act as a potent 

transcriptional regulator. If Dr1 is commonly over-expressed in SCNT embryos it could 

have a profound impact on transcriptional regulation in early embryos. MHCI molecules 

serve as important antigen presenting cells in the immune response. The over-expression 

of MHCI in the bovine SCNT placentas has been reported previously, and immune 

rejection of the pregnancy by the dam resulting in placental MHCI expression has been 

proposed as a factor in the frequent losses in bovine SCNT pregnancies. In the cotlyledon 

expression studies, Rbp1 was found to be over-expressed in SCNT cotyledons. RBP1 

serves as the carrier protein for retinol (vitamin A), a vitamin critical for normal 

embryonic development. Proper doses of vitamin A are critical for normal embryonic 

development, and either an excess or a deficiency has been shown to result in embryonic 

defects. Functional studies evaluating the involvement of these genes in SCNT 

embryonic and placental development and function will be insightful. 

In order to better understand the dynamics by which nuclear reprogramming 

occurs following SCNT, we used microarray analysis to identify a number of genes that 

underwent a high degree of change in expression by the blastocyst stage following 

SCNT. We selected six functionally important genes to further investigate, three of which 

underwent down-regulation following SCNT and three that were up-regulated. Using 

QPCR we followed the expression levels of these genes through early embryonic stages 

to identify temporal differences in expression in SCNT embryos compared with IVF 

embryos. We found that five of the six genes analyzed exhibited altered levels of 

expression at some stage of preimplantation development. Only one of the six genes was 

aberrantly expressed by the blastocyst stage. These results indicate that experiments 

evaluating gene expression differences between control and SCNT blastocysts may 
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underestimate the degree of difference between clones and controls and further offer 

insights into the dynamics of gene reprogramming following SCNT.  

One of the genes evaluated in the reprogramming study, Tfap2c was investigated 

further because of its importance as a transcription factor in development and 

differentiation of extra-embryonic tissues. We analyzed Tfap2c expression levels in 

control and SCNT cotyledons collected from day-55 to day-90 pregnancies. We found 

that expression was relatively high and maintained at constant levels in cotyledons and 

that it was lower and increased over the same period in caruncles. No difference in 

expression levels was observed in SCNT cotyledons and caruncles, evidence that Tfap2c 

expression levels do not account for the reduced placental function in bovine SCNT 

pregnancies. 

Further research will be required to determine factors that impact the efficiency 

with which DNA is reprogrammed following SCNT. The data presented here includes a 

group of differentially expressed genes whose aberrant expression likely impacts SCNT 

efficiency negatively. Whether these differentially expressed genes work in concert with 

one another or independently is unclear, but it is likely the affects of aberrant gene 

expression are cumulative. Several of the genes identified herein as differentially 

expressed in SCNT blastocysts or cotyledons are certainly of physiological importance, 

and further investigation into their involvement in SCNT inefficiency is warranted. 

Additionally, the data associated with reprogramming dynamics following SCNT 

provides several important insights into reprogramming mechanisms. The observation 

that the timing of gene activation or suppression varies between genes indicates the 

timing of reprogramming is gene-dependent. It is probable that the epigenetic architecture 

of specific genes in the donor cell dictates the efficiency with which each genes is 
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reprogrammed. This data also provides the first detailed analysis of gene expression 

in multiple pre-implantation stages of SCNT and IVF embryos and indicates the 

divergence in gene expression patterns is very high in early SCNT embryos and narrows 

greatly by the blastocyst stage. 

Together these data represent a significant contribution to the field of bovine 

SCNT. We have identified factors important in SCNT efficiency as well as several 

aberrantly expressed genes in SCNT embryos and cotyledons that might account for 

some of the inefficiencies associated with SCNT. In addition, high resolution analysis of 

expression patterns of developmentally important genes in preimplantation embryos 

provides significant insight into the poorly understood mechanisms of nuclear 

reprogramming following SCNT. Continued research is required, particularly in the area 

of nuclear reprogramming in order to better understand the mechanisms involved and 

ultimately make SCNT a more efficient process.
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