
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2011

CHARM Components Monitoring System (CCMS) CHARM Components Monitoring System (CCMS)

Cemal Aktas
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Aktas, Cemal, "CHARM Components Monitoring System (CCMS)" (2011). All Graduate Plan B and other
Reports. 80.
https://digitalcommons.usu.edu/gradreports/80

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/80?utm_source=digitalcommons.usu.edu%2Fgradreports%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

CHARM COMPONENTS MONITORING SYSTEM (CCMS)

by

Cemal Aktas

A report submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

_______________________ _______________________

Stephen Clyde Curtis Dyreson

Major Professor Committee Member

Nicholas Flann

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2011

ii

Copyright © Cemal Aktas 2011

All Rights Reserved

iii

ABSTRACT

CHARM Components Monitoring System

by

Cemal Aktas

Utah State University, 2011

Major Professor: Dr. Stephen Clyde

Department: Computer Science

Integrated systems need to be monitored regularly for operational problems such

as network failures, loss of data, bottle necks, and other process failures. One of the best

ways to monitor a system is through a graphical visualization of system activities.

Humans are good at spotting patterns in graphic visualizations. This report describes a

monitoring facility for integrated systems that can present wide range of graphics

visualizations. As a proof of concept, it is implemented for the CHARM system, which is

a distributed system used by the Utah Department of Health.

 (73 pages)

iv

ACKNOWLEDGMENTS

 I would like to thank my major professor Dr. Stephen Clyde for his assistance,

encouragement, directions, advice and guidance throughout my graduate level education.

His recommendations and suggestions have been invaluable for both me and this project.

I am also grateful for his patience throughout my graduate level education.

I am grateful to my committee members Dr. Curtis Dyreson and Dr. Nick Flann

for their assistance, encouraging words, thoughtful criticism, time and attention during

busy semesters.

I also thank the CHARM team leader Lan Hu for her support, guidance and

patience. I have learned so many concepts from her.

Many thanks go to department secretaries Vicki Anderson and Genie Hanson. I

thank Vicki and Genie for everything.

Words are not enough to express my thanks I owe to Hulya Aktas, my wife, for

her endless support, love and encouragement. Without her love and support, it would be

impossible for me to get my education. I am also grateful for my daughter, Izgi, and son,

Beren, for their love and support. I am really sorry that I could not spend enough time

with them during last five years because of my education.

Finally, I am grateful to my Heavenly Father for being with us all the time and

hearing and answering our prayers.

Cemal Aktas

v

CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ...1

2 REQUIREMENTS ...4

 2.1 Functional Requirements ...4

 2.1.1 Settings ...4

 2.1.2 Graph Form ..5

 2.1.2 Components ...6

 2.1.3 Graphs ..6

 2.2 Non-functional Requirements ..8

 2.2.7 System Architecture ...9

3 SYSTEM ANALYSIS ...10

 3.1 Overview ..10

 3.2 Use Case (User Goals) ...10

 3.3 Class Diagrams ..12

4 ARCHITECTURAL DESIGN...15

 4.1 System Architecture ...15

 4.2 Monitoring Package (Application Layer) ..20

 4.2.1 MonitoringService ...20

 4.2.2 ComponentService ...20

 4.2.3 ComponentStats ...21

 4.2.4 ComponentStatsList ...21

 4.2.5 ComponentSettings ..22

vi

 4.3 MonitoringForm Package (User Interface Layer)22

 4.3.1 GraphForm ...22

 4.3.2 SettingsForm ..23

 4.3.3 SerializableColor..23

 4.3.4 Graphs ..24

 4.3.5 Microsoft Chart Library ...24

5 IMPLEMENTATION ..25

 5.1 Overview ..25

 5.2 Overview of How CCMS Works ...25

 5.3 StartMonitoring ..26

 5.4 MonitoringService ...30

 5.5 ComponentService ...33

 5.6 ComponentStats ...34

 5.7 StopMonitoring ..36

 5.8 Display Graphs...37

6 VITRUVIAN ...38

 6.1 Overview ..38

 6.2 References to Be Added...38

 6.3 GraphForm ...39

 6.3.1 Program.cs ...39

 6.3.1.1 GraphForm Information ...40

 6.3.1.2 MonitoringService Information ...41

 6.3.1.3 SyncyPatterns Information ...42

 6.3.1.4 Distribution Service’s Information43

 6.3.2 GraphForm.cs...44

 6.3.3 app.config...45

 6.4 MonitoringService ...46

 6.5 ComponentService ...49

 6.6 ComponentSettings.cs ..50

 6.7 ComponentForm ..51

 6.7.1 Program.cs ...51

7 SOFTWARE TESTING ..53

vii

 7.1 Introduction ..53

 7.2 Unit Testing ...54

 7.3 Integration Testing ...54

 7.4 System Testing ...55

 7.5 Acceptance Testing ..55

8 USER GUIDE ..56

 8.1 The Usage of CCMS ..56

 8.2 Settings ...61

9 CONCLUSION AND FUTURE WORK ..64

REFERENCES ..65

APPENDICES ...66

viii

LIST OF FIGURES

Page

2.1 For each value, a different color is used on a bar ..7

2.2 Value labels are displayed on the bar for each color. ..7

2.3 Meaning of colors are displayed on the graph(s) ...8

3.1 Use case of the CCMS ...11

3.2 A user can also change the settings of the CCMS ...12

3.3 Class structure for MonitoringService at analysis level ..13

3.4 Class structure for GUI at analysis level ..14

4.1 A package diagram displaying architecture of services of the CCMS (not

detailed) ...16

4.2 A package diagram displaying architecture of GUI part of the CCMS (not

detailed)..17

4.3 A package diagram displaying architecture of services of the CCMS (detailed) ..18

4.4 A package diagram displaying architecture of GUI part of the CCMS (detailed) .19

5.1 GUI calls the MonitoringService and the MonitoringService calls each selected

component’s ComponentService ...25

5.2 Each ComponentService sends its values to the MonitoringService (RPC) and

GUI (using another thread) makes RPC to get these values and displays them in the

graph(s) ..26

5.3 GUI Diagram ...27

5.4 Pseudocode of what happens in GraphForm after selecting components..............27

ix

5.5 Worker thread in MonitoringForm.cs ..28

5.6 AddData method in GraphForm.cs ..29

5.7 getValues method in GraphForm.cs ..29

5.8 MonitoringService (Diagram_02) ..32

5.9 Pseudocode of what happens in ComponentService after its turnOn method has

been called ...33

5.10 ComponentService (Diagram_03) ...34

5.11 Add New Values First Time (Diagram_04)...35

5.12 Add New Values Not First time (Diagram_05) ...36

5.13 Stop Monitoring Diagram_6 ..37

5.14 Display Graph(s) ..37

6.1 The Main method of Program.cs ...39

6.2 Graph Form information in the XML file ..40

6.3 MonitoringService information in the XML file ...41

6.4 Sync Pattern information in the XML file ...42

6.5 Distribution Service’s information in the XML file ..43

6.6 GraphForm.cs...44

6.7 The content of app.config ..46

6.8 MonitoringService.cs class declaration ...46

6.9 IService members in the MonitoringService.cs ...47

6.10 SyncPatterns in the MonitoringService.cs ...48

6.11 ComponentService.cs...49

x

6.12 IService members in the ComponentService.cs...50

6.13 SyncPatterns in the ComponentService.cs ...50

6.14 ComponentSettings.cs ..51

6.15 The Main method of Program.cs ...51

6.16 The ComponentForm.cs ...52

8.1 The user selects the components to monitor ..56

8.2 Graphs of selected components’ first set of values received from the

MonitoringService ...57

8.3 Graphs of selected components’ first two sets of values received from the

MonitoringService ...57

8.4 Graphs of selected components’ first three sets of values received from the

MonitoringService ...58

8.5 Graphs of selected components’ first four sets of values received from the

MonitoringService ...58

8.6 Graphs of selected components’ 23 sets of values received from the

MonitoringService ...59

8.7 Graphs of selected components’ 30 sets of values received from the

MonitoringService ...59

8.8 GUI displays received values. Based on the # of selected components, the

GraphForm calculates the graph sizes dynamically to display them on the screen60

8.9 Graph of one component. Since there is only one selected component, the graph

size has been changed dynamically to display one graph ..60

xi

8.10 GUI displays numbers related to each color of a bar ...61

8.11 GUI has settings option ..62

8.12 Once a user clicks on a button in the “Color Settings” Color selection panel

appears for the user to select a new color ..62

CHAPTER 1

INTRODUCTION

Distributed systems can consist of many independent services or components

which interact with each other through message passing. Many factors, such as network

traffic, transaction volume, local resource utilization, and network failures, etc., can

affect the performance of a distributed system. It is difficult to identify performance

problems quickly because the components can be hosted on multiple systems on separate

networks. Because of this reason, monitoring the runtime performance of components

can be effective way of spotting potential problems or inefficiency. Monitoring the

performance of distributed components requires the following steps;

 Identifying meaningful metrics for each component that characterizes its

performance.

 Determining the frequency and scales at which measurements for these

metrics need to be gathered from the components.

 A way to gather these measurements into a center process that can process or

aggregate them into visualization or query tool.

 Deciding what kind of visualizations would help system operators to identify

potential problems.

This project, called Charm Components Monitoring System (CCMS), presents a

monitoring system that monitors different components in real time. It allows a user to

select components and monitor these selected components based on user defined time

intervals. It provides visual graphs to make the monitoring easier. Requirements for this

2

project can be found in chapter 2 and the system analysis, design and implementation

details are explained in chapters 3, 4, and 5 respectively.

CHARM (Child Health Advanced Records Management) is a very big and

complex system which has been used by Utah Department of Health (UDOH) since 2002.

CHARM is a distributed system for integrating Child-Health Care Data for Utah

Department of Health. “CHARM links child health information from several

programs.”[5] CHARM has been using several components such as address cleaner,

different agents for different resources, alerts, audit manager, core agent, matcher, query

manager, and sync engine. Each component has a crucial role in the system.

Because CHARM has been using several components running on both the same

and different machines, monitoring these components is important to observe its

performance. Monitoring systems’ purpose is not debugging, they are not debugging

tools. The main purpose of monitoring systems is to observe the performance of a system.

Using monitoring systems, the weak points of a system can be discovered and necessary

steps can be taken.

The Monitoring System for CHARM has the same purpose. Its purpose is to

observe if any of the selected components need some improvements. Using the

Monitoring System, we can see if any of the components becomes a bottle-neck.

The Vitruvian is a framework that handles serializing/deserializing objects, the

distribution of objects, and all of the underlying communications, which includes taking

care of the socket connections and ensuring their aliveness. The Vitruvian framework is

3

used in this project because the CHARM system will use the Vitruvian framework in

version 3.0. The usage of the Vitruvian framework is explained in chapter 6.

One of the purposes of using the Vitruvian framework is to test the Vitruvian

framework’s usage. Several test cases and different types of testing were applied to

CCMS in order to make sure the Vitruvian framework and CCMS work together. Chapter

7 is the software testing section and this chapter explains what kind of tests we used for

this project.

Using CCMS is pretty simple and it is easy to learn. It provides users a very easy

to use user interface to monitor the components. Chapter 8 contains a quick user guide for

the usage of CCMS.

There are still some other works to do in the future and these works and the

conclusion can be found in section 9. This section explains what to do in the future to

implement CCMS to the CHARM system.

4

CHAPTER 2

REQUIREMENTS

This chapter covers both functional and non-functional requirements. Even

though this monitoring system will be used for Charm, it can be used by other distributed

systems that use the Service Oriented Architecture. These requirements have been

determined based on Charm structure and its components.

2.1. Functional Requirements

2.1.1. Settings:

2.1.1.1. The system shall allow users to change settings.

2.1.1.2. Users shall be able to save settings in the HDD.

2.1.1.3. The system shall allow users to change how many bars will be

displayed on the screen for each graph.

2.1.1.3.1. Users shall be able to enter a number between 10 and 500

for the number of bars. Other values shall not be allowed.

2.1.1.4. The system shall allow users to change the graph refresh time.

2.1.1.4.1. Users shall be able to enter a number between 50 and

900,000 for the graph refresh time. Other values shall not be

allowed.

2.1.1.4.2. These numbers shall be used by the system as millisecond.

2.1.1.5. The system shall allow users to change the time interval that

components send their values.

5

2.1.1.5.1. Users shall be able to enter a number between 50 and

900,000 for time interval for components to send their values.

Other values shall not be allowed.

2.1.1.5.2. These numbers shall be used by the system as millisecond.

2.1.1.6. The system shall allow users to change the colors of the bars in the

graph(s).

2.1.1.6.1. Users shall be able to custom 10 different colors and see

them all in the settings.

2.1.1.7. After making changes on the settings, new settings shall be used by

the system immediately. Users shall not re-start the application to use

new settings.

2.1.1.8. After making some changes on settings, users shall be able to

cancel these changes.

2.1.1.9. After making changes, if users do not save the changes, next time

when the application is loaded, previously saved values shall be loaded.

2.1.1.9.1. If there are no previously saved values, default values shall

be loaded by the system.

2.1.2. Graph Form:

2.1.2.1. Users shall be able to see the list of the components that can be

selected.

2.1.2.2. Users shall be able to select one or more or all of the components

at a time.

6

2.1.2.3. Users shall be able to go to settings screen after selecting

components.

2.1.2.4. After selecting component(s), users shall be able to see the graphs

for selected components in one window.

2.1.2.5. If there are no selected components, the system shall warn users to

make selection first.

2.1.2.6. The form shall support liquid layout pattern.

2.1.2.6.1. As the user resizes the window, the page contents shall be

resized along with it so that the page is constantly filled.

2.1.3. Components:

2.1.3.1. Components shall keep track of numbers that will be sent to the

monitoring service.

2.1.3.2. These numbers shall be set to zero, once the monitoring system

tells a component to stop sending numbers.

2.1.4. Graphs:

2.1.4.1. Graphs shall use bars to display values.

2.1.4.2. If a component sends more than one value at a time, these values

set shall be displayed on a multi-bar graph with a different color for

each value, with one axis representing the time (Figure 2.1).

7

Figure 2.1 - For each value, a different color is used on a bar.

2.1.4.3. The user shall be able to turn the value labels on/off (Figure 2.2).

Figure 2.2 – Value labels are displayed on the bar for each color.

2.1.4.4. The meaning of colors shall be displayed on the graph(s) (Fig. 2.3).

8

Figure 2.3 - Meaning of colors are displayed on the graph(s).

2.1.4.5. The component’s name shall be displayed on top of the graph.

** Figures 2.1, 2.2, and 2.3 are just for an illustration of a multi-bar graph and the actual

display does not need to use the same color scheme and does not have the same size or

portions.

2.2. Non-functional Requirements:

2.2.1. Programming language shall be C# (C-Sharp).

2.2.2. The system shall use Vitruvian for distribution.

2.2.3. The system shall use windows operating system.

2.2.4. The system shall have dummy components for testing and these

components shall send random numbers to the Monitoring System for

testing.

2.2.5. The system shall have comprehensive unit tests for each class.

9

2.2.6. Design documents and a report about the system shall be given.

2.2.7. System Architecture:

2.2.7.1. The system shall use Service Oriented Architecture.

2.2.7.2. GUI shall not be allowed to communicate with Components

directly.

2.2.7.3. GUI shall communicate with a service and this service will

communicate with other components.

10

CHAPTER 3

SYSTEM ANALYSIS

3.1. Overview

System analysis is the breaking of a system into its components (or pieces) to see

how these components (or pieces) communicate each other and work. It is the process of

investigating a system, identifying problems, and searching possible improvements about

the system [7]. System Analysis is concerned with the classes, objects and mechanisms

that are present in the problem domain. The classes are identified along with their

relationships to each other, and described in UML class diagrams [4].

The use case diagram captures the user goals. The use case tells developers with a

high-level overview of who will use the Charm Components Monitoring System (CCMS)

[12]. It also tells what can be done using the CCMS. The use case diagram is explained in

section 3.2. and section 3.3 contains the class diagrams. The class diagrams describe the

key objects and their relations in the system. When used as part of a systems analysis,

they can help developers to solidify understanding of system’s components and thus set

the stage for a more informed design [2].

3.2. Use Case (User Goals)

As mentioned earlier, the purpose of the CCMS is not debugging but to spot

potential problems or inefficiency in real-time. For example, it can help system operators

determine if a component has become a bottle-neck and then monitor any corrective

actions.

11

The use-case diagram in Figure 3.1 shows that the user can select the components

to monitor. The user also has an option to make changes on settings (Figure 3.2). Using

settings, a user can change;

 Number of Bars - max # of bars for each graph

 Graph Refresh Time – Time period for refreshing the screen for graphs

 Component’s Send Values Time – Time period components use to send values

 Colors – Colors of bars in graphs

 Save – Saves settings on the HDD (Figure 3.2).

Figure 3.1 - Use case of the CCMS

12

Figure 3.2 – A user can also change the settings of the CCMS

3.3. Class Diagrams

The class diagrams in Figures 3.3 and 3.4 show domain classes and

communication between objects. Because of the purpose of the system analysis, the class

diagrams in Figures 3.3 and 3.4 do not include solution-domain details.

13

Figure 3.3 – Class structure for MonitoringService at analysis level.

Below you can see the brief overview of the classes.

 MonitoringService: This class is responsible to call selected components’

ComponentServices to start/stop sending their values for monitoring.

 ComponentService: This class is responsible to start/stop sending values to the

MonitoringService.

 ComponentSettings: This class is used to store components’ information such as

component name and how many numbers are sent at a time.

 ComponentStats: This class is responsible to store the values for a component.

 ComponentStatsList: This class is responsible to store all selected components’

values.

14

Figure 3.4 – Class structure for GUI at analysis level

 GraphForm: This class allows selecting components and displays the graphs.

 SettingsForm: This class allows users to change/save settings.

 SerializableColor: This class allows serialize and de-serialize colors user chose

on SettingsForm.

 Graph: This class creates graphs and sets their locations on the screen

dynamically.

 MS Chart: This is Microsoft’s Chart library. It allows creating and displaying

graphs.

15

CHAPTER 4

ARCHITECTURAL DESIGN

4.1. System Architecture

This chapter explains the architectural design of the Charm Components

Monitoring System (CCMS). UML diagrams provide industry standard mechanisms for

visualizing, specifying, constructing, and documenting software systems. Class diagrams

show the static structure of classes in the system [4]. “System design is the process of

defining the architecture, components, modules, interfaces, and data for a system to

satisfy specified requirements.”[8]. In design, the result of the analysis is expanded into a

technical solution. New classes can be added to support the technical infrastructure. The

domain problem classes from the analysis are embedded into this technical infrastructure

[4].

Different packages have been used to make the design object oriented. Each

package has classes that are related to each other or used together. In this way, the

maintenance and testing became much easier. Having different packages also allowed to

have low coupling among different classes and methods.

One of the interesting design decisions is that the system has been built using the

Vitruvian framework. The main reason using the Vitruvian framework was that it made

the distribution and logging easier. It takes care of the connection problems. Vitruvian

framework is explained in chapter 6 in details.

16

Figures 4.1 and 4.2 show new classes and packages for CCMS. Figures 4.3 and 4.4

include the attributes and methods of these classes. The package Vitruvian contains

classes and methods for distributing objects. It also contains classes and methods for

logging.

The package Monitoring contains classes for both MonitoringService and

ComponentService. The package MonitoringForm contains classes for creating and

displaying graphs on the screen. Each package is explained in following sections.

Figure 4.1 – A package diagram displaying architecture of services of the CCMS

(not detailed)

17

Figure 4.2 – A package diagram displaying architecture of GUI part of the CCMS

(not detailed)

18

Figure 4.3 – A package diagram displaying architecture of services of the CCMS (detailed)

19

Figure 4.4 – A package diagram displaying architecture of GUI part of the CCMS (detailed)

20

4.2. Monitoring Package (Application Layer)

The Monitoring package contains classes for services. The MonitoringService and

the ComponentService are the names of the services. This package is a library for

services. Following sections provide details about services.

4.2.1. MonitoringService

MonitoringService is a distributed service. It uses the Vitruvian framework to

distribute objects. It inherits Vitruvian’s IService interface and it implements IService’s

methods. Since it is distributed, GUI and other components communicate with the

MonitoringService via ServiceRegistry (ServiceRegistry is another component of the

Vitruvian). MonitoringService is the core class of CCMS. Using the GUI, a user

communicates with the MonitoringService to start/stop monitoring the selected

components. Selected components also communicate with the MonitoringService to send

their values. These values are stored in the MonitoringService. Then another thread, in

the GUI, calls the MonitoringService to receive these values. The GUI and selected

components call some methods inside the MonitoringService. These methods have sync

patterns and they are declared as virtual (Vitruvian requires this).

4.2.2. ComponentService

Like MonitoringService, ComponentService is a distributed service too. Some

methods are declared as virtual and have sync pattern since the MonitoringService is

calling some of its methods. The ComponentService is responsible to send the

component’s values to the MonitoringService. The MonitoringService communicates

with components via their ComponentServices. Components send their values to the

MonitoringService via their ComponentServices.

21

4.2.3. ComponentStats

The ComponentStats class is responsible to add received values to the related

component’s graph. It also stores the key names for each received values and these names

are also displayed on the graphs. Key names are the names that the numbers represent

for. After displaying the numbers on the graphs, users need to know what those displayed

values for. For example, the component called QueryManager sends three sets of values

(total # of request, # of requests sent to the agents, and # of replies received from agents).

For each time interval, the QueryManager sends new 3 sets of values to the

MonitoringService. Then the MonitoringService calls ComponentStats and this object

makes some calculations and adds new values to the QueryManager’s value list and this

list is used by the graph. ComponentStats is storing the key names dynamically so that if

a component changes the order of these values, the CCMS can still display the values in

the right order because the MonitoringService is not dependent on the order of the values.

ComponentStats class provides a convenient mapping between a key name and a set of

numbers.

4.2.4. ComponentStatsList

This class is used by the MonitoringService. The ComponentStatsList class

contains ComponentStats objects. The ComponentStatsList and the ComponentStats

classes are created to make the design more OO. First design did not have these two

classes and all methods were in the MonitoringService class. Then the MonitoringService

class became very bulky and too big. To prevent high coupling, the ComponentStats and

the ComponentStatsList Classes were created and they reduced high coupling among

methods in the MonitoringService. In current design, classes and their methods became

22

easier to maintain and test. This class allows abstractions and some implementations are

being hidden from a user.

4.2.5. ComponentSettings

The ComponentSettings class is used by the MonitoringService too. The

MonitoringService class reads a file and loads the components’ information using this

class. This is a very small class and it has only two attributes (ComponentName and

NumberOfValues respectively). The ComponentStatsList uses this class to create the # of

containers for the selected components so that The ComponentStats can put the new

values in the correct containers.

4.3. MonitoringForm Package (User Interface Layer)

The MonitoringForm package contains classes for GUI. These classes provide the

communication with the MonitoringService. Users can select the components that will be

monitored and send the list of the component names to the MonitoringService to start

monitoring them. Also, this package is responsible to get the selected components’ values

from the MonitoringService and display them on each selected component’s graph.

4.3.1. GraphForm

This is the main form to see once the application is run. Using this form, users can

select components to monitor. Users can also change the settings for the graphs. This

form sends selected components name and time intervals to the MonitoringService. Then

the MonitoringService calls each selected component and components start sending their

values to the MonitoringService. The GraphForm is also responsible to get these values

from the MonitoringService. Then the GraphForm creates a graph for each selected

23

component. Based on the # of selected components, the GraphForm dynamically

calculates the locations of each graph on the screen (if there is only one selected

component, the graph of this component would be bigger, however; if there are five

selected components, their graphs would be smaller to fit all graphs on a screen). After

creating and calculating the locations of graphs, the GraphForm parses the values

received from the MonitoringService and inserts these values to the related components’

graphs. It does these in a “t” time period. This period is defined by the user.

4.3.2. SettingsForm

This form is used for changing settings for graphs. A user can change settings

about timing, bars’ color on the graphs, and the max # of bars that will be displayed on

the graphs. Users have an option to save these settings on the HDD. After making the

changes, these changes are applied without restarting the application. If the user saves

these settings in the HDD, the system will use new settings instead of default one. The

user can change the timing settings in the Service_01.xml file (see Figure A-1 in the

Appendices). Figure A-3 in Appendices shows a sample saved settings file.

4.3.3. SerializableColor

This is a Struct class with some Static methods. This class is used to load/save the

color settings from/in the HDD. The class has some static methods because there is no

need to create an object to use those methods such as serialize and de-serialize objects

etc. This class allows abstraction so that color transactions are separated from GUI forms.

24

4.3.4. Graphs

The Graphs class is an abstract class. It is used by the GraphForm to create

graphs, set graphs’ locations, and add new points (values) to the graphs. While doing

these things, this class is using Microsoft’s Chart objects. This class is created because it

provides abstraction and it isolates graph related transactions from the GraphForm.

Methods were created to do one thing instead of doing several things. In this way, high

coupling was prevented; thus the maintenance and testing became much easier.

4.3.5. Microsoft Chart Library

This is Microsoft’s Chart library. This library is used to create and display graphs.

Before Microsoft’s Chart library, ZedGraph library was used, but ZedGraph library did

not allow creating the graphs dynamically. If the graphs were created just once and

displayed, then this library could be used perfectly. But in this project, the system needs

to update graphs’ values every “t” time and then redraw the graphs. Unfortunately the

ZedGraph did not allow doing it. For this reason, Microsoft’s Chart library is used. It

allows adding new points to the existing graphs and then displays them dynamically

without any problem.

25

CHAPTER 5

IMPLEMENTATION

5.1. Overview

This chapter is about the implementation of CCMS. UML diagrams, pseudocode,

and actual code are used to explain the implementation. The communication among

services, components, and GUI is explained in details.

5.2. Overview of How CCMS Works

After running the application (CCMS), a user can select components and then

start monitoring. GUI stores selected component names and makes RPC to

MonitoringService (the selected component names are passed with RPC). Then the

MonitoringService makes RPC to each selected component’s ComponentService (Figure

5.1).

Figure 5.1 - GUI calls the MonitoringService and the MonitoringService calls each

selected component’s ComponentService.

26

After being called, ComponentServices start sending their values to the

MonitoringService (they make RPC too) and the MonitoringService stores these values.

GUI has another thread to make RPC to get these values from the MonitoringService and

displays them in the graphs at certain time intervals (Figure 5.2).

Figure 5.2 - Each ComponentService sends its values to the MonitoringService (RPC)

and GUI (using another thread) makes RPC to get these values and displays them in

the graph(s).

5.3. Start Monitoring

Figure 5.3 shows the sequence diagram of the communication of GUI and the

MonitoringService. Since it is not always possible to show everything on sequence

diagrams, some pseudocode and actual code are used to give these details.

27

Figure 5.3 - GUI Diagram.

After selecting the components, the user clicks on a button to see the selected

components’ graphs. Figure 5.4 shows the pseudocode of what is happening after

clicking on the monitor button.

Select desired components to monitor.

Click on the monitor button.

Create a compList (List<string>) and put selected components’ names in it.

Get MonitoringService from the registry (GetPreferredService).

If (any selected component is not running)

 Error message

Else

{

 If (colors for settings is not loaded)

 Load colors (from XML or use defaults values)

 Stop worker thread

 RPC call to MonitoringService(compList) (it calls selected components’

ComponentServices to send values to the MonitoringService)

 Create graphs

Set locations of graphs // locations are calculated dynamically

Start worker thread (it makes RPC call to the MonitoringService and gets the

values for graph(s))

}

Figure 5.4 - Pseudocode of what happens in GraphForm after selecting components.

CCMS uses Microsoft’s chart library to create and display graphs. The library is

called Microsoft Chart Control for .Net Framework. This library allows creating,

28

displaying, and refreshing graphs dynamically. In GraphForm, another thread is used to

get the values from the MonitoringService. After getting the values, these values are

parsed and displayed on the graphs. Figures 5.5, 5.6, and 5.7 show this process.

The worker thread runs at the background and gets componentStatsList (stores all values

that ComponentServices sent) from the MonitoringService. If the result is not null or the

result is not empty, then it calls AddData method with passing the componentStatsList

(Figure 5.5). Then the thread sleeps for a given time period and gets componentStatsList

again and it goes on like this.

Worker Thread:
 while (ListenerThreadGoOn)
 {
 if (listCharts.Count > 0)
 {
 ComponentStatsList componentStatsList = monitoringService.

getComponentStatsList();
 if (componentStatsList.getStatsList.Count > 0 &&

componentStatsList.getStatsList[0].KeyNames != null)
 {
 AddData(componentStatsList);
 }
 Thread.Sleep(timeRefreshGraph);
 }
 else
 Thread.Sleep(sleepThreadIdle);
 }

Figure 5.5 - Worker thread in MonitoringForm.cs.

AddData method parses the componentStatsList and if there are any values, adds

these values to the related graphs as new points (Figure 5.6). The method called

getValues returns the values of the given component name (Figure 5.7).

private void AddData(ComponentStatsList list)
{

foreach (Chart ch in listCharts)
 {
 List<List<double>> values = getValues(list, ch.Titles[0].Text);

if (values != null)
 {
 int size = ch.Series.Count;

29

for (int i = 0; i < size; i++)
 Graphs.AddNewPoints(ch.Series[i], ch, values[i],

checkBoxPointLabel.Checked,
maxBarNumber);

}
 }

}

Figure 5.6 - AddData method in GraphForm.cs.

 private List<List<double>> getValues(ComponentStatsList list,
string componentName)

 {
 int size = list.getStatsList.Count;
 for (int i = 0; i < size; i++)
 if (list.getStatsList[i].ComponentName.Equals(componentName))
 return list.getStatsList[i].list;
 return null;
 }

Figure 5.7 - getValues method in GraphForm.cs.

List<List<double>> (list of list of double) is used because CCMS needs to store

different sets of values for different components. For example;

 AuditManager displays one set of values

 CoreAgent displays two sets of values

 QueryManager displays three sets of values on the graph.

Different components display different sets of values on their graphs. A List is

used because the # of selected components is not known in advance.

Second list (List<double>) is used to store the values that the components send. The user

can change how many bars will be displayed on the graph. That is why the second List is

used. Values sent by components are stores as double because MSChart library requires

doubles for graphs.

5.4. MonitoringService

GUI calls MonitoringService’s StartMonitoring method and passes;

30

 selected components’ names,

 time interval that will be used by components to send their values to the

MonitoringService,

 Maximum bar number. The maximum bar number will tell the system

maximum how many set of numbers will be stores for each graph. In other

words, it represents maximum how many bars will be displayed on each

graph. Once the maximum number has been reached, the first set of values in

the list will be removed and the new set of values will be added.

Figure 5.8 shows the MonitoringService’s communications with other

components. The GUI makes RPC to the MonitoringService and passes three parameters

that were mentioned above. StartMonitoring triggers the monitoring process.

RPC syncpattern technique is used for some of the methods in the MonitoringService.

These methods are;

 StartMonitoring – Starts monitoring process

 StopMonitoring – Stops monitoring process

 NewStatsValues – Components’ ComponentServices call this method to pass

their new values

 getComponentStatsList – Returns the private ComponentStatsList (it holds

selected components’ set of values received from the ComponentServices)

 getComponentStats – Returns ComponentStats based on the component name.

Since these methods have RPC syncpattern, they are declared as virtual

(Vitruvian requires it). These methods are defined as RPC because MonitoringService is

a distributed service.

31

Figure 5.8 – MonitoringService (Diagram_02)

32

5.5. ComponentService

The ComponentService is a distributed service like MonitoringService. This

service is using Vitruvian for distribution. Chapter 6 is about the Vitruvian framework

and how this framework was used in this project.

Since the ComponentService is a distributed service, it uses syncpattern too. This class

has three methods that have syncpattern RPC. These are;

 turnOn – The MonitoringService calls it so that the ComponentService starts

sending values

 turnOff – The MonitoringService calls it so that the ComponentService stops

sending values

 StopThread – It kills the sender thread (The component calls it before it dies)

Figure 5.9 shows the Pseudocode of what happens once the MonitoringService calls

ComponentService’s turnOn method.

startSenderThread (if it is not running) // This thread sends the values to the

MonitoringService

create a List to put values in it

set the new time interval to send values to the MonitoringService

start sending values to the MonitoringService

Figure 5.9 - Pseudocode of what happens in ComponentService after its turnOn

method has been called.

Since real CHARM components could not implement the Vitruvian framework

yet, dummy components are used to test the CCMS and these dummy components are

sending random numbers to the MonitoringService for graphs. Figure 5.10 shows the

ComponentService’s diagram.

ComponentService is sending new values using a Dictionary (Dictionary< string,

double>). A dictionary is used because it provides a convenient mapping between a key

33

name and a set of numbers. A list is not used because in this way, the order of the values

would be very crucial for CCMS and any changes in the order would cause displaying the

wrong information on the graphs. This problem is solved by using a dictionary. Even if a

ComponentService changed the order, it would never create any problems because

whenever the first set of values is received by the MonitoringService, the key names are

set first. For this reason, values’ orders do not matter.

Figure 5.10 – ComponentService (Diagram_03)

5.6. ComponentStats

ComponentStats is used to store the values the ComponentService send. This class

is used by ComponentStatsList. Basically, the ComponentStatsList class has a list of

ComponentStats. MonitoringService communicates with ComponentStatsList and

ComponentStatsList communicates with ComponentStats for each component.

34

ComponentStats holds the values ComponentServices send to the MonitoringService.

ComponentStats class has three important methods;

 calculateNewValues – It calls one of the methods below.

 AddNewValuesFirstTime – It adds first set of values the ComponentService

send. (Figure 5.11)

 AddNewValuesNotFirstTime – It adds second and later sets of values the

ComponentService send (Figure 5.12).

For adding new values, two methods are used because keeping all logic in one

method would make that one method very bulky and testing and maintenance of the

bulky methods are always more difficult. Bulky methods also increase coupling.

First method is adding the new values to the list directly. But the second method needs to

do some math before adding them in the list. Since components send their total numbers,

second method needs to calculate the delta values. Calculation algorithm is explained in

the following section.

Figure 5.11 – Add New Values First Time (Diagram_04)

35

Figure 5.12 – Add New Values Not First time (Diagram_05)

Calculation Algorithm: Whenever a first set of values is received from a

ComponentService, this set of values is stored in the list and the attribute previousValues

is set to these values. After the first set of values, whenever a new set of values are

received, the differences between the new values and the previous values are stored in the

list for the graphs. Then the attribute previousValues are set to the new set of values.

5.7. StopMonitoring

GUI makes RPC to the MonitoringService to StopMonitoring. Then the

MonitoringService makes RPC to each ComponentService to stop sending values (Figure

5.13). After that point, ComponentServices stop sending values.

36

Figure 5.13 - Stop Monitoring Diagram_6

5.8. Display Graphs

Second thread in GraphForm (GUI) wakes up, every t time, and makes RPC to the

MonitoringService to receive the values for each component. After that the GraphForm

parses these values and adds new values to the related graphs’ list. Then the graphs are

refreshed and new values are displayed on the graphs (Figure 5.14).

Figure 5.14 - Display Graph(s)

37

CHAPTER 6

VITRUVIAN

6.1. Overview

CCMS uses the Vitruvian framework to distribute objects and handle all of the

underlying communications, which includes taking care of the socket connections and

ensuring their aliveness. The Vitruvian framework also has logging feature that helps for

debugging. The Vitruvian framework also handles serializing and de-serializing objects.

The parameters for serializing and de-serializing objects can be set in an XML file which

gives us great flexibility and prevents hardcoding parameters in the code so that the

parameters can be changed without recompiling the overall code.

How the Vitruvian framework handles serializing/de-serializing objects and

socket connections are explained in this chapter.

6.2. References to Be Added

The CCMS uses the Vitruvian framework to distribute services

(MonitoringService, ComponentService). For this reason, first thing we need to do is to

add references. These references must be added in order to work with Vitruvian. The list

of references is;

 Castle.Core

 Vitruvian.Communications

 Vitruvian.Core

 Vitruvian.Distribution

 Vitruvian.Logging

 Vitruvian.Serialization

38

 Vitruvian.Services

 Vitruvian.Windows

Usage of the Vitruvian framework will be explained in five separate sections. These are;

 GraphFrom

 MonitoringService

 ComponentService

 ComponentSettings

 ComponentForm

6.3. GraphForm

6.3.1. Program.cs

After adding the references, changes in the “Program.cs” must be done as

described below.

 [STAThread]
 static void Main(string[] args)
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

 string configFile = @"Config/Service_01.xml";
 if (args.Length > 0)
 configFile = args[0];

 ServiceRegistry.Load(configFile);
 ServiceRegistry.Init();
 ServiceRegistry.Run();
 ServiceRegistry.Cleanup();
 }

Figure 6.1 - The Main method of Program.cs.

Vitruvian requires four methods and these methods have to be in the Program.cs

file. These are;

 Load

 Init

39

 Run

 Cleanup

If any of these methods does not exist in the Program.cs, CCMS will get a

compile error. For this reason, it is essential to have these methods even though some of

them have no code in it (such as Init, Run, and Cleanup in our example).

Once the program is run, it reads and loads information in Service_01.xml. The

file has the necessary information about GraphForm, MonitoringService, SyncPatterns,

and Distributed Services. Figure A-1 in Appendices contains the complete content of

Service_01.xml.

6.3.1.1. Graph Form Information

 <item type="Vitruvian.Windows.Services.AsyncUIService, Vitruvian.Windows">
 <property name="AppForm" type="MonitoringForm.GraphForm, MonitoringForm">
 <property name="Text" value="Monitoring Form" />
 <property name="sleepThreadIdle" value="700"/>
 <property name="spaceBetweenGraphs" value="10"/>
 <property name="maxBarNumber" value="30"/>
 <property name="timeRefreshGraph" value="300"/>
 <property name="timeComponentSendData" value="300"/>
 <property name="fileNameForColors" value="colors.xml"/>
 </property>
 </item>

Figure 6.2 - Graph Form information in the XML file.

Figure 6.2 shows the GUI form information in the xml file. Some values are set in

this file.

 Text: The value is displayed as the title of the Graph Form.

 sleepThreadIdle: This is a sleeping time for the thread in the GUI. The thread

is checking if a user has selected any components to display the values on the

graph. If the user has selected a component, thread gets that component’s

40

values from the MonitoringService and displays the values on the graph. It the

user has not selected any components, and then the thread sleeps. The sleep

time period is defined in the attribute sleepThreadIdle.

 spaceBetweenGraphs: This value tells how much space will be given between

graphs.

 maxBarNumber: This attribute is used to define maximum how many bars

will be displayed on each graph.

 timeRefreshGraph: This attribute is used to define the refresh time of GUI for

graphs. Each selected component’s values are received from

MonitoringService and these values are set for the graphs. Then the screen is

refreshed every timeRefreshGraph time period (millisecond).

 timeComponentSendData: Selected components are sending their values to the

MonitoringService. Time interval that components send their values to the

MonitoringService is defined in timeComponentSendData.

 fileNameForColor: Users can save their settings in a file. This is the name of

the file to save settings. This is an XML file and if it exists, this file is loaded

during run time. Otherwise default values are loaded.

6.3.1.2. Monitoring Service Information

 <!-- MonitoringService Service -->
 <item type="Monitoring.MonitoringService, Monitoring" id="localService" >

 <property name="DataFile" value="componentSettingsList.xml"/>
 <property name="ServiceName" value="MonitoringService"/>
 <property name="Port" value="19301"/>
 </item>

Figure 6.3 - MonitoringService information in the XML file.

41

Figure 6.3 contains the MonitoringService’s information.

 Id: “localService” is being used in distribution service. This can be any word.

But this value and the value in the distribution service must be the same (it

will be explained in section 6.2.1.4.).

 DataFile: This is an XML file that contains the information about components

(ComponentName and NumberOfValues). NumberOfValues defines how

many different values will be displayed on each bar on the graph. For

example, queryManager sends 3 numbers each time to the MonitoringService

while auditManager sends 1 and coreAgent sends 2. Figure A-2 in

Appendices shows the content of this file.

If new components are added to the CHARM, those components’

information must be added in this file.

 ServiceName: Name of the service.

 Port: Port number.

6.3.1.3. SyscPatterns Information

 <!-- Sync Patterns Service -->
 <item
type="Vitruvian.Distribution.SyncPatterns.EmbeddedSyncPatternsService,
Vitruvian.Distribution">
 <property name="BaseType" value="MonitoringForm.Program,
MonitoringForm"/>
 <property name="ResourcePath" value="Config.SyncPatterns.xml"/>
 </item>

Figure 6.4 - Sync Pattern information in the XML file.

Figure 6.4 contains the Sync Pattern’s information.

42

 ResourcePath: The value is a file name that contains Sync Pattern

information. These patterns are used when the objects are distributed. Figure

A-4 in Appendices contains the complete content of SyncPatterns.xml.

6.3.1.4. Distribution Service’s Information

 <item type="Vitruvian.Distribution.DistributionService,
Vitruvian.Distribution">
 <property name="Encoder"
type="Vitruvian.Distribution.Encoders.XmlObjectEncoder,
Vitruvian.Distribution" />
 <property name="MessageTimeout" value="15000"/>
 <property name="HeartbeatFrequency" value="10000"/>
 <property name="HeartbeatTimeout" value="120000"/>
 <property name="UseHeartbeats" value="true"/>
 <property name="Services">
 <item ref="localService"/>
 </property>
 <property name="Providers">
 <item type="Vitruvian.Communications.Sockets.TcpServerProvider,
Vitruvian.Communications">
 <property name="LocalEndPoint" value="127.0.0.1:19301"/>
 </item>
 </property>
 </item>

Figure 6.5 - Distribution Service’s information in the XML file.

Figure 6.5 contains the distribution service’s information. In section 6.2.1.2, we

talked about id for MonitoringService. The value of id in the distribution service is used

as ref here and the values must be the same. Otherwise, distribution will not work. If

other services are desired to be distributed, these services’ ids need to be added under

Services just like localService.

There is no need to make any changes on;

 MessageTimeout

 HeartbeatFrequency

 HeartbeatTimeout

43

 UseHeartbeats

These values are used when a connection is made with another computer to check

the aliveness of the connection. There are three important points need to be remembered;

 Make sure to add all services that need to be distributed

 Add IP and Port numbers. In this setting, our value is 127.0.0.1:19301

 Decide whether you use this service as a LocalEndPoint or a

RemoteEndPoint.

Here the MonitoringService is used as a LocalEndPoint. In other words, this

listens to the communications using the given IP and Port numbers.

The syntax in the xml file is very important. If the correct syntax is not entered,

the system will not give an error and the application will not work correctly either.

6.3.2. GraphForm.cs

 [OptimisticSerialization]
 public partial class GraphForm : Form
 {
 public int sleepThreadIdle { get; set; }
 public int maxBarNumber { get; set; }
 public int timeRefreshGraph { get; set; }
 public int timeComponentSendData { get; set; }
 public string fileNameForColors { get; set; }
 ...

Figure 6.6 - GraphForm.cs.

Since Service_01.xml has values for GraphForm.cs, [OptimisticSerialization]

must be added just before the class declaration for the form. This is extremely important

because if it is not added, the application will not set the values entered in the

Service_01.xml. As a result of this, the application will not work.

44

The Vitruvian references that we mentioned at the beginning of this chapter must

be added.

Another important part is that the attributes that are set in the Service_01.xml must

be declared as public. Otherwise, the xml file cannot set the values for the attributes and

the application will not work.

If an attribute’s value is set in the xml file, that attribute;

 must be declared as public in the class

 must have a setter and a getter methods

6.3.3. app.config

The file app.config is used for logging purpose (Figure 6.7). While changing

some configurations in this file, it can be ruled what to log and what to ignore.

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="log4net"
type="log4net.Config.Log4NetConfigurationSectionHandler, log4net"/>
 </configSections>

 <log4net>
 <appender name="Console" type="log4net.Appender.ConsoleAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%logger %message%newline"/>
 </layout>
 </appender>

 <appender name="File" type="Vitruvian.Logging.FileAppender">
 <file value="./Logs/%appname [(%date) (%ticks)].txt"/>
 <appendToFile value="false"/>
 <layout type="log4net.Layout.PatternLayout">
 <header value=""/>
 <footer value=""/>
 <conversionPattern value="%date [%thread] %-5level %logger -
%message%newline"/>
 </layout>
 </appender>

45

 <root>
 <level value="INFO"/>
 <appender-ref ref="File"/>
 <appender-ref ref="Console"/>
 </root>

 <logger name="Vitruvian">
 <level value="INFO"/>
 </logger>

 </log4net>

 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

Figure 6.7 - The content of app.config.

6.4. MonitoringService

 [OptimisticSerialization]
 [DistributionInfo(Migratable = false)]
 public class MonitoringService : IService
 {
 public string ServiceName { get; set; }
 public int Port { get; set; }
 public string DataFile { get; set; }

 ...

Figure 6.8 - MonitoringService.cs class declaration.

Figure 6.8 shows the some of the MonitoringService.cs class declaration. This class

has;

 [OptimisticSerialization] just before the class declaration

 attributes declared as public because these attributes are set in the xml file

 [DistributionInfo(Migratable = false)] (before the class declaration). This

syntax is used to distribute the objects. This syntax is also crucial. If this line

is not added before the class declaration, the distribution will not happen.

46

 The last thing that needs to be done is that the class inherits IService. IService

is also necessary to distribute the objects.

MonitoringService also has IService members. The class must have these

members as well. Without IService members, objects cannot be distributed. Figure 6.9

shows the IService members and their usage in the MonitoringService.cs.

 public void Cleanup()
 { }

 private Guid serviceId = Guid.NewGuid();
 public Guid Id
 {
 get { return serviceId; }
 set { serviceId = value; }
 }

 public void Init()
 {
 loadXMLFile();
 }

 private string serviceName = "MonitoringService";
 public string Name
 {
 get { return serviceName; }
 set { serviceName = value; }
 }

Figure 6.9 - IService members in the MonitoringService.cs.

The Cleanup method runs before the object dies.

The Id method is used as a getter and setter. This method sets or returns the

serviceId (which is GUID) of the object.

The Init method runs before the object of this class is created.

The Name method is used as a getter and setter. This method sets or returns the

name of the object.

 [SyncPattern("RPC")]

47

 public virtual void NewStatsValues(string component,
Dictionary<string, double> values)

 [SyncPattern("RPC")]
 public virtual void StartMonitoring(List<string> list, int t, int MAX)

 [SyncPattern("RPC")]
 public virtual void StopMonitoring()

 [SyncPattern("RPC")]
 public virtual ComponentStatsList getComponentStatsList()

 [SyncPattern("RPC")]
 public virtual ComponentStats getComponentStats(string componentName)

Figure 6.10 - SyncPatterns in the MonitoringService.cs.

After distributing the objects, in order to call the distributed object’s methods;

 Methods of the distributed object that will be called from other objects must

be declared as virtual

 Methods must have SyncPattern such as [SyncPattern("RPC")]. In

MonitoringService, RPC is used as SyncPattern. Different SyncPatterns can

be used for different purposes. In this design, RPC SyncPattern is used since

data are passing/getting to/from these methods.

The class that will be distributed must;

 have [DistributionInfo(Migratable = false)] before the class declaration

 inherit from IService. In other words, IService must be the parent class

 have IService member methods (Cleanup, serviceId, Init, and Name)

 have [SyncPattern("RPC")] just before the method declaration for RPC

 declare RPC methods as virtual

6.5. ComponentService

48

First of all, ComponentService needs to have the references mentioned at the

beginning of this chapter.

 [OptimisticSerialization]
 [DistributionInfo(Migratable = false)]
 public class ComponentService : IService
 {
 public string ComponentName { get; set; }
 public int Port { get; set; }
 public int NumberOfValues { get; set; }
 public int SleepThreadIdle { get; set; }

Figure 6.11 - ComponentService.cs.

Since ComponentService is a distributed service, the Vitruvian structure is the

same as MonitoringService. Like MonitoringService, ComponentService;

 has [OptimisticSerialization] and [DistributionInfo(Migratable = false)] just

before the class declaration

 has attributes declared as public because their values are set in the xml

 inherits from IService and because of this it has IService methods (Figure

6.12)

 public void Cleanup()
 { }

 private Guid serviceId = Guid.NewGuid();
 public Guid Id
 {
 get { return serviceId; }
 set { serviceId = value; }
 }

 public void Init()
 { }

 private string serviceName = "ComponentService";
 public string Name
 {
 get { return serviceName; }
 set { serviceName = value; }
 }

49

Figure 6.12 - IService members in the ComponentService.cs.

The Cleanup method runs before the object dies.

The Id method is used as a getter and setter. This method sets or returns the

serviceId (which is GUID) of the object.

The Init method runs before the object of this class is created.

The Name method is used as a getter and setter. This method sets or returns the

name of the object.

 [SyncPattern("RPC")]
 public virtual void turnOn(int t)

 [SyncPattern("RPC")]
 public virtual void turnOff()

 [SyncPattern("RPC")]
 public virtual void StopThread()

Figure 6.13 - SyncPatterns in the ComponentService.cs.

As it is explained in section 6.2, after distributing the objects, in order to call the

distributed object’s methods;

 Methods of the distributed object that will be called from other object must be

declared as virtual

 Methods must have SyncPattern such as [SyncPattern("RPC")]. In

MonitoringService, RPC is used as SyncPattern. Different SyncPatterns can

be used for different purposes. In this design, RPC SyncPattern is used since

data are passing/getting to/from these methods.

6.6. ComponentSettings.cs

 [OptimisticSerialization]
 public class ComponentSettings
 {
 public string ComponentName { get; set; }
 public int NumberOfValues { get; set; }

50

 ...

Figure 6.14 - ComponentSettings.cs.

As mentioned in section 6.2.1.2, componentSettingsList.xml contains necessary

information about components. Because values of the ComponentName and the

NumberOfValues are loaded from an xml file;

 these attributes must be declared as public

 [OptimisticSerialization] must be added just before the class declaration.

componentSettingsList.xml must be updated whenever a new component has been added

to the CHARM.

6.7. ComponentForm

The references, mentioned at the beginning of this chapter, must be added for this

form as well. Without having these references, the application will not work properly.

6.7.1. Program.cs

 [STAThread]
 static void Main(string[] args)
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

 string configFile = @"Config/Service_02.xml";
 if (args.Length > 0)
 configFile = args[0];

 ServiceRegistry.Load(configFile);
 ServiceRegistry.Init();
 ServiceRegistry.Run();
 ServiceRegistry.Cleanup();
 }

Figure 6.15 - The Main method of Program.cs.

51

This section is the same as section 6.1.1. The only difference Service_02.xml is

used this time. But the content of this file is very similar to Service_01.xml. Figure A-5 in

Appendices has the complete content of Service_02.xml.

namespace ComponentForm
{
 [OptimisticSerialization]
 public partial class MainForm : Form
 {

Figure 6.16 - The ComponentForm.cs.

Figure 6.16 shows that [OptimisticSerialization] is placed just before the class

declaration. This syntax is used to set the values of attributes from the xml file.

52

CHAPTER 7

SOFTWARE TESTING

7.1. Introduction

Software testing is a key component of the software development life-cycle.

Software testing is a very broad term including a wide spectrum of different activities,

from the testing of a small piece of code (unit testing), to the customer validation of a

large information system (acceptance testing), to the monitoring at run-time of a network-

centric service-oriented application [1].

Software testing is a process of improving quality and validating and verifying of a

software product that;

 meets the requirements,

 works as expected,

 is implemented with the same characteristics [6].

Verification: Have we built the software right? (Does it match the specification?)

Validation: Have we built the right software? (Is this what the customer wants?)

“The test cases should aim at objectives, such as exposing deviations from user’s

requirements, assessing the conformance to a standard specification, evaluating

robustness to stressful load conditions to malicious inputs, measuring given attributes,

such as performance or usability, estimating the operational reliability, etc.” [3].

In order to test the performance and functioning of the CCMS, unit testing,

integration testing, system testing, and acceptance testing are performed.

53

7.2. Unit Testing

The main purpose of unit testing is to take the smallest piece of testable software

in the application, isolate it from the rest of the code, and determine if it behaves exactly

as we expect. Each unit is tested separately before we integrate them each other. Unit

testing is essential because it is proven that a large percentage of defects are identified

during unit test’s usage. If unit testing is done properly, later testing phases will be more

successful [10].

In CCMS, each method in each class has been tested and test cases can be found

in each class file. During unit testing, our goal was to test each method to see if it

produced expected results. Valid inputs as well as invalid ones were used to make sure

that methods were functioning properly. Algorithms in the methods were also tested.

7.3. Integration Testing

During integration testing individual software modules are combined and tested as

a group. It comes after unit testing and before system testing. In integration testing, two

or more units that have already been tested are combined into a component and the

interfaces among these units are tested [10]. Integration testing identifies problems that

occur when units are combined. The idea is to test combinations of units and eventually

expand the process to test the modules with those of other groups. Eventually all the

modules making up a process are tested together [9]. During integration testing, different

units were tested together to see if they function and communicate properly.

54

7.4. System Testing

This technique is used to test a system when it is integrated with other systems.

The purpose of integration testing is to detect any inconsistencies among the software

units that are integrated together. During system testing both functional requirements and

non-functional quality attributes, such as reliability, security, and maintainability are also

tested [1, 6].

System testing of the CCMS was done by testing the all components and services.

As a result of the system testing, we were able to test the whole system and verify that the

whole system functions and communicates properly and produces the desired and

expected results. We were not able to test the Monitoring System with real CHARM

components because they are not ready for testing yet. For this reason, we used dummy

components for testing.

7.5. Acceptance Testing

Acceptance test is a test to determine if the requirements are met. The acceptance

testing does not focus on finding errors or system problems rather it gives confidence to

the clients that the system is working as expected and how the system will perform in

production. “The purpose of this process is to ensure that the software system meets the

previously defined system external specifications, acceptance criteria and system

requirements definition before it is installed, integrated and checked out in the

operational environment.”[11].

In this testing, the user tested the CCMS to see if it satisfied the both functional

and non-functional requirements.

55

CHAPTER 8

USER GUIDE

8.1. The usage of CCMS

First of all, components and MonitoringService need to be running. Otherwise, the

CCMS will not work. For the convenience, whenever we run the CCMS,

MonitoringService also runs.

After running the application (CCMS), a user can select components and then

start monitoring. After receiving the values from the MonitoringService, the GUI parses

these values and put related values into the related graphs and displays these graphs

(Figures from 8.1 to 8.10).

Figure 8.1 - The user selects the components to monitor.

56

Figure 8.2 - Graphs of selected components’ first set of values received from the

MonitoringService.

Figure 8.3 - Graphs of selected components’ first two sets of values received from

the MonitoringService.

57

Figure 8.4 - Graphs of selected components’ first three sets of values received from

the MonitoringService.

Figure 8.5 - Graphs of selected components’ first four sets of values received from

the MonitoringService.

58

Figure 8.6 - Graphs of selected components’ 23 sets of values received from the

MonitoringService.

Figure 8.7 - Graphs of selected components’ 30 sets of values received from the

MonitoringService.

59

Figure 8.8 - GUI displays received values. Based on the # of selected components,

the GraphForm calculates the graph sizes dynamically to display them on the

screen.

Figure 8.9 - Graph of one component. Since there is only one selected component,

the graph size has been changed dynamically to display one graph.

60

Figure 8.10 - GUI displays numbers related to each color of a bar.

8.2. Settings

The user can change the settings of the graphs using the “Settings" button (Figure

8.11). Settings form has two sections;

 Time settings

 Color settings

Using these two sections, the user is able to change;

 The value of Number Of Bars

 The value of Graph Refresh Time

 The value of Components’ Send Values Time

 The color of the bars in the graph(s).

The user can also save the color settings after making changes. Time settings

default values can be changed in the file called Service_01.xml (Figure A-1 in

Appendices).

61

Figure 8.11 - GUI has settings option.

When the user clicks on any button in the “Color Settings” section, the color

selection panel appears for a selection of a new color (Figure 8.12).

Figure 8.12 - Once a user clicks on a button in the “Color Settings” Color selection

panel appears for the user to select a new color.

After changing the colors of the bars, users can save these colors for the future

use. If users save the settings, these settings will be loaded next time when the application

is run. If users do not save the settings, the default values will be used after re-starting the

application.

62

If users make some changes and do not save the settings, new settings will be

used by current running application, but next time when the application is run, the default

or previously saved values will be used by the application

63

CHAPTER 9

CONCLUSION AND FUTURE WORK

The CCMS is a tool to monitor the performance of the selected components. It

provides users a very easy to use user interface to monitor the components. It helps

operators quickly identify the performance problems. The system also provides great

statistical data about components.

The CCMS uses Vitruvian for distributing objects. Distributed objects also

communicate via Vitruvian. The CCMS also uses Microsoft’s Chart library to create and

locate graphs, add new points (values) to them and display these graphs on the screen.

Since the real CHARM components are not ready to use in the system, dummy

components are used to simulate the monitoring. For this reason, ComponentServices are

passing random numbers to the MonitoringService for graphs. Once the real CHARM

components are ready, the algorithm in the ComponentService must be changed and the

real components should send values to the ComponentService and the ComponentService

will send these values (not the random numbers) to the MonitoringService.

In addition to this, each component needs to have a listener thread to listen to its

ComponentService. The MonitoringService communicates with ComponentServices to

receive ComponentServices’ values. Once the ComponentServices have been asked to

send their values, real CHARM components would send the values to their related

ComponentServices and the ComponentServices would send these values to the

MonitoringService.

64

REFERENCES

1. Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams.

IEEE Computer Society, 1.

2. Class Diagrams, Wikipedia, http://en.wikipedia.org/wiki/Class_diagram

3. Dustin, E. (2002). Effective Software Testing. Boston, MA: Pearson Education.

4. Eriksson, Hans-Eric; Penker, Magnus; Lyons, Brian; Fado, David. (2004). UML 2

Toolkit. Indianapolis, Indiana: Wiley Publishing Inc.

5. CHARM, http://charm.health.utah.gov/index.html

6. Software Testing, Wikipedia, http://en.wikipedia.org/wiki/Software_testing

7. System Analysis and Design, Google.com, http://knol.google.com/k/ali-abbas/

system-analysis-and-design/20lv4waafc4io/2#

8. Systems Design, Wikipedia, http://en.wikipedia.org/wiki/Systems_design

9. Integration Testing, Microsoft, http://msdn.microsoft.com/en-us/library/aa292128

(v=vs.71).aspx

10. Unit Testing, Microsoft, http://msdn.microsoft.com/en-us/library/aa292197

(v=vs.71).aspx

11. Li, E. Y. (1990). Software Testing In A System Development. Journal of Systems

Management, 23-31.

12. Use Case Diagrams, Wikipedia, http://en.wikipedia.org/wiki/Use_case_diagram

http://en.wikipedia.org/wiki/Class_diagram
http://charm.health.utah.gov/index.html
http://en.wikipedia.org/wiki/Software_testing
http://knol.google.com/k/ali-abbas/%20system-analysis-and-design/20lv4waafc4io/2
http://knol.google.com/k/ali-abbas/%20system-analysis-and-design/20lv4waafc4io/2
http://en.wikipedia.org/wiki/Systems_design
http://msdn.microsoft.com/en-us/library/aa292128%20(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa292128%20(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa292197%20(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa292197%20(v=vs.71).aspx
http://en.wikipedia.org/wiki/Use_case_diagram

65

APPENDICES

<?xml version="1.0" encoding="utf-8" ?>
<object>
 <item type="Vitruvian.Logging.LoggingService, Vitruvian.Logging" />
 <item type="Vitruvian.Distribution.Time.SystemTime,
Vitruvian.Distribution" />

 <item type="Vitruvian.Windows.Services.AsyncUIService,
Vitruvian.Windows">
 <property name="AppForm" type="MonitoringForm.GraphForm,
MonitoringForm">
 <property name="Text" value="Monitoring Form" />
 <property name="sleepThreadIdle" value="700"/>
 <property name="maxBarNumber" value="30"/>
 <property name="timeRefreshGraph" value="300"/>
 <property name="timeComponentSendData" value="300"/>
 <property name="fileNameForColors" value="colors.xml"/>
 </property>
 </item>

 <!-- MonitoringService Service -->
 <item type="Monitoring.MonitoringService, Monitoring" id="localService"
>

 <property name="DataFile" value=" componentSettingsList.xml"/>
 <property name="ServiceName" value="MonitoringService"/>
 <property name="Port" value="19301"/>
 <!--<property name="MAXLISTSIZE" value="80"/>-->
 </item>

 <!-- Sync Patterns Service -->
 <item
type="Vitruvian.Distribution.SyncPatterns.EmbeddedSyncPatternsService,
Vitruvian.Distribution">
 <property name="BaseType" value="MonitoringForm.Program,
MonitoringForm"/>
 <property name="ResourcePath" value="Config.SyncPatterns.xml"/>
 </item>

 <item type="Vitruvian.Distribution.DistributionService,
Vitruvian.Distribution">
 <property name="Encoder"
type="Vitruvian.Distribution.Encoders.XmlObjectEncoder,
Vitruvian.Distribution" />
 <property name="MessageTimeout" value="15000"/>
 <property name="HeartbeatFrequency" value="10000"/>
 <property name="HeartbeatTimeout" value="120000"/>
 <property name="UseHeartbeats" value="true"/>
 <property name="Services">
 <item ref="localService"/>
 </property>

66

 <property name="Providers">
 <item type="Vitruvian.Communications.Sockets.TcpServerProvider,
Vitruvian.Communications">
 <property name="LocalEndPoint" value="127.0.0.1:19301"/>
 </item>
 </property>
 </item>
</object>

Figure A-1 Content of the file Service_01.xml.

<object type="Monitoring.MonitoringService, Monitoring, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null">
 <property name="DataFile" encoding="W3C" value="xmlFile.xml" />
 <property name="Id" value="bf398723-face-4518-89d4-3b7da98ddd70" />
 <property name="Name" encoding="W3C" value="MonitoringService" />
 <field name="ComponentSettingList">
 <item>
 <property name="ComponentName" encoding="W3C"
value="AddressCleaner" />
 <property name="NumberOfValues" encoding="W3C" value="3" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Agent_1" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Agent_2" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Agent_3" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Agent_4" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Alerts" />
 <property name="NumberOfValues" encoding="W3C" value="3" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="AuditManager"
/>
 <property name="NumberOfValues" encoding="W3C" value="1" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="CoreAgent" />
 <property name="NumberOfValues" encoding="W3C" value="2" />

67

 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="Matcher" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="QueryManager"
/>
 <property name="NumberOfValues" encoding="W3C" value="3" />
 </item>
 <item>
 <property name="ComponentName" encoding="W3C" value="SyncEngine" />
 <property name="NumberOfValues" encoding="W3C" value="2" />
 </item>
 </field>
</object>

Figure A-2 Content of the file componentSettingsList.xml.

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfSerializableColor xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SerializableColor>
 <A>255
 <R>255</R>
 <G>192</G>
 203
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>64</R>
 <G>224</G>
 208
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>255</R>
 <G>255</G>
 0
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>238</R>
 <G>130</G>
 238
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>245</R>
 <G>245</G>
 220

68

 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>240</R>
 <G>230</G>
 140
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>255</R>
 <G>0</G>
 0
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>192</R>
 <G>192</G>
 192
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>173</R>
 <G>216</G>
 230
 </SerializableColor>
 <SerializableColor>
 <A>255
 <R>255</R>
 <G>165</G>
 0
 </SerializableColor>
</ArrayOfSerializableColor>

Figure A-3 Content of the file colors.xml.

<?xml version="1.0" encoding="utf-8" ?>
<object>
 <property name="LocalPatterns">
 <entry>
 <entry-key value="Gossip"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.GossipSyncPatter
n, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="MostRecent"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.MostRecentSyncPa
ttern, Vitruvian.Distribution"/>
 </entry>
 <entry>

69

 <entry-key value="Push"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.PushSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Pull"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.PullSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Constant"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.ConstantSyncPatt
ern, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="RPC"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.RPCSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="ARPC"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.ARPCSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Stub"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.StubSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="SmartList"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Local.SmartListSyncPat
tern, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="MostRecent - Migratable"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Fragments.Local.MostRecentSync
Pattern, Vitruvian.Distribution"/>
 </entry>
 </property>
 <property name="RemotePatterns">
 <entry>
 <entry-key value="Gossip"/>

70

 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.GossipSyncPatte
rn, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="MostRecent"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.MostRecentSyncP
attern, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Push"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.PushSyncPattern
, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Pull"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.PullSyncPattern
, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Constant"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.ConstantSyncPat
tern, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="RPC"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.RPCSyncPattern,
Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="ARPC"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.ARPCSyncPattern
, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="Stub"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.StubSyncPattern
, Vitruvian.Distribution"/>
 </entry>
 <entry>
 <entry-key value="SmartList"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Mirrors.Remote.SmartListSyncPa
ttern, Vitruvian.Distribution"/>
 </entry>

71

 <entry>
 <entry-key value="MostRecent - Migratable"/>
 <entry-value
value="Vitruvian.Distribution.SyncPatterns.Fragments.Remote.MostRecentSyn
cPattern, Vitruvian.Distribution"/>
 </entry>
 </property>
</object>

Figure A-4 Content of the file SyncPatterns.xml.

<?xml version="1.0" encoding="utf-8" ?>
<object>
 <item type="Vitruvian.Logging.LoggingService, Vitruvian.Logging" />
 <item type="Vitruvian.Distribution.Time.SystemTime,
Vitruvian.Distribution" />

 <item type="Vitruvian.Windows.Services.AsyncUIService,
Vitruvian.Windows">
 <property name="AppForm" type="ComponentForm.MainForm,
ComponentForm">
 <property name="Text" value="Comp_QueryManager" />
 </property>
 </item>

 <item type="Monitoring.ComponentService, Monitoring" id="localService"
>
 <property name="ComponentName" value="QueryManager"/>
 <property name="Port" value="19302"/>
 <property name="NumberOfValues" value="3"/>

 <property name="SleepThreadIdle" value="700"/>
 </item>

 <!-- Sync Patterns Service -->
 <item
type="Vitruvian.Distribution.SyncPatterns.EmbeddedSyncPatternsService,
Vitruvian.Distribution">
 <property name="BaseType" value="ComponentForm.Program,
ComponentForm"/>
 <property name="ResourcePath" value="Config.SyncPatterns.xml"/>
 </item>

 <item type="Vitruvian.Distribution.DistributionService,
Vitruvian.Distribution">
 <property name="Encoder"
type="Vitruvian.Distribution.Encoders.XmlObjectEncoder,
Vitruvian.Distribution" />
 <property name="MessageTimeout" value="15000"/>
 <property name="HeartbeatFrequency" value="10000"/>
 <property name="HeartbeatTimeout" value="120000"/>

72

 <property name="UseHeartbeats" value="true"/>
 <property name="Services">
 <item ref="localService"/>
 </property>
 <property name="Providers">
 <item type="Vitruvian.Communications.Sockets.TcpServerProvider,
Vitruvian.Communications">
 <property name="LocalEndPoint" value="127.0.0.1:19302"/>
 </item>
 <item type="Vitruvian.Communications.Sockets.TcpClientProvider,
Vitruvian.Communications">
 <property name="RemoteEndPoint" value="127.0.0.1:19301"/>
 </item>
 </property>
 </item>
</object>

Figure A-5 Content of the file Service_2.xml.

	CHARM Components Monitoring System (CCMS)
	Recommended Citation

	Phase 1 for a Practical Solution of Checkers

