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Abstract The contribution of emissions from agricultural facilities is rapidly becoming a major
concern for local and regional air quality. Characterization of particle properties such as physical
size distribution and chemical composition can be valuable in understanding the processes
contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A
measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to
characterize near-source ambient particulate matter. Size-specific mass concentrations were
determined using minivol samplers, with additional size distribution information obtain using
optical particle counters. Particulate composition was determined via ion chromatographic
analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured
particulate carbon. The chemical composition and size distribution of sub-micron particles were
determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a
major emission from the examined facility, with filter-based impactor samples showing average
near-source increases (~15–50 m) in ambient PM10 of 5.8±2.9 μg m−3 above background
levels. PM2.5 also showed contribution attributable to the facility (1.7±1.1 μg m−3). Optical
particle counter analysis of the numerical size distributions showed bimodal distributions for
both the upwind and downwind conditions, with maximums around 2.5 μm and below the
minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of
coarse particles (PM10) during periods when wind transport came from the barns, but the
differences were not statistically significant at the 95% confidence level. The PM10 aerosols
showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic
carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic
carbon was the major constituent of the barn-impacted particulate matter in both sub-micron
(54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar
species increases, with the exception of NO�

3 and Ca+2, the latter not quantified by the AMS.
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1 Introduction

Agricultural operations are known to be sources of many types of particles and gases that
can ultimately exhibit an influence on local and regional air quality. Emissions potentially
impacting air quality from agricultural sources have become a concern for regulatory
agencies such as the United States Department of Agriculture (USDA) and the United
States Environmental Protection Agency (EPA; USDA 2006; U.S. EPA 2005a). In
particular, particulate emissions and gas-phase precursors are of interest because of the
implied health effects of particulate matter from epidemiological studies (e.g. Dockery
1993). Agricultural facilities are generally treated as area sources in emissions inventories,
however emissions can vary depending on practices used from facility to facility.
Particulate influences from agricultural sources can include both primary particles (direct
dust-type or combustion emissions) and secondary particles (formed photochemically from
gaseous precursors such as ammonia).

Several deficiencies exist for understanding agricultural sources that must be addressed
before effective regulations and remediation practices can be implemented (Aneja et al.
2006; USDA 2006). The areas of deficiency include accurate particulate and gaseous
emission factors relevant to operational practices, validation of accurate and precise
instrumentation and measurement protocols, and establishment of educational and outreach
programs to effectively transfer the most current information to all stake holders, including
facility operators. Within the past few years, several studies have been implemented which
focus on the development of relevant emission factors for confined animal feeding
operations (CAFOs), most commonly targeting total suspended particulate (TSP),
particulate matter less than or equal to 10 microns (μm) in diameter (PM10), and gas-
phase ammonia (NH3; Wathes et al. 1997; Takai et al. 1998; Schmidt et al. 2002; Heber
et al. 2005; Hoff et al. 2005 and others). Martin et al. (2006a, b) reported particulate matter
less than or equal to 2.5 μm in diameter (PM2.5) emissions for swine and dairy operations.

Most of the currently available particulate emission algorithms for agricultural
facilities focus only on total emissions, with little emphasis on particle composition and
size distribution beyond base categorization (e.g. PM10). This may be due to the
domination of coarse (>5 μm) particulate emissions from typical agricultural facilities
(Auvermann et al. 2006). However, near-source particles may undergo rapid physical and
compositional changes which affect their size distribution (coagulation and nucleation)
and base chemistry (secondary species formation) as they transport downwind from the
source (Lammel et al. 2004). Physical and chemical properties of the anthropogenically
produced aerosols near-source and in ambient environments have been widely studied
(Rogge et al. 1993; Hughes et al. 1999; Turnbull and Harrison 2000; Alfaro and Laurent
2001; and others). Although some particulate size and mass distributions and their
variabilities have been investigated for various livestock facilities like swine, poultry, dairy,
etc. (e.g. Crichlow et al. 1980; Nilsson 1982; Müller and Wieser 1987; Speizer et al. 1988;
Barber et al. 1991), these studies were primarily limited to inside facilities and their
behavior upon exhaust into the ambient environment has not been sufficiently investigated.
Lammel et al. (2004) quantified numerical size distribution of the particles 100–400 m from
a German diverse livestock facility (pigs, cows and poultry) and found the tested facility
strongly contributed an increased number of particles in the upper two observed size ranges
(1–4 μm and 4–20 μm), 1.7×–2.1× and 2.0×–6.4× above background, respectively. Lammel
et al. (2004) reported that approximately 20% of the near-farm particulate material consisted
of organic carbon (OC), but they were not certain statistically what fraction of OC
originated from the facility.

136 J Atmos Chem (2008) 59:135–150



Characterization of the particle properties such as physical size distribution and chemical
composition can be valuable in understanding the processes contributing to emissions of
particulate matter from agricultural facilities. The study described was designed to
characterize concentrations of particulate matter in the immediate vicinity of a deep-pit
swine facility. In addition, characterization of particle mass and number distributions was
obtained to determine relative contribution of the swine facility to fine and coarse
particulates. The chemical composition of the detected particulate matter was also
characterized.

A secondary purpose for the data acquired will be for validation and calibration of a
Light Detection and Ranging (LiDAR) system developed by Utah State University’s
(USU’s) Space Dynamics Laboratory (SDL). SDL’s “AGLITE” LiDAR system, which has
been developed for the measurement of particle emissions from agricultural facilities
(Wilkerson et al. 2006), is an example of remote sensing instrumentation being developed
to determine particulate emissions on finer temporal and wider spatial scales across an
entire facility. Data for particle mass concentration and number density are used to calibrate
the measurement of the LiDAR system. While the LiDAR can obtain real-time information
about particle plumes from different locations within an area source, calibration of the
signals to real mass concentrations obtained from point samplers is necessary. The use of
the data described here for the calibration of the LiDAR is described in a separate report.
(Zavyalov et al. 2006).

2 Methodology

2.1 Site description

The study described herein occurred from August 24 to September 8, 2005. The sampling
site was a deep-pit, swine finishing operation located near Ames, Iowa, USA. The facility
consisted of three parallel, east–west oriented barns. Each barn was approximately 80
meters (m) long by 14 m wide, and housed around 1,250 pigs, each with an average animal
weight of about 45.5 kilograms (kg). The ventilation for each barn was primarily via
passive air exchange by means of two large 79 m by 1.5 m curtain-controlled window
openings on the north and south sides of each building. A graveled county road ran parallel
to the south property line about 46 m from the southern most barn (Barn 1). The site layout
and receptor/sampling locations are shown in Fig. 1.

The farmwas surrounded by cultivated corn fields on the north and west sides and soybean
fields on the east and south sides. Fields immediately adjacent to the facility were planted
during the study period, with no harvesting or other activities taking place. Five years of
historic climatological data were examined to determine the prevailing wind direction during
the calendar sampling period and it was found that the expected wind was predominantly
from the south (U.S. EPA 2005b). Samplers were placed at locations downwind of the
facility given this wind assumption. A sampler in the beanfield was placed due east of the
barns to serve as a representative background. On-site meteorological data were collected
using a VantagePro 2 weather system (Davis Instruments, Inc.). The meteorological system
recorded temperature, pressure, wind direction, wind speed, total solar radiation, UV index,
precipitation and relative humidity. An instrument trailer containing real-time particle and
gas instrumentation, as well the meteorological data acquisition system, was setup 39 m
north of the northernmost barn (Barn 3, refer to Fig. 1) and also served as the main
downwind sampling location/receptor based on historical wind data.
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2.2 Particle collection and analysis

Size-fractionated particulate mass concentration data (PM2.5 and PM10) at the sample
locations were collected on filters using ten MiniVol portable air samplers (AirMetrics,
Inc.). The MiniVols’ inlets were assembled to sample PM2.5 for the first eight days (August
24 to September 1, 2005) and PM10 for the rest of the test period (September 2–8, 2005).
Visual observations of relatively light collections on the PM2.5 background and facility-
impacted filters motivated the switch to the PM10 impactor heads. The samplers’ rotameters
were calibrated prior to field deployment and operated at actual flow rates of 5.0 liters per
minute (L min−1), with a nominal 23-h sampling time. The particles were collected on pre-
weighed, pre-conditioned 47 millimeter (mm) Teflon filters according to federal protocols
(40 CFR 50), which were transported back to USU’s Utah Water Research Laboratory
(UWRL) after exposure for final weight and concentration determination. Conditioning was
at room temperature in a desicator. (~20–40% RH) The filter weights both pre- and post
sampling were measured using a Mettler MT5 microbalance (Mettler Instrument Corp.) to
the nearest microgram (μg) and the reported filter weights were the average of three
separate daily weights within ±2.5 μg. This uncertainty is roughly equivalent to a minimum
system detection level (MDL) of 0.36 micrograms per cubic meter (μg m−3).

Chemical characterization of the collected ambient particulate matter involved both real-
time and post-test laboratory analyses. Ion chromatography (IC) was used to determine the
concentrations of dominant anions and cations from the collected filters. After the filter
weights were finalized, the filter ions were extracted with a total of 30 milliliters (mL) of
0.2 μm filtered, double-distilled, deionized water (DDW). The Teflon filters were
sequentially sonicated with 10 mL of DDW for 10 min three times each. The 30 mL total
eluted solution was split into two 15 mL aliquots: one for anion analysis and one for cation
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analysis. The solutions for cation analysis were additionally spiked with 10 microliters (μL)
of 0.5 molar (M) HCl to prevent the ammonium (NHþ

4 ) from volatilizing as ammonia
(NH3). The IC system (Dionex, Inc.) consisted of the following equipment: an AS 40
automated sampler, a CD 20 conductivity detector, a GP 40 gradient pump, an ASRS-Ultra
II membrane suppressor for anions and a CSRS-Ultra II membrane suppressor for cations,
LC 25 chromatography oven, and an IonPac® AS4A-SC (4 mm) anion column or an
IonPac® CS12A cation column, depending on the ionic species of interest. For anion
analysis, a 195-μL injection loop was used in the IC, while for cations analysis, an 80-μL
injection loop was used. The IC eluent used for anions analysis was a 30 millimolar (mM)
sodium hydroxide (NaOH) solution. The eluent used for cation analysis was a 0.15 M
sulfuric acid (H2SO4) solution. Standard solutions were prepared from ACS reagent grade
salts (Fisher-Scientific) and calibration curves were prepared using concentrations of 0.1,
0.5, 1, 5, and 10 milligrams per liter (mg L−1) or parts per million (ppm). Blank and
continuing calibration verification standards (CCV) were tested approximately every 10
samples. Ten percent of the samples were randomly chosen for duplicate analysis to ensure
reproducibility.

A Series 5400 Ambient Particulate Carbon Monitor (Rupprecht & Patashnick Co., Inc.)
was assembled in the instrument trailer to characterize organic and inorganic (elemental)
particulate carbon (OC and EC, respectively) downwind from the facility. The 5400 is a
semi real-time system which provides data at user defined time intervals (every 3 h for
these studies) for organic carbon and total carbon (TC) concentrations (μg m−3). The
instrument determines carbon concentrations by thermal-carbon dioxide (CO2) analysis
(R&P 2004). As recommended by the operating manual (R&P 2004), the system dwell
times and temperatures were set for 600 s at 275°C and for 360 s at 750°C for OC and TC
determination, respectively. The EC fraction is determined as the difference between the TC
and OC concentrations. Flow and CO2 response calibrations were performed prior to field
deployment and zero air and CO2 span audits were performed on-site every third day using
commercially-purchased calibration gases (Scott Specialty Gases, Inc.). The instrument was
set to operate at 16.7 L min−1 and the size fractionation head (PM10 or PM2.5) was set in
conjunction with MiniVols’ inlets. Because the method measures only the carbon part of the
organic fraction, one must compensate for oxygen-containing and other functional groups.
The CO2 based concentrations were multiplied by a correction factor, Roc, of 2.1
recommended for non-urban organic aerosols (Malm and Hand 2005).

Ambient particulate size analyses were also performed using six Model 9722 Ambient
Aerosol Particulate Profilers (MetOne, Inc.) at several of the same locations as the filter-
based samplers. The 9722 are real-time, optical particle counters (OPCs) which
simultaneously measure particle number concentrations using laser diode technology into
eight user-defined size ranges between 0.3 μm and 10 μm over 20 second time periods. The
system samples at a nominal flow rate of 1 Lmin−1; however, the systems’ flow paths are
plumbed such that they operate with a 2:1 dilution rate to allow for sampling of high
concentration particulate fields. The lower cut off size for the sampling ranges were set to
0.3, 0.5, 0.7, 1, 2, 2.5, 5 and 10 μm. The systems’ were factory calibrated immediately prior
to field use. Data were archived to central data acquisition system via individual radio
frequency channels.

An aerosol mass spectrometer (AMS; Aerodyne, Inc.) was also stationed inside the
instrument trailer to quantify and characterize sub-micron organic and inorganic ions. The
AMS is made up of three differentially pumped chambers: the sampling chamber, the sizing
chamber, and the analysis chamber. The sample is brought into the instrument by the
difference in pressure through an aerodynamic focusing lens (Liu et al. 1995). Particles in
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the range of 50–700 nanometers (nm) are focused with almost 100% efficiency with
particles above and below that size range focused with less efficiency. As the AMS system
essentially characterizes particulate matter less than or equal to 1.0 μm, it approximates a
PM1 measurement. However, this is dependent on composition as some components,
especially metals and elemental carbon are not detected by this method. In addition, the
AMS detects the full organic matter (OM) composition rather than simply the carbon
fraction. The particles within the chambers are accelerated through supersonic expansion to
a velocity proportional to their size. Particles continue onto an oven where the non-
refractory components are flash vaporized at 600–700°C. The vapors are then subjected to a
beam of electrons at 70 electron volts (eV) for ionization before being scanned by a
quadrupole mass spectrometer and detected with an electron multiplier. The instrument can
be operated in two modes: (1) the “mass spec” (MS) mode, which obtains chemical
speciation for the ensemble particle sample and (2) the “time-of-flight” (ToF) mode which
obtains particle size distributions associated with specific chemical species. A more detailed
explanation of the principles and capabilities of the AMS can be found in Jayne et al.
(2000) and Jimenez et al. (2003).

The AMS was operated on-site continuously from August 29 to September 4, 2005.
Particulate samples were withdrawn from the ambient air through 0.25-in., outer diameter
(o.d.) copper tubing at a flow rate of about 1.2 cubic centimeters per second (cm3 s−1). The
AMS time averaging interval was set to 1 hour due to the low concentrations of the
submicron particles expected at the site. During this time, the AMS alternated between MS
and ToF modes of acquisition. Ionization efficiency and size calibrations were performed
on-site using ammonium nitrate (NH4NO3) and commercially-purchased polystyrene latex
(PSL) spheres. The former were used in the computation of the mass concentration
calibrations, while the latter were for size distribution quantification.

3 Results and discussion

3.1 Observed meteorology

Figure 2 shows the hourly averaged wind directions for the entire study period as measured
by the Vantage Pro on the top of the instrument trailer (5 m height). As can be seen, the
wind blew from the optimum direction in relationship to the established sampling array, the
southern quadrant (135–225°), only about 37% of the time. Furthermore, calm or non-
detectable winds were observed 14% of the time. The wind directions were most variable
during the early (PM2.5) portions of the study period, but as can be seen, were rarely from
the desired southern quadrant. Similarly, the first two days of the PM10 studies were
characterized by primarily northern winds. Southern winds became more typical during the
final few days of the study. Therefore, the data were divided into three analysis periods
based on sample type and prevailing wind direction: (1) PM2.5 variable winds (north &
south), August 24–31, 2005, (2) PM10 upwind (north winds), September 1–2, 2005, and (3)
PM10 downwind (south winds), September 3–8, 2005. Unless otherwise noted, the
Beanfield sampling location (refer to Fig. 1) was found to be most consistently crosswind to
the presumed particulate source (the barns) and considered as the ambient background
location.

Atmospheric pressures were stable for most of the campaign. A 4.1 mm pressure drop
was observed over five hours on August 25–26, 2005 and a 3 mm pressure increase was
observed over a one hour period on September 5, 2005. Ambient temperature averaged 21.1
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degrees Celsius (°C), the highest hourly temperature observed was 30.5°C, and the lowest
hourly temperature observed was 10.1°C. The average barometric pressure was 738.3 mm
mercury (mm Hg), with maximum and minimum hourly values of 743.7 and 732.3 mm Hg,
respectively.

3.2 Particle emissions

Figure 3 shows the average facility-derived PM2.5 and PM10 concentrations measured by
the MiniVol samplers located throughout the study area. The facility-derived particulate
concentration refers to a selected receptor’s concentration minus the observed local
background concentration. The PM2.5 background concentrations during the early phases of
the study (August 24–31, n=8) averaged 13.5±3.6 μg m−3 and PM10 background
concentrations averaged 36.4 μg m−3 and 37.9±6.3 μg m−3 for the upwind (September 1–2,
n=2) and downwind (September 3–8, n=6) periods, respectively. Unless otherwise noted,
all uncertainties reported represent the 95% confidence interval (95% CI) about the average.
Furthermore, it should be noted that during the PM10 upwind period, samples were only
collected on two days, as such, confidence intervals could not be calculated for that period.

As can be derived from Fig. 3, the facility-derived (downwind-background) PM2.5

concentrations were only slightly above the typical background values. The average PM2.5

concentration attributable to the facility averaged only 1.7±1.1 μg m−3, indicating relatively
little emissions of PM2.5-sized particles from deep-pit swine finishing operations. Even
though the wind directions during the PM2.5 measurement phase of the described study were
variable, the receptors placed between the barns averaged only 1.8±0.8 μg m−3 and 1.6±
0.8 μg m−3 above background, respectively. Similarly, the PM10 concentrations at most of the
receptor locations on the north or upwind days showed little difference above background
concentrations. Not unexpectedly, the sampler between Barns 1 and 2 did show an increased
concentration an average of 9.2 μg m−3 above background levels (over two daily periods).

However, on days when the winds were predominantly southern (September 3–8) most
of the receptors were downwind of the facilities. The PM10 attributable to the local swine

0

180

360

8/24/2005 8/26/2005 8/28/2005 8/30/2005 9/1/2005 9/3/2005 9/5/2005 9/7/2005 9/9/2005

W
in

d
 D

ir
ec

ti
o

n
 (

d
eg

re
es

)

Q
u

ad
ra

n
t

S
o

u
th

er
n

Fig. 2 Observed hourly averaged wind directions (North=0°)

J Atmos Chem (2008) 59:135–150 141



operation became more significant: 5.8±2.9 μg m−3 above background averaged across all
of the receptor locations. As can be seen from Figs. 1 and 3, the facility-derived PM10

decreased as the distance from the barns increased. The near-source, ground-level PM10

attributable to the barns (Barns 1–2, Tower 3.9 m, Central, and Trailer receptors) averaged
10.3±5.0 μg m−3. The highest and most significant concentrations above background were
observed at the inter-barn locations (25.1±13.2 μg m−3).

The AMS found PM1 mass concentrations of 0.91±0.14 μg m−3 and 1.02±0.19 μg m−3,
for the previously discussed PM2.5 and upwind PM10 periods, indicating a statistically
consistent background concentration of the submicron (≤1 μm) particulate matter. The
average AMS PM1 mass concentration during the downwind study period was 2.47±
0.28 μg m−3, indicating a small contribution of PM1 material from the observed facility.
Comparing these values with the averaged filter-based ambient PM2.5 and PM10

concentrations measured at the sampling trailer, the PM1 made up 6.6% and 4.1% of the
upwind or background PM2.5 and PM10, respectively. During the facility-impacted
(downwind) measurements, the ultra-fine particle concentrations increased (Fig. 4) as did
the larger particle sizes. However, the PM1 fractionally made up around the same
percentage (5.9%) of the PM10 mass as during the upwind periods.

3.3 Particle composition

The chemical compositions of the PM2.5 and PM10 as determined from the filter-based
AirMetrics’ sampler located at the air quality trailer are shown in Table 1. Approximately
48% and 33%, of the upwind (PM2.5 and PM10) and downwind (PM10) filter mass,
respectively, were unidentified using the employed analytical techniques. Although not
enough samples were collected for statistical analysis of the upwind PM10 data, of the
identified species only calcium (Ca+2) concentrations appeared to be different between the
upwind PM2.5 and PM10 samples. Shacklette and Boerngen (1984) identified the crustal

0

10

20

30

40

50

60

70

Bar
ns

 2
-3

Tow
er

 (3
.9

 m
)

Tow
er

 (8
.5

 m
)

Tow
er

 (1
4.

6 
m

)

Cen
tra

l

Tra
ile

r

W
 ce

nt
ra

l

Eas
t E

nd

Cor
nf

iel
d

N to
wer

F
ac

ili
ty

-D
er

iv
ed

 C
o

n
c.

 (
 µ

g
 m

-3
) PM2.5

PM10 Upwind

PM10 Downwind

Bar
ns

 1
-2

Fig. 3 Facility-derived PM2.5 and PM10 concentrations measured by MiniVol samplers around the deep-pit
swine operation (error bars represent the 95% confidence interval about the mean). Missing data indicate
periods when no samples collected due to sampler availability or system error

142 J Atmos Chem (2008) 59:135–150



surfaces of north-central Iowa as abundant in calcium. Particulate-bound concentrations of
fluoride (F−), chloride (Cl−), sodium (Na+), and magnesium (Mg+2) showed no statistical
difference between upwind and downwind (source-impacted) conditions, indicating these
species are likely associated with local or regional background particulate. It is of further
interest to note the observed abundance of fluoride in the background particulate mass
(1.04±0.31 μg m−3, over all trailer samples). Shacklette and Boerngen (1984) showed
regional Iowa soil elevated in fluoride concentrations which could explain the relatively
high fluoride levels. Sulfate (SO�2

4 ), nitrate (NO�
3 ), ammonium (NHþ

4 ), calcium, organic
carbon (OC), and elemental carbon (EC) all showed statistical (95% CI) concentration
increases when impacted by the swine facilities. The OC was consistently the largest single,
identified component of the PM10 concentrations measured at the sampling trailer (≈20%).
The OC component increased by a factor of approximately three from 2.53±0.48 to 7.56±
2.65 μg m−3 between periods when the sampling trailer was upwind and downwind of the
barns. The EC component showed approximately a four fold increase between non-
impacted and impacted conditions: 0.40±0.13 to 1.76±0.76 μg m−3, respectively. However,
the EC contribution accounted for only ≈3–5% of the particle mass.

The AMS-measured PM1 composition is shown in Table 2. Due to equipment
malfunctions the AMS data contained gaps at the beginning and end of the period while
the MiniVol instruments sampled. The PM1 system found measurable concentrations of
SO�2

4 , NO�
3 , NHþ

4 , and OM. All but NO�
3 show statistically significant concentration

increases when the trailer was downwind versus upwind of the swine barns (≈2–3×). As
with the PM10, the OC was the largest component of the PM1 and showed similar behavior
depending on the wind direction (see Fig. 5). As can be seen, the PM1 OM concentration
was on an order of magnitude less than the PM10 OC concentrations.

In order to examine one possible reason for the unknown mass percentages previously
mentioned, an ion mass balance was performed for the analyzed AMS and trailer aerosols
(Fig. 6). The total cations measured were found to be in excess for all observed samples,
regardless of wind direction or particle size classification. However, as can be seen, the
deficit was only statistically significant (95% CI) for the downwind, barns-impacted
conditions. Recall, there were an insufficient number of PM10 upwind samples to determine
confidence intervals. It is suspected that much of the ion deficit could be the result of
carbonate (CO�

3 ), which was not resolved with the employed analytical techniques. The
presence of abundant particle-based Ca+2 and Mg+2 further suggests the presence of
carbonates, which are often associated with soil-derived particles (Krivacsy and Molnar
1998; Ocsay et al. 2006). An additional possibility for the mass deficit could be the result of
unquantified crustal materials. During the field campaign, the LiDAR measurements of
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Zavyalov et al. (2006) observed several instances of plumes from the nearby gravel road
dispersing over the various sample locations. This happened on 2 days and due to calm
winds, affected all of the samplers.

3.4 Particle distributions

The numerical particle size distributions at the trailer location, as measured by the MetOne
OPCs, for upwind and downwind periods can be seen in Fig. 7. As can be seen, both the
background and barns-impacted distributions showed strong bimodal distributions. The
observed bimodal curve is similar in shape and modal locations as those reported by
Schneider et al. (2001) for upwind and inside an experimental piggery. However, the
number concentrations reported here were more in line with Schneider’s reported upwind
values, especially for particles less than approximately 1.0 μm in diameter. A large particle
mode appeared centered around 2.5 μm and a fine (accumulation) mode was evident
somewhere below the OPCs’ minimum quantified diameter (<0.3 μm). The barns-impacted
(downwind) average number distribution showed a trend for increased numbers of
supermicron particles (>1 μm) compared to the non-impacted (upwind) number
distributions, but as shown in Fig. 7, the difference was not statistically significant at the
95% confidence level. As shown, this was due to the relatively large uncertainties
associated with the background distributions. The average count mean diameters (CMDs)

Table 2 Average particle-phase ionic and organic carbon concentrations measured by the AMS (PM1)

Concentration in ambient air, (μg m−3)

SO�2
4 NO�

3 NHþ
4 OC Total AMS PM1

8/29–31/2006 0.07±0.02 0.04±0.01 0.06±0.02 0.38±0.07 0.91±0.14
9/1–2/2006 (upwind) 0.03±0.01 0.02±0.01 0.03±0.01 0.61±0.14 1.02±0.19
9/3–5/06 (downwind) 0.12±0.02 0.04±0.01 0.12±0.03 1.34±0.11 2.47±0.28
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for the south and north wind periods were found to be similar, yet statistically different at
0.46±0.01 μm and 0.43±0.01 μm, respectively.

Size fractionated mass distributions were obtained from the particle counts using the
average density of the particles derived by combining the number and AirMetrics’ mass
concentrations and assuming uniform density throughout the entire size range following the
procedure outlined by Hinds (1999). The calculated particulate density of 2.15 grams per
cubic centimeter (g cm−3) agrees well with densities from atmospheric aerosol databases
(Jursa 1985; Hess et al. 1998). As with the number distributions, bimodal distributions were
observed and the downwind and upwind periods did not show statistically different mass
distributions (Fig. 8). However, the larger particle size range (coarse mode) did show higher
average concentrations. As can also be seen in Fig. 8, the modal diameters are not apparent,
but a minimum mass diameter was observed around 0.8 μm. The mass mean diameters
(MMDs) for the south and north wind periods were found to be 5.14±0.11 μm and 4.52±
0.16 μm, respectively. The increase in MMD during south wind periods is consistent with
observed particulate impacts from the swine facilities.

The mass distributions of the individual chemical species measured by the AMS are
shown in Fig. 9 with respect to vacuum aerodynamic diameter (Dva). This is the
aerodynamic diameter measured under the free-molecular regime. During the upwind
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periods sulfate was found to be the dominant mass species, followed by OM. During
downwind periods OM was the only dominant species detected by the AMS.

4 Summary

Primary particulate matter was a minor pollutant emitted from the examined swine finishing
facility, adding ~15% to the prevailing background levels of PM10 and ~12% to the
background PM2.5. Filter-based, AirMetrics’MiniVol impactor samples found that the general
area around the facility showed an increase in PM10 of 5.8±2.9 μg m−3 above background
levels (≈37 μg m−3), although in the area between the barns the PM10 was found to be 25.1±
13.2 μg m−3 above background. Local PM2.5 attributable to the facility was found to be
increased by an average of 1.7±1.1 μg m−3, relative to background PM2.5 concentrations
(≈14 μg m−3). Interestingly, the areas between the barns showed essentially the same above
background concentrations as the receptors located further from the barns. An aerosol mass
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spectrometer measured ambient PM1 at a single location, the air quality trailer, located
approximately 39 m north of the northern most barn (refer to Fig. 1) and reported upwind
(non-facility impacted) and downwind PM1 concentrations of 1.0±0.2 μg m−3 and of 2.5±
0.3 μg m−3, respectively. Optical particle counter (OPC) analysis of the numerical size
distributions showed a strong bimodal distribution with maximums around 2.5 μm and
somewhere below the OPCs’ minimum quantified diameter (<0.3 μm). The average
distributions showed increased numbers of coarse particles during barns-impacted periods,
but the differences did not become statistically significant until the 68% confidence level
(approximately one standard deviation).

Chemical composition of the aerosols at the air quality trailer was quantified by ion
chromatographic analysis of the impactor filters, with the use of a semi-real time EC/OC
analyzer (configured to match the size fractionation of the MiniVol impactors), and via the
AMS. For the PM10, sulfate (SO�2

4 ), nitrate (NO�
3 ), ammonium (NHþ

4 ), calcium (Ca+2),
organic carbon (OC), and elemental carbon (EC) all showed statistically significant
concentration increases when the wind direction was from the pig barns to the samplers
(south winds). Particulate magnesium (Mg+2), potassium (K+), sodium (Na+), fluoride, (F−),
and chloride (Cl−) showed no statistical difference based on wind direction. An excess of
cations to anions was observed which may be attributed to the fact that carbonate (CO�2

3 )
was not detected with the utilized analytical scheme. The AMS PM1 chemical speciation
showed similar species increases as with the filter-based measurements, with the exception
of NO�

3 , which was not significantly different between the upwind and downwind samples
and Ca+2 which is not quantified by the AMS. Organic carbon was the major constituent of
the barn-impacted particulate matter in both sub-micron and coarse size ranges, accounting
for approximately 54% and 20% of the observed mass, respectively.
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