Calibrating Hyper- and Multispectral Imagers at the NASA Ames Airborne Sensor Facility CalCon 2014

Thomas Ellis Pat Grant Edward Hildum Jeff Myers

UCSC NASA Ames UARC

Thunderhead over the Gulf of Mexico from the Enhanced MODIS Airborne Simulator (9/13/2013; Bands 20, 11, 2)

NASA Airborne Sensor Facility

- Resides at the University-Affiliated Research Center under the NASA Ames Earth Science Division
- Staffed by Univ. of California, Santa Cruz
- Joint funding from the Airborne Science and EOS Programs
- Provides Earth science mission support through:
 - Facility Sensor Operations
 - Instrumentation Development
 - Sensor Maintenance and Calibration
 - Airborne communications systems development (Sensor Web implementation)
 - Data Processing and Archive

NASA's Calibration Laboratories

eMAS

NASA's centers of expertise in the calibration and characterization of satellite, ground-based, and airborne remote sensing instruments for over two decades.

Calibration Lab	Lab	Development Lab	Facility Calibration Lab		
Maintains and develops lab and field instrumentation, NIST calibrated lamp and tunable laser sources, and detectors to calibrate, monitor, and assess the performance of remote sensing instruments from 340nm to 2400nm	Maintains and develops instrumentation and NIST calibrated reflectance & transmittance artifacts for the measurement of the bidirectional and hemispherical optical scatter of flight and non- flight optics and materials from 230nm to 1700nm	Maintains and develops lab, field, and airborne instrumentation and employs NIST calibrated lamp and Radiometric Calibration Laboratory laser sources to calibrate UV to near infrared remote sensing instruments from 200nm to 2500 nm	Maintains instrumentation and NIST calibrated sources to calibrate airborne imagers and radiometers in the lab and field from 350 nm to 14 microns		
•Missions/projects recently and currently supported:GSFC AERONETATLASMPP/JPSS OMPSJPSS CERESNPP/JPSS VIIRSLADEEORCAGCASCARGEO-TASOMASDOE ARM NFOVMASTERSOLSEU. of Lille AERONETRSP	-Missions/projects recently and currently supported: NPP/JPSS OMPS NPP/JPSS VIIRS ORCA ICESat-2/LRS CAR SBUV/2 APS RSP JWST	 Missions/projects recently and currently supported: Earth Venture1/DiscoverAQ/ACAM instrument and Pandora network NPP/JPSS OMPS GCAS GEO-TASO ESTO/ACT /Advanced Solar Blind detector array development CAR GSFC AERONET OMI 	•Missions/projects recently and currently supported: <u>eMAS-MSS</u> <u>eMAS-HSI</u> <u>MASTER</u> RSP SSFR 4-STAR AATS-14 CAR LCROSS		
HAMCAM Pandora network PSP NIP Cloud Scanner	Multi-wall Carbon Nanotubes for instrument stray light suppression	OMI AMES UV sphere calibration Wallops Ocean Sensor	Field Spectroradiometers		
Rainbow Camera	aboratories have particina	ted in cross-calibration camp	aians led by the NIST		

All laboratories have participated in cross-calibration campaigns led by the NIST Optical Technology Division

Calibration Procedure for Existing Facility Multispectral Instruments

- Spectral Bench Characterization
 - Monochromator based Relative Spectral Response (RSR) measurement for all bands
- Broadband Radiometric Characterization
 - High output integrating sphere source AKA "HISS" for 350-2500nm spectral bands
 - 12" Extended Area Black Body (LES100-12) for mid-wave IR and thermal IR spectrometer bands

This approach is time tested but not well adapted to new wide field hyperspectral imagers with much higher detector counts.

- Difficult to sample every single detector in wavelength and spatial dimensions for RSR and Radiometric response
- Multispectral cal characterizes one field and all wavelengths.
- Hyperspectral cal must characterize several fields and a fraction of the wavelength bins.

Spectral Bench Characterization Monochromator based RSR measurement for all bands

Scan mirror parked and IFOV characterized in nadir position

Broadband Radiometric Characterization

Broadband Radiometric Characterization

UARC Facility Airborne Instruments

Airborne Scanning Instruments • eMAS-Multi-Spectral Scanner

- Built on the legacy MAS, the MODIS Airborne Simulator
- In 2010-2012, MAS MWIR and LWIR LN2 dewars were replaced by SDL with a modern Cryocooled optics and FPA package as well as new FPGA Digitizer

MASTER

- MODIS and ASTER airborne simulator
- Essentially the same instrument as MAS-classic, sharing the same telescope and scanner mechanism and similar spectrometer and digitizer design but somewhat different spectral band selection

Airborne Hyperspectral Instrument • eMAS-hyperspectral

- A totally distinct instrument from the legacy MAS/eMAS-MSS, with a confusingly similar name
- Dual Offner relay spectrometers sharing a single 4 mirror anastigmat telescope

Enhanced MODIS Airborne Simulator

A next-generation airborne imager with high spatial resolution and broad hyper-spectral (VNIR/SWIR) and multi-spectral (MWIR-LWIR) coverage intended to:

- Simulate existing satellite imager products (MODIS/VIIRS)
- Validate radiances and geophysical retrievals
 - (emphasis on cloud and aerosol science)
- Prototype future imager requirements and algorithms (e.g., PACE, ACE)
- Contribute to a wide variety of NASA field studies

Consists of two bore-sighted imaging spectro-radiometers:

- eMAS-MSS: 12 bands 6.7 13.9µm, plus 3.7µm (+ 25 legacy MAS V/SWIR bands)
- eMAS-HSI: 205 bands 400 2450nm

NASA

EMAS-HSI

VNIR-MWIR Spectral Coverage

VNIR-MWIR Spectral Band Positions:

1(

LWIR Spectral Coverage

eMAS-scanner and MASTER are essentially similar... but eMAS is enhanced*.

Instrument:	eMAS-scanner	MASTER
Platform:	NASA ER-2	NASA ER-2, DC-8, & B-200
Ground Speed:	400 Kts (206 M/second)	Variable (depending on altitude)
Altitude:	20 Km (65,000 Ft)	1 - 20 Km (5,000 - 65,000 Ft)
Pixel Spatial Resolution:	50 Meters (@ 20 Km altitude)	5 - 50 Meters (depending on altitude)
Pixels per Scan Line:	716 (roll corrected)	716 (roll corrected)
Scan Rate:	6.25 Hz (scans/second)	6.25, 12.5, & 25 Hz (scans/second)
	37.25 Km (22.9 Nm, @ 20 Km	1.87 - 37.25 Km (depending on
Swath width:	altitude)	altitude)
Field of View:	85.92°	85.92°
Instantaneous Field of		
View:	2.5 mrad	2.5 mrad
Roll Correction:	+/- 15°	+/- 15°
Data Channels:	38	50
Spectral Bands:	38 (digitized to 16-bit resolution)	50 (digitized to 16-bit resolution)
Port 1 (Vis):	9 bands, 445nm - 967nm	11 bands, 457 - 945nm
Port 2 (SWIR):	16 bands, 1.616µm - 2.425µm	14 bands, 1.609 - 2.394µm
Port 3 (MWIR):	1 band, 3.647µm - 3.830µm	15 bands, 3.148 - 5.263µm
Port 4 (LWIR):	12 bands, 6.589µm - 14.062µm	10 bands, 7.760 - 12.878µm
Bits per Channel:	16	16
Data Rate:	246 Mb/hour	246, 492, & 984 Mb/hour

*new digitizer, mechanically cryocooled thermal IR Spectrometer optics and FPA

eMAS-hyperspectral

- A totally distinct instrument from the legacy MAS/eMAS-scanner
- Dual Offner relay spectrometers sharing a single 4 mirror anastigmat telescope
- 50 degree cross track staring FOV (no scanner)

Telescope Parameter	Value	Spectrometer Parameter	VNIR		SWIR	
F-number	2.8			4 x 4		2 x 1
Cross-track full field-of-view (deg)	50		Native	Binning	Native	Binning
Cross-track full field-of-view (rad)	0.873	Spatial Pixels	2048	512	1000	500
In-track field-of-view (deg)	0.06	Spectral Pixels	256	64	256	256
In-track field-of-view (mRad)	1.05	Illuminated Spatial Pixels	1656	414	828	414
Slit Length (mm)	26.5	Illuminated Spectral Bands	254	64	150	150
Focal Length (Slit Length / FFOV) (mm)	30.4	Pixel Pitch - spatial (mm)	0.016	0.064	0.03	0.06
Focal Length (via. Zemax.off-axis) (mm)	25.6	Pixel Pitch - spectral (mm)	0.016	0.064	0.03	0.03
		Spectrometer Magnification	1:01		32:30:00	
		Dispersion (nm/mm)	153.8		333	
		Spectral Sampling (nm/band)	2.5	10	10	10
		IFOV (mRadians)	0.53	2.11	1.05	2.11

Hyperspectral instruments present challenges to the existing lab calibration procedure for multispectral imagers

- Spectral bench calibration with the monochromator involves parking the scan mirror and characterizing the IFOV with the monochromator source.
 - Assumes that the spectral response functions do not depend on scan mirror angle, probably a good assumption* for a scanning instrument.

Ames Research Center

NASA

* Notable exception: Polarization of scan mirror vs diffraction grating

Hyperspectral instruments present challenges to the existing calibration procedure for multispectral imagers

- For a wide cross-track field of view instrument with no scan mechanism there is no reason to assume the nadir pixel is representative of all the wider field angle pixels.
 - In fact a better assumption is that the nadir pixel will be the best case pixel.
 - wider field pixels cross track are more likely to suffer more from field aberrations and be lower performing.
 - Furthermore, there are new sources of error to keep track of two of the principal figures of merit to describe hyperspectral instrument performance are keystone and smile – two aspects of distortion will essentially change the RSR of a given pixel and a function of field angle from nadir.
 - Another FOM is clocking*, this will Cause RSRs to vary linearly with field distance from Nadir and also contribute to cross talk.

Visualizing the distortion FOMs

- Clocking
- Keystone
- Smile
- Wouldn't it be nice to probe the wide field pixels as well as nadir?
 - <u>Solution 1</u>: rotation stage/goniometer, do each field sample sequentially
 - <u>Solution 2</u>: multi-angle pick-off mirrors*, do each field sample simultaneously

* Holly A. Bender ; Pantazis Mouroulis ; Michael L. Eastwood ; Robert O. Green ; Sven Geier ; Eric B. Hochberg; Alignment and characterization of high uniformity imaging spectrometers. Proc. SPIE 8158, Imaging Spectrometry XVI, 81580J

Ames Research Center

An OAP collimator with a fold.

Image at UUT Slit

An OAP collimator with 3 folds.

Image at UUT Slit

Design for eMAS-h with an on axis parabolic mirror

Multi-field Collimator at GSFC Radiometric Cal Lab with on axis parabola - setup

Multi-field Collimator at GSFC Radiometric Cal Lab with on axis parabola - setup

Multi-field Collimator at GSFC Radiometric Cal Lab with on axis parabola -setup

Multi-field Collimator at GSFC Radiometric Cal Lab with On axis parabola

Raster scan at the focus of the parabola to trace out spatial response functions across track and along track

- JPL paper calls these CRF and ARF
- Monday's workshop called it PRF

Multi-field Collimator at GSFC SIRCUS with On axis parabola – SWIR FPA 2195nm

2

Multi-field Collimator at GSFC SIRCUS with On axis parabola – SWIR FPA saturated

Multi-field Collimator at GSFC with On axis parabola - SWIR FPA white light

Concept is flexible enough to support either wide field with small aperture or large aperture with less wide field

- Assuming a 16" OAP it is possible to design for staring systems with 12mm Aperture & 50 degree field of view (e.g., eMAS-h) and seven field positions.
- It's also possible to change the pickoff mirrors to support three field locations for an aperture 125mm and cross track FOV of 10 degrees.
- Polarization filters in each field angle to study polarization vs field?
- HIP as a source instead of mechanically scanned point source?

Reference Websites

- General Information & Flight Requests
 - http://airbornescience.nasa.gov

MASTER web page

http://masterweb.jpl.nasa.gov

MAS web page

http://mas.arc.nasa.gov

Thomas.ellis@nasa.gov 650-604-3195 Jeffrey.s.myers@nasa.gov 650-604-3598