

cal

con

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

> Conference on Characterization and Radiometric Calibration for Remote Sensing

A Method Suitable for In-flight Calibration of a UAV Hyperspectral Remote Sensor

Haiwei Li, Hao Zhang, Zhengchao Chen

Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS)

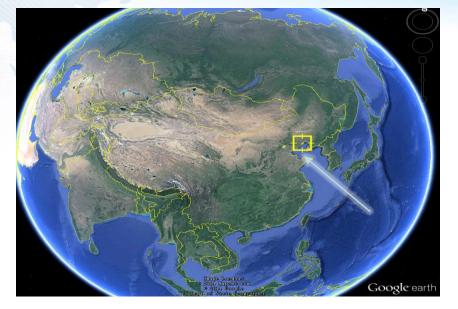
23rd CALCON Technical Conference, August 11 to 14, 2014, Logan, Utah, USA

Outline

- 1. Overviews
- 2. Purpose
- 3. Field Experiment
- 4. Method
 - Reflectance-based method
 - The improved Irradiance-based method
- 5. Results and analysis
- 6. Conclusion

1. Overview

The application of UAV:


2.Purpose

The necessary of UAV's vicarious calibration unresolved question:

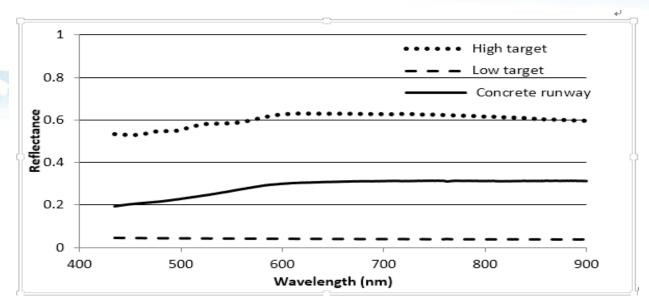
- To research of UAVs' quantitative remote sensing, the accuracy and precision of the measured data must be known
- The sensor aboard on the UAV is vulnerable to vibrations and natural conditions, just like erratic winds
- The vicarious calibration is closer to the real environment, and this is a supplement to the laboratory calibration.
- Most UAVs just use reflectance-based method for its vicarious calibration and with little attention to the irradiance-based method
- The error caused by aerosol types assuming is not well solved to the sensors aboard on UAVs, and this brings great systematic error

On the Sept 25th, 2013

 The civilian airport of Suizhong in the Chinese province of Liaoning.
(40.23N, 120.21E)

Runway
Long: 200m Wide:12m

Hyperspectral UAV(Integrated by Goldwn way Scientific, China, <u>www.goldway.com.cn</u>)



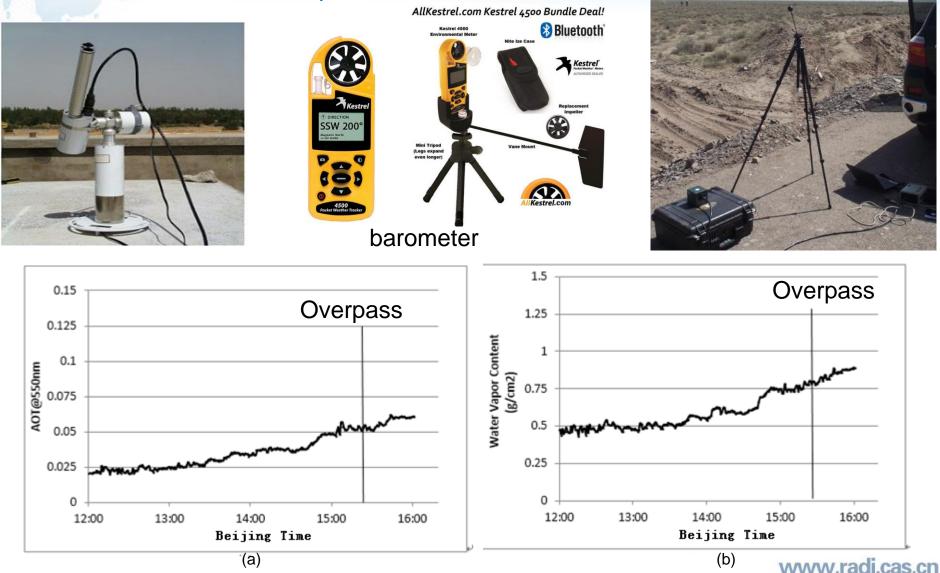
Headwall's Micro	-Hyperspec
Wavelength Range(nm)	380-1000nm
Spectral Resolution (nm)	<10nm
Spectral Bands	162
The most spectral line bending	0.1%
The biggest trapezoidal distortion	0.1%
Focal Length	17.0mm
Dynamic Range (db)	60dB
Weight (without lens)	0.9kg

The measurement of ground spectrum :

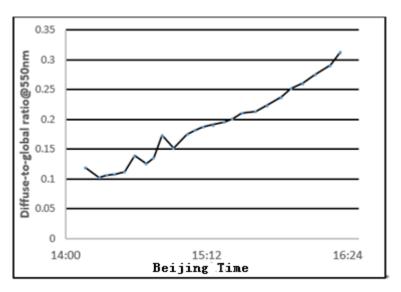
Surface Reflectance

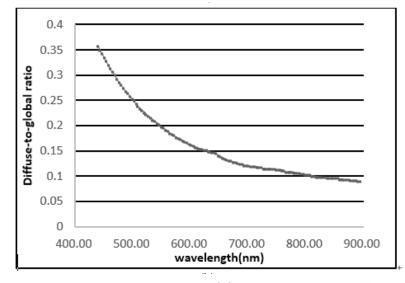
ASD

Tarp: reflectance of 60%


Tarp: reflectance of 5%

Cement runway www.radi.cas.cn


The measurement of atmospheric characteristics :

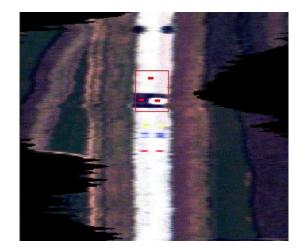


The measurement of atmospheric characteristics :

		_
		₽
AOD at 550 nm ²	0.052*	
		₽
Vertical column of Water Content(g/cm ²)+	0.776	
		₽
Aerosol Type₽	Rural₽	
		₽
Atmospheric Model	Midlatitude summer.	

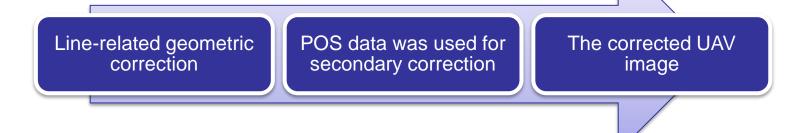
(a)

(b)



www.radi.cas.cn

Image Pre-Processing:



(a)

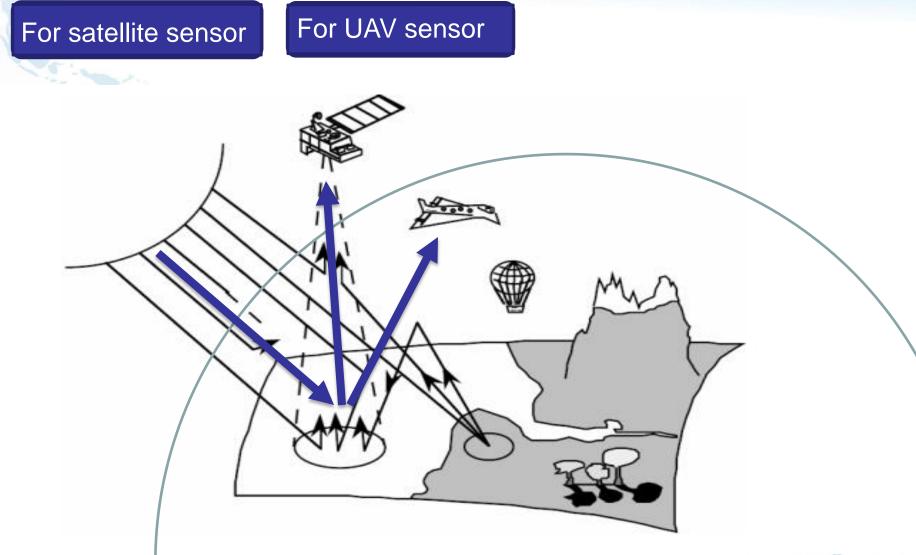
(b)

The UAV image before (a) and after (b) correction

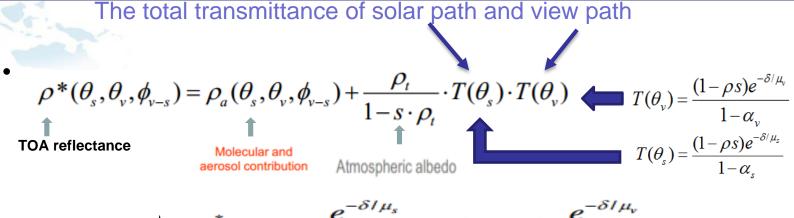
Vicarious Calibration:

The reflectance-based method

- Less measurement data
- Widely used in sensor calibration


The irradiance-based method

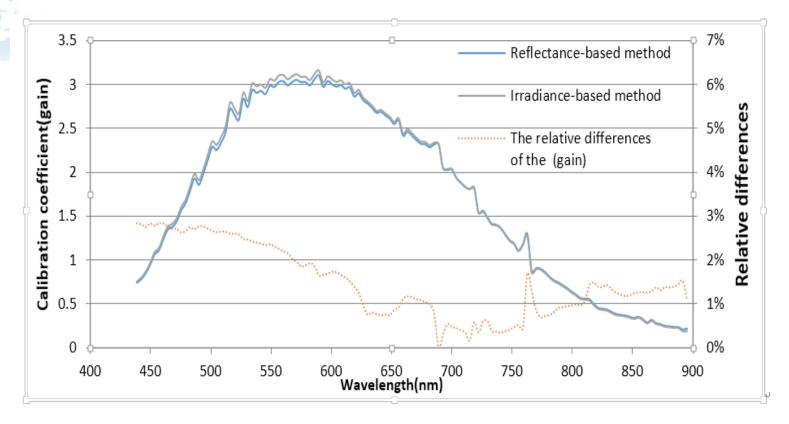
- The measurement of diffuse-to-global ratios
- Reduce the error caused by assuming the aerosol types


Improvement :

Improvement :

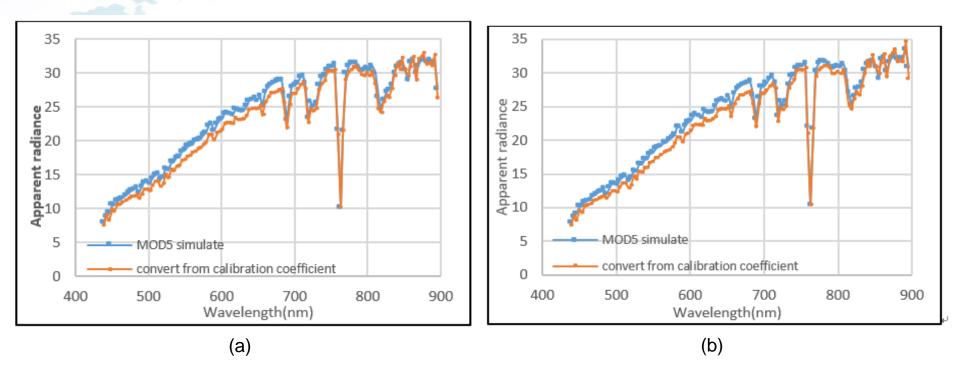
Irradiance-based method use for satellite sensor

$$\rho^* = \rho_a + \frac{e^{-\alpha_s}}{1 - \alpha_s} \cdot \rho(1 - \rho_s) \cdot \frac{e^{-\alpha_s}}{1 - \alpha_v}$$

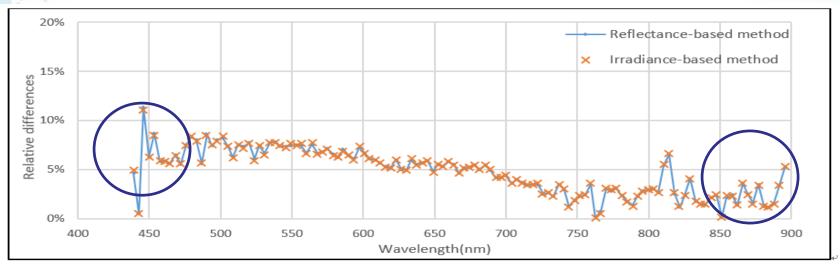

Irradiance-based method use for UAV sensor

$$L = L_a + \frac{\rho}{1 - \rho S} \cdot \frac{E_0 \mu_s}{\pi d^2} \cdot \frac{(1 - \rho_c S) e^{-\delta/\mu_s}}{1 - \alpha_s} \cdot T(\theta_v)$$

- Only the total transmittance of the solar path was substituted,
- The total transmittance of the view path was not change.

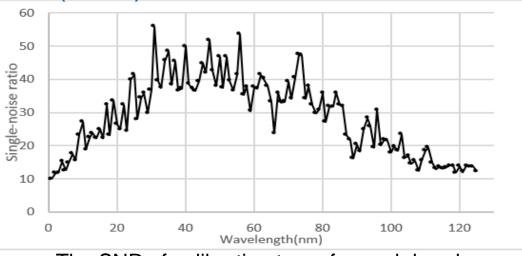

Calibration_coefficients_:

The calibration coefficients (gain) for the reflectance-based and the irradiance-based methods and their relative difference

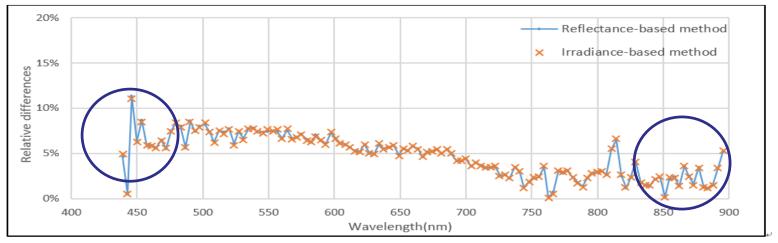

The apparent radiances of the runway cement:

The apparent radiances of the reflectance-based(a) and the irradiance-based method(b)

The different wavelength ranges:

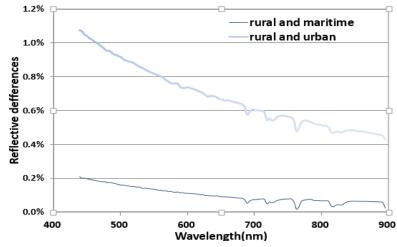


The relative differences for the reflectance-based and the irradiance-based method


Band .	Wavelength range(nm)॰	Average for the reflectance- based method	Average for the irradiance- based method.
1~17~	400~500	6.71‰	6.62%
18~58.	501~650	6.59%	6.57%
60~125	651~900	3.09‰	3.09‰
+2	Total bands₀	4.74‰	4.72%

The average relative differences for the different wavelength ranges

The SNR of calibration traps for each band

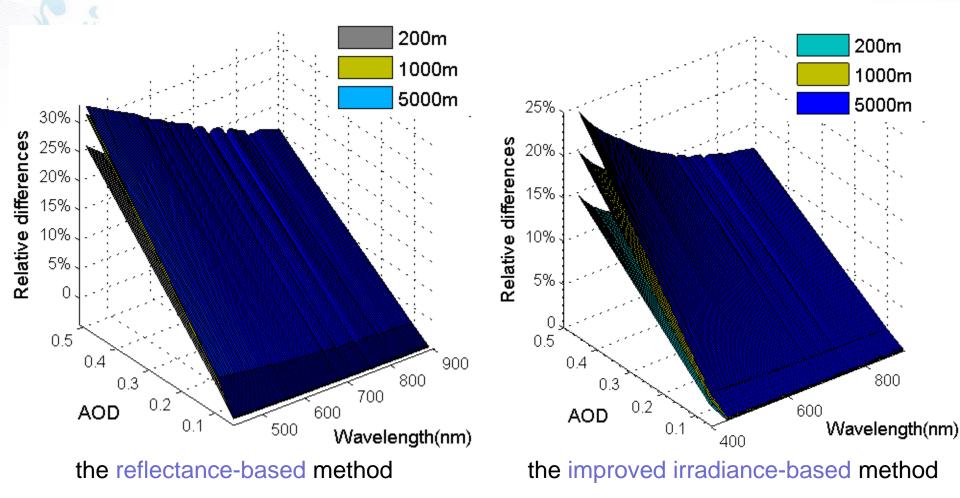


The relative differences for the reflectance-based and the irradiance-based method www.radi.cas.cn

Analysis of uncertainty :

The relative differences for the Different aerosol type hypothesis(a: reflectance-based method; b: irradiance-based method

Source	Uncertainty (%)-	4	Source	Uncertainty (%)₀	
Ground reflectance measurement.	2.1.	÷	Ground reflectance measurement.	2.1.	
Optical depth measurement	1.1_{c}	+	Optical depth measurement.	1.1_{\circ}	
Absorption computation.	1.3.	4	Assumption of aerosol type-	0.53	
Assumption of aerosol type.	0.40		Inherent code accuracy.	0.60	
Vertical distribution.	1.00	*	Uncertainty in the value of	0.1.	
Inherent code accuracy.	0.6.	*	μ_{s}	0.15	
Uncertainty in the value of $\mu_{z^{o}}$	0.2.	*	Diffuse-to-global irradiance measurement.	1.0.0	
Total uncertainty (root sum of squares).	3.0	é	Total uncertainty (root sum of squares).	2.69	


Estimated uncertainty reflectance-based method

Estimated uncertainty irradiance-based method

www.radi.cas.cn

S. F. Biggar, "In-flight methods for satellitesensor absolute radiometric calibration," 1990.

The average relative differences between two aerosol types for each case of all bands

+7	reflectan	reflectance-based method (%)₊≀			e-based met	hod (%)₽
o	5000m₽	1000m₄ [,]	200m.	5000m₽	1000m.	200m
AOD 0.05₽	0.79₽	0. 68₽	0.57₽	0. 29₽	0.19₽	0.10
AOD 0.14	4.060	3. 48₽	2.93₽	1.57₽	1.030	0.560
AOD 0.5₽	28 . 78₽	26 . 09₽	21.720	16. 32₽	12 . 92₽	8.940

The improved method has lower relative differences for each case

- With the increasing of height and AOD, the effective is more obvious
- When the AOD is small, this effective is not obvious due to the little impact of aerosol on the radiance transfer.

Conclusion

- We present an improved irradiance-based method which is considered the different of radiative transfer path between the UAV and satellite.
- According to the characteristics of the UAV platform, compared with reflected-based method, the improved irradiance-based method can ensure the calibration accuracy more reliable and more suitable for UAV sensor vicarious calibration.

Thanks!

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Add: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China Tel: 86–10–82178008 Fax: 86–10–82178009 E-mail: office@radi.ac.cn Web: www.radi.cas.cn