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Summary

■ Introduction

■ The PARASOL instrument

■ Methodology to derive the observed BRDF

■ BRDF model derived from PARASOL measurements

■ Modeling of DCC

■ Analysis on the principal plane – comparison Measurements // Computations

■ Sensitivity analysis

■ Conclusion 



Introduction

■ DCC are used for many years for calibration purposes 
■ not only trending, but also cross-calibration, interband, field-of-view 
■ GSICS reference calibration methods
■ that’s my powerful white diffuser (see Fougnie et al., IEEE TGARS, 2009)

■ PARASOL is an instrument allowing a bidirectional characterization of any 
targets of the Earth-surface system

■ because DCC were used for PARASOL calibration purposes, an archive of CC 
observations was build and is available (8-years)
■ it can be used to characterized BRDF of DCC

■ Model and radiative transfer computations are also possible
■ also developed for calibration purposes
■ can be used to derive BRDF and compare with measurements



The PARASOL Instrument

POLDER instrument onboard PARASOL : Dec 04 to Dec 13
 Camera = wide fov optic + CCD matrix

 2D detector array 274x242 pixels
 fov : ±50° incident angle (i.e. ±60° viewing angle)
 Large swath: 2200 km for POLDER, 1400 km for Parasol
 Moderate resolution : about 6 km

 Multidirectionality : bidirectional + wide fov
 Multispectral and multi-polarisation

2000 km 
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1400 km 
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device



Geometrical sampling

■ Access to bidirectional geometries
Blue/green = viewing directions
Yellow = solar directions

VZA,SZA in [0-
70°], step 10°

1 daily overpass = 
16 viewing angles
1 solar geometry

1 cycle = 16 tracks (days)
16x16 viewing angles
16 solar geometries

2005-2008 
Archive

(one lat/lon)

2005-2012 
Archive

(orbital drift
+ multiple lat/lon)



The Mean DCC

■ Database = full archive 2005-2012
■ Assume a « mean DCC » : 
BRDF depends on :

* Cloud particle type
* Cloud optical thickness
* Cloud structure

hypothesis = all selected pixels always observe the same « mean DCC »
All viewing directions are covered 

 1 pixel = 16 views per track
 N pixels = Nx16 views per track
 16 tracks per cycle 

All solar angles are covered :
 along the year : from 15 to 45°

 orbital drift after 2009 = access to large angles, up to 60°



■ How suitable DCC are selected for PARASOL (not TIR bands) :
Operational procedure : every month, acquisitions are collected over 

• oceanic sites in Guinée et Maldives
• ρnua>0.7, neighborhood (5x5) < , 400<Papp< 50hPa 
• "nadir/zenith" geometries : θs<30° et θv<40° (avoiding shadow)

– This nadir/zenith geometry is for calibration purposes -> here extended to all 
available angles

Selection of DCC – The perfect storm 



Methodology – construction of a mean DCC
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 A BRDF structure is initialized with
2°x2° bins for VZA and RAA
 10° range for SZA : [20°;30°], [30°;40°], [40°;50°], [50;60°] (to few for 

[0°;20°])
 All Measured reflectance from the archive (all geometries, all dates) is stored in 

its corresponding (VZA, SZA, RAA) box
BRDF assumed to be symetrical to principal plane, i.e. 0°<RAA<180°

 For each box and each wavelength, are computed :
 mean TOA reflectance
 standard-deviation
 number of pixel per bin

 Visualization : polar plot Spec. Back.



■ 30° < SZA < 40°

Exemple for 670nm

BRDF = 10 to 15%
Stddev = 6 to 8%
Npix = 100 to 600



Solar range

Maximum moves with SZA



Spectral

« white » for VIS
15% decrease for NIR
Lower BDRF for NIR



■Hu et al. model (2004) : used by GSICS for cross-calibration over DCC 
 based on broadband CERES data collection 
 extrapolated to narrowband using a non linear regression neural network 
 paramaters are taken from hualb.data file (reference GSICS)

Modeling DCC

■Lafrance et al. model (2002) : used by CNES for 
calibration over DCC
 based on Discrete Ordinate Code – narrowband 
 16 layers, droplet in 1-6km, ice in 6-15km, 

molecular scattering + aerosol background 
• DCC are very white for VIS (most of contributors are minor)
• cloud particle type (CPT) and cloud optical thickness (COT) are 

the dominant parameters
 CPT

• Historical CPT : plate and hexogonal crystals based on Macke et 
al. (1996)

• Revised CPT : RHM (Rough Hexagonal Monocrystals) derived by 
Labonnote et al. and based on Hess et al. reference (1998)



■ SZA=25° (largest effect) for 670nm
 PARASOL measurements : BRDF from the mean DCC
 Plate and RHM for a COT=140
 Hu model

 Excellent consistency between RHM and Hu
 Good consistency with measurements for VZA>45°
 Some differences for large angles 

Analysis on the principal plane

Normalized at nadirNormalized / Fit



■ SZA=45° for 670nm
 PARASOL measurements : BRDF from the mean DCC
 Plate and RHM for a COT=140
 Hu model

 Excellent consistency between RHM and Hu
 Good consistency with measurements for VZA<40°
 Some differences for large angles

Analysis on the principal plane

Normalized at nadirNormalized / Fit



■ The reflectance and BRDF properties
may vary with :

Sensitivity analysis (from Fougnie and Bach, 2009
and Lafrance et al., 2002)

COT - Optical Thickness

CPT – Particle type



■ Cross-calibration strategy :
- at a given date & geolocation // COT and CPT are given by the actual geophysics
- exact simultaneity, i.e. solar and viewing geometries, is not always possible
■ Behavior versus VZA for SZA=25° and 45°and for 16 COT 
 computed at 670nm for CPT=RHM (principal plane)

Sensitivity analysis

COT



■ Optimisation for Cross-calibration 
- A crescent (RAA//VZA) could to be preferred

Sensitivity analysis – The Crescent BRDF

θs=25° θs=35° θs=45° θs=55°

• moderate variation with both SZA and VZA

• toward the backscattering half-space 
and/or large viewing angles

• doesn’t simply correspond to the 
backscattering direction



■A first DCC BRDF characterization based on the mean TOA observation by 
PARASOL was derived 

■Comparison with reference model (Hu) and computations show :
 A very good consistency between measurements and computation
 This is a statistical mean observation, BDRF may depend on various parameters
 Here 490/670/865 are presented

• 565, 763, 765, 910, 1020 available but sensitive gaseous absorption, straylight for 443

■Main difference between measurements & modeling
 MODEL : Assumption of a flat homogeneous level for cloud
 MEASU : roughness of the DCC, shadowing effects
 SZA variation can be correlated to seasonal change of microphysics (CPT)

■Recommandation for cross-calibration purposes is to select the most isotropic
part of the BRDF 
 avoid geometries around the specular direction, ideally prefer « the crescent » (large 

angles on the backscattering half space)

Conclusion
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Computation using Discrete Ordinate Code (from Fougnie and Bach, 2009
and Lafrance et al., 2002)

Wavelength

COT - Optical Thickness

CPT – Particle type

Geometry

Reference case : 
CPT=Plate
COT=200
ts=20°
Phi=45°
670nm 



How lambertian are DCC – Spectral Ratio 

Reference case : 
CPT=Plate
COT=200
ts=20°
Phi=45°
670nm 

VIS :
 no effect 

NIR :
 sensitive to
COT & CPT
but no angular 
variation 

Computation using Discrete Ordinate CodeSpectral ratio = λ/670
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