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ABSTRACT 

Ranking Score Vectors 

of Tournaments 

by 

Sebrina Ruth Cropper, Master of Science 

Utah State University, 2011 

Major Professor: Dr. David Brown 
Department: Mathematics 

 Given  , a tournament on   vertices, Landau derived a method to determine 

how close   is to being transitive or regular.  This comparison is based on the tournament’s 

hierarchy number,   ̅, a value derived from its score vector  ̅  (       ).  Let   be the set of 

all score vectors of tournaments on   vertices with the entries listed in non-decreasing order.  A 

partial order, poset, exists on the set   using the following binary relation.  Given  ̅  ̅    such 

that  ̅   ̅, let  ̅   ̅ if ∑   
 
    ∑   

 
    for         and ∑   

 
    ∑   

 
   .  Let this poset 

be represented as  ( )  (   ) where   {( ̅  ̅)           ̅   ̅}.   The value   ̅ can also 

be used to define a partial order on the set   where  ̅   ̅ if   ̅    ̅ .  I propose that this new 

poset is an extension of the poset  ( ).  This can be proven using a method of comparing score 

vectors algebraically equivalent to Landau’s hierarchy method.  Specifically, ∑   
  

    ∑   
  

    

if and only if   ̅    ̅.  Furthermore, I conjecture that extending this method to compare  ̅ and 

 ̅ using ∑   
  

    for     will always yield an extension of  ( ), and that there exists some 

integer   dependent on   which will result in a linear extension of  ( ). 

(70 pages) 
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 CHAPTER 1  

INTRODUCTION TO TOURNAMENTS 

A Graph is a way to describe a collection of objects   and a binary relation   between 

the objects.  It is typically written as   (   ) where   is the set of objects or vertices and 

  {(   )             } is the set of edges present.  See the examples below. 

 

 

 

 Figure  . Simple graph on   vertices 

 

  

 

 Figure  . Simple, complete graph on   vertices 
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Both are examples of simple graphs on   vertices, where no more than one edge exists 

between any two vertices, and where (   )   , or there are no loops in the graph.  Figure   is 

an example of a complete graph, where an edge exists between every pair of vertices.  A 

complete graph on   vertices is typically written as    and has ( 
 
) edges. 

Directed Graphs, or Digraphs, are graphs such that the binary relation   implies an 

ordering of the two vertices or a beating of one vertex by another.  The notation is similar with 

  (   ) being the digraph,   being the set of vertices, and   {(   )             } 

being the set of arcs.   Verbally, when (   )   ,   is said to ‘beat’  .  A Tournament   is a 

simple, complete, digraph, getting its name from the idea of a Round-Robin Tournament and the 

relation among its players.  It is simple as only one game result between any two players is 

recorded and no player competes with itself, complete as every pair of players compete against 

each other, and directed as there are no ties allowed, there is always a ‘winner’ given any two 

players.   

Tournaments contain a vast amount of structure.  As such, when discussing various 

topics relevant to graphs in general, we find certain patterns emerging once they are applied to 

tournaments.   Paths and cycles are two such topics.  A path of length   in a graph is a sequence 

of   unique vertices            such that (       )    for          .  Similarly, a 

directed path of length   in a digraph is such a sequence where         for          .  

There are as many paths of length one as there are edges (arcs) in the graph (digraph), so paths 

of a specified or a maximal length are typically sought for.  A path or directed path of length  , 

where all   elements in the graph are represented, is called a Hamiltonian path.  A graph 

containing such a path is said to be, not surprisingly, Hamiltonian.  When it comes to 

tournaments, every tournament on   vertices contains at least one Hamiltonian path.  That 

being the case, for any two vertices   and  , there is always a directed path such that 
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            or            , being some subset of the elements on the 

Hamiltonian path with      . 

What other significance do paths play in tournaments?   If, for any two vertices   and   

in a tournament  , there not only is a directed path from   to  , but there also exists a directed 

path from   back to  , then   is said to be strongly connected or strong.  Though all 

tournaments contain at least one Hamiltonian path, not all tournaments are strong.  That leads 

us to the next topic.  If we can ‘travel’ from   to   then back to   again, we’ve completed a 

cycle.  A cycle of length   in an arbitrary graph is a sequence of unique vertices            

such that (       )    for         where      .  A directed cycle of length   follows 

similarly along the implied direction.  Discussing the length of a cycle as we did for a path leads 

to the possibility of a cycle of length   or a Hamiltonian cycle.   

Theorem  .  A Hamiltonian cycle exists on a tournament   if and only if   is strong [1].   

Specific types of vertices begin to stand out in a tournament as we consider possible 

paths and/or cycles.  A source is a vertex   such that all     arcs connected to it originate from 

 , or it beats every other vertex in the tournament.  Note it is impossible to have more than one 

source as one will have to beat the other.  A vertex   is a sink if all     arcs connected to it 

end with  , or it is beaten by every other vertex in the tournament.  Similarly, there can be no 

more than one sink in a tournament.  If a tournament has a source (sink), then any path it is on 

will begin (end) there, with no possibility of the said vertex being contained in a cycle.  Such a 

tournament cannot have a Hamiltonian cycle, hence the tournament is not strong.   

The converse of this statement is not true as it is possible to have a tournament that is 

not strong that contains neither a source nor a sink.  The smallest   for which this occurs is 

   , and this tournament is represented in the figure below. 



4 
 

 

 Figure  . Tournament on six vertices that is not strong and contains no source or sink 

 

 

The fact that this tournament is not strong can be verified in different ways.  Consider 

the three vertices on the bottom left of the tournament, which constitute a  -cycle.  It is 

impossible for those   vertices to be on a cycle of length   or greater as none of them beat any 

of the other vertices in the tournament.  Since there is no Hamiltonian cycle on this tournament, 

it is not strong.   

After considering a source, which beats every other vertex directly in exactly one step, it 

may be natural to consider a vertex   that beats all other vertices in one or two steps. That is, 

let   be a vertex such that for all other     either     or      s.t.      .  Landau 

was one of the original pioneers in studying tournaments in the 1950’s and defined several key 

concepts, including this one [10]. Such a vertex is often described as a king in a tournament.  

This slight change in the number of steps necessary to take in order to beat all other vertices 

makes a huge difference as to whether or not such a vertex exists.  As stated previously, a 
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source may or may not be present in a tournament, whereas it can be verified that every 

tournament contains at least one king [10]. 

In generalizing the idea of the number of vertices a given vertex beats directly, other 

definitions and notations may become helpful.  Given a vector  , its outset { } consists of all 

    s.t.     and its inset { }  is all     s.t.    .  The cardinality of these sets is 

described as the vertex’s outdegree   ( ) and indegree   ( ), respectively, and sums up to the 

total degree of the vertex,    .  The outdegree of a vertex   is often referred to as its score.   

Considering the score of each vertex separately, we can write that information as a 

vector called none other than the tournament’s score vector  ̅  (       ).  For the purposes 

of this paper, the scores will be listed in non-decreasing order.  A score vector can be 

constructed for any digraph; but with a tournament, we benefit with additional information 

given the structure present.  As a tournament is a complete digraph on   vertices, the total 

number of arcs is ( 
 
).  Using the notation above, that gives ∑   

 
    ( 

 
).  Clearly, the values of 

a score range between   and (   ).  Landau gave further constraints for a score vector on a 

tournament [10]. 

Theorem  . A vector of non-negative integers,  ̅  (       ), is a score vector for a 

tournament on   vertices if and only if ∑   
 
    ( 

 
),        , with equality for    . 

Score vectors have been studied extensively and varying results have come of it.  One of 

note gives constraints on a score vector representing a strong tournament, hereafter referred to 

as a strong score vector.  This was done by Harary and Moser in 1966 [5]. 

Theorem  . A score vector is strong if and only if ∑   
 
    ( 

 
)    for           , 

with Landau’s requirement of ∑   
 
    ( 

 
) for    .   

We can now verify that the tournament given in Figure   is not strong using this 

requirement.  The tournament’s score vector is  ̅  (           ).  The summation of the first 
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three terms, ∑   
 
     , is clearly less than the necessary ( 

 
)     .  This result coincides 

with the reasoning given above for it not being strong.  At least one of the   vertices in question 

would need to beat an additional vertex out of the  -cycle, increasing its score by one value, and 

allowing a Hamiltonian cycle to occur. 

 We will now turn our attention to a different type of relation given a set  . 
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CHAPTER 2 

INTRODUCTION TO POSETS 

A Partially Ordered Set, or a Poset, consists of a set of elements   coupled with a binary 

relation   which is reflexive, anti-symmetric, and transitive.  Given        , the binary 

relation   is reflexive if         .  It is anti-symmetric if for    ,        .  It is 

transitive if            .  The poset is typically expressed as   (   ), where 

  {(   )             }. When (   )   ,     or     is written.  Two elements are 

said to be comparable,    , if they relate to each other, and incomparable,    , if they do 

not.  There are some sources which use the definition of an irreflexive rather than reflexive 

binary relation.  That is,         .  For the purposes of this paper, we will use definitions 

and notations consistent with [16]¸ and specify whether the poset in question is reflexive or 

irreflexive.  We will also assume throughout that   and   are elements of   such that    . 

Given an element    , it is a maximal element if      such that    .  Similarly, 

    is a minimal element if      such that    .  Neither a maximal element nor a 

minimal element is necessarily unique, but they will always exist in a finite poset.  An element 

    is a maximum element if for all other    ,    ; and it is a minimum element if for all 

other    ,    .  Note that for maximum and minimum elements, uniqueness is implied by 

definition, and they may or may not exist in a given poset. 

Given    , a non-empty subset of the elements of the poset, the poset relation can 

be restricted to the elements in  .  This results in the subposet (   ( )).  Being a subposet, 

ideas relevant to posets can similarly be talked about in (   ( )).  In addition to the topics of 

maximal, minimal, maximum and minimum elements, upper bounds and lower bounds can be 

discussed.  An element     is an upper bound for a non-empty subset     if         .  

It is considered the least upper bound if      where    is any upper bound for the subset.  
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Likewise,     is a lower bound for   if          and it the greatest lower bound if for all 

other lower bounds   ,     .  Similar to maximum and minimum elements, least upper bounds 

and greatest lower bounds are by definition unique.  A poset is called a lattice if every subset 

    has both a least upper bound and a greatest lower bound.   

 Looking at the structure of the poset as a whole, it is called connected if there is a finite 

sequence of comparable elements between any two given elements.  That is,       , there 

exists a sequence of distinct elements         such that     ,     , and         for 

         .  There need only be a comparability between two adjacent elements.  This 

sequence of elements is not necessarily a transitive sequence between   and  . 

 Given two posets (   ) and (   ), how can they be compared to one another? If there 

exists a function       such that       in (   ) implies that  (  )   (  ) in (   ), then 

  is said to be an order preserving function.  Similarly, the two posets are said to be isomorphic if 

there exists a bijection       such that       in (   ) if and only if  (  )   (  ) in 

(   ).   

Visually representing a poset as a graph is an important tool and can be done by having 

the vertices of the graph represent the elements of   and the edges between them illustrate 

their comparability, or lack thereof.  The most common method is given two elements   and   

where (   )   , an edge exists between them in the graph if and only if      such that 

     .  That is to say,   is covered by  .  Since   is a transitive relation, this minimizes the 

amount of edges necessary to represent in the graph.  Orienting the graph so the relation is 

pointed upwards with the minimal elements towards the bottom and the maximal elements 

towards the top allows the relation to be seen more clearly.  This is referred to as its Hasse 

diagram.  Below are some examples of posets with their accompanying Hasse diagrams. 
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Example  .   (   ) is a poset given that   is a finite set of integers with (   )    if 

  is a divisor of  .  This fits the definition of a poset that is reflexive (every integer is a divisor of 

itself), anti-symmetric (given any two distinct integers   and   such that   is a divisor of  ,   is 

certainly not a divisor of  ), and transitive (if   is a divisor of   and   is a divisor of  , then by 

virtue of division,   is a divisor of   as well).  Below is a specific example of such a poset. 

Let   {                  }, then   {(   )      (   )      (   ) (    )  

(    ) (    ) (   ) (   ) (    ) (    ) (    ) (    ) (    ) (    ) (    )  

(    ) (     ) (     )} 

 

 

 

Figure  . Hasse diagram for Example   

 

 

Example  . Given an   element set  , the family of all possible subsets of   coupled 

with the relation of set inclusion is a poset.  This also satisfies the reflexive, anti-symmetric, and 

transitive properties of posets. 

Let   {   }, then   {(   ) ({ } { }) ({ } { }) ({   } {   }) (  { }) 

(  { }) (  {   }) ({ } {   }) ({ } {   })} 
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{   } 

 

  

Figure  . Hasse diagram for Example   

 

 

Chains and Antichains 

 Chains and Antichains are fundamental structures in posets.  A poset or a subposet is 

called a chain if all the elements are pair-wise comparable.  Similarly, a poset or a subposet is 

called an antichain if all the elements are pair-wise incomparable.  Certain types of chains and 

antichains are worth mentioning.  Given a poset   (   ), the set of all its chains coupled 

with the relation of set inclusion is itself a poset.  A chain   is considered a maximal chain if it is 

a maximal element in this new poset, i.e. it is not contained in any other chain by set inclusion.  

Different than the maximum element of a poset,   is a maximum chain if its cardinality if 

maximum.  That is, if it contains the maximum amount of elements found in any chains.  A 

maximum chain is not necessarily unique.   

 Maximal and maximum antichains are defined similarly.  Given a poset   (   ),   is 

a maximal antichain if it is a maximal element in the poset consisting of all antichains with the 

relation of set inclusion.  It is a maximum antichain if it contains the maximum amount of 

elements represented in any antichain.  Again, neither is necessarily unique.  Note that minimal 

chains and minimal antichains are not specifically defined as any individual element can be 

{ }  { }  



11 
 

considered as such.  The height of a poset is defined to be the cardinality of a maximum chain 

while its width is the cardinality of a maximum antichain.  When a poset is represented using its 

Hasse diagram, these definitions have structural meaning as well.  Two important theorems 

regarding chains and antichains are given below [3]. 

Theorem  . Given a poset   (   ) with height  , there exists a partition of the 

elements of   into   antichains           . 

The number of antichains into which   can be partitioned is certainly no smaller than   

and is no larger than the cardinality of   itself.  This theorem shows the existence of exactly   

antichains and can be proved by construction.  Let    be the set of maximal elements in the 

poset.  These constitute an antichain as no two are comparable.  Next, define    to be the set of 

maximal elements in the subposet     .  This process continues down the height of the entire 

poset, until only the antichain    remains. 

Theorem  . Given a poset (   ) with width  , there exists a partition of the elements of 

  into   chains,           . 

The number of chains can be no fewer than the width   and is bounded above by the 

number of elements in  .  This theorem proves the existence of a partition into exactly   chains.  

The proof is by induction on the cardinality of the set  .   

Linear Extensions, Realizers, and Dimension 

Given a poset   (   ), the poset   (   ) is an extension of   given that if     

in  , then     in  .  In other words,    .  Notice it is possible to have a relation       in 

  without the same relation being present in  .  Construction of a new poset is possible where 

the elements are all the extensions of   (   ), including   itself.    is the minimum 

element, and the maximal elements of this poset are called linear extensions.  Equivalently, one 

may also see written that   is an extension of  .   
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Linear extensions are of great interest when studying posets for the following reason.  

Consider the set of all linear extensions,  ( ).  The intersection of all these linear extensions of 

  is exactly   itself.  A fairly simple conclusion, but it has far reaching applications.  By definition, 

if you were given a family of   linear orders on the set  ,   {       },   is said to be a 

realizer of the poset relation   if      .  Note that this can only happen if    ( ).  

Therefore, we can talk of some subset of linear extensions which realize the entire poset 

relation  .  Linear extensions that realize   are of great interest as they are fairly easy to store 

and convey all the relations for the entire poset.  The smallest value of   for which this occurs is 

called the dimension of the poset, often written as    ( ).  Below are two theorems regarding 

dimension of a poset [16]. 

Theorem  . Given a poset   (   ) and   {       }, a family of linear extensions 

of  , the following statements are equivalent. 

i.   is a realizer of   

ii.       

iii.        such that    ,      (   ) with         such that     in    

and     in    

iv.        such that    ,    with       such that     in    

Showing the existence of such a linear extension described in part iv. is a way often used 

to show that a list of linear extensions is in fact a realizer. 

Theorem  . Given a poset   (   ) with a non-empty subset    , the dimensions 

of the poset and subposet are such that    (   ( ))     (   ).  

This is easily verifiable as given a set of   linear extensions that realize (   ), it must 

also be a realizer of the subposet (   ( )) once it is restricted to the elements of  .  There may 
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be fewer linear extensions of   which realize  ( ), but the minimum number of them can be no 

more than  . 

The dimension of a poset is, not surprisingly, dependent on the internal structure of the 

poset.  Before concluding, some basic examples of posets and their dimensions may be of 

interest to note.  A poset has a dimension of   if and only if it is a chain.  An antichain with   or 

more elements has a dimension of  .  This can be seen as any linear ordering of the elements in 

the antichain can serve as one of the linear extensions in the realizer.  An exact reversal of this 

ordering can serve as the second.  There have been numerous methods proposed to determine 

upper or lower bounds on the dimension of a poset.  One of significance is that the dimension of 

a poset   (   ) must be less than or equal to the width of the poset [3]. 
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CHAPTER 3 

INTERNAL RANKING OF A TOURNAMENT 

Since we are looking at ‘tournaments’ with various real-life examples and the rich social 

use of the word in sporting events, etc., it may not be too surprising to find the question asked, 

“So, who won?”  People tend to rate objects to better understand information that may be 

present in a complex system, or even to compare it with other similar structures.  The answer to 

the question, however, is not so simply put and requires a context to compare the objects in.  

We will discuss some of the methods that have been explored in an attempt to rank the vertices 

of a tournament. 

Kings 

Let   be a tournament on   vertices.  From what we know of tournaments so far, a 

source would certainly be an ideal ‘winner’ of   having beaten all other elements in the set.  

However, as not all tournaments contain a source, it may fall short of being ideal in a general 

setting, depending on how often a source is present in a tournament.  Maurer gives an excellent 

paper [11] which summarizes basic theorems that have been developed regarding kings and 

touches on the question at hand.  The answer to how often a source exists in a tournament can 

be found using probability.  If we make the assumption that given any two vertices    and    

the probability of       is equally as likely as      , that is the probability of either event 

occurring is equal to 
 

 
 , then all  ( 

 )possible orientations of arcs in a tournament are equally 

likely.  This allows us to refer to a random tournament, a tournament on   vertices with any one 

of these equally possible orientations.  The proof of the following theorem uses probability and 

is also given in [11].   
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Theorem  .  Given  , a random tournament on   vertices, the probability of   

containing a source goes to   as   goes to  .  

Let   be a random tournament with the vertex set   {       }, and let    be the 

event that    is a source for        .  As a source beats all other     vertices, the 

probability of    occurring,  (  ), is equal to the probability of having all     of these arcs 

oriented in such a manner.  That is,  (  )  (
 

 
)
 
(
 

 
)
 
 (

 

 
)
   

 (
 

 
)
   

 for        .  As a 

tournament can have no more than one source, the probability that   contains a source is equal 

to  (          )  ((
 

 
)
   

)
 
 ((

 

 
)
   

)
 
   ((

 

 
)
   

)
 

  (
 

 
)
   

 or 

equivalently 
 

    .  The limit of this expression as     is equal to  .  

As sources do not occur often enough, finding the ‘next best object’ seems a reasonable 

solution, and a king fits the bill.  Recall that a king beats all others vertices in one or two steps, 

and every tournament contains at least one king.  Given this information, a logical approach to 

rank the players in a tournament      would be to find the said king, proclaim it the overall 

winner, and then consider the remaining     vertices.  The structure we are left with after 

deleting the initial vertex is itself a tournament on     vertices.  Let’s call it   .  Being a 

tournament, it also contains a king.  Find that king, label it as the 2nd place winner, and then 

consider the tournament on the remaining     vertices, and so on.  This process continues 

until we are left with   remaining element, vacuously the ‘winner’ of its own tournament   , but 

last in the ranking of the entire vertex set.   

Not a terribly complicated algorithm except for one detail.  What if there is more than 

one king in a tournament?  If the number of kings is relatively small, a tweaking of the above 

algorithm could be applied.  Pull out all the kings of    at once and lump them together as the 

first ‘winning class’   .  Consider the tournament          and find all of its kings, labeling 
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that class   , etc.  This continues until all the elements are partitioned into   winning classes, 

        with      .  This would not result in a linearization of the elements, but may still 

be a significant ranking scheme if   is close enough to  .  To linearly rank all the elements, 

another method would need to be devised to distinguish the individual kings in an otherwise 

equivalent winning class.  We now need to determine if the number of kings for a given 

tournament is small enough so this ranking of the vertices has relevance in a general setting.  

Before addressing it directly, note the following theorem.   

Theorem  .  If a vertex   is beat in a tournament, it must be beat by a king [11]. 

For the proof, consider a vertex   which is beat and its inset, { }  {    s.t.    }.  

Since { }  is not empty, it is a sub-tournament which contains a king, call it   .  This vertex by 

definition beats every other element in { }  in one or two steps, by construction beats   

directly and beats every element in the original vertex’s outset { }  either directly or through  , 

again in one or two steps.  Hence,    is also a king for the original tournament, and   is beaten 

by a king. 

The above theorem allows us to begin to determine the number of kings possible in a 

tournament.  A tournament may certainly contain just one king.  That is the case if and only if 

the said vertex is also the source.  A rare occurrence by Theorem  .  Can a tournament contain 

exactly two kings?   

Theorem   . There can never be exactly two kings in any given tournament [11]. 

The proof can be done by contradiction.  Assuming there exist exactly two kings in a 

tournament,    and   , we know one must beat the other.  Let      .  Since    is a king, it 

must beat    in two steps.  That is there exists another vertex    such that      .  Since    is 

beaten, it must be beaten by a king, contradiction as    is the only other king.  Therefore, if 

there is no source, there must be at least three kings. 
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How many kings can exist in a tournament?  Or better yet, what is the most common 

number of kings to exist in a tournament on   vertices?  This answer to this can also be found 

using probability.  Maurer makes use of it in [11] by showing that the probability of a vertex   

not being a king in a random tournament goes to   as   goes to  .  Hence, the probability of all 

vertices in a random tournament being kings goes to   as   goes to  .  This clearly damages the 

relevance of ranking the vertices of a tournament into   distinct classes of kings.  More than 

likely,   will very nearly be equal to  , especially for large values of  .  If a ranking of the 

vertices is still desired, another method will have to be derived. 

Score Vectors 

Another context we have in which to compare vertices is their respective scores.  

Comparing the vertices’ individual scores seems a reasonable way to determine a winner among 

them.  Interestingly, this way of comparing players is rarely sufficient to produce a linear ranking 

of the elements in any given tournament.  There may be two or more of them who share the 

same score.  In fact, the only score vector where each vertex has a unique score value is when 

 ̅  (               ).  This score vector implies a linear ranking of the elements from its 

sink all the way to its source (or vice versa).   

The tournament this vector corresponds to is called the transitive tournament.  Similar 

to the transitive relation described for posets, if         such that     and    , then 

    in the tournament.  Below is a representation of the transitive tournament on     

vertices, along with its score vector. 
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 ̅  (         ) 

 Figure  . The transitive tournament on   vertices 

 

 

Theorem   . Given a tournament  , the following are equivalent [1],[4],[5]: 

i.   is transitive 

ii.   is acyclic (no cycles of any length) 

iii.   has a unique Hamiltonian path 

iv. The score vector for   is (               ) 

v.   contains 
 (   )(   )

 
 transitive triples 

The last statement refers to transitive triples.  That is simply a set of   vertices       

and    such that their relation is transitive,    beats both    and   ,    beats   , and    beats 

neither    nor   .  The number of transitive triples is equal to ( 
 
), the total number of ways to 

consider   vertices at a time.  An equivalent version of this statement is to say that there are no 

cycles of length   in the tournament.   

The transitive tournament is unique in many aspects.  It is the only tournament with a 

linearization of the vertices using the score vector, the only tournament with just one 

Hamiltonian path, and the only tournament structure without cycles of any length present.  This 

is some fairly detailed information regarding one score vector and the tournament it 
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corresponds to.  What other characteristics exist among the set of all possible score vectors?  

Are there any extremes or classifications among them?  There have been algorithms used to 

numerically generate all possible score vectors for a specific  , but let’s consider the varying 

score vectors generally.   

The transitive score vector  ̅  (               ) can be considered as one 

extreme on the continuum of score vectors as each vertex in the tournament has a unique 

score.  These unique score values are the values necessary to attain the lower bound of 

∑   
 
    ( 

 
) for        in Landau’s Theorem.  For all other score vectors, there will always 

be at least two vertices with the same score.  As the multiplicities of a given score value 

changes, the remaining score values and their multiplicities will have to vary as well in order to 

keep with the restrictions of being a score vector.  For example,  ̅  (             ) is 

not a score vector for     as it exceeds the number of arcs possible, ( 
 
).  These varying score 

values and their multiplicities continue to fluctuate until we reach the other end of the 

spectrum.  Here we find each of the vertices having the same score, or nearly the same score as 

the average possible score value 
   

 
.  This is the regular score vector  ̅  (

   

 
 
   

 
   

   

 
) 

when   is an odd integer, and the nearly regular score vector  ̅  (
   

 
 
   

 
   

   

 
 
 

 
 
 

 
   

 

 
) 

when   is an even integer.  The tournaments which correspond to these vectors are similarly 

called regular and nearly regular.   

Between these two extremes sit the vast majority of score vectors.  Among them, there 

is one other type of score vector worth mentioning now, those score vectors which correspond 

to an upset tournament.  A tournament is considered upset if a vertex    beats another vertex 

   such that   (  )    (  ).  A classic example of an upset tournament is found by taking the 
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transitive tournament and creating an arc-reversal so that the former ‘sink’ is now beating the 

former ‘source’.  This tournament is given below for     with the reversed arc bolded. 

 

 

 

Figure  . An upset tournament on   vertices 

 

 

The score vector for this specific tournament on   vertices is  ̅  (         ) and can be 

written as  ̅  (                     ) for   in general.  This score vector has a 

significant place in the set of all score vectors.  Recall that a score vector is strong if and only if 

∑   
 
    ( 

 
)    for           , and ∑   

 
    ( 

 
) for    .  This score vector contains 

the values necessary to attain the lower bound of ∑   
 
    ( 

 
)    for           with 

the other necessary requirement of ∑   
 
    ( 

 
) when    .  Hence, it is often referred to as 

the ‘smallest’ strong score vector. 

So, how many tournaments exist on   vertices?  That depends on how you count.  Is the 

interest in the number of distinct labelings possible given a unique tournament structure, or is it 

in the number of structurally unique tournaments for a given score vector?  For the transitive 

tournament given above, there are        ways to choose a labeling on its vertices.  Similarly, 
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there are    ways to label any given tournament on   vertices.  Considering the vast number of 

labeled tournaments on   vertices, if we were given any two labeled tournaments, how can we 

go about determining if they actually have the same underlying structure?  Two tournaments on 

  vertices,    (     ) and    (     ), are said to be isomorphic if there exists a function 

        such that     in    if and only if  ( )   ( ) in   .  In other words, the vertices 

relate together the same way, call them what you will.   

For the purposes of this paper, only non-isomorphic tournaments will be considered as 

the interest is ultimately in comparing two tournaments which are structurally distinct.  As to 

the other method of counting, it has already been established in the above theorem that the 

transitive score vector represents a structurally unique tournament for any value of  .  For 

       , every score vector relates to a unique non-isomorphic tournament.  For    , 

there can be multiple non-isomorphic tournaments with the same score vector.  As an example, 

when    , there are   unique score vectors representing a total of    non-isomorphic 

tournaments.  The smallest strong score vector  ̅  (         ) represents the tournament in 

Figure   as well as the tournament given in Figure   below.  The score vector  ̅  (         ) 

corresponds to   non-isomorphic tournaments. 

 

 

 

Figure  . Second non-isomorphic tournament with score vector  ̅  (         ) 
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As   increases, the number of non-isomorphic tournaments grows quite rapidly 

compared to the number of score vectors that correspond to them.  Below is a table of values 

listing the number of score vectors and non-isomorphic tournaments for small values of   

[14],[15]. 

 

 

   score vectors  non-isomorphic tournaments 

         

         

          

           

            

               

                 

                      

                        

                             

Table  . Score vectors and non-isomorphic tournaments for          

 

 

For    , the regular score vector  ̅  (             ) corresponds to   non-isomorphic 

tournaments.  This is the first value of   for which more than one structurally unique 

tournament is represented by the regular score vector.  Despite this rapid growth in the number 
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of non-isomorphic tournaments versus the number of possible score vectors, the transitive 

score vector and its accompanying tournament remains unique for all values of  . 

In considering these two extremes on the continuum of score vectors and their 

tournament structures, the transitive score vector gives a linear ordering of all the vertices 

directly, whereas the regular and nearly regular score vectors show us that trying to order the 

vertices based on their individual scores will partition the vertices into, at most, two classes.  

This method of ranking vertices by their scores will not be beneficial for the (nearly) regular 

tournaments, especially for large values of  .  How do the remaining score vectors fair?  Moon 

proved that, considering this spectrum of tournaments from transitive to regular, most 

tournaments are actually strong [12].  That is, most tournaments are more closely related to the 

regular tournament(s) as compared to the transitive one.  That clearly implies less and less 

variety in the individual scores and less relevance in ranking the vertices by their scores.  Yet 

again, a method to rank the individual vertices falls short at being successful for a random 

tournament as there can be several, if not all, vertices with the same score. 

Interestingly, the concept of kings relates to scores of the vertices.  Any vertex with 

maximum score value is also a king [7].  That doesn’t necessarily imply that every king has the 

highest score value possible.  The upset tournament in Figure   is an example where the vertex 

with the minimum score value of   is also a king.  (It beats one vertex directly and the remaining 

vertices in two steps.)  Despite this, there is a connection between the two concepts, so perhaps 

it is not too surprising that they have similar draw backs as a linear ranking mechanism. 

Other Methods 

There have been various other methods proposed to rank the vertices in a tournament, 

the detail of which goes beyond the scope of this paper.  Some attempt to take into account 

attributes that the score values cannot convey.  For example, two vertices may have the same 
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score, but perhaps one of them beats higher ranking vertices than the other.  That could imply 

they are not as equally ranked as the score vector might imply.  Weighted score vectors have 

been used to compensate for such differences among the vertices.  See [2], [8], and [13] for 

further details. 

Though these varying methods of comparing vertices have drawbacks when studying a 

random tournament on   vertices, they can be beneficial for tournaments that are closely 

related to the transitive tournament.  Landau explored possible connections of tournaments 

manifest in social structures with mathematical models and conclusions about them.  The most 

popular real-life example of a tournament is that of a natural chicken coop where a pecking-

order exists.  Given any two hens, one has the ‘authority’ to peck the other, and not vice-versa.  

He found these pecking orders to be very nearly hierarchical, i.e. transitive.  This leads us to the 

next topic of how close a given tournament, or more specifically a given score vector, comes to 

being hierarchical.    
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CHAPTER 4 

LANDAU’S HIERARCHY NUMBER 

In Chapter  , a common issue that continues to surface for a random tournament on   

vertices is that a linearization of the vertices themselves becomes highly unlikely, especially for 

large values of  .  Given a container filled with all random tournaments on   vertices, the 

probability of pulling out one that has all kings, is strong, or has individual scores that are closer 

to 
   

 
 rather than either of the extremes of   or     is extremely high as   goes to  .  Rather 

than being able to determine a ‘winner’ or a ranking of some kind within a random tournament, 

we see an equality emerging among the vertices in the very topics we were hoping to rank them 

by.  However, there is a different type of classification emerging, and that is among the 

tournaments themselves.  I propose this classification can be seen as a poset structure on the 

set of all score vectors, and can be used to compare tournaments with differing score vector 

representations.  This poset will be studied in depth in the remaining chapters.  In the 

meantime, let’s begin by expanding our view to look at the collection of all non-isomorphic 

tournaments on   vertices.   

As   increases, there remain the extremes of two types, the transitive tournament and 

the (nearly) regular tournaments.  For the remaining variety of tournaments in between, the 

vast majority of them are ‘closer’ to the regular tournaments than the transitive one.  What type 

of relations exists among them all?  What kind of ranking scheme can be used to determine how 

close a given tournament is to either extreme?  We will now look at one well established 

ordering scheme based on the tournament’s score vectors. 

Landau derived a method to determine how close a given score vector is to being 

transitive on a scale from   to   [9].  It is called the score vector’s hierarchy index or hierarchy 

number.  Given a score vector  ̅  (       ), its hierarchy number, which we shall write as   ̅, 



26 
 

is defined to be 
  

 (    )
∑ (   

   

 
)
 

 
   .  This value is minimized when the score vector is 

regular, or nearly-regular, and maximized when it is transitive.  Let’s verify these values 

algebraically. 

Regular and Nearly Regular Score Vectors 

When   is odd and  ̅ is a regular score vector,    
   

 
 for all        , hence its 

hierarchy number is found to be equal to zero.  When   is even, the nearly regular score vector 

is equal to (
   

 
 
   

 
   

   

 
 
 

 
 
 

 
   

 

 
).  Half of its scores are 

   

 
 rounded down to the nearest 

integer while the other half are 
   

 
 rounded up.  Since    

   

 
 

 

 
 for all       , its 

hierarchy number   ̅ is equal to 
  

 (    )
 (

 

 
)
 

 
 

    
.  This number approaches zero as   goes 

to infinity.   

Transitive Score Vector 

For the other extreme when  ̅ is transitive, let’s consider the two cases of   being odd 

and even separately.  When        for some integer  , 
   

 
 is an integer and is represented 

in the middle of the vector  ̅  (               ), so that      
   

 
 with exactly   terms 

before and after it.  From this symmetry and the fact the distance between any two consecutive 

terms is  , it can be concluded that for every term after      
   

 
 in the vector, there exists a 

term preceding it in the vector such that they are equidistant to the middle term     .  In other 

words, for        , | (   )   
   

 
|  | (   )   

   

 
|. Thus, ∑ (   

   

 
)
 

 
    simplifies as 

follows:  
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The hierarchy number for the transitive score vector when      for some integer   

can be found similarly.  Since   is even, 
   

 
 is not an integer in the score vector.  However, it is 

still a number such that   of the terms in the score vector are less than it and   are greater than 

it with the same equidistant property as stated above.  So ∑ (   
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   simplifies to: 
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Smallest Strong Score Vector 

After verifying the hierarchy number for the two extremes in the set of score vectors, it 

is interesting to note the hierarchy number for the smallest strong score vector described 

earlier, namely  ̅  (                     ).  In order to do this, the two cases when   
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is odd and when it is even still need to be considered separately.  As this score vector is 

essentially the transitive score vector with the exception of the first and last terms, similar steps 

and assumptions can be made in determining its hierarchy number. 

When        for some integer  , 
   

 
 is an integer and is represented in the middle 

of the score vector so that      
   

 
.  The expression ∑ (   
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   simplifies as follows: 
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When   is even, 
   

 
 is not represented in the score vector.  As the distances between 

the first   terms in the score vector and 
   

 
 are the same for the remaining   terms, the 

expression ∑ (   
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   simplifies in the following manner: 
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Thus, the hierarchy number for the smallest strong score vector is the same whether   

is even or odd and is equal to 
         

 (    )
.  As   tends to infinity, this hierarchy number 

approaches  .  It is interesting that using the hierarchy number, the smallest strong score 

vector, whose tournaments contain a Hamiltonian cycle, hence cycles of all length, is more and 

more comparable to the transitive score vector, the acyclic tournament, as   increases.  Despite 

the structural difference in the tournaments, this is due to the similarities in the score vectors 

themselves. 

Exploring Landau’s Hierarchy Number Further 

 Although comparisons can be made between two distinct score vectors using Landau’s 

hierarchy number, there are obstacles present if the aim is to linearly rank the score vectors 

and/or the tournaments they represent.  The function of mapping a score vector to a hierarchy 

number is not one-to-one.  This begins to be manifest for small values of  .  When     , two 

of the four score vectors,  ̅  (       ) and  ̅  (       ), have the same hierarchy number of 
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]    ̅.  When    , the score vectors 
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 ̅  (         )  ̅  (         ) and  ̅  (         ) all have the same hierarchy number of 
 

 
 

while  ̅  (         ) and  ̅  (         ) both have a hierarchy number of 
 

 
.  This trend of 

having multiple score vectors share the same hierarchy number continues as   increases.  

Although the hierarchy number does not provide a linear ordering among the score vectors, it 

does present some sort of ordering and has a significant relation to an additional ordering 

method that will be discussed later.  For now, we will take it as it is and present an alternative, 

yet algebraically equivalent way of comparing score vectors. 

 Consider again the hierarchy number for a given score vector  ̅  (       ). 
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Given two score vectors  ̅  (          ) and  ̅  (          ) such that  ̅   ̅ and 

their hierarchy numbers are equivalent, that is to say that   ̅    ̅, we can rewrite this relation 

and see an equivalent one that exists between the two score vectors. 
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Clearly, the last terms on both sides of the equation are equivalent and can be canceled 

out.  Similarly, as  ̅ and  ̅ are both score vectors for the same  , we know by definition that 
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∑   
 
    ∑   

 
    ( 

 
).  So the second terms on both sides of the equation are likewise 

equivalent and can be canceled out, leaving the following relation: 

∑  
 

 

   

 ∑  
 

 

   

 

Theorem   . Two score vectors for any given   have the same hierarchy number if and 

only if their respective inner products are equivalent.  That is, their magnitudes are equivalent.   

For purposes later on, it may be helpful to specifically note the following implication. 

Corollary to Theorem   .  

∑  
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CHAPTER 5 

POSET STRUCTURE ON SCORE VECTORS 

In 1934, Hardy, Littlewood and Polya introduced the notion of majorization [6].  That is, 

given two vectors  ̅ and  ̅ such that they consist of elements of   ,  ̅ is said to be majorized by 

 ̅ if ∑   
 
    ∑   

 
    for       with ∑   

 
    ∑   

 
   . 

This method of comparing vectors can be applied to score vectors.  Let   be the set of 

all score vectors on   vertices.  Given two score vectors  ̅  ̅    such that they are listed in non-

decreasing order, let  ̅   ̅ if ∑   
 
    ∑   

 
    for         with equality when    .  

Restricting this relation to score vectors such that  ̅   ̅, and letting  ̅ and  ̅ be incomparable 

otherwise, will define a poset that has an irreflexive, anti-symmetric, and transitive binary 

relation.  Let  ( )  (   ) be the poset where   {( ̅  ̅)           ̅   ̅}.  For notational 

convenience, let   ̅  (∑   
 
    ∑   

 
      ∑   

 
   ) be the summation vector for the score 

vector  ̅  (          ).  Let’s explore some properties of this poset. 

Recall Landau’s Theorem stating that a vector  ̅  (       ) is a score vector for a 

tournament on   vertices if and only if (  ̅)  ( 
 
) for        , with equality for    .  For 

the transitive score vector  ̅  (             ), its summation vector is equal to 

(  (   )   (        (   )) (        (   )  (   ))), which 

simplifies nicely to (( 
 
) ( 

 
)   (   

 
) ( 

 
)).  By Landau’s Theorem, every other score vector 

 ̅   ( ) is such that ( 
 
)  ∑   

 
    ∑   

 
    for all        .  Therefore,   ̅   ̅ and the 

transitive score vector is the minimum element in  ( ). 

Similarly, the maximum element in the poset can be found.  When   is odd, consider the 

regular score vector  ̅  (
   

 
 
   

 
   

   

 
).  The  th term attains the maximal score value 

possible for each        , namely 
   

 
.  This implies that ∑   

 
    is maximized for each value 
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of        .  Thus, for all other score vectors  ̅   ( ),   ̅   ̅ in the poset.  When   is even, 

the nearly regular score vector  ̅  (
   

 
   

   

 
 
 

 
   

 

 
) likewise has the maximal score value 

possible for a score vector in each term.  This implies that ∑   
 
    is maximized for each  , and 

 ̅   ̅ for all other score vectors  ̅   ( ).  Hence, the maximum element in the poset is the 

regular score vector when   is odd and the nearly regular score vector when   is even. 

The score vector  ̅  (                     ) also has an interesting place in 

the poset.  As stated previously, this is the strong score vector whose hierarchy number tends to 

  as   tends to  .  It was also referred to as the ‘smallest’ as ∑   
 
    was equal to the minimum 

value possible for a strong score vector.  Looking at this in the context of the poset  ( ), for 

every other strong score vector  ̅   ( ), ( 
 
)    ∑   

 
    ∑   

 
    for          .  

Therefore, in the subposet consisting of all strong score vectors,  ̅ is the minimum element and 

is well-named as the smallest strong score vector.   

Constructing  ( ) for small values of   may be helpful to determine other general 

characteristics.  Below are figures of  ( ) for          and   with the score vectors. 

 

 

 

 Figure  . Poset on the score vectors with     

 

 

  (     )     (     )      (     )     (     ) 
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 Figure   . Poset on the score vectors with     
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 Figure   . Poset on the score vectors for     
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  (         )     (          )    (         )     (          )  

  (         )     (          )    (         )     (          ) 

  (         )     (          )    (         )     (          ) 

  (         )     (          )    (         )     (          ) 

  (         )     (          )  

 

 

  

 Figure   . The poset on the score vectors for     

 

 

  (           )     (             )   (           )     (             )  

  (           )     (             )   (           )     (             )  

  (           )     (             )   (           )     (             ) 

  (           )     (             )   (           )     (             ) 
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  (           )     (             )   (           )     (             )  

  (           )     (             )   (           )     (             ) 

  (           )     (             )   (           )     (             ) 

  (           )     (             )   (           )     (             ) 

  (           )     (             )   (           )     (             ) 

  (           )     (             )   (           )     (             )  

  (           )     (             )   (           )     (             ) 

 

 

 The transitive and (nearly) regular score vectors are placed appropriately as the 

minimum and maximum elements in each poset.  There is much symmetry to be observed 

elsewhere.  Consider the placement of the non-strong score vectors in the posets, not including 

the transitive score vectors.  That consists of elements   and   in Figure  , elements   through 

  in Figure  , and elements   through   in Figure   .  There seems to be a polarization in the 

posets between score vectors with a source and no sink (the chain along the far left-hand side of 

the posets) and those with a sink and no source (the chain along the far right-hand side of the 

posets).  For the values of   being represented, any two such vectors are incomparable.  This is 

always the case, regardless of  .   

Theorem   . Let  ̅ and  ̅  be score vectors on   vertices where  ̅ has a source and no 

sink, and  ̅  has a sink and no source.  Then  ̅   ̅  in the poset  ( ). 

Let  ̅  (       ) and  ̅  (     ) where     and      .  Consider their 

respective summation vectors   ̅  (    ( 
 
)  (   ) ( 

 
)) and   ̅  (    ( 

 
)    ( 

 
)).  

Since     and (( 
 
)  (   ))  (( 

 
)   ), we know  ̅   ̅ .  
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Let’s turn out attention to the structure around the smallest strong score vector 

 ̅  (                     ).  It was previously determined that  ̅ is the minimum 

element in the subposet of strong score vectors.  This can be verified visually for the elements 

       and   in Figures   through    respectively.  For     and  ,   and   also happen to be 

the maximum elements of the posets.  A consistent pattern occurs directly beneath these 

elements for        and  .  In each case, there is no unique score vector covered by them.    

and   both cover two distinct score vectors while   covers three.  Is this always the case?   

Two distinct score vectors can be made from  ̅  (                    ) for 

    by switching a score value of   between two adjacent entries in the score vector.  Let  

  ̅̅ ̅  (                 ) be made by switching a score value of between the last two 

entries of  ̅, creating a source; and let   ̅̅ ̅  (                 ) be made by switching a 

score value between the first two entries of  ̅, creating a sink.  Depending on which direction 

the score is ‘switched’, a reordering of the entries may be necessary.  Note that   ̅̅ ̅ and    ̅̅ ̅ 

represent two distinct score vectors directly beneath  ̅ in  ( ),  ( ), and  ( ).   

Theorem   . For    , the two vectors    ̅̅ ̅  (                 ) and 

  ̅̅ ̅  (                 ) are score vectors by definition and are less than the smallest 

strong score vector  ̅  (                     ) in the poset  ( ).   

To prove this, consider the two summation vectors    ̅̅̅̅  (          (   
 

) ( 
 
)) and 

   ̅̅̅̅  (          (   
 

)    ( 
 
)) .   Both have exactly one entry that is strictly less than an 

entry in   ̅  (          (   
 

)    ( 
 
)), the (   )st and  st respectively.  These entries are 

exactly equal to ( 
 
), the minimal value necessary to be a score vector.  The remaining entries 

are equal to ( 
 
)   , hence Landau’s criteria for score vectors is met and they are both less than 

the original score vector  ̅. 
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The question remains whether  ̅ covers both   ̅̅ ̅ and   ̅̅ ̅ for any value of  , not just for 

those visually verifiable.  This can be seen as it is impossible for another score vector   ̅̅ ̅ to exist 

whose summation vector can be placed with strict inequality between   ̅̅ ̅ and  ̅ or   ̅̅ ̅ and  ̅, as 

there is a difference of only   between the entries where the inequalities occur.  Therefore, we 

can conclude the following: 

Corollary to Theorem   . For    , the score vectors   ̅̅ ̅  (                 ) 

and    ̅̅ ̅  (                 ) are both covered by the smallest strong score vector 

 ̅  (                     ).  Hence,  ̅ covers at least two score vectors. 

 For  ( ) and  ( ),   ̅̅ ̅ and   ̅̅ ̅ are the only score vectors covered by  ̅.  As   increases, 

this is not necessarily the case.  For    , the score vector   (           ) is also covered by 

 ̅    (           ).  Interestingly,   can also be constructed from   by switching a score 

value of   between two adjacent entries in  .  A switch between the third and fourth entries will 

result in either (           )  (           )   ̅ or (           )   .  For    , the smallest 

strong score vector  ̅  (             ) covers the score vectors  ̅  (             ) and 

 ̅  (             ) in addition to   ̅̅ ̅ and   ̅̅ ̅ constructed earlier.  These vectors can also be 

found by switching a score value of   between adjacent entries in  ̅.  The fact that they are 

score vectors and are covered by  ̅ can be seen by comparing their summation vectors 

  ̅  (                ),   ̅  (                ) and   ̅  (                ), similar to the 

proof of Theorem    and its corollary above.  

It is tempting to generalize and say that such a switch in scores between two adjacent 

entries in the smallest strong score vector,  ̅, will result in either  ̅, or a new score vector 

covered by  ̅; but this is not always the case.  Looking again at the smallest strong score vector 

  (           ) when    , such a switch between the second and third entries in the vector 

will result in (           )  (           )    or the vector (           )  (           )   .  
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In the poset relation,    , but it is not covered by   as      .  The score vector 

  (           ) can similarly be found by switching between the fourth and fifth entries while 

in the poset      .  It does, however, seem consistent that such a switch in score values 

will result in either the original score vector or one that is less than it in the poset structure.  

Theorem   .  Switching a score value of   between    and      for           in 

the smallest strong score vector  ̅  (                     ) will either result in  ̅ or 

another score vector  ̅ such that  ̅   ̅ in  ( ) for    . 

For       or  , the resulting vector will be   ̅̅ ̅  (                 ) or 

  ̅̅ ̅  (                 ), respectively.  By Theorem    and its corollary, we know both 

are covered by  ̅.  For       or  , if    increases in value by  , the resulting vector will be  ̅.  

If    decreases in value by  , the resulting vector will be   ̅̅ ̅  (                     ) 

or   ̅̅̅  (                     ), respectively.  Comparing the summation vectors, we 

see    ̅̅̅̅  (          (   
 

) (   
 

) ( 
 
)) and    ̅̅̅̅  (          (   

 
)    (   

 
)    ( 

 
)) are 

both score vectors by definition, and are less than  ̅ in  ( ).  For          , if    

increases in value by  , the resulting vector will be  ̅.  If    decreases in value by  , the resulting 

vector  ̅ has a summation vector   ̅ such that (  ̅)
 

 ( 
 
), while (  ̅)

 
 (  ̅)  for    .  

Thus,  ̅ is a score vector such that  ̅   ̅ in the poset, and similar to   ̅̅ ̅ and   ̅̅ ̅, is covered by  ̅. 

As a side note, this has to maintain the strictness of dealing with adjacent entries in the 

score vector    and      such that           .  For the smallest strong score vector 

 ̅  (                     ), a switch in values between the first and last entries will 

result in (                 )  (                         )   ̅ or the 

transitive score vector (                 ).  While the transitive score vector is the 

minimum element in the poset,  ̅ is a strong score vector and is greater than  ̅ in the poset.  

When    , this score vector is   (           ). 
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The symmetry of these posets, and the great deal of structure inherent in the score 

vectors will undoubtedly lead to several other generalizations of  ( ).  We will end this chapter 

with a conjecture, based on what is visibly happening in  ( ) for     and  .   

Conjecture  . The subposet, (   ( )), where   is the set of all strong score vectors, is a 

lattice. 
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CHAPTER 6 

 ( ) AND LANDAU’S HIERARCHY NUMBER 

 We will now turn our attention to the connection between Landau’s hierarchy number 

and the poset  ( ) for any  .  Rather than comparing two score vectors  ̅  (       ) and 

 ̅  (       ) using Landau’s hierarchy number exactly, we will compare them using the 

algebraically equivalent method derived in Chapter  , namely their respective inner products 

∑   
  

    and ∑   
  

   .  Visually, the structure of  ( ) has a remarkable correlation to the score 

vector’s inner products which we can see below for          and  . 

 

 

 

 Figure   .  ( ) with its corresponding inner products 

 

 

 

 Figure   .  ( ) with its corresponding inner products 
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 Figure   .  ( ) with its corresponding inner products 

 

 

 

 Figure   .  ( ) with its corresponding inner products 
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 The inner products are certainly smallest for the (nearly) regular score vectors and 

largest for the transitive, corresponding to the   to   scale of the hierarchy number.  For 

         and  , we see that the score vectors in each of the horizontal antichains can be 

represented by the same inner product value.  Is this always the case?   

 Theorem   . Given that  ̅ and  ̅ are two distinct score vectors in the poset  ( ) for 

   , if  ̅   ̅ in  ( ), then ∑   
  

    ∑   
  

   .  

To begin the proof, consider two score vectors for tournaments on   vertices  ̅ and  ̅ 

such that  ̅   ̅ and  ̅   ̅ in the poset  ( ).  Recall  ̅   ̅ in  ( ) if ∑   
 
    ∑   

 
    for all 

values of         with equality for the summations when    .  Since  ̅   ̅, we know 

there must exist at least one value    in {       } such that there is strict inequality or 

∑   
  

    ∑   
  

   .  Let    be the first value and    be the last value in {       } where this 

strict inequality occurs.  As ∑   
 
    ∑   

 
    ( 

 
) by virtue of  ̅ and  ̅ being score vectors, 

    .  Let’s compare the remaining values in the two summation vectors   ̅ and   ̅. 

  ̅  (   ∑  

 

   

   ∑   

    

   

 ∑  

  

   

   ∑  

  

   

 ∑    

    

   

  ∑  

 

   

) 

  ̅  (   ∑  

 

   

   ∑   

    

   

 ∑  

  

   

   ∑  

  

   

 ∑    

    

   

  ∑  

 

   

) 

As      and      are defined as the first and last terms in the summation vectors 

with strict inequality, this implies equality in the summation vectors for           and 

          .  Equalities for specific terms in the score vectors  ̅ and  ̅ will result as well.  

Let’s determine the values of   for which      .  Starting at     (assuming     ), since 

      and             , we know      .  This relation continues up until we reach 

      .  Now starting at     (assuming       ), since ∑   
 
    ∑   

 
    and 



44 
 

∑   
   
    ∑   

   
   , the resulting equation ∑   

 
    ∑   

   
    ∑   

 
    ∑   

   
    implies that 

     .  This relation continues from     down until we reach       .  Therefore,       

for            and for   (    )    . 

Certain inequalities in the score vectors are also apparent.  Since ∑   
  

    ∑   
  

    with 

equality for terms prior to      in the summation vectors,      is also the first term in the 

score vectors such that      .  The last inequality between the score vectors can also be 

determined.  As ∑   
  

    ∑   
  

    with equality for all terms after      in the summation 

vectors, we know that ∑   
    
     ∑   

  

    ∑   
    
     ∑   

  

               .  This coupled 

with the fact that the terms in the score vectors are listed in non-decreasing order, we can 

conclude that:  

                       ( ) 

Finally, ∑   
 
    ∑   

 
    and       for          and            implies:  

∑   
    
     ∑   

    
         ( ) 

Now, let’s compare the score vectors’ respective inner products, ∑   
  

    and ∑   
  

   .  

Since         
    

  for            and           , if the expressions 

∑   
  

    and ∑   
  

    have any possibility of not being equivalent, it will result from values of   

for which            .  In comparing the summations ∑   
     

     and ∑   
     

    , we will 

consider two cases: ( )      , that is there is only one term in the summation vectors where 

strict inequality exists, and ( )      .   

Case ( ):        

                    

 (         )
  (         )
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In comparing the two products          and         , if it can be shown that 

                 , then we can conclude    
       

     
       

 .  From equation 

( ) above, we know that                        .  This leads to rewriting     as 

      and        as         .  Let’s compare the products in question for (a)           

and for (b)          .  That is, when there exists some     such that            . 

(a)           

            (      )     
        

         (     )(     )     
           

Since    , we now know that                  .  This inequality between the two 

products implies that    
       

     
       

 .  Therefore ∑   
  

    ∑   
  

   . 

(b)          .  So there exists some     such that            . 

            (    (    ))     
  (    )    

         (     )(    (   ))     
  (    )    (     ) 

Again, since   and   are both greater than zero,                  .  This inequality 

implies that    
       

     
       

 .  Therefore, ∑   
  

    ∑   
  

   . 

Case (2):       

This case will also compare terms in the expansion of (∑   
    
    )

 
 (∑   

    
    )

 
.  All 

values which are not squares of individual terms in  ̅ or  ̅ will again have a strict inequality, 

leading to the expected relation in the hierarchy numbers.   
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(∑   

    

    

)

 

 ∑   
 

    

    

  ( ∑     

    

      

) 

(∑   

    

    

)

 

 ∑   
 

    

    

  ( ∑     

    

      

) 

Consider the summation of all the pair-wise products of the terms in the score vectors 

from      up to       .  Equation ( ) still holds true; however, we do not know the 

relation between    and    for any given            .  Rather than considering all possible 

cases of inequalities, let us consider the case which maximizes the values in ∑     
    
       and 

minimizes the values in ∑     
    
      .  If we attain the result of ∑     

    
       ∑     

    
       

under these conditions, then any possible case of inequalities would attain such a result as well. 

In the first part of case ( ), we have already seen ∑     
    
       being minimized when 

     .  That is,          attained its smallest possible value when     equaled      .   

Similarly, ∑     
    
       will be minimized when: 

                              ( ) 

The summation ∑     
    
       will be maximized when: 

                              ( ) 

In this extreme setting, since            , it follows that    must be strictly less than 

   for all            .  What is the actual difference between any two such terms?  

Assuming again that             and that                , we can rewrite the 

necessary equivalence of         ∑ (     )
    
       as   (     ) .  Thus   

 

(     )
.   
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Note that this relation may not necessarily exist between any two given score vectors;   

must be an integer, and  ̅ and  ̅ will still have to pass all criteria for being score vectors.  

However, considering this extreme case where ∑     
    
       is as large as possible and 

∑     
    
       is as small as possible, we will be able to make a generalization for all score 

vectors, so long as ∑     
    
       ∑     

    
      . 

Consider the following sum of all pairwise multiples resulting from (∑   
    
    )

 
. 

∑     

    

      

 (     )[   (    (   ))]  (
     

 
) [(    (   ))

 
] 

Simplifying this value will be much easier after making a few substitutions.  Let 

         .  This implies that       
 

(     )
 

 (   )

 
.  Allowing for these 

substitutions, we can rewrite the above as: 

 [   (    
 (   )

 
)]  (

 

 
) [(    

 (   )

 
)

 

] 

  [   
  

 (   )

 
   ]  (

 (   )

 
) [   

  
  (   )

 
    (

 (   )

 
)

 

] 

 (  
 (   )

 
)    

  ( (   )   (    ))    (
  (   ) (   )

  
) 

 (
 (   )

 
)   

  (  (   ))    (
  (   ) (   )

  
) 

Now, consider the sum of all pairwise multiples resulting from (∑   
    
    )

 
. 

∑     

    

      

 (
       

 
) [(     ) ] 
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Using the same substitution for      , this simplifies to: 

(
   

 
) [(     ) ] 

 (
(   )( )

 
) [   

          ] 

 (
 (   )

 
)   

  (  (   ))    (
   (   )

 
) 

Note that the coefficients for    
  and     are equivalent in both products.  If 

∑     
    
       is strictly less than ∑     

    
      , the proof of it will be found in comparing the two 

constant terms 
  (   ) (   )

  
 and 

   (   )

 
, or more specifically, 

(   ) (   )

 
 and  (   ).   

(   ) (   )

 
 

         

 
        

 

 
       (   ) 

Therefore, for any score vectors where                     and       we can 

state the following: 

∑     

    

      

 ∑     

    

      

 

 ∑   
 

    

    

 ∑   
 

    

    

 

 ∑  
 

 

   

 ∑  
 

 

   

 

 By the corollary to Theorem   , either case will result in   ̅    ̅. 
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We now have a connection between the poset relation  ( ) and Landau’s hierarchy 

number.  If a score vector  ̅ is ‘closer’ to the transitive score vector than  ̅ is in the poset 

relation, then that closeness is also represented in their respective hierarchy numbers.   

 Is the converse true?  Interestingly, it is not.  Given  ̅ and  ̅ such that   ̅    ̅, it does 

not necessarily imply that  ̅   ̅ in the poset relation.  For example, consider   (         ) 

and   (         ), score vectors on     vertices.  Looking at their respective inner products 

we see that ∑   
  

          ∑   
  

   .  Clearly      , but     in the poset structure.  

For this example,   does reside in a lower antichain than  , so in some sense it is ‘closer’ to the 

transitive score vector in the poset relation; but that is not reflected in a comparison with  .  

Although the converse is not necessarily true, we can conclude that if two vectors have the 

same hierarchy number,   ̅    ̅, then they must be incomparable,  ̅   ̅.   

We will conclude this chapter with a final observation and conjecture regarding the 

inner products of the score vectors and their placement in the poset  ( ) for        .  

Looking back at the figures, in addition to the score vectors residing in a horizontal antichain 

having the same inner products, the values of those inner products have a constant difference 

of   between adjacent antichains. 

Conjecture  . There is a difference of   between the inner products of score vectors in 

two consecutive horizontal antichains in the poset  ( ), for    . 

Conjecture  . Letting  ̅ be the transitive score vector and  ̅ being the (nearly) regular 

score vector, the height of  ( ) can be found by the formula 
∑   

  
    ∑   

  
   

 
   for    . 
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CHAPTER 7 

FURTHER TOPICS ON THE STRUCTURE OF  ( ) 

 Recall that once a poset relation   (   ) is established extensions of the poset can 

be explored.  Again, an extension of   is a poset   (   ) on the same elements   where 

   .  A larger poset structure can then be studied, consisting of all the extensions of   with 

the poset relation of set inclusion on the extensions.  The minimum element of this poset is   

and the maximal elements are the famous linear extensions of the poset  ( ).  Let’s call this 

larger poset structure the extension poset of  .  Consider now the extension poset of 

 ( )  (   ), for which it is the minimum element.  We will explore a specific class of 

extensions of  ( ), and a possible route of constructing linear extensions of  ( ).   

Let   be the set of all score vectors on   vertices.  Given that  ̅  (       ) and 

 ̅  (       ) are two elements of  , let  ̅   ̅ if ∑   
  

    ∑   
  

    for    .   Let 

   {( ̅  ̅)          ∑   
  

    ∑   
  

   }.  Therefore,    (    ) is a poset with an 

irreflexive ( ̅   ̅), anti-symmetric ( ̅   ̅   ̅   ̅), and transitive ( ̅   ̅  ̅   ̅   ̅   ̅) 

binary relation.  When    , all of the elements of   are pair-wise incomparable since 

∑   
 
    ∑   

 
   .  Hence,    is an antichain.     results in a poset reflecting Landau’s 

hierarchy relation since ∑   
  

    ∑   
  

      ̅    ̅ by the Corollary to Theorem   . 

Theorem   .    (    ) is an extension of  ( )  (   ).   

This is a direct result of Theorem    in Chapter 6.  Given that  ̅ and  ̅ are two score 

vectors on   vertices, if  ̅   ̅ in  , then  ̅   ̅ in   .  In the case where     and  , we can 

visually see from Figures    and    that    is an extension such that  ( )    .  Whereas, 

   represents distinct elements in the extension posets for     and  .  Below is a visual 

representation of   , corresponding to the poset  ( ). 



51 
 

 

Figure   . The poset extension    for     

 

 

Now that one extension has been identified, an obvious question is whether or not 

other extensions of  ( ) can be found similarly, specifically its linear extensions.  Finding linear 

extensions is the first step in determining the dimension of a poset.  In general, a poset’s 

dimension can be very difficult to find, especially for large values of  .  If linear extensions can 

be found using a fairly small amount of computation, the total amount of work necessary to find 

the dimension can be greatly reduced.  The extension    was found by summing the squares of 

the entries in the score vectors.  Do the posets   , constructed by summing higher powers of 

the score vector’s entries, result in extensions for values of   greater than  ?  For         

and         , the answer is yes! 

Using the same labeling of the score vectors as in Chapter   for     through  , tables 

are listed below containing the score vectors’ respective values of  ∑   
  

    for          .  

It is left to the reader to verify that if  ̅   ̅ in  ( ), then  ̅   ̅ in    for         and 

        . 
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vectors x^1 x^2 x^3 x^4 x^5 x^6 

A 3 5 9 17 33 65 

B 3 3 3 3 3 3 
 

contd. x^7 x^8 x^9 x^10 x^11 x^12 

A 129 257 513 1025 2049 4097 

B 3 3 3 3 3 3 
 

Table  . Score vectors for     and values of  ∑   
  

    for           

 

 

vectors x^1 x^2 x^3 x^4 x^5 x^6 

A 6 14 36 106 276 794 

B 6 12 30 97 246 732 

C 6 12 24 56 96 192 

D 6 10 18 42 66 130 
 

contd. x^7 x^8 x^9 x^10 x^11 x^12 

A 2316 6818 20196 60074 179196 535538 

B 2190 6564 19686 59052 177150 531444 

C 384 768 1536 3072 6144 12288 

D 258 514 1026 2050 4098 8194 
 

Table  . Score vectors for     and values of  ∑   
  

    for           

 

 

For    , it can be seen from the values above that  ( )          , the only 

element in the extension poset of  ( ).  Hence,        is its only linear extension.  Based on 

the score vectors, it is not too difficult to conclude that  ( )     for    .   

For    , a linearization occurs when    , and it can be seen that       for 

        .  This linear extension can be written as           . 
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vectors x^1 x^2 x^3 x^4 x^5 x^6 

A 10 30 100 354 1300 4890 

B 10 28 94 340 1270 4828 

C 10 28 88 304 1120 4288 

D 10 26 82 290 1090 4226 

E 10 28 82 244 730 2188 

F 10 26 70 194 550 1586 

G 10 24 64 180 520 1524 

H 10 22 52 130 340 922 

I 10 20 40 80 160 320 
 

contd. x^7 x^8 x^9 x^10 x^11 x^12 

A 18700 72354 282340 1108650 4373500 17312754 

B 18574 72100 281830 1107628 4371454 17308660 

C 16768 66304 263680 1051648 4200448 16789504 

D 16642 66050 263170 1050626 4198402 16785410 

E 6562 19684 59050 177148 531442 1594324 

F 4630 13634 40390 120146 358390 1071074 

G 4504 13380 39880 119124 356344 1066980 

H 2572 7330 21220 62122 183292 543730 

I 640 1280 2560 5120 10240 20480 
 

Table  . Score vectors for     and values of  ∑   
  

    for           

 

 

 In the case of    , a linear extension occurs when    .  It can be written as 

                    .  Again, all extensions after this one result in the same linear 

extension.  That is,       for         . 

 For    , there are actually two linear extensions that appear.  The first one occurs 

when    .  This linearization is used to list the score vectors in the table below.  The second 

one occurs in   .  They are                                                and  

                                              , respectively.  This second 

linearization also repeats for the remaining values of  .  That is       for         . 



54 
 

vectors x^1 x^2 x^3 x^4 x^5 x^6 

A 15 55 225 979 4425 20515 

E 15 53 219 965 4395 20453 

B 15 53 213 929 4245 19913 

F 15 51 207 915 4215 19851 

C 15 53 207 869 3855 17813 

D 15 51 195 819 3675 17211 

G 15 49 189 805 3645 17149 

J 15 53 201 785 3105 12353 

O 15 51 195 771 3075 12291 

H 15 47 177 755 3465 16547 

I 15 45 165 705 3285 15945 

K 15 51 183 675 2535 9651 

L 15 49 171 625 2355 9049 

P 15 47 165 611 2325 8987 

Q 15 45 153 561 2145 8385 

M 15 47 153 515 1785 6347 

R 15 45 147 501 1755 6285 

S 15 43 135 451 1575 5683 

N 15 45 135 405 1215 3645 

T 15 41 123 401 1395 5081 

U 15 41 117 341 1005 2981 

V 15 39 105 291 825 2379 
 

contd. x^7 x^8 x^9 x^10 x^11 x^12 

A 96825 462979 2235465 10874275 53201625 261453379 

E 96699 462725 2234955 10873253 53199579 261449285 

B 94893 456929 2216805 10817273 53028573 260930129 

F 94767 456675 2216295 10816251 53026527 260926035 

C 84687 410309 2012175 9942773 49359567 245734949 

D 82755 404259 1993515 9885771 49186515 245211699 

G 82629 404005 1993005 9884749 49184469 245207605 

J 49281 196865 786945 3146753 12584961 50335745 

O 49155 196611 786435 3145731 12582915 50331651 

H 80697 397955 1974345 9827747 49011417 244684355 

I 78765 391905 1955685 9770745 48838365 244161105 

K 37143 144195 563655 2215251 8742903 34617315 

L 35211 138145 544995 2158249 8569851 34094065 

P 35085 137891 544485 2157227 8567805 34089971 

Q 33153 131841 525825 2100225 8394753 33566721 

M 23073 85475 321705 1226747 4727793 18375635 

R 22947 85221 321195 1225725 4725747 18371541 
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S 21015 79171 302535 1168723 4552695 17848291 

N 10935 32805 98415 295245 885735 2657205 

T 19083 73121 283875 1111721 4379643 17325041 

U 8877 26501 79245 237221 710637 2129861 

V 6945 20451 60585 180219 537585 1606611 
  

Table  . Score vectors for     and values of  ∑   
  

    for           

 

   

The values bolded for          are listed out of order.  Visually, there is a pattern in 

the placement of this final linearization in  ( ) for        .  Starting with the transitive 

score vector, the linear ordering ‘climbs up’ diagonal chains.  See the diagram for  ( ) below. 

 

 

 

Figure   . The linearization                                                

represented in the poset  ( ) 
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Numerically, there also seems to be a pattern in the ordering of the score vectors 

themselves.  Consider the first few score vectors for     in the linear order given above. 

 

  (           )  

  (           )  

  (           )  

  (           )  

  (           )  

  (           )  

  (           )  

 

Starting with the transitive score vector, the scores begin to be ‘filtered down’ the 

vector, beginning with the most accessible scores.  The third entry in  ,  , can have one of its 

scores given to a lower valued entry while still maintaining a score vector.  Sharing a value of   

with the first entry, the next score vector is attained,   (           ).  As that is the most 

‘filtering down’ that can be done from the third entry, we will return to the transitive score 

vector and reduce the score value of the fourth entry,  , resulting in   (           ) and 

  (           ), consecutively.  This pattern continues on until all the scores are as equally 

shared as possible.  Note, this ordering places all the score vectors with sources first, then all the 

score vectors with a maximal score of     next, etc.   

Using this ordering on the score vectors for    , let’s determine if the sums of powers 

of their entries similarly result in a linearization.  Considering the values in the table below, we 

are not yet determining if    for          result in extensions, but just if a linearization of 

the elements is attained; and if so, for what values of  . 
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Vectors n=7 
      

x^1 x^2 x^3 

A= 0 1 2 3 4 5 6 21 91 441 

B= 1 1 1 3 4 5 6 21 89 435 

C= 0 2 2 2 4 5 6 21 89 429 

D= 1 1 2 2 4 5 6 21 87 423 

E= 0 1 3 3 3 5 6 21 89 423 

F= 0 2 2 3 3 5 6 21 87 411 

G= 1 1 2 3 3 5 6 21 85 405 

H= 1 2 2 2 3 5 6 21 83 393 

I= 2 2 2 2 2 5 6 21 81 381 

J= 0 1 2 4 4 4 6 21 89 417 

K= 1 1 1 4 4 4 6 21 87 411 

L= 0 1 3 3 4 4 6 21 87 399 

M= 0 2 2 3 4 4 6 21 85 387 

N= 1 1 2 3 4 4 6 21 83 381 

O= 1 2 2 2 4 4 6 21 81 369 

P= 0 2 3 3 3 4 6 21 83 369 

Q= 1 1 3 3 3 4 6 21 81 363 

R= 1 2 2 3 3 4 6 21 79 351 

S= 2 2 2 2 3 4 6 21 77 339 

T= 0 3 3 3 3 3 6 21 81 351 

U= 1 2 3 3 3 3 6 21 77 333 

V= 2 2 2 3 3 3 6 21 75 321 

W= 0 1 2 3 5 5 5 21 89 411 

X= 1 1 1 3 5 5 5 21 87 405 

Y= 0 2 2 2 5 5 5 21 87 399 

Z= 1 1 2 2 5 5 5 21 85 393 

AA= 0 1 2 4 4 5 5 21 87 387 

BB= 1 1 1 4 4 5 5 21 85 381 

CC= 0 1 3 3 4 5 5 21 85 369 

DD= 0 2 2 3 4 5 5 21 83 357 

EE= 1 1 2 3 4 5 5 21 81 351 

FF= 1 2 2 2 4 5 5 21 79 339 

GG= 0 2 3 3 3 5 5 21 81 339 

HH= 1 1 3 3 3 5 5 21 79 333 

II= 1 2 2 3 3 5 5 21 77 321 

JJ= 2 2 2 2 3 5 5 21 75 309 

KK= 0 1 3 4 4 4 5 21 83 345 

LL= 0 2 2 4 4 4 5 21 81 333 

MM= 1 1 2 4 4 4 5 21 79 327 

NN= 0 2 3 3 4 4 5 21 79 315 

OO= 1 1 3 3 4 4 5 21 77 309 

PP= 1 2 2 3 4 4 5 21 75 297 
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QQ= 2 2 2 2 4 4 5 21 73 285 

RR= 0 3 3 3 3 4 5 21 77 297 

SS= 1 2 3 3 3 4 5 21 73 279 

TT= 2 2 2 3 3 4 5 21 71 267 

UU= 1 3 3 3 3 3 5 21 71 261 

VV= 2 2 3 3 3 3 5 21 69 249 

WW= 0 1 4 4 4 4 4 21 81 321 

XX= 0 2 3 4 4 4 4 21 77 291 

YY= 1 1 3 4 4 4 4 21 75 285 

ZZ= 1 2 2 4 4 4 4 21 73 273 

AAA= 0 3 3 3 4 4 4 21 75 273 

BBB= 1 2 3 3 4 4 4 21 71 255 

CCC= 2 2 2 3 4 4 4 21 69 243 

DDD= 1 3 3 3 3 4 4 21 69 237 

EEE= 2 2 3 3 3 4 4 21 67 225 

FFF= 2 3 3 3 3 3 4 21 65 207 

GGG= 3 3 3 3 3 3 3 21 63 189 
 

contd. x^4 x^5 x^6 x^7 x^8 x^9 x^10 

A 2275 12201 67171 376761 2142595 12313161 71340451 

B 2261 12171 67109 376635 2142341 12312651 71339429 

C 2225 12021 66569 374829 2136545 12294501 71283449 

D 2211 11991 66507 374703 2136291 12293991 71282427 

E 2165 11631 64469 364623 2089925 12089871 70408949 

F 2115 11451 63867 362691 2083875 12071211 70351947 

G 2101 11421 63805 362565 2083621 12070701 70350925 

H 2051 11241 63203 360633 2077571 12052041 70293923 

I 2001 11061 62601 358701 2071521 12033381 70236921 

J 2081 10881 59009 329217 1876481 10864641 63612929 

K 2067 10851 58947 329091 1876227 10864131 63611907 

L 1971 10311 56307 317079 1823811 10641351 62681427 

M 1921 10131 55705 315147 1817761 10622691 62624425 

N 1907 10101 55643 315021 1817507 10622181 62623403 

O 1857 9921 55041 313089 1811457 10603521 62566401 

P 1811 9561 53003 303009 1765091 10399401 61692923 

Q 1797 9531 52941 302883 1764837 10398891 61691901 

R 1747 9351 52339 300951 1758787 10380231 61634899 

S 1697 9171 51737 299019 1752737 10361571 61577897 

T 1701 8991 50301 290871 1712421 10176111 60761421 

U 1637 8781 49637 288813 1706117 10156941 60703397 

V 1587 8601 49035 286881 1700067 10138281 60646395 

W 1973 9651 47669 236691 1178693 5879571 29356949 
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X 1959 9621 *47607 236565 1178439 5879061 29355927 

Y 1923 9471 *47067 234759 1172643 5860911 29299947 

Z 1909 9441 47005 234633 1172389 5860401 29298925 

AA 1779 8331 39507 189147 912579 4431051 21629427 

BB 1765 8301 39445 189021 912325 4430541 21628405 

CC 1669 7761 36805 177009 859909 4207761 20697925 

DD 1619 7581 36203 175077 853859 4189101 20640923 

EE 1605 7551 36141 174951 853605 4188591 20639901 

FF 1555 7371 35539 173019 847555 4169931 20582899 

GG 1509 7011 33501 162939 801189 3965811 19709421 

HH 1495 6981 33439 162813 800935 3965301 19708399 

II 1445 6801 32837 160881 794885 3946641 19651397 

JJ 1395 6621 32235 158949 788835 3927981 19594395 

KK 1475 6441 28643 129465 593795 2759241 12970403 

LL 1425 6261 28041 127533 587745 2740581 12913401 

MM 1411 6231 27979 127407 587491 2740071 12912379 

NN 1315 5691 25339 115395 535075 2517291 11981899 

OO 1301 5661 25277 115269 534821 2516781 11980877 

PP 1251 5481 24675 113337 528771 2498121 11923875 

QQ 1201 5301 24073 111405 522721 2479461 11866873 

RR 1205 *5121 22637 103257 482405 2294001 11050397 

SS 1141 *4911 21973 101199 476101 2274831 10992373 

TT 1091 *4731 21371 99267 470051 2256171 10935371 

UU 1031 *4341 19271 89061 423431 2051541 10060871 

VV 981 *4161 18669 87129 417381 2032881 10003869 

WW 1281 *5121 20481 81921 327681 1310721 5242881 

XX 1121 *4371 17177 67851 268961 1068771 4254377 

YY 1107 *4341 17115 67725 268707 1068261 4253355 

ZZ 1057 *4161 16513 65793 262657 1049601 4196353 

AAA 1011 3801 14475 55713 216291 845481 3322875 

BBB 947 3591 13811 53655 209987 826311 3264851 

CCC 897 3411 13209 51723 203937 807651 3207849 

DDD 837 3021 11109 41517 157317 603021 2333349 

EEE 787 2841 10507 39585 151267 584361 2276347 

FFF 677 2271 7805 27447 98597 361071 1344845 

GGG 567 1701 5103 15309 45927 137781 413343 
 

Table  . Score vectors for     and values of  ∑   
  

    for           
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There are repeats in values of ∑   
  

    for            and  , hence none of their 

corresponding posets represent a linearization of the elements in  ( ).  The repeats for     

and   are starred for easy identification.  It is not too surprising that for     through  ,     

is not a linear ordering; but it is interesting that    is a linear ordering while    and    are 

not.  The ordering in    is not the predicted ordering for the poset  ( ).  Their values which 

are listed out of order are bolded.  However, the linear ordering manifest in    is the predicted 

linear ordering.  In fact, this linearization continues to be seen in    up through    , though 

not all the values are shown in the table above.  Whether or not    results in actual extensions 

of the poset  ( ), the pattern of a linearization being attained for some value of   and 

maintained thereafter remains consistent for     up through  . 

Conjecture  .    (    ) will always result in extensions of  ( ), for    .  In 

other words, if  ̅   ̅ in  ( ), then ∑   
  

    ∑   
  

    for    . 

The proof of this for     was detailed in Chapter  .  Essentially, given  ̅   ̅ in  ( ), 

the terms in the expansion of both sides of the equation (∑   
    
    )

 
 (∑   

    
    )

 
were 

compared.  All values which did not contribute to score vector’s respective inner products had a 

strict inequality such that  ∑     
    
        ∑     

    
      . This implied ∑   

  
    ∑   

  
   .   

In proving this for values of    , using the same technique will provide an interesting 

challenge.  Considering the expansion of the necessary equation (∑   
    
    )

 
 (∑   

    
    )

 
, 

the number of values not contributing to the vector’s respective inner products is much larger 

than those that are.  A generalization of these values may exist so that it still can be proven that 

∑   
  

    ∑   
  

   . 

Conjecture  . There exists some     such that    is a linear extension.   

Conjecture  . There exists some      such that    
is a linear extension, and 

      
 for all     . 
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Given two score vectors  ̅  (       ) and  ̅  (       ) where  ̅   ̅, it seems 

logical that there must exist some value      such ∑   
   

    would be unequal to ∑   
   

   .  

If not, that would be a contradiction to the fact that  ̅   ̅.  Without loss of generality, assume 

∑   
   

    ∑   
   

   .  That being the case, there must be at least one value   {     } such 

that   
  

   
  

.  This clearly implies that         
    

 , and more specifically, 

  
    

  for all values of  .  The difference   
    

  will only increase as   does.  It seems 

this would lead to an increase in the difference between ∑   
  

    and ∑   
  

    for      

when    is sufficiently large. 

In trying to find possible routes for the proofs to the above conjectures, induction 

strictly on   will not be an option.  Given two score vectors  ̅ and  ̅, if ∑   
  

    ∑   
  

    for 

some  , that does not necessarily imply that ∑   
    

    ∑   
    

   .  That is to say,      is 

not necessarily an extension of   .  For example, look at the two score vectors   (         ) 

and   (         ) in the poset  ( ).  Below are the sums of the entries of   and   raised to 

different powers of  . 

∑  
 

 

   

       ∑  
 

 

   

 

∑  
 

 

   

    ∑  
 

 

   

 

∑  
 

 

   

         ∑  
 

 

   

 

 This implies that     in   ,     in   , and     in   .  In this case     in the 

original poset, so there are no contradictions with   ,   , and    being extensions of  ( ).  

This just confirms the suspicion that the crux of proving    is an extension of   ( ) will be 

found in the poset relation on  ( ) itself. 
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