Improved Formulas for Synchrotron Radiation

Eric L. Shirley (NIST)

Acknowledgments: Mitchell Furst, Tom Lucatorto, Ping Shaw, Uwe Arp

Outline

- Background on synchrotron radiation
	- \triangleright 1st & 2nd generation only
	- \triangleright Radiometric utility
	- \triangleright Work at NIST (very cursory)
- Calculation of SR (other work)
- Calculation approach (this work)
	- \triangleright Coordinate systems
	- \triangleright Ultimate formula & conclusions

• "Fuzzing" effects & diffraction effects

Conclusions

Synchrotron radiation—

Emitted by relativistic charged particles orbiting (accelerated) in magnetic fields

NIST SURF III Synchrotron / Measurement Hall

Application example: Calibration of deuterium lamps (source-based scale)

Schematic of the FICUS for synchrotron-radiation-based $Fig. 1.$ irradiance calibration.

BL-2: Large chamber and clean room

Recent UV/EUV Calibrations at SURF III: Missions and Collaborators

Collaborators: NOAA; NASA Goddard Space Flight Center; Laboratory for Atmospheric & Space Physics; Naval Research Lab; USC Space Flight Center; Jet Propulsion Laboratory.

Calculation of synchrotron radiation

Note: **r**=point where field is found; **r**-s=point(s) of current density.

Early development in synchrotron radiation theory

Early calculation:

• G. A. Schott, Ann. Phys. (Leipzig) **24**, 635 (1907).

Early calculations motivated by radiative energy loss:

- J. Schwinger, Phys. Rev. **75**, 1912 (1949).
- D. Ivanenko and A.A. Sokolov, Dokl. Akad. Nauk SSSR [Sov. Phys. Dokl.] **59**, 151 (1948).

Refinement to Schwinger formula:

• W.B. Westerveld, A. McPherson and J.S. Risley, Atomic Data and Nuclear Data Tables **28**, 21 (1983).

Further general discussion of synchrotron radiation fields:

- J.D. Jackson, *Classical Electrodynamics, 2nd Edition* (Wiley, New York, 1975).
- L.D. Landau and E.M. Lifshitz, *The Classical Theory of Fields* (Pergamon Press, Oxford, 1975).

Coordinate systems—Cartesian

Coordinate systems—Elliptic

Coordinate systems—Oblate spheroidal

Rotate elliptic system through 360 degrees about minor axis. Angle $\theta = 3^{rd}$ *coordinate.*

Coordinate systems—Oblate spheroidal

For synchrotron radiation, natural to have electron orbit circle traced by foci.

Convenient to use mix of coordinates, depending:

At finite range, azimuthal angle difference between detector vs. relevant tangent point \neq right angle.

Complete specification of coordinates:

 α $\psi =$ $\frac{1}{2}$ $\sin \alpha$ $\tan \psi = \frac{\hbar}{\sin \theta}$ $S \sin \alpha$ *h* $=\frac{1}{\gamma}$ *"elevation angle"*

nearly stationary (along path) at $\theta = -\theta_0 = -\cos^{-1}(v/u)$: v α β β Integrating field over electron path, phase of integrand from *J* and h_l . Near tangent in relativistic case, phase is

$$
\begin{aligned}\nks + m\theta &= u\sin\theta_0 + m\theta_0 + (m - v)(\theta - \theta_0) + \frac{v}{6}(\theta - \theta_0)^3 + \dots \\
\gamma &= \text{From current}\n\end{aligned}
$$

From distance to source From current

Schwinger trick

- Keep 3 nonzero Taylor terms in phase, 2 Taylor terms in all else
- Assume infinite distance to detector (optional)

$$
F = \int d\theta \, c(\theta) \exp[i\Psi(\theta)]
$$

$$
\approx \int_{-\infty}^{+\infty} d\phi \left(\underline{c_1} + \underline{c_2} \phi \right) \exp[i(\underline{\Psi}_0 + \underline{\Psi}_1 \phi + \underline{\Psi}_3 \phi^3)]
$$

 \rightarrow Fields =combinations of $K_{1/3}$ & $K_{2/3}$ (or Ai & Ai')

Real-time approach (more general) (P.-S. Shaw)

$$
\mathbf{E}(\mathbf{x},t) \sim \left[\frac{\hat{\mathbf{s}} \times [(\hat{\mathbf{s}} - \mathbf{\beta}) \times \hat{\mathbf{p}}]}{(1 - \mathbf{\beta} \cdot \hat{\mathbf{s}})^{3} s}\right]_{ret}
$$

For simple circular orbit, "natural" oblate spheroidal partners to θ .

$$
u = \frac{k}{2} \left[\sqrt{(S+R)^2 + h^2} + \sqrt{(S-R)^2 + h^2} \right]
$$

$$
v = \frac{k}{2} \left[\sqrt{(S+R)^2 + h^2} - \sqrt{(S-R)^2 + h^2} \right]
$$

$$
\begin{array}{c} \text{Case } h = 0: \\ \implies u = kS; v = kR \end{array}
$$

Note reduction of 3D to fictitious 2D problem:

$$
ks = k\sqrt{R^2 + S^2 - 2RS\cos\theta + h^2} = \sqrt{u^2 + v^2 - 2uv\cos\theta} = \sqrt{(u - ve^{+i\theta})(u - ve^{-i\theta})}
$$

Graf's addition theorem gives the following expansion:

$$
h_l^{(1)}(ks) = h_l^{(1)}((u^2 + v^2 - 2uv\cos\theta)^{1/2})
$$

= $\left(\frac{2}{\pi ks}\right)^{1/2} H_{l+1/2}^{(1)}((u^2 + v^2 - 2uv\cos\theta)^{1/2})$
= $\left(\frac{2}{\pi ks}\right)^{1/2} \left(\frac{u - ve^{-i\theta}}{u - ve^{+i\theta}}\right)^{1/2 + 1/4} \sum_{k=-\infty}^{+\infty} H_{l+1/2+k}^{(1)}(u)J_k(v)e^{-ik\theta}$

 \rightarrow Allows integration over θ of each term, v/u -type geometric progression of terms converges the sum quickly.

Outcomes of new approach of calculation:

- Graf's formula facilitates convenient "exact" calculation
	- Debye's asymptotic formula for *H* is helpful (very large argument & large order)
	- Olver's asymptotic formula for *J* is helpful (large order, argument *very near* order)
	- \triangleright Asymptotic expansion using Ai and Ai', but with a slightly different argument
	- Calculations can be done *extremely* quickly
- Analysis of expansion suggests Schwinger results deviates at higher orders in $m^{-1/3}$

Role of fuzzing of beam (horizontal, vertical and orbital tilt spread):

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\sigma(s_z) = 0.000782 \text{ rad}$ $\sigma(s_x) = 0.000653 \text{ rad}$ $\sigma(z_s) = 0.085 \text{ cm}$ Δ pparant elevati $\sigma(x_s) = 0.173 \text{ cm}$

Image of beam:

 $\begin{array}{ccc} \n\end{array}$ Apparent elevation angle along tangent:

Credit: Uwe Arp

Preliminary calculation of radiation (for diffraction effects):

Approximate radiation fields (main beam):

$$
\begin{Bmatrix} E_x \\ E_z \end{Bmatrix} \cong \frac{1}{d_s} \begin{Bmatrix} \psi K_{2/3}(n\psi^3/3) \\ i \Psi_{el} K_{1/3}(n\psi^3/3) \end{Bmatrix} \exp \left[i k \left(\frac{(x - x_s)^2 + (z - z_s)^2}{2d_s} \right) \right] e^{-i\omega t}
$$

$$
\psi = \sqrt{1/\gamma^2 + \Psi_{el}^2}
$$

Apertures along SURF III Beamline 2:

Kirchhoff diffraction integral (Gaussian optics):

$$
E_i(x_d, d_s + d_d, z_d) \approx \frac{1}{i\lambda d_d} \iint_A dx \, dz \, E_i(x, d_s, z) \exp\left[ik\left(\frac{(x - x_d)^2 + (z - z_d)^2}{2d_d}\right)\right]
$$

Appropriately treated, aperture effects can be chiefly additive.

Irradiance profile $(\lambda=334 \text{ nm})$:

Profile with vertical polarizer (locates orbit plane):

Varying fuzz (extrapolating orbital tilt variation) changes total flux (shown for 334 nm):

Conclusion

- SURF III is available for calibrations
- We are improving on the Schwinger formula \triangleright Important at longer λ
- We are correcting for diffraction \triangleright To matter in the future, also longer λ

Thank you!