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Synchrotron radiation—

Emitted by relativistic charged particles
orbiting (accelerated) in magnetic fields
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Schwinger formula (1949):
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Like a blackbody,
a calculable primary source!
Why this work: assess diffraction effects
and Schwinger formula
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Application example: Calibration of deuterium lamps (source-based scale)

Synchrotron radiation-based irradiance calibration from
200 to 400 nm at the Synchrotron Ultraviolet Radiation
Facility Il
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Ping-Shine Shaw, Uwe Arp, Robert D. Saunders, Dong-Joo Shin, Howard W. Yoon,
Charles E. Gibson, Zhigang Li, Albert C. Parr, and Keith R. Lykke

A new facility for measuring irradiance in the UV was commissioned recently at the National Institute
of Standards and Technology (NIST). The facility uses the calculable radiation from the Synchrotron
Ultraviolet Radiation Facility as the primary standard. To measure the irradiance from a source under
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Fig. 1. Schematic of the FICUS for synchrotron-radiation-based
irradiance calibration.



BL-2: Large qhamber and clean room




Recent UV/EUV Calibrations at SURF Ill: Missions and Collaborators

Collaborators: NOAA; NASA Goddard Space Flight Center; Laboratory for
Atmospheric & Space Physics; Naval Research Lab; USC Space Flight Center; Jet
Propulsion Laboratory.



Calculation of synchrotron radiation

(near-tangential)
radiation direction
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Note: r=point where field is found; r—s=point(s) of current density.
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Early development in synchrotron radiation theory

Early calculation:
* G. A. Schott, Ann. Phys. (Leipzig) 24, 635 (1907).

Early calculations motivated by radiative energy loss:
e J.Schwinger, Phys. Rev. 75, 1912 (1949).
* D.Ivanenko and A.A. Sokolov, Dokl. Akad. Nauk SSSR [Sov. Phys. Dokl.] 59,
151 (1948).

Refinement to Schwinger formula:
 W.B. Westerveld, A. McPherson and J.S. Risley, Atomic Data and Nuclear
Data Tables 28, 21 (1983).

Further general discussion of synchrotron radiation fields:
* J.D.Jackson, Classical Electrodynamics, 2" Edition (Wiley, New York, 1975).
 L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon
Press, Oxford, 1975).



Coordinate systems—Cartesian




Coordinate systems—Elliptic

\

Coordinate v \
constant
on hyperbolae
defined by foci

Focus

Coordinate u
constant — /
on ellipses /
defined by foci /




Coordinate systems—Oblate spheroidal

Rotate elliptic system through 360 degrees about minor axis.
Angle & = 3" coordinate.

Hyperbola \
becomes — s
hyperboloid

Ellipse
becomes -
spheroid \ I \ Foci trace

out circle




Coordinate systems—Oblate spheroidal
For synchrotron radiation, natural to have electron orbit circle

traced by foci.

et 4
electron




Convenient to use mix of coordinates, depending:
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At finite range, azimuthal angle difference between
detector vs. relevant tangent point # right angle.

/ Location

/ of detector
N «__~
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Complete specification of coordinates:




Complete specification of coordinates:
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“source detector distance” “elevation angle”
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Integrating field over electron path, phase of integrand
from J and h,. Near tangent in relativistic case, phase Is
nearly stationary (along path) at 8=-6,=-cos™(v/u):

ks+m6; usin g, + mé, +(m—v)(«9—6’0)+%(6’—00)3 + ...
7

From distance to source  From current

Schwinger trick

« Keep 3 nonzero Taylor terms in phase, 2 Taylor terms in all else
« Assume infinite distance to detector (optional)

F= : d& c(0) exp[i¥(9)]

~ [7dg (c, + 9 expli(¥, + Wi+ Wep®)]
— Fields =combinations of K,,; & K,; (or Al & Al')

Real-time approach (more general A r/a :
e pproach (more general) et | 6B <
(P-S. Shaw) B9 |,




For simple circular orbit, “natural” oblate spheroidal partners to &

-\/(S+R)2+h2 +\/(S—R)2+h2]
' Caseh=0:

:J(S+R)2+h2—J(S—R)2+h2] = u=kS;v=kR

Note reduction of 3D to fictitious 2D problem:
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Graf’s addition theorem gives the following expansion:
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—> Allows integration over @ of each term, v/u-type geometric
progression of terms converges the sum quickly.



Outcomes of new approach of calculation:

e Graf’s formula facilitates convenient “exact”
calculation

» Debye’s asymptotic formula for H is helpful
(very large argument & large order)

» Olver’s asymptotic formula for J is helpful
(large order, argument very near order)

» Asymptotic expansion using Ai and Al’, but
with a slightly different argument

» Calculations can be done extremely quickly

* Analysis of expansion suggests Schwinger results
deviates at higher orders in m=/3



Role of fuzzing of beam (horizontal, vertical and orbital tilt spread):

o(X;)=0.173cm
o(z;)=0.085cm

>
o (s, ) =0.000653rad _
Detector height Tangent height
o(s,)=0.000782rad \ J/
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Image of beam: ° dS ‘

Thursday, August 07, 2014 17:00:00 FWHM X: 4.065 mm FWHM Y: 2.005 mm /

Tangent length

Apparent elevation angle along tangent:

Credit: Uwe Arp




Preliminary calculation of radiation (for diffraction effects):

Approximate radiation fields (main beam):

E 3 . 2 . 2 .
X ~ i W |<2/3(n l// /3) eXp |k (X XS) + (Z Zs) e—la)t
Ez ds ILPeI K1/3(n Ws /3) st
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Apertures along SURF |11 Beamline 2:

Diameter (mm) Dist. from tangent (m) Effect

27.71 0.414 Flux in central region
22.86 2.11 “

22.86 4.82

13.00 (main aperture) 10.42 “+ fringed beam waist

Kirchhoff diffraction integral (Gaussian optics):
1 [ (x=x) +(z2-12,)°
Ei(xdids"'dd’zd);m_gdx dz Ei(x,ds,z)exp{lk(( d)de( d) H

Appropriately treated, aperture effects can be chiefly additive.



Irradiance profile (1=334 nm):
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Profile with vertical polarizer (locates orbit plane):

Intensity (arb. units)
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Varying fuzz (extrapolating orbital tilt variation) changes total flux (shown for 334 nm):
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Conclusion
« SUREF Il 1s available for calibrations

* We are improving on the Schwinger formula
» Important at longer 4

» \We are correcting for diffraction
» To matter in the future, also longer A

Thank you!



