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Abstract

Axisymmetric Coanda-Assisted Vectoring

by

Dustin S. Allen, Master of Science

Utah State University, 2008

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

An examination of parameters affecting the control of a jet vectoring technique used
in the Coanda-assisted Spray Manipulation (CSM) is presented. The CSM makes use of
an enhanced Coanda effect on axisymmetric geometries through the interaction of a high
volume primary jet flowing through the center of a collar and a secondary high-momentum
jet parallel to the first and adjacent to the convex collar. The control jet attaches to the
convex wall and vectors according to known Coanda effect principles, entraining and vector-
ing the primary jet, resulting in controllable -6 directional spraying. Several control slots
(both annular and unique sizes) and expansion radii were tested over a range of momentum
flux ratios to determine the effects of these variables on the vectored jet angle and profile.
Two- and three-component Particle Image Velocimetry (PIV) was used to determine the
vectoring angle and the profile of the primary jet in each experiment. The experiments show
that the control slot and expansion radius, along with the momentum ratios of the two jets,
predominantly affected the vectoring angle and profile of the primary jet. The Reynolds
number range for the primary jet at the exit plane was between 20,000 and 80,000. The

flow was in the incompressible Mach number range (Mach< 0.3).

(85 pages)
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Chapter 1
Introduction

This thesis involves the development of a spray manipulation device called Coanda-
assisted Spray Manipulation (CSM). The Coanda effect, or the tendency of jets to adhere
to nearby curved surfaces (with a turning radius much larger than the jet size), is a well-
established flow-control methodology. This traditional method is enhanced by adding a
blowing control flow to provide profile and direction control and improve the stability of
a jet, spray, or flame. Since no moving parts need be in the flow, the new device will
enable long-term operation of controllable jets or sprays in harsh, corrosive, or combusting

environments, such as those associated with thermal sprays [1].

1.1 Thermal Spray Application

A large market exists for the application of films to large surfaces through the use of
thermal spray methods; however, current methods have disadvantages including single di-
rection spraying, high maintenance, cumbersome spray guns or mechanisms, and no control
over process parameters. Thermal spray processing [1] is an established industrial method
for applying “thick coatings” of metals (stainless steel, cast iron, aluminum, titanium and
copper alloys, niobium and zirconium) and metal blends, ceramics, polymers, and even bio-
materials at thicknesses greater than 50 micrometers. Several different processes, including
Combustion Wire Thermal Spray, Combustion Powder Thermal Spray, Arc Wire Thermal
Spray, Plasma Thermal Spray, HVOF Thermal Spray, Detonation Thermal Spray, and Cold
Spray Coating can benefit from the ability to alter the direction of the spray. Currently,
expensive robots are commonly used for this purpose.

Thermal spray coatings are used for corrosion and erosion prevention, chemical, thermal

barrier and wear protection, and general metalizing on applications ranging from aircraft
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engines and automotive parts to medical implants and electronics. The process involves
spraying molten powder or wire feedstock onto a prepared surface (usually metallic) where
impaction and solidification occur. Melting typically occurs through oxy-fuel combustion in
the nozzle or an electric arc (plasma spray) located just downstream of the nozzle structure.
Thermal spray processes typically result in very high material cooling rates > 10° K/s.
Similarly, Flame Spray Pyrolysis (FSP), a process to synthesize metal and mixed metal
oxide nanoparticles, uses a flame as an energy source to produce intraparticle chemical
reactions and convert liquid sprayed reagents to the final product [2]. Due to the high
temperature combustion environment present in or near these process nozzles, mechanical
vectoring of the nozzle is not feasible since this would place moving parts in the jet flow,
reduce device durability, and severely limit directional frequency response. Furthermore,
traversing a part to be coated, which is often heated to high temperatures, is costly.

Guns and spray mechanisms used in thermal spraying processes are cumbersome. As
described above, in order to spray a three-dimensional surface a thermal spray gun is con-
trolled by a robot and motion comes via a transverse system. Also, directional spraying
(for example, into a bore or around a 90 degree corner) is carried out through extension
arms which multiply the bulkiness of the system [1]. Much of the awkwardness of thermal
spray guns is due to the intrinsic nature of thermal sprays, and the inability to coat in a
multidirectional manner is an added disadvantage.

The key significance of this research is that the resultant CSM device will make it
possible to control the spray direction and several thermal-spray process parameters with
a single nozzle and no moving parts in or near the flow (where combustion and/or high
temperatures may be present). The Coanda effect causes a jet to follow a curved surface
if the radius of curvature of the surface is much larger than the jet [3]. This effect results
from the reduced pressure on the inside of the turning radius. The reduced pressure effect
competes with the dissipation of boundary-layer energy until the flow ultimately detaches
from the surface. While potentially useful, the Coanda effect is often bistable (meaning the

flow may be completely attached or completely separated depending on initial conditions)
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Fig. 1.1: Scale drawing of a Coanda-assisted vectoring nozzle. The application of control
flow at one circumferential location will cause the primary jet to vector toward the control
flow.

or even unstable, often resulting in an undesirable flapping of the flow.

Boundary layer separation, such as the separation of a jet from a Coanda surface, is
often controlled by blowing through a slot parallel to the flow [4]. By applying blowing in
the region where the jet meets the turning surface, as shown in Fig. 1.1, the Coanda effect
can be controlled and/or enhanced. It is also possible to turn the jet over a much smaller
radius with blowing. The blowing flow is applied approximately parallel to the primary flow
and tangential to a curved collar. An alternative way of explaining the same process is that
the control jet is under the influence of the Coanda effect and is, in turn, influencing the
primary jet flow through momentum interactions. In fact, as shown below, vectoring occurs
for cases where the control flow momentum flux is large compared to that of the primary
flow. A similar arrangement has been used on a planar geometry for thrust vectoring by
Mason and Crowther [5].

Other fluidic jet vectoring schemes may not require Coanda surfaces, but typically
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require larger control flows and combinations of blowing and suction such as demonstrated
by Smith and Glezer [6], Bettridge et al. [7], and Hammond and Redekopp [8]. Vectoring
using a Coanda surface and a synthetic jet control was demonstrated by Pack and Seifert [9)].
Strykowski et al. [10] vectored a high-speed jet using an extended surface and control slot
through which air was drawn.

With the Coanda-assisted vectoring scheme applied to a spray flow, by modifying the
circumferential position at which the control flow is applied, the vectored spray can be
rotated rapidly. Using CSM, a spray’s angle can be altered constantly to maintain an
orthogonal relationship to the coated surface. Coatings sprayed orthogonal to the surface
have been found to exhibit higher microhardness, higher compressive residual stress, and
less surface wear then off-angle spraying methods [11]. The magnitude of the vectoring and
the profile of the main jet are controlled through varying the momentum flux ratio between
the control jet and the primary jet. The nozzle rotates to provide rotational direction, 6 in
Fig. 1.1, and is the only moving part on the device. By allowing the control location to be
moved to an arbitrary 8 location, and by varying the vectoring angle ®, » — 6 control over

a spray flow can be achieved.

1.2 Demonstration CSM

A method to address many issues discussed above is through the use of a newly de-
signed mechanism that employs the Coanda effect. The device involves the interaction of a
high volume primary jet with a high momentum secondary jet acting over a Coanda surface.
The primary jet could contain powder or other particles to be applied to a substrate. The
primary jet is carried through a concentric nozzle to the exit plane at the front of the device
as shown in Fig. 1.2. The secondary or control flow is applied at a small exit gap, next to
the exit plane of the main jet, onto a curved three-dimensional collar so that it attaches
to the curved wall through the Coanda effect. The control flow entrains the primary flow
through momentum interactions. In this way, the angular direction, ® in Fig. 1.1, of the

main jet is controlled.
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Fig. 1.2: CSM design concept showing three-dimensional exit with vectoring.

This work began with a rough prototype design as shown in Fig. 1.3. The primary jet
flow was supplied through a compressed air line from the bottom of the device (A). The air
then entered the jet conduit (B) which was free to rotate relative to the rest of the device.
The conduit was rotated by a timing gear (C) part way up the conduit. The nozzle of the
conduit (D) included a small passage (E) that channeled the control flow. The blowing
control flow was also introduced at the rear of the device from a second, independent high-
pressure source (F). The control flow was channeled into a plenum (G), was moved through
a pressure drop to even out the flow (H), through the passage (E) and out the nozzle. The
jet vectors toward the control flow at an angle that increases with the momentum of the
control flow. A photo of the assembled demonstration model is shown in Fig. 1.3b.

The CSM demo had a primary jet diameter of 3.2 mm. The jet exited at the center
of the collar and the collar radius to primary jet diameter was a/D = 3.00. The secondary

slot extent was 37% of the circumference. The secondary slot width was 0.9 mm, the gap



=
Fig. 1.3: Coanda-Assisted Spray Manipulation demonstration. (a) Scale drawing (b) As-
sembled device.
between the two jets to was 0.2 mm, and center of the collar was 4.8 mm in diameter. The
maximum vector angle achieved was about ® = 60°. The hardware used for rotation in the
demonstration device limited the rotational speed to below 10 Hz for the demo.

Flow visualization was conducted in the Experimental Fluid Dynamics Laboratory
(EFDL) with the prototype device using a double laser setup. The primary flow com-
pressed air was injected with olive oil particles using a seeder and the secondary flow was
simply compressed air. The flow rates were controlled independently, and many momentum
flux ratios (J*, secondary momentum flux to primary primary momentum flux) were tested
to view their effect on vectoring angle. It was found that only low flow rates of the two jets
would create vectoring (Q. = 0 to 1.67 x 10~% m?/s and Qp =2.5x 10~% m3/s, correspond-

ing to J* = 0t0 4.337). The lasers were set up to shoot sheets of light via sheet optics parallel



Fig. 1.4: Six frames of the CSM demonstration. The applied control flow is ramping up
while being rotated in the clockwise direction.

to the exit slot of the primary jet, with the first laser sheet being a short distance from the

exit plane and the second laser sheet being a short distance from the first laser sheet. A
camera was set up to snap shots in cohesion with the laser pulses to generate digital pho-
tographs for flow visualization, although no quantifiable data was taken. The demonstration
model was rotated at a constant speed near 1 Hz. Several frames from the demonstration
are shown in Fig. 1.4.

The flow visualization showed that vectoring angle — ® in Fig. 1.1 — increased with J*
until J* > 4.337 at which point the flow no longer behaved jet-like. It was also observed
that the primary jet diameter increased with momentum ratio. The flow visualization
demonstrated that controlled vectoring is possible via the CSM, however the design was
not optimized. The CSM could only operate at low flow rates and the main jet could not
be vectored by more than 60°. The research carried out in the thesis will show tendencies
of the flow in regard to the following variables: secondary exit hole size, secondary exit
hole shape and upstream geometry, location of jet impingement on curved surface, size of

curved wall radius, momentum ratio, and Reynolds number ratio. The knowledge of these



tendencies can then be used to optimize the CSM design.

The Coanda effect has been widely used in the both aeronautics and medical applica-
tions [12], air moving technology, and other fields. Nevertheless, this phenomenon is not
completely understood, especially for three-dimensional flow as in the CSM design. The
nature of the Coanda effect, with boundary layer separation and entrainment interaction,
make for difficulty in solving the flow numerically and analytically. In fact, Wille and
Fernholz [13] claimed that there was no unique solution to this type of flow. Therefore,
most recent work on the subject is based on experiments. Rask [14] and Patankar and
Sridhar [15] have studied two-dimensional flows around cylindrical surfaces, looking at flow
characteristics in all three dimensions (normal to surface, laterally across curved surface,
and streamwise). However, to our knowledge, no research has been performed on surfaces
other than two-dimensional geometries.

In order to determine the geometric and flow parameters affecting CSM control, the
Coanda effect in axisymmetric geometries must be first understood. The present exper-
iments investigate the variation of vectoring angle and jet spreading for a non-rotating
axisymmetric Coanda-assisted flow as a function of the exit geometry and flow parameters

and will provide guidance toward developing a more effective CSM design.



Chapter 2
Literature Review

The CSM is based on two fundamental jet principles: the tendency of a fluid to attach to
and follow a curved wall (the Coanda effect) and parallel jet interaction. Both principles are
interrelated through a fundamental principle of the Coanda effect: a jet attached to a curved
wall will entrain the surrounding fluid [3]. In the CSM concept, the major surrounding
fluid is the primary jet and the control jet (curved-wall jet) will entrain the flow of this
primary jet causing the main jet to vector according to the control jet. This literature
review will first present two sections providing necessary and adequate background on the
two fundamental principles that work in tandem to create jet vectoring as in the CSM.
Following the theoretical background, a section on applications of the two fundamental

principles will be presented.

2.1 Coanda Effect

Three different phenomena are associated with the name “Coanda” [16]. The most
visible is the tendency of a fluid jet initialized tangentially on a curved surface to remain
attached to that surface. The effect is commonly seen in everyday jet flows such as a stream
of water falling onto the convex side of a spoon. A second is the ability of a free jet to attach
itself to a nearby surface. Young (1800) realized that a fluid tends toward a convex surface
(as quoted in [13]) and Reynolds in 1870 described a ball suspended by a vertical jet as
being held in place due to the fluid attaching to the surface of the ball (as described in [3]).
The third is the tendency of jet flows over convex curved surfaces to entrain ambient fluid
and increase more rapidly than that of plane wall jets. The effect is commonly associated
with Henri Coanda, a Romanian inventor who was the first to employ these ideas, who

received many patents for devices utilizing one or more of these effects.
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2.1.1 Fundamental Theory
The landmark paper on the Coanda effect by Newman [3] investigated a two-dimensional,

incompressible, turbulent jet flowing around a circular cylinder, as shown in Fig. 2.1. The
nomenclature shown in the figure, as used in Newman’s work, will be used consistently
throughout this work.
The Coanda effect works through the balance of centrifugal forces and radial pressures
[17]. As the jet emerges from the slot, the pressure on the surface, ps, is less than the
ambient fluid pressure, po,, due to “the slightly enhanced viscous drag experienced by the
jet on the surface side.” This causes the fluid to move towards the curved wall surface. The

surface pressure along the curved wall rises downstream of the slot due to entrainment of

Slot width
b

Stagnation

pressure P

Fig. 2.1: Two-dimensional flow around a circular cylinder as shown in [3]



11

the surrounding fluid. Viscous effects may also contribute to the jet following the curved
wall surface, though this is debateable. Bradshaw [16] said that the effect can occur in an
inviscid irrotational fluid which shows that “a jet does not suck itself on by entrainment.”
Assuming the flow is initially inviscid, the formula for flow derived from the Bernoulli
equation is the formula p; = po — %%, where p is the density of the jet fluid, U is the
mean velocity, b is the slot width, and a is the radius of the curved wall (see Fig. 2.1). In
an inviscid fluid, the wall pressure remains below the ambient pressure as far as %Qb < Poo-
In real viscous flows, however, entrainment will cause increased jet thickness and a decrease
in mean velocity, making for an adverse pressure gradient. As mean velocity decreases,
surface pressure along the wall increases and eventually equals the ambient pressure. When
Ps = Poo, the flow separates from the curved surface [17]. Therefore, inviscid flows may
attach themselves according to the balance of centrifugal forces, but viscous effects are the
cause for jet separation from the curved wall.

A second explanation involves viscous effects as the means by which the jet attaches
to the curved surface. One way to demonstrate the two-dimensional Coanda effect is to
bring a cylinder into contact with a free jet in ambient air [14]. A free jet entrains fluid
from both sides normal to the stream. As a cylinder is brought near the jet stream, the
cylinder inhibits the entrainment on that side of the jet. The ambient air on that side must
then pass over the cylinder before being entrained. This causes a lower pressure on the
obstructed side, curving the jet around the cylinder. Eventually if the jet is close enough
to the cylinder, the flow will attach itself to the surface of the cylinder or curved wall.
Therefore, entrainment causes the jet to curve and centrifugal forces balance the radial
pressures as described above.

The primary parameters that describe any two-dimensional incompressible Coanda flow
are the angle of separation, slot width, and radius of curvature (6, b, and a, respectively, in
Fig. 2.1). Reynolds number and pressure differential (P — poo, where P is the supply pres-
sure) are also governing parameters. With surrounding fluid at rest, the value of Reynolds

number is inconsequential at large Reynolds numbers [18-20]. The pressure differential be-
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comes an independent parameter at some distance downstream of the slot due to Newman’s
assumption that the flow depends only on the momentum for a free jet. Therefore, the angle
of separation as described by Newman [3] is a function of the following form

(P — poo)ba

o A (2.1)

Osep = I

Experimentally, the angle of separation for two-dimensional real fluids at large Reynolds
numbers (Ry > 4 x 10%) and small slot width to radius ratios, b/a, remained relatively
constant near 240° downstream of the slot. Other researchers have confirmed experimentally
that the separation angles for two-dimensional flows are greater than 200°, with Fekete [18]
citing a consistent separation angle of 210° and Rask [14] finding the separation angle to
be 225°. If the fluid were inviscid and non-turbulent, the fluid would remain attached
indefinitely because the pressure at the surface of the curvature would remain lower than
the static pressure.

Through analytical analysis of Coanda flow at high Reynolds number, Newman [3]
proposed equations for describing the flow along a cylinder. It is noted, however, that
pressure distribution and velocity profiles are not discussed in this thesis as there has been
adequate discussion on these topics [3,18,21,22] and only 6, is crucial to this research.

The angle of separation formula (2.1.1) was shown to be

b

Osep = 245 — 391 —2— . (2.2)
1+3a

Fekete [18] followed the work of Newman by experimentally investigating an incom-
pressible wall jet flowing over a circular cylinder for velocity, surface pressure, and position
of separation. As mentioned above, velocity profiles were found to be similar in the stream-
wise direction and similar to plane wall jets. Fekete showed that the skin friction force
is negligible as long as b/a is not too small, stating that experiments where b/a < 0.0075

may be prone to skin friction forces. Fekete found that 6., decreases with increased surface
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roughness; however, with large values of Reynolds number the influence of surface roughness
was nil within the roughness limits tested.

Following the work of Newman, Fekete, and others along with an increased excitement
surrounding the Coanda effect at the time, a colloquium was held in Berlin in 1965 on the
subject of the Coanda effect. The full proceedings of the colloquium were never published,
but Wille and Fernholtz [13] have published a summary of the lectures and observations
presented, as well as a background of the Coanda effect up to that point with references
to previous works. The most applicable observations are those described for experimental
investigations. Bradbury apparently used a setup similar to that shown in Fig. 2.1 to show
that separation angle decreased with increasing pressure ratio. Gersten also used a similar
test setup, varying penetration ratio (¢/b), slot width to radius ratio (b/a), and jet Reynolds
number. The experiments suggested that the largest deflection angle was found (assuming
large Reynolds number and small b/a) where t/b is around 0.4. Fernholz found that the
geometry of the nozzle exit had a large impact on deflection angle with cross-sectional aspect
ratios of between 1 and 4 and b/a between 0.0714 and 0.2631. Lehmann performed tests
on different insertions at the nozzle tip, reporting that a small spoiler (of height = 0.03b)
placed at the outer edge of the nozzle lip - that opposite of the curved wall - may increase
the deflection angle.

Wille and Fernholtz also discussed that measurements were to be taken in the future
on logarithmic spiral curvatures. Some of these measurements were carried out by Giles et
al. [21]. In the experiment, the jet thickness to surface radius of curvature was kept constant
through the use of a logarithmic spiral curvature. The jets were found to be self-preserving
and growth rates on the logarithmic spirals were larger than corresponding cylinder jets.
Newman teamed up with Guitton [23] in a later work to revisit the logarithmic spiral
concept. Though agreeing with Giles et al. that jets along logarithmic spirals can be self-
preserving, they found discrepancies in the work of Giles et al., namely a large difference in
their experimental results as compared to results determined analytically using equations of

motion. The difference (also found in Newman and Guitton’s work, though to a much lesser
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degree) stemmed from the two-dimensionality of the flows. Variations in slot lip geometries
can cause major differences in flow field downstream.

In giving an overview of turbulent curved wall jets, Newman [24] noted the “primary
importance of jet momentum and the secondary importance of skin friction.” He suggested
that at high Reynolds numbers, skin friction is negligible. Newman and Guitton [23] showed
this was true using derivations of the momentum equations of a jet over a convex wall.

Flow visualization was the primary purpose of Panitz and Watson [25] in their exper-
iment involving water and a birefringent milling yellow dye solution. The setup diverted
from those previously described; instead of a smooth cylindrical surface, a series of three
congruently angled flat plates were used and the flow around the Coanda surface was con-
tained within a finite distance using a copper plate opposite the surface. The visualizations
showed that as the jet flow rate was increased, the jet came in contact with the copper plate
and reverse circulation occured. Also, conclusions on pressure profiles and flow entrainment
were presented.

Bradshaw [16] gave a summary of the knowledge of Coanda flow up to the published
date of the article and included many references to other works on the subject, including
many of those cited in this thesis. A critical observation of Bradshaw was that velocity
profiles are similar in all convex curved jets, with the only variant being possibly an increase
in the maximum velocity gradient in the outer layer of the jet profile. The assumption that
velocity profiles are similar for all shapes of the curved wall [3,18,21] and the assumption
that velocity profiles of curved wall jets do not vary greatly from plane wall jets [14] allow the
author to neglect a detailed discussion of velocity profiles [22,26,27]. Another observation
was that curved wall jets entrain more and are more turbulent than plane wall jets. These
are effects of additional rates of shear brought about by radial curvature.

Neuendorf and Wygnanski [28] revisited the classic experiment of a turbulent two-
dimensional wall jet over a circular surface in an effort to clarify results and eliminate
errors in previous research. In previous experiments, an external settling chamber was used

which created an adverse pressure gradient that causes earlier jet separation from the curved
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wall. This experiment used an internal settling chamber. They showed that “the pressure
difference between the settling chamber and the room was less than the dynamic pressure
[i.e.(po — Poo) < %pUJZEt], suggesting that the flow expands to some local static pressure, ps,
that is lower than atmospheric.” This confirmed earlier literature that ps at the exit is lower
than p, but did not explain why the phenomenon exists.

Two regions of flow around a cylinder were defined. The first was up to 6 = 120° where
potential core dominates and there is a constant surface pressure. The potential core is the
region in the central part of the jet stream that is virtually inviscid and irrotational and
is neither effected by the boundary layer on the curved wall nor the mixing layer on the
opposite edge of the jet. The flow became fully developed near § = 20° and the velocity
profiles from this point to the end of the first region matched well the profiles for flow
along a plane wall. The second region runs from near 120° to the separation point (around
230°) and is characterized by an adverse pressure gradient caused by entrainment which
eventually causes separation. The velocity profiles in this region no longer matched that
of a plane wall, and in fact the velocity profiles changed with downstream location. In the
region beyond 6 = 180°, the inner boundary layer grew dramatically with increasing 6 and
the mean velocity was pushed further away from the curved wall. The comparison was made
between this lack of self-similarity and turbulent boundary layers, with the shape factor H
extrapolated to the separation point being close to turbulent boundary layer values.

Neuendorf and Wygnanski suggested that the wall jet around a circular cylinder may
be approximated using boundary-layer equations given that y,,/b < 1 and 6 < 160°. This
suggests that boundary layer approximations fail a long time before separation. They also
stated that entrainment, initially causing the jet to adhere to the surface, causes separation
due to the disruption downstream in the sensitive balance between pressure and centrifugal
forces. The constants of the experiment were b/a = 0.0230 and an exit velocity U = 48

m/s, giving a Reynolds number of 33,000.

2.1.2 Supersonic Coanda Flow

Bevilaqua and Lee [29] were possibly the first to concern themselves with two-dimensional
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supersonic flow over Coanda surfaces. They suggested that supersonic flows over Coanda
surfaces have difficulty in initial attachment, due mainly to the balance between strong
inertial forces and the necessary radial pressure gradient. In subsonic flow, the effects of the
curve are transmitted upstream, therefore the jet is more likely to attach to the curved sur-
face. Bevilaqua and Lee determined that the “principle cause of supersonic jet detachment
is boundary layer separation induced by the shocks in the wave system of an underexpanded
jet.” At lower pressure ratios (poo/P, where ps, is ambient fluid pressure and P is the up-
stream stagnation pressure, see Fig. 2.1) the shocks in the wave system produced “bubbles”
of minor separation with the jet reattaching after the separation. At higher pressure ratios,
these bubbles eventually caused a complete separation of the jet from the radius of curva-
ture. Although the separation phenomena can be observed, no theories were presented for
predicting the point of separation.

Gregory-Smith and Gilchrist [19] continued work in supersonic flow by examining
the structure of an underexpanded axisymmetric curved wall jet and the mechanism of
breakaway on a Coanda flare (see Fig. 2.2). The Coanda flare jet is a three-dimensional
tulip-shaped device that encourages greater entrainment in order to combust gases more
efficiently, but for simplicity the examination was done only in two dimensions. Gregory-
Smith and Gilchrist found the same bubble and separation characteristics that were found
by Bevilaqua and Lee [29]. Hysteresis occurred in the breakaway point (hysteresis was
greater for smaller b). After the pressure ratio was raised to the point of jet separation,
reattachment occurred at a lower pressure ratio than the release point. Preliminary jet
structure calculations were presented. This paper was followed by Gilchrist and Gregory-
Smith [30] in order to expand the prediction of jet structure by presenting calculations for
the jet structure of only the core region of the underexpanded jet (the region between the
boundary layer and the entrainment layer). Gregory-Smith and Hawkins [31] have doc-
umented axisymmetric underexpanded curved wall jets finding values for the three mean
velocities and five of the six Reynolds stresses. The tests were again conducted on a Coanda

flare as shown in Fig. 2.2.
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Fig. 2.2: Coanda flare as shown in Fig. 1 of [19].

In a later work, Gregory-Smith and Senior [32] continued testing on a Coanda flare;
this time to determine the effects of axisymmetry and base steps on Coanda jets — both
previously unstudied. The setup was much the same as in previous tests with basic geometry
as shown in Fig. 2.2. The tests were conducted with a step between the slotted exit and the
curved surface. The results were compared with the zero-stepped testing done previously
[19]. The slot height to radius ratio (b/a) was constant at 0.1333 and step ratio of 0.125 (s/a,
where s is the step height). For a full range of step and slot height variations, Gregory-Smith
and Senior refer the reader to Senior’s doctoral thesis [33]. The most significant attribute
of the stepped flow was “the strong incoming expansion waves resulting from the reflection
of the step-zone shock, which causes much earlier reattachment of the separation bubble.”
This quick reattachment of the jet to the Coanda surface resulted in enhanced attachment,

prolonging breakaway until further downstream as compared to the zero-stepped case with
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consistent pressure ratios. The prolonged attachment occurs because the step caused more
small bubbles that take longer to amalgamate than the large bubbles associated with zero-
stepped flow. In much the same way, radial expansion also caused prolonged attachment
since the radial expansion waves decreased the size of the bubbles, therefore increasing the
time prior to amalgamation. Gregory-Smith and Senior state that their work was focused
on outer axisymmetric Coanda flares and an important extension of the work would be to
analyze internal axisymmetric Coanda jets.

Cornelius and Lucius [34] confirmed the results of those above by experimenting with
a two-dimensional compressible Coanda jet at high pressure ratio citing that “jet flow
detachment is brought about by large slot heights, high-pressure ratios across the nozzle, and
small radii for the Coanda surface.” Cornelius and Lucius also state that two-dimensional
compressible flow is affected by trailing edge geometry, characteristics of the underexpanded
jet, and external free stream parameters. Extending the slot wall opposite the curved surface
past the tangential location of the slot improved attachment length by creating a convergent
divergent nozzle.

Carpenter [17] gave an extensive overview of supersonic Coanda systems and a discus-
sion of an axisymmetric, supersonic jet over a tulip-shaped body of revolution similar to
that used by Gregory-Smith and Gilchrist (see Fig. 2.2). Carpenter recognized that design
engineers have a lack of literature in the following three areas: separation and break-down
characteristics, entrainment and turbulence levels, and acoustics characteristics. In this pa-
per, Carpenter sought to review and give insight to exit nozzle and Coanda surface design.
In the followup paper [35], Carpenter showed the effects of a base step and a saw-toothed
exit nozzle on supersonic flow over the same surface. The base step aided in eliminating the
nozzle lip shock, which increased attachment length. The saw-toothed exit nozzle showed

vast improvement in the reduction of the level of noise generated.

2.1.3 Rectangular Coanda Flow
Most likely the first to experiment with the Coanda flow in three dimensions, Patankar

and Sridhar [15] investigated the three-dimensional effect of turbulent, incompressible,
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curved wall jets. The setup was similar to that of Fig. 2.1; however, the third dimen-
sion is brought in through confining the z dimension of the jet to a finite distance (see
Fig. 2.3). This type of Coanda flow will be referred to hereafter as rectangular flow in
order to not confuse the reader with the three-dimensional flow of the CSM. Patankar
and Sridhar varied the aspect ratios (15.6, 10.0, 5.0, 2.5, and 1.0) keeping area (0.4 sq
in.) and initial velocity (140 fps) constant. Aspect ratio is defined as jet slot length (not
shown in Fig. 2.1) to jet slot width. The radius of curvature was also varied in the test-
ing (¢ = 6.0 in., 4.5 in., and 3.0 in.). Separation angles, f,.p, were determined through
droplet traces. Omne of the chief observations made was that 6, for rectangular flow was
much less than the two-dimensional version (a maximum of ~ 85° for the aspect ratios
tested versus consistently greater than 200° as discussed above). Also, aspect ratio and
a each had a large influence on 6s.,, though aspect ratio had the greatest effect. The

separation angle was found to increase with both aspect ratio and radius of curvature.

Fig. 2.3: Schematic representation of a rectangular Coanda flow field as in Fig. 1 of [15].
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Following Patankar and Sridhar’s work, Rask [14] completed a doctoral thesis on rect-
angular Coanda flow. The physical setup was similar to Patankar and Sridhar’s, but Rask
varied aspect ratios to a greater extent (2:1 to 40:1) and used two slot widths in his experi-
ments (0.01 in. and 0.25 in.). Flow visualization and measurements were performed via gas
tracer and hot film anemometry, respectively. Reynolds number varied between 0.9 x 10*
and 5.0 x 10% depending on the aspect ratio and slot width. Rask’s experiments confirmed
the conclusions of Patankar and Sridhar and independently provided insight to rectangular
Coanda flows. Table 2.1 shows data from the experiments of both authors to demonstrate
the effect of aspect ratio and radius of curvature on rectangular Coanda flow. Rask deter-
mined separation angles from three different methods: photographs, centerline effectiveness
plots, and droplets. The separation angles found through the centerline effectiveness plots
are most comparable to published two-dimensional data described previously. For details
on the measurement techniques, the reader is referred to Rask’s work. As seen in the table,

separation angle increased with aspect ratio and with a or radius of curvature.

Table 2.1: Separation Angles of Rectangular Coanda Jets (see Table 6-2 in [14])

Rask Results [14]

Aspect Ratio Photograph 0., CEP 0., Droplets 0,
Thick Slot (0.01 in.)
16 to 1 72 70 70
10to 1 45 50 50
4tol 23 27 18
2to 1l 23 undet undet
Thin Slot (0.25 in.)
40 to 1 85 90 100
25 to 1 70 70 70
10to 1 43 40 38

Patankar and Sridhar Results [15]

Aspect Ratio 1.0 25 50 100 156
a= 3.0 in. 50 60 70 77 80
4.5 in. 53 64 73 80 83

6.0 in. 64 75 80 85 87
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Rask found a number of different characteristics of rectangular Coanda flow. He de-
termined that rectangular flow was independent of Reynolds number as long as Reynolds
number was high. The rectangular jets in his experiment exhibited much variation in the
flow field, with large scale eddies being the major contributor to this characteristic. Flow vi-
sualization showed that eddies would attach to the curved surface up to random separation
angles varying between 80 and 130° downstream of slot. Flow visualization also showed
that much more turning occurred at an aspect ratio of 40:1 than at 16:1 and below the
aspect ratio of 4:1 there is virtually no turning (also noticed by Patankar and Sridhar [15]).

Two other interesting phenomenon observed by Patankar and Sridhar [15] and detailed
by Rask [14] are the triangular attachment pattern and the saddle shape velocity profile
in the radial y direction. An equal-velocity contour plot of this phenomenon is shown in
Fig. 2.4. As the three-dimensional jet exited the slot, entrainment occurred on all three
sides facing ambient air. The entrainment caused the jet to separate from the curved
surface not only in the radial direction but also symmetrically in the z direction. This

caused an attachment trace of a triangle, which Rask found the tip of that triangle to be

00 05 10 15
y (in)

Fig. 2.4: Isotach pattern (equal-velocity contour) plot showing the saddle shape of the flow
shortly downstream of a three-dimensional rectangular slot [15].
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located ~ 60° downstream. The saddle shape profile in the radial direction began near
the slot exit, ran through the attachment triangle area, and may have been caused by the

entrainment of the ambient air or possibly by stretched vortices as described by Patankar

and Sridhar [15].

2.1.4 Coanda Effect Involving Two Parallel Flows

Juvet [20] conducted research on an axisymmetric control flow using smoke wire vi-
sualizations and hot-wire anemometry. The setup differed from previous research in two
ways. First, the system was axisymmetric: a circumferential slot is used to blow air around
the interior of a collar (see Fig. 2.5). Secondly, two flows were involved, a primary flow
exiting a nozzle of large diameter centered in the collar with a secondary flow exiting a
circumferential slot tangential to the radial surface (D > b, see Fig. 2.5).

Juvet ran tests of different blowing ratios with constant b/a = 0.031. Blowing ratio
was define as volume flow rate of the secondary flow to flow rate of the primary flow and
was varied from 0 to 0.15 (corresponding to momentum ratios of between 0.0 and 0.33).
He found that with no blowing through the secondary slot, the primary jet felt little to no
effects from the collar. With blowing ratios below 0.1, the primary jet width was broadened

and centerline velocity decreased due to entrainment of the secondary flow. Above 0.1,

Primary
Flow

7 1 ¢

Secondary
Flow

Fig. 2.5: Schematic of axisymmetric Coanda jet exit as shown in Fig. 4.1 of [20].
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the main jet was vectored radially and no longer behaved like a free jet. As blowing ratio
increased, the vectoring increased as was observed by the centerline velocity decreasing to
null within the confines of the experiment.

Wing [36] focused on two-dimensional thrust vectoring of a primary jet using a sec-
ondary jet deflected via a Coanda surface as shown in Fig. 2.6. Using paint flow and schlieren
photography for visualization and six-component strain-gauge balance for force and moment
measurements, Wing found only slight vectoring of the main jet, the largest vectoring being
only 6 degrees. Wing suggested that there may not have been enough momentum in the
primary jet and that the nozzle may not be optimized in order to produce larger vectoring
angles. Geometries of the nozzle and flow rates of the two jets may also be to blame for the
small angle of deflection. Wing had set up the system to coincide with then-current aircraft
designs. A detailed description of the system used is not within the scope of this work; the
reader is referred to Wing’s work for detailed dimensions, flow rates, pressure ratio, etc. It
is noted here, however, that the mass flow rate ratio (secondary jet to primary jet mass

flow rates) was varied between 0.0 and 0.1, and b/a was held constant at 0.2966 — which

Sidewall flap with Coanda effect causes
Secondary flow injected =~ convex curvature secondary flow to follow

as a vertical sheet curvature of sidewall flap
Primary flow is entrained by

F"””"—"
secondary flow, resulting i in_—w
. aw thrust vectorin,
Primary flow == —z- 5

Secondary flow ==

Secondary flow —=

Fig. 2.6: Top view of two-dimensional convergent-divergent nozzle using the Coanda effect
to produce yaw thrust vectoring in a compressible flow as shown in Fig. 1 [36].
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is much larger than slot width to radius ratios used in most other experimental tests.

Mason [5] followed the work of Wing [36] by analyzing coflow fluidic thrust vectoring
in the much the same way Wing had done. Mason used a two-dimensional setup shown in
Fig. 2.7. The experiment used only one slot for secondary blowing, although the slot height,
b, is varied throughout the experiments. The nondimensional geometric parameters were
varied according to 0 < a/D < 1and 0 < b/D < 0.08, corresponding to 0.007 < b/a < 0.242
which falls in line with previous work. The primary flow rate was held constant while the
secondary flow rate was varied throughout the tests making the mass flow rate ratio range
0 < e/, < 0.13 and the momentum flow ratio range 0 < Jc/Jp < 0.4.

Although Mason was focused primarily on thrust force, the data presented can also
relate to jet vector angle. The vectoring angle was better than that found by Wing [36] in
a similar test, but the largest angle achieved was still relatively small near 35°. Mason’s
found that three regions existed as momentum ratio or flow ratio was increased. The first
region was characterized as the “dead zone” where the flow was sporadic and includes an
negatively vectored occurrence. The second region was the “control” region where the vector

angle versus momentum ratio or flow ratio was mostly linear and could be controlled. The
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Fig. 2.7: Side view of two-dimensional nozzle using coflow Coanda effects to produce thrust
vectoring as illustrated by Mason [5].
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third region was the “saturation” region where the vector angle no longer increases with
increased momentum or flow ratio. This work relates more directly to the present study

than any known by the author.

2.1.5 Numerical Simulations for Coanda Flow

Only a brief overview of numerical studies will be presented as Coanda flow is difficult
to solve numerically and experimental results are more pertinent to the thesis. Parks and
Peterson [37] apply similarity analysis to approximate two-dimensional laminar Coanda
flow, finding mass entrainment, thrust, and jet-sheet thickness formulas. The analysis
is valid only for b/a < 1 and for Reynolds number less than 3 x 10%. Moser [27] uses
direct numerical simulation on low Reynolds number convex and concave surfaces finding
consistent results with experimental data. Sawada [38] writes a solution for two- and three-
dimensional supersonic Coanda jets, however the code only matches experimental data
for the first few lengths downstream of the exit nozzle. Wernz and Fasel [39] have recently
been studying turbulent Coanda flow using three-dimensional Navier-Stokes simulations and
Direct Numerical Simulations providing theories and data on the streamwise and spanwise

vortices.

2.2 Parallel Jet Interaction

The interaction between parallel jets is important to the effectiveness of the CSM. The
marquee function of the CSM is the ability of the secondary jet to entrain the primary jet
that emerges parallel to the secondary jet. The enhanced entrainment caused by the Coanda
effect and the effect of parallel jets in a Coanda environment have already been discussed
(most notably Juvet [20] and Wing [36]). Beyond the Coanda literature in print, no known
research on parallel jets in the area of a curved surface has been conducted previously. It
is assumed, however, that the flow field effects of the combination of parallel jets and a
curved surface would differ greatly from plane parallel jets. This being the case, only a
brief introduction into parallel jets will be discussed here.

The research listed here on parallel jets involves twin submerged jets of the same fluid



26

emerging from the same exit plane with different and similar fluid properties (varying exit
slot geometry, jet velocity ratios, momentum ratios, etc.). Lin and Sheu [40] characterized
parallel jet flow by describing the three regions of the flow: converging, merging, and
combined regions. The converging region is the region directly downstream from the exit
plane in which the two jets converge toward one another due to entrainment. In this region,
an area exists between the jets where there is lower pressure. The merging region exists
when the streamwise velocity is maximum in this region and the two jets merge dramatically.
The combined region occurs where the two jets combine and behave very similar to a single
jet.

Bunderson and Smith [41] experimented with plane parallel jets to examine the “flap-
ping” or instability that arises when the momentum flux ratio of the two jets approaches
unity. The oscillations that are due to Reynolds stresses were found to enhance the large-
scale mixing of the two jets. The instability was a function of both the geometric dimensions
of the plane jets, including the jet widths and the space between the jets, and the momentum
flux ratio. Maximum “flapping” and in turn maximum mixing occured when the momen-
tum fluxes matched. When the momentum fluxes were mismatched by greater than a factor
of three, the flows became steady. It was demonstrated through Schlieren flow visualization
that the larger momentum jet always entrains the lower momentum jet for higher momen-
tum ratios. This happened regardless of which plane jet had the larger jet width, for the
geometries and flow rates tested.

Anderson et al. [42] experimented with plane parallel jets that had a much smaller jet
width to slot distance ratio 0.6 < w/d < 2.0. It was observed that the reduced frequency
decreased with increasing jet width to slot distance ratio. They also found that for the
geometries and flow rates used, at near seven slot widths downstream of the exit plane the
two parallel jets would converge completely and act as a single turbulent jet as shown in
Fig. 2.8.

Fujisawa et al. [43] examined the effects of parallel jets with differing velocities issuing

into an ambient fluid. The experiment used PIV and dye-induced flow visualization to
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Fig. 2.8: Plane parallel jet flow with small w/d as shown in Fig. 1 of [42]).

show that parallel plane jets with velocity ratios less than unity (the velocity ratios ranged
between 1 and 0.25) caused the higher velocity jet to entrain the lower velocity jet causing a
modified trajectory towards the higher velocity jet region. The testing showed that interac-
tion between the two parallel jets was weakened and the converged jet width was decreased
with a decrease in velocity ratio (or increase in the difference between the two velocities).
The authors stated that entrainment was proportional to velocity and that turbulent mixing
was weakened with decrease in velocity ratio. Another important observation of the work
was that the converging of the two jets into virtually a single jet occurs earlier with lower

velocity ratios.

2.3 Applications of Coanda Effect and Parallel Jet Interaction
This section deals with some of the known applications of the Coanda effect and,
separately, the known applications of parallel jet interaction.

Flow control is a primary application of the Coanda effect. Wille and Fernholz [13]
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discussed various applications up to the time of the colloquium. The major application has
been in the aerodynamics industry in circulation-control aerofoils and wings (see Englar for a
more recent overview of circulation control in aerodynamics [44]). More specific applications
include reaction turbines, swirl atomizers, and fluid logic devices including an artificial
respirator. Warren [45] and Joyce [12] both described the use of the Coanda effect in
fluidics. More obscure uses of recent flow control are seed separation and dispersion [46]
and air movers [47].

The enhanced entrainment of the Coanda effect is also useful to many applications.
Jets along a cylindrical surface can be used to cool the surface [13]. High-pressure gas flares
employ the Coanda effect by making use of enhanced entrainment to more efficiently burn
excess gases in refineries (see examples of gas flares in [17] and also the gas flares used
in [19], [30], [31], and [32]). Carpenter [17] also listed burners and other combustors as
applications, along with Coanda jet pumps.

Parallel jets have many applications in flow control and mixing mechanisms. Bunderson
and Smith [41] noted that both active and passive flow control methods exist and that many
of those applications include the introduction of streams into enclosed chambers such as fuel
and chemical mixers and the exhaustion of jets into ambient air such as in exhaust stacks
and VSTOL aircraft. Fujisawa et al. [43] listed a few different parallel jet applications such
as in gas turbine combustion chambers, automobile air conditioning units, and air curtain

units for refrigeration systems.
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Chapter 3

Approach

3.1 Objectives
The purpose of this research is to determine which parameters effect the control of the
CSM. This information will be used to further develop the CSM technology. The objectives

of the research are as follows:

e Use particle image velocimetry to determine the effects of the location of control jet

impingement onto the curved surface on the primary jet’s shape and vector angle.

e Use particle image velocimetry to determine the effects of CSM geometry at the

secondary jet exit on the primary jet’s shape and vector angle.

e Use particle image velocimetry to determine the effects of the momentum flux ratio

on the primary jet’s shape and vector angle.

The procedures that were carried out are in fulfillment of these objectives. The research
was conducted using a non-rotational CSM test facility designed and built to examine the
parameters outlined above. This chapter first outlines the experimental facility followed by
a description of the specific experimental instrumentation. The Particle Image Velocimetry
(PIV) measurement techniques are then described with a section on the data that was

collected. The concluding section discusses the uncertainty analysis of the data.

3.2 Experimental Facility

The test CSM was manufactured to be similar to the current prototype design, but was
much larger and did not rotate. The test CSM was made larger to reduce errors in manufac-
turing flaws (such as material or fit-up inconsistencies) and improve PIV data acquisition

through a larger fluid jet to be analyzed. Eliminating the rotary mechanism simplified
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Fig. 3.1: Sketch of experimental test CSM facility. The solid streamlines represent the
primary flow, while the control flow is indicated with dashed lines.

the system. The effects of rotation are secondary as compared to the effects of geometry
and momentum ratio. A sketch of the test setup is shown in Fig. 3.1.

The primary (A) and the control (B) high-pressure-air flows entered separately at the
rear of the test setup. The primary flow was channeled via a conduit (E) directly through
the setup to the collar (H) at the exit. The control flow entered a plenum (D) that contained
two flow conditioning sections (C) in order to spread the flow evenly. From the plenum,
the flow was directed to a control slot (G), and a gasket (F) was used to close off slots that
were not being used (each part G had several different slots, only one of which was used at
any time). The exiting control flow was vectored (J) around the collar (H) by the Coanda
effect and through entrainment, the primary flow (I) was vectored as well. Excepting the
diffusers and the central tube, the test CSM is built entirely of Alloy 6061 Aluminum
(as in the prototype model). Interchangeable parts include the flow directing gasket, the
modulator, and the collar. The momentum ratio (J*) was also changed according the the
testing requirements.

The test facility was designed to allow several different geometric variations, including

the collar radius a, the location of jet impingement j, and the circumferential extent of
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Fig. 3.2: Scale drawing of a Coanda-assisted vectoring nozzle of the test setup.

the control slot (see Fig. 3.2). Fig. 3.3 shows the geometries of the slots at the exit plane
graphically from a view looking into the jet. Two different parts comprising a total of five
different control slots were used. Machine shop drawings for modulators, collars, and test
assembly can be found in Appendix B.

The primary jet, which had a diameter of D = 12.7 mm, emerged from a circular
exit. The control slots were annular, with the slot width & = 3.4 mm. Circumferential
percentages (based on the smaller radius) of 11.1%, 15.1%, 19.4%, 29.5%, and 50.0% were
used. The gap between the jets at the exit plane was constant at 0.6 mm. The collar had
a diameter of 15.9 mm at the most narrow position.

The point at which the control jet impinged upon the curved surface was examined
using three jet exit locations. These locations were provided by three separate modulators
(see Fig. 3.4). The first location was exactly at the center of the collar, the second was one
diameter upstream of the collar center, and the third was two diameters upstream of the
collar center. As shown in the results, it was found that the first location reduced vectoring,
the third location improved vectoring but increased unwanted spreading of the jet, and the
second location provided the desired vectoring and mixing. Therefore the second location,

one diameter upstream of the collar center, was chosen for the secondary slot size study.
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Slot width 29.5 9%
11.1 %

Gap between .
jets = 0.6 mm

Fig. 3.3: Sketch of the control slots as viewed looking into the jet exit. All control slots
had the same width, but different circumferential extents, shown as percentages of the total
circumference. One slot was used for each test.
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Fig. 3.4: Side cutout views of the test facility with varying locations of jet impingement (7).
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The four radii used, a/D = 2.00,2.75,3.25,5.25, provided a range of between 0.051
and 0.133 for b/a. These values correspond to similar ranges used in previous experiments
(Newman’s range 0.0067 to 0.0400 [3], Fekete’s range 0.0074 to 0.0531 [18], Patankar and
Sridhar’s range 0.0266 to 0.1053 (1972) [15], a range of 0.08 to 0.24 for Fujisawa and
Kobayashi [48], and 0.023 to 0.068 for Neuendorf and Wygnanski [28], to name a few).
The effects of a discontinuous radius will not be examined. Fekete [18] shows that surface
roughness has an effect on the Coanda flow. Each of the curved surfaces to be used will
be machined, unpolished Alloy 6061 Aluminum. The material is constant throughout the
testing in order to eliminate any dependency on surface roughness.

The momentum rates were controlled independently, and many values of momentum
flux ratio were tested to view their effect on vectoring angle. The form of the momentum

flux ratio, assuming uniform flow at the exit, is

.2
==/, (3.1)

where J. is the control momentum flux, J, is the primary momentum flux, A, is the control
exit slot area, A, is the primary exit slot area, 1, is the primary mass flow rate, 7. is the

control mass flow rate, and p is the fluid density.

3.3 Instrumentation

The instrumentation involved in the PIV test are the mass flow controllers, the seeder,
the laser, the camera(s), and the software involved in determining displacement and velocity
data.

Two, independent, Porter model 204A mass flow controllers were used in the experi-
ment. The primary mass flow controller was rated up to 1000 SLPM, while the control jet
mass flow controller was rated up to 200 SLPM.

Since the fluid blown through the CSM into ambient air was compressed air the blown
fluid needed to be visually different in order to visualize the flow. Small olive oil particles

were fed into the primary flow and illuminated in the downstream laser plane to create an
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image with lighted flow and unlighted ambient air. A seeder was used to create the size
of seed particles needed for PIV (small enough in size that viscosity effects overcome the
weight of the particles forcing them to move with the compressed air flow). The seeder was
an in-house made Laskin nozzle blowing compressed air into a chamber of olive oil to create
the particles and funneling the small-enough particles into the test flow.

Two separate PIV systems were employed in the testing. The first was a single camera,
two-component, system. A 12-bit, 1.3-MPixel (1280 x 1040) camera acquired images of
seeded flow illuminated by a pair of 532 nm wavelength, 50 mJ Nd:YAG lasers with sheet
optics. The second PIV system was a stereo (two camera) system that returns three-
dimensional velocity components. The laser was the same used in the previous setup and
the two cameras were identical to that used before. Both systems used LaVision DaVis
software to compute the velocity vectors. The PIV system employed a dedicated computer
custom built by LaVision containing two Intel Xeon 2.80 GHz processors. LaVision software
utilizes an algorithm to cross correlate the light variations of the digital images and produce
velocity vectors. The data outputted from the LaVision software will be manipulated via a
low level code to generate the maximum velocity values at the specified location downstream
and in turn the vectoring angle. The final interrogation regions were 16 x 16 pixels for
both systems. The time between images was set to ensure that the maximum particle
displacement was near 5 - 10 pixels for the two-component system and near 4 pixels in the

three-component system.

3.4 Measurement Techniques

For the two-component PIV measurements, the beam was cast perpendicular to the
CSM exit plane. The control flow was applied at a location such that the jet always
vectored in a direction inside the laser plane (see Fig. 3.5a). These measurements were
used primarily to determine the vector angle. For the stereo measurements, the beam was
directed parallel to the CSM exit plane at a fixed distance downstream (see Fig. 3.5b).

These measurements were used primarily for determine the resultant mixing of the jet.
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Fig. 3.5: Laser sheet configuration of two-dimensional (a) and stereo (b) systems.

Table 3.1 shows the matrix of geometries tested (for more test details see all test

parameters in Appendix A.2 and A.3). The radius of the collar, a, was varied between 25.4

mm and 66.7 mm and the control jet varied from 11% to 50% of the total circumference.

For each control jet exit slot geometry, the control mass flow rate to primary mass flow rate

was varied between 0.0 and 1.0. In doing so, the momentum flux ratios varied between 0.00

and 7.75. The Reynolds number range for the primary jet at the exit plane was between

20,000 and 80,000. The flow was in the incompressible Mach number range (Mach< 0.3).

Table 3.1: Geometric Variation Matrix (2D = Test via Two-Component PIV, 3D = Test

via Three-Component PIV)

a/D = 2.00 2.75 3.25 5.25
Slot Size
11.1% 2D 2D 2D, 3D 2D
15.1% 2D 2D, 3D 2D 2D
19.4% 2D, 3D 2D 2D 2D, 3D
29.5% 2D, 3D 2D 2D 2D, 3D
50.0% 2D 2D, 3D 2D, 3D 2D
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For each combination of geometry and jet momentum flux, 100 two-dimensional PIV
images were taken and averaged to generate mean velocity vector fields. A sample averaged
velocity vector field is shown in Fig. 3.6.

When determining the vector angle of the jet, we chose not to include the entrainment
regions of the jet. For each averaged velocity vector field, the standard deviation of velocity
was calculated. A jet mean angle was assessed by averaging the angle for all locations where
the mean jet velocity exceeds the standard deviation of velocity. The coordinate system
was then shifted so that the = coordinate was parallel to the jet vectoring angle. This
coordinate system is denoted (Z,¢) and has corresponding velocity components @ and 9.
The origin of rotation was the center of the primary jet exit. Note that the collar extends
downstream of this point. At 8D downstream of the jet exit along this angle, the & and

¢ momentum components were calculated according to [ pt?% dg and | puv dy, respectively.

Fig. 3.6: Velocity vector field for circumferential percentage of 29.5%, a/D = 2.00, and
J* = 0.769. The coordinate system (Z,7) is also shown.
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The resultant vector was taken to be the vector angle of the jet. Thus, an initial angle
guess was made, then improved by the momentum vector. The vector angle for the case in
Fig. 3.6 was found to be & = 49°.

The vectored jet area, width, height, and growth rate were examined using stereo PIV
data. Data was collected at £ = 8D and at £ = 12D for three-component tests listed in
Table 3.1. For each geometric setup and jet momentum flux ratio, 300 PIV images were
acquired simultaneously by the two cameras at 5 Hz. LaVision DaVis software was used
to generate averaged three-component velocity vector fields from these images. A low-level
code was used to detect the cross-sectional width and height of the jet profile at half the
maximum velocity based on the averaged velocity vector fields. It was observed that the
jet cross-sectional profile was elliptical, so the cross-sectional areas of the jets were found

fitting the equation for an ellipse using the measured width and height.

3.5 Uncertainty Analysis

The uncertainty in the momentum flux ratio arises from the uncertainties in the exit
slot areas due to machining errors and the uncertainty of the mass flow controllers used
throughout the experiments. Since density cancels in Eq. 3.1, the uncertainty in the

momentum flux ratio is found according to

dJ*\? 0J*\? J*\? aJ* \ 2
U2, — U2 2 2 2
T AC<8AC> +UAp<aAp) +Umc<am'c> +Ump<am',,> ‘ (32)

Calculating the partial derivatives in Eq. 3.2 and simplifying, the uncertainty equation
Ua \2 Ua \2 U \2 Us \ 2
Ujpe = J* Ao ) (2 ) Ly (Zhe) g (2 (3.3)
A, Ap e my,

Since the control slot area was varied, the uncertainties in the control slot areas range

becomes

from 3 to 5%, while the primary slot area has an uncertainty of 0.02%. At most, the

area uncertainties account for less than 10% of the total uncertainty. The majority of
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uncertainty comes from the primary and control mass flow rates which are 1.5% full scale.
As the accuracy was based on full scale percentages, the uncertainty for those flow ratios
on the lower end of the operating range are substantial and plots of the data show error

bars to indicate this uncertainty.
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Chapter 4

Results

The results are presented in the following manner. First, the jet impingement results
are described as these results led to the design of the secondary exit slot study. These
results are followed by a discussion on the momentum ratio effects on CSM control. Then,
the results of the exit slot size tests will be shown. The velocity profiles are then discussed.
The final section involves the results of the three-component PIV tests showing relationships

of jet area and aspect ratio.

4.1 Jet Impingement

Three variations of jet impingement location were used and the resulting vector angles
are shown in Fig. 4.1. As shown, the tangential location (a/D = 0.00) shows very little
vectoring. The location one diameter upstream (a/D = 1.00) improves vectoring angle,
while the greatest vectoring is achieved at a/D = 2.00. Although a/D = 2.00 gives the
largest vectoring angle, the area of the jet increases much more in this case. This may be
caused by the secondary and primary jets expanding radially around the curved surface
prior to the center of the collar. Thus, a happy medium is found using the a/D = 1.00 or

one diameter upstream of the center of the collar.

4.2 Momentum Ratio and Control Slot Size

The vectoring performance in terms of vector angle as a function of the momentum flux
ratio for various collar radii and control slot sizes is shown in Fig. 4.2. The vectoring angle of
the primary jet is a strong function of the non-dimensional momentum flux ratio. The angle
is zero with no control flow and generally increases with momentum ratio to a maximum

before decreasing gradually. Mason and Crowther [5], in their planar geometry experiment
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Fig. 4.1: Vector angle as a function of momentum flux ratio for three jet impingement
locations. Secondary exit slots are not same as used in exit slot study shown later (2.00 <
a/D < 5.25 and 0.032 < A./A, < 0.259).

similar to this, found a similar trend. Mason and Crowther also experienced the “reverse
Coanda effect” found at very low momentum ratios in which the primary jet actually vectors
toward the opposite curved wall. This is shown in the figure by the negative angles present
at very small momentum ratio values.

Also shown in the plots is the effect of the radius of the collar. The Vector angle
increases proportional to the radius size. The effect is substantial for the smaller control
slots, while the effect of radius is negligible in the largest control slot. Insensitivity to the
collar radius will be advantageous in situations where one desires to vector the flow along a
radius that will allow dense particulate to remain inside the vectored flow. The area of the
control slot also strongly influences the peak and minimum angles, with 29.5% providing
the best performance among the values tested.

For each slot size, beyond the flux ratios that resulted in negative angles, the angle
increases to a peak value. This behavior is generally linear and the initial slope of these

curves is larger for the larger control slots. This can be seen more clearly by examining
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the momentum ratio necessary to achieve 90% of the maximum angle for each control slot.
As shown in Fig. 4.3, the momentum ratios corresponding to the maximum angles become
smaller with the size of the control slot. This plot also shows the large sensitivity to collar
radius for small control slots and the insensitivity of the vectoring to collar radius for larger
control slots. For each slot size, after the initial drop in angle with momentum ratio, the
angle increases to a peak value. This rise is linear and the slope is affected by slot size. The
slope of the angle over momentum ratio in this area was calculated for each slot size. The
slope as a function of slot size is shown in Fig. 4.4.

The data as plotted shows an exponential correlation. An exponential curve is fit to
the data in the graph and fits the original data very well. Although Mason and Crowther [5]
did not have an analogous parameter of the control slot circumference to compare to the
slope of the linear region, they did mention a similar “control region” where the vectoring
may be effectively controlled according to momentum flux ratio.

A correlation function was sought which would enable the accurate prediction of vector

angle for given momentum ratios, collar radius, and exit slot circumference percentage.
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Fig. 4.3: Momentum ratio at 90% of maximum angle as a function of slot size.
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Fig. 4.4: Slope of angle over momentum ratio in the rising angle regime as a function of
slot size with exponential curve fit shown (R is a correlation coefficient indicating how well
the exponential curve fits the data, closeness to unity indicates a good fit).

Newman [3] described the form of a function that would predict the separation angle (angle
at which the jet detaches from the curved surface) of a single jet over a Coanda surface to

be
(P — pso)ba
pv?

Psep = [l E (4.1)

with P — ps being pressure differential (where P is the supply pressure) and b as the exit
slot width and « is the radius. Using this angle function as a guide, our correlation function
incorporates momentum ratio rather than pressure difference as the driving force. Based
on the results in Figs. 4.2-4.3, it was determined to scale the results on the control slot size
and good agreement is found using

o = (01 X J* % “)(52) , (4.2)

D

where A is the control slot circumference divided by the primary slot circumference. The
constants, C'1 and C2, have values of 3.25 and 2.0, respectively. The results of this corre-

lation function are shown in Fig. 4.5, with various geometries specified. Not only does the
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data collapse individually for each slot geometry, but the data also collapses generally across
slot geometries. The two slot geometries with somewhat dissimilar behavior are those with

slots that are 15.1% and 19.4% of the circumference.

4.3 Velocity Profile

With the relationship between the geometry, momentum ratio, and the resultant vec-
toring angle established, we turn our attention to the impact that this vectoring scheme has
on the mixing of the jet. The velocity profile and half-maximum width of the vectored jet
at T = 8D downstream of the primary jet exit were examined using two-dimensional PIV.
Two baseline measurements were taken for each geometry, one with zero control blowing
and primary mass flow rate of 0.004 kg/s (Re = 20,400) and another with zero control
blowing and primary mass flow rate of 0.011 kg/s (Re = 61,300). These baseline profiles
were compared with vectored jet profiles having the same primary mass flow rate. The
average baseline vector angle is 2.63°, apparently due to small variations in the machining.

A comparison of vectored and unvectored cross-stream profiles of the streamwise
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Fig. 4.5: Vector angle as a function of correlation formula including all test data, outlined
according to slot size.
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component of velocity is shown in Fig. 4.6. Profiles for vectored and unvectored (secondary
velocity us = 0) jets of the same initial primary velocity are more similar for higher primary
velocity. Both the vectored and unvectored profiles have maximum velocities occurring at
or near §/D = 0, and the profiles are nearly symmetric about the centerline. For the lower
initial primary velocity, the profile shapes of the vectored jets are widened by the control
flow, the maximum velocities occur away from the centerline of the vector angle (and on
the side away from the collar), and the profiles are no longer symmetric. These trends were
found to be consistent over the entire range of geometries tested. This suggests a smaller
change in jet profile with higher primary velocities, regardless of secondary exit slot or collar
geometry.

To examine the jet spreading, and thus the mixing, the maximum half-widths were cal-
culated for each of the experiments and the percent difference of the vectored to unvectored
maximum half-widths was calculated. The average percent difference for the lower velocity
jets was found to be 19.6%, while the higher velocity jets were more similar with an average

percent difference of 9.5%. The profile shape changes with increasing momentum flux ratio
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Fig. 4.6: Velocity profiles at £ = 8D for 29.50% circumference slot and a/D = 2.00 com-
paring unvectored jets with vectored jets.
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as shown in Fig. 4.7. The maximum half-width (indicated by the dashed lines), normalized
by D, ranges from 2.25 for no blowing to 4.32 for the largest flow ratio (J. = J, = 3.08).
Also, the maximum velocity location shifts from near the centerline to below the centerline
or away from the curved surface adjacent to the control slot. At the same time, the shape
also becomes asymmetric with the maximum velocity tending toward the Coanda (positive

y) surface.

4.4 Area and Aspect Ratio

The cross-sectional area of the jet at 8D and 12D downstream of the exit plane was
measured using stereo PIV. Contour plots of one geometric combination and J* are shown
in Fig. 4.8. The control flow was applied to the top of the primary jet in this figure. For
this case, the area of the vectored jet is 4.07 times greater than the unvectored jet area.

The areas (based on half-maximum velocity) of vectored jets are compared with unvec-
tored jets in Fig. 4.9 at 8D and 12D, respectively. We find that the cross-sectional area at
8D increases linearly for all cases. However, at 12D downstream, the area increases linearly
only until the saturation angle is reached in each geometric combination. After this point,

the area increases dramatically. This trend was consistent throughout all testing parameters.

Momentum Fqu Ratios
0.0 0.03 . 1.97 2.49 3.08

hiixaes
ol

.L

u/uo

Fig. 4.7: Velocity profiles at & = 8D with increasing momentum flux ratio (J* = 0.0 through
3.08) for 29.50% circumference and a/D = 2.00. The maximum half-width and vectored
angle for each momentum ratio are also shown.
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Fig. 4.8: Contour plots of the velocity non-dimensionalized by the exit velocity in a plane
normal to the jet at & = 12D for 29.5% circumference and a/D = 2.00. The left plot is no
vectoring (zero control blowing), while the right plot is with vectoring (J* = 2.49, ® = 70°).
The velocity contours above half the maximum velocity are shaded.
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Although the normalized areas were different for the two distances downstream, the
aspect ratio was not affected by distance downstream as illustrated in Fig. 4.10 where both
8D and 12D data are plotted. The data is linearly decreasing, or the height increases
more rapidly than the width for angles up to 90°. In terms of the CSM geometry, the
jet profile is stretching in the g-positive direction or towards the control slot. After this
point the width increases extremely fast with increasing angle. In other words, the jet

spreads more rapidly across the Coanda surface as vector angle is increased past ® = 90°.

5 ——AMBRI
[| © 29.5%, a/D=2.00, 8D ®  29.5%, a/D=2.00, 12D
O 29.5%, a/D=5.25, 8D W 29.5%, a/D=5.25, 12D
A 50.0%, a/D=2.75, 8D A 50.0%, a/D=2.75, 12D VV
4 V. 50.0%, a/D=3.25, 8D Y 50.0%, a/D=3.25, 12D |y o
v
r'y
A
Apy
3 - —
< A
<
= v
=
2 - —
Ya |
A A
1
r oA . B
1 y A o O Ve |
[ g’g §$ . Eom ° v v
L o BN A
o seble
0 T R R R R
-20 0 20 40 60 80 100

@ (degrees)

Fig. 4.10: Aspect ratio of the vectored jets at both £ = 8D and & = 12D for various
geometries as a function of vector angle.
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Chapter 5
Conclusions and Future Work

A fluidic jet-vectoring scheme termed “Coanda-assisted Vectoring” is demonstrated
on an axisymmetric geometry. For the parameter space including 20,000 < Re < 80,000
and Mach< 0.3, the vectoring performance of twenty-eight geometric combinations was
examined. The control/primary momentum flux ratio was varied in the range from 0.00
to 7.75. It was found that the jet impingement location that maximized vector angle and
minimized jet spreading was one diameter upstream of the collar center. The maximum
vector angle was found to be 96°. The fundamental behavior of the vectoring angle with
momentum flux ratio was similar for all values tested: for very small momentum ratios,
negative vectoring was observed; after vectoring in the positive direction (toward the control
flow), the vectoring angle increased nearly linearly with momentum ratio to a peak value;
then angle decreased gradually with increasing momentum ratio. The control jet exit slot
area was found to have a strong effect on the maximum angle and the momentum ratios
required to achieve the maximum vectoring angle. The slope of the linear portion of the
vectoring angle as a function of momentum ratio increased with slot size. The vectoring
angle was found to increase with collar radius, with greater increase for smaller slots. A
correlation function was shown to describe the complete set of data well.

The velocity profiles for vectored and unvectored jets were similar in shape for high
velocity cases. For lower velocities, vectoring caused the maximum velocity to shift away
from the Coanda surface and the velocity profile to widen. The profile became increasingly
asymmetric with momentum flux ratio.

Vectored flow cross-sectional area increased proportional to vector angle at 8D, while
saturation angle caused rapid growth in area at 12D downstream of the primary jet exit.

The aspect ratio remains constant until ® = 90°, afterwhich the width of the jet increases



50

dramatically.

The goal of this work has been to gain insight into the control of the CSM. Using the
results shown, it is recommended that the prototype CSM be redesigned to incorporate the
optimum jet impingement location, secondary slot size, and radius of curvature (j/D = 1.00,
29.5% circumference, a/D = 2.75). Also, the information on momentum ratio in the linear
or control region should also be used. Recommended further work includes a time resolved

PIV study of rotational characteristics of the vectored jet.
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Appendix A

Test Data Tables

A.1 Test Parameters of Jet Impingement Study

| Rin [ # | AA ] ap | /o | o [ Rn ][ ¥ [AA] ap | jb ®
1| 000] 019] 200 1.00 2 45]  256] 019] 525 1.00 58
2| 000] 019 200 1.00 2 46]  335] 019] 525 1.00 56
3| 005 019] 200 100 6 47| 423] 019] 525 100 55
4] 021] 019 200 1.00 19 48]  523] 019] 525 1.00 55
5/ 047] 0.19] 200/ 1.00 35 49| 000 025 200 1.00 1
6| 084 019 200 1.00 58 50/ 000 025 200 1.00 1
7| 131 o019 200 1.00 67 51 004] o025 200 100 14
8| 188 019 200 100 63 52| 016] 025/ 200 1.00 11
of 256] o0.19] 200 1.00 59 53]  036] 025/ 200 1.00 19
10| 335 o019 200/ 1.00 56 54|  063] 025 200 100 28
11] 423 o019 200/ 1.00 52 55| 099] 025 200 1.00 33
12| 523 o019 200 1.00 52 56| 143] 025] 200[ 1.00 44
13 000 o019 275 1.00 3 57 1.94] 025 200 1.00 55
14| 000] 019] 275 100 2 58] 254] 025] 200 1.00 60
15| 005 o019 275 1.00 7 59|  321] 025 200 1.00 59
16| 021] o019 275 1.00 21 60] 396] 025 200 1.00 59
17| 047] o019 275 1.00 39 61]  000] 025 275 1.00 4
18] 084] o019 275 1.00 63 62| 000 025 275 100 0
19] 131 o019 275 100 64 63 004 o025 275 100 -6
200 188 019 275 100 60 64|  016] 025 275 100 12
21] 256 019 275 1.00 57 65 036] 025 275 1.00 21
22| 335 019 275 1.00 56 66 063 025 275 1.00 30
23| 423] 019] 275 100 53 67|  099] 025 275 100 36
24| 523] 0.19] 275 1.00 53 68| 143] 025] 275 1.0 48
25| 000 019 325 100 3 69| 1.94] 025 275 100 56
26|  000] 0.19] 325 1.00 2 70 254 025 275 1.00 60
27| 005 019 325 100 7 71| 321] 025 275 100 59
28] 021 o019 325 100 23 72| 396 025 275 100 57
29| 047] 019] 325 1.00 43 73] 000] 025] 325 1.00 3
30] 084 o019 325 100 65 74)  000] 025 325 100 -1
31] 131 o019 325 1.00 61 75]  004] 025] 325 100 -8
32| 188 019 325 100 59 76|  016] 025 325 1.00 13
33]  256] 0.19] 325 1.00 57 77]  036] 025 325 1.00 22
34| 335] 0.19] 325 1.00 55 78]  063] 025] 325 1.00 30
35|  423] 019] 325 100 53 79) 099 025 325 100 42
36] 523] 019] 325 1.00 53 80 143] 025] 325 1.0 54
37| 000 019] 525 100 2 81 194 025 325 100 62
38] 000 0.19] 525 1.00 4 82| 254] 025] 325 1.00 60
39| 005 019 525 1.00 4 83| 321] 025 325 100 59
40| o021] o019] 525 1.00 20 84|  396] 025 325 100 57
41| 047] 019] 525 1.00 37 85| 000] 025/ 525 1.00 4
42| 084 019 525 1.00 59 86 000 025 525 100 4
43| 131 019] 525 1.00 63 87] 004] 025 525 100 24
44| 188 019 525 1.00 58 88| 016] 025 525 100 13
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Run [ AN, | ap D 2 |[ Run J | A, | aD jD ®

89] 036] 025] 525 1.00 23 148]  015] 026] 200 1.00 13

90 0.63 0.25 5.25 1.00 33 149 0.35 0.26 2.00 1.00 23

91 0.99 0.25 5.25 1.00 38 150 0.62 0.26 2.00 1.00 32

92| 143] 025 5250 1.00 49 151 0.97] o026 200/ 1.00 38

93] 194] 025 525 1.00 57 152]  1.39] 026] 200/ 1.00 42

04| 254] 025] 525 100 58 153  189] 026] 200/ 1.00 52

95 3.21 0.25 5.25 1.00 57 154 2.47 0.26 2.00 1.00 64

96 3.96 0.25 5.25 1.00 56 155 3.13 0.26 2.00 1.00 69

o7 000[ 017 200 1.00 2 156] 3.86] 026] 200 1.00 74

98] 000 017] 200 1.00 1 157]  0.00] 026] 275 1.00 2

99| 006 017 200 1.00 -3 158]  000] 026] 275 1.00 1
100 0.24 0.17 2.00 1.00 13 159 0.04 0.26 2.75 1.00 -17
101  054] 047 200 1.00 19 160  015] 026] 275 1.00 14
102 097] 017 200 1.00 28 161] 035 026] 275 1.00 25
103 1.51 0.17 2.00 1.00 34 162 0.62 0.26 2.75 1.00 32
104  247] 047 200 1.00 43 163] 097] o026 275 1.00 38
105]  2.96] 0417] 200 1.00 50 164 139 026] 275 1.00 53
106]  386] 017 200 1.00 53 165 1.89] 026] 275 1.00 58
107 4.89 0.17 2.00 1.00 54 166 2.47 0.26 2.75 1.00 66
108 6.03 0.17 2.00 1.00 53 167 3.13 0.26 2.75 1.00 72
109]  000] 017 275 1.00 4 168] 3.86] 026] 275 1.00 73
110  000] o017 275 1.00 3 169] 000 026] 325 1.00 1
111 008] 047 275 1.00 -14 170|  0.00] 026] 325 1.00 1
112 0.24 0.17 2.75 1.00 13 171 0.04 0.26 3.25 1.00 -21
113]  054] o0417] 275 1.00 19 172]  045]  026] 325 1.00 15
114 097] o0a7[ 275  1.00 28 173]  035] 026] 325 1.00 23
115 1.51 0.17 2.75 1.00 35 174 0.62 0.26 3.25 1.00 34
116]  247] o47[ 275  1.00 46 175 097] o026] 325 1.00 39
117 2.96 0.17 2.75 1.00 53 176 1.39 0.26 3.25 1.00 51
118]  386] 017 275 1.00 53 1771 189]  026] 325 1.00 62
119]  489] 047] 275 1.00 53 178]  247] o026] 325 1.00 69
120 6.03 0.17 2.75 1.00 51 179 3.13 0.26 3.25 1.00 71
121 000] 017] 325 1.00 0 180 3.86] 026] 325 1.00 72
122 000] 017] 325/ 1.00 0 181]  0.00] 026] 525 1.00 0
123 006] 017] 325 1.00 -18 182  000] 026] 525 1.00 4
124 0.24 0.17 3.25 1.00 13 183 0.04 0.26 5.25 1.00 -18
125 0.54 0.17 3.25 1.00 19 184 0.15 0.26 5.25 1.00 13
126  097] 017] 325 1.00 29 185 035] 026] 525 1.00 21
1271 151]  047]  325]  1.00 35 186] 0.62] 026] 525 1.00 31
128]  247] 047[ 325 1.00 46 187  097] o026] 525 1.00 37
129 2.96 0.17 3.25 1.00 51 188 1.39 0.26 5.25 1.00 48
130]  3.86] 0417] 325 1.00 52 189] 1.89] 026] 525 1.00 54
131 489] o047] 325 1.00 49 190]  247] 026] 525 1.00 53
132]  6.03] 0417] 325 1.00 48 191]  313] 026] 525 1.00 51
133 000] 017 525 1.00 1 192] 386 026] 525 1.00 50
134 000] 017] 525 1.00 2 193] 0.00] 003] 200/ 0.00 0
135  006] 017 525 1.00 -22 194 031] 003 200/ 0.00 11
136]  024] 017 525 1.00 13 195 125  003] 200 0.00 13
137 0.54 0.17 5.25 1.00 21 196 2.82 0.03 2.00 0.00 15
138]  097] 017 525 1.00 30 197]  501] 003] 200 0.00 20
139]  151]  047] 525]  1.00 36 198]  7.83] 003] 200/ 0.0 19
140  217] 047[ 525 1.00 46 199 11.28] 003 200 0.00 15
141 2.96 0.17 5.25 1.00 49 200 15.35 0.03 2.00 0.00 14
142 3.86 0.17 5.25 1.00 55 201 20.05 0.03 2.00 0.00 11
143 489] 017 525 1.00 54 202| 2537] 003] =200 000 14
144 603] 017 525 1.00 50 203 3133 003 200 0.00 12
145  000] 026] 200 1.00 1 204]  031] 003 275 0.0 8
146 0.00 0.26 2.00 1.00 1 205 1.25 0.03 2.75 0.00 8
147]  0.04] o026] 200 1.00 -12 206] 282 003 275 0.0 8
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Run J | AJA, | aD j/D | [ Run J* AJA, | aD j/D ®
207] 501 003] 275 0.00 9 266] 18.97] 004] 200 0.0 19
208  7.83] 003 275 000 8 267| 23.42| 004 200 0.00 17
209 11.28 0.03 2.75 0.00 4 268 0.00 0.04 2.75 0.00 1
210] 1535 003] 275 0.0 2 269 023 004 275 o000 6
211| 2005 003] 275/ 0.00 K 270  0.94] 004 275 000 9
212 25.37 0.03 2.75 0.00 5 271 2.1 0.04 2.75 0.00 1
213| 3133 003] 275/ 0.00 4 272| 375 004 275 0.00 14
214 0.00 0.03 3.25 0.00 2 273 5.85 0.04 2.75 0.00 17
215 000 003] 325 000 0 274  843] 004 275 0.00 18
216 031 003] 325 000 9 275 1147 004] 275 0.00 20
217 1.25 0.03 3.25 0.00 -7 276 14.99 0.04 2.75 0.00 19
218| 282 003] 325 000 7 277| 1897 004 275 0.0 20
219 5.01 0.03 3.25 0.00 5 278 23.42 0.04 2.75 0.00 19
220 7.83] 003] 325 o000 3 279]  0.00] 004 325 000 1
221 11.28 0.03 3.25 0.00 8 280 0.23 0.04 3.25 0.00 5
222| 1535 003] 325 0.00 9 281 094] 004 325 o000 9
223| 2005 003] 325 000 12 282 211 004 3250 000 11
224] 2537] 003] 325 0.0 14 283] 1897 004 325 0.00 19
225| 31.33] 003] 325 000 12 284| 23.42| 004 325 000 17
226 0.00 0.03 2.00 0.00 1 285 0.00 0.05 2.00 0.00 1
2271 029] 003 200 0.00 12 286] 0.00] 005 =200 000 1
228 117 003] =200 0.00 15 287 022 005 200 000 7
229]  262] 003 200 0.00 17 288] 087 005 200 000 10
230 467 003] 200 000 23 289 1.96] 005 200 0.00 11
231 23.62 0.03 2.00 0.00 13 290 3.49 0.05 2.00 0.00 12
232| 29.16] 003] =200 0.00 12 201 546] 005 200 000 13
233 0.00 0.03 2.75 0.00 3 292 7.86 0.05 2.00 0.00 17
234] 000 003] 275/ 000 2 203| 1069 005] 200 0.0 18
235 020 003] 275 000 9 204| 13.96] 005 =200 0.0 16
236 1.17 0.03 2.75 0.00 9 295 17.67 0.05 2.00 0.00 18
237 262 003] 275 000 11 206] 21.82] 005 =200 000 17
238 4.67 0.03 2.75 0.00 14 297 0.00 0.05 2.75 0.00 2
239] 7.29] 003 275 o0.00 17 208] 000 005 275 0.00 0
240 1050] 003] 275 0.0 13 200 022 005 275/ 0.00 8
241] 14.29]  003] 275 0.00 16 300 087 005 275 000 10
242| 1866] 003] 275 0.00 14 301 1.96] 005 275/ 0.00 9
243 23.62 0.03 2.75 0.00 13 302 3.49 0.05 2.75 0.00 11
244 29.16 0.03 2.75 0.00 1 303 5.46 0.05 2.75 0.00 12
245 000 003] 325 000 2 304 7.86] 005 275 000 12
246] 000 003] 325 000 2 305 1069 005 275 0.00 13
247 020 003] 325 000 11 306| 13.96] 005 275/ 0.00 14
248 1.17 0.03 3.25 0.00 11 307 17.67 0.05 2.75 0.00 14
249 262] 003] 325 000 10 308] 21.82] 005 275 0.00 14
250 467 003] 325 000 14 309 o000 005 325 000 2
251 720 003] 325 000 15 310 000 005 325 000 1
252| 1050 0.03] 325 0.00 11 311 022 005 325 000 7
253] 14.29]  003] 325 0.0 12 312] 087 005 325 000 9
254] 1866] 003] 325 000 14 313  196] 005 325 000 9
255 23.62 0.03 3.25 0.00 16 314 3.49 0.05 3.25 0.00 1
256] 29.16] 003] 325 0.00 14 315  546] 005 3250 000 9
257 0.0 004 200 0.00 0 316| 7.86] 005 325 000 9
258] 023 004 200 000 5 317 1069] 005] 3250 0.00 14
250|  0.94] 004 200 000 8 318| 13.96] 005 3250 0.00 15
260 2.1 0.04 2.00 0.00 9 319 17.67 0.05 3.25 0.00 15
261 3.75 0.04 2.00 0.00 1 320 21.82 0.05 3.25 0.00 17
262| 585 004 200 000 13 321 000 123 =200 200 0
263] 843 004 200 000 15 322 000 123] 200 200 3
264| 1147 004 200 0.00 21 323 001 123 =200 200 3
265 14.99 0.04 2.00 0.00 22 324 0.03 1.23 2.00 2.00 3
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Run [ AA, | ap D 2 | [ Run J [ AA, | ap j/D ®
325]  0.07] 123] 200 200 3 384]  004] 103] 275 200 9
326] 013 123] 200 200 13 385 009 103 275 200 10
327] 020 123] 200 200 25 386] 015 103] 275 200 12
328] 020 123] 200 200 41 387 024] 103] 275 200 19
329] 040 123] 200 200 57 388] 035 103] 275 200 29
330] 052 123] 200 200 63 389] 047 103] 275 200 38
331] 066] 123] 200 200 75 390 062] 1.03] 275 200 45
332] 081 123] 200 200 83 391] o078 103] 275 200 50
333] 000 123 275 200 2 392  096] 103 275 200 63
334] 000 123] 275 200 3 393] 000 103] 325 200 -2
335 001 123] 275 200 4 394] 000 103] 325 200 3
336] 003 123] 275 200 6 395 001 103] 325 200 6
337] 007 123] 275 200 13 396] 004 103] 325 200 10
338] 013 123] 275 200 23 397]  009] 103 325 200 14
339] 020 123] 275 200 40 398] 015 103] 325 200 21
340 020 123] 275 200 56 399] 024] 103] 325 200 34
341]  040] 123 275 200 64 400] 035] 1.03] 325 200 44
342 052] 123] 275 200 78 401] 047 103] 325 200 50
343]  066] 123 275/ 200 81 402] 062 103] 325 200 55
344] 081 123] 275 200 86 403] 078 103] 325 200 64
345 000 123] 325 200 2 404] 098] 103] 325 200 71
346] 000 123] 325 200 3 405  000[ 103] 525 200 -3
347]  001] 123] 325 200 4 406]  000] 103] 525 200 10
348] 003 123] 325 200 8 407 001 103 525 200 10
349 007 123] 325 200 14 408] 004 103] 525 200 16
350]  0.13]  123] 325 200 25 409 009 103 525 200 17
351] 020 123] 325 200 42 410  015] 103] 525 200 27
352] 020 123] 325 200 56 411]  024] 103] 525 200 36
353]  040] 123] 325 200 70 412]  035] 1.03] 525 200 51
354]  052] 123] 325 200 79 413] 047/ 103] 525 200 63
355| 0.66] 123] 325 200 85 414 062 1.03] 525 200 71
356] 0.81] 123] 325 200 88 415] 078 103] 525 200 71
357] 000 123] 525 200 3 416] 098] 103] 525 200 77
358] 000 123] 525 200 3 417]  000[ 056 200 200 0
359]  0.01] 123] 525 200 9 418]  000] 056 200 200 0
360] 003 123] 525 200 8 419] 002 o056 200 200 -5
361  007] 123] 525 200 19 420  007] 056] 200 200 -10
362] 013 123] 525 200 32 421]  01e] 0568] 200 200 9
363] 020 123] 525 200 49 422]  029] 056 200 200 15
364] 020 123] 525 200 68 423] 045/ 056] 200 200 27
365 040 123] 525 200 71 424 064] o056 200 200 42
366] 052 123] 5250 200 81 425 087 056 200 200 68
367] 066] 123] 525 200 82 426]  1.14] 0568|200 2.0 85
368] 081] 123] 525 200 83 427]  1.44] 056] 200 200 88
369] 000 103] 200 200 1 428] 178 056] 200 200 9
370 000 103] 200 200 1 420]  000[ o056 275 200 0
371] 001 103] 200 200 4 430] 000 056] 275 200 1
372|  004] 103 200 200 4 431 002 o056 275 200 -4
373 009 103] 200 200 4 432]  007] o0568] 275 200 -11
374 015/ 103] 200 200 4 433]  016]  0568] 275 200 -12
375  024] 103 200 200 8 434 029 o056] 275 200 23
376] 035 103] 200 200 13 435] 045/ 056] 275 200 38
377  047] 103 200 200 24 436] 064 056 275 200 58
378] 062 103] 200 200 35 437] 087 0568] 275 200 81
379] 078 103] 200 200 42 438]  1.14] o0568] 275 200 87
380 096 103] 200 200 60 439]  1.44] o056] 275 200 91
381] 000 103] 275 200 3 440 178 056] 275 200 92
382] 000 103] 275 200 3 441] 000 o056 325 200 4
383] 001 103] 275 200 6 442]  000] 056] 325 200 3

99



Run [ AA, | ap D 2 | [ Run [ AA, | ab j/D ®
443] 002 056] 325 200 -5 502]  0.00] 092] 525 200 9
444] 007 o056 325 200 -13 503]  0.01] 092] 525 200 7
445  016] 056] 325 200 -14 504] 0.04] 092] 525 2.00 12
446] 020 0568] 325 200 22 505  0.10] 092] 525/ 200 17
447] 045 o056] 325 200 40 506] 0.18] 092] 525 2.00 29
448]  064] 056] 325 200 59 507] 027] 092] 525 200 48
449] 087 056 325 200 77 508]  039] 092] 525 200 60
450]  1.14]  o056] 325 200 87 509] 0.54] 092] 525 2.00 72
451  1.44] o056 325 200 88 510 070] 092] 525 200 78
452] 178 056] 325 200 89 511  088] 092] 525 200 78
453] 000 056 525 200 2 512]  1.09] 092] 525 200 79
454  000] 056 525 200 8
455 002 056 525 200 7
456] 007 056] 525 200 7
457]  016] 056] 525 200 -18
458] 020 056] 525 200 32
450] 045 056] 525 200 45
460] 064] 056 525 200 65
461] 087 056 525 200 75
462]  1.14]  o056] 525 200 81
463]  1.44] 056] 525 200 81
464] 178 056] 525 200 81
465 000 092 200 200 4
466] 000[ 092] 200 200 1
467 001 092 200 200 0
468] 004 092] 200 200 -5
469] 010 092] 200 200 -5
470 048]  092] 200 200 1
471  027] o092 200 200 8
472]  039] 092] 200 200 14
473 054 092 200/ 200 62
474 070[ 092] 200 200 77
475 088 092] 200 200 79
476]  1.09] 092 200 200 87
477]  000[ 092] 275 200 4
478] 000 o092 275 200 3
479]  001] 092] 275 200 1
480]  0.04] 092 275 200 -4
481] 010 092] 275 200 -5
482] 048] 092] 275 200 6
483 027 o092 275 200 31
484] 039 092] 275 200 51
485] 054  092] 275 200 72
486] 070 092] 275 200 79
487] 088 092] 275 200 83
488]  1.09] 092 275 200 89
489] 000 092] 325 200 5
490] 000 092] 325 200 2
491  001] 092] 325 200 3
492]  0.04] 092] 325 200 -4
493] 010 092] 325 200 -8
404] 048] 092] 325 200 20
495 027 o092 325 200 43
496] 039 092] 325 200 55
497]  054] 092] 325 200 73
408  070[ 092] 325 200 80
499] 088 092] 325 200 82
500 1.09] 092] 325 200 87
501]  0.00] 092] 525 200 1
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A.2 Test Parameters of Two-Component PIV Study

[ Run | ¢ [%cic] ao [ o | @ || Rn | v [%Circ.| ab D
513]  000[ 11.1] 200] 1.00 -1 550]  7.43[  114] 525 1.00 42
514  000] 111] 200 1.00 0 560] 8.80] 11.1] 525 1.00 40
515 009 11.1]  200] 1.00 2 561] 000 151 200/ 1.00 3
516 035 111 200 1.00 11 562] 000 151] 200 1.00 0
517]  079]  114]  2.00] 1.00 17 563 007 151] 200 1.00 -12
518 141 111 200 1.00 20 564] 026] 151] 200 1.00 10
519] 220 111 200 1.00 24 565| 059 151 200 1.00 12
520 347] 111 200 1.00 25 566 1.04] 151] 200/ 1.00 11
521 431 111 200 1.00 27 567] 163 151] 200 1.00 11
522] 563 114] 200/ 1.00 28 568 235 151] 200/ 1.00 15
523 743 111 200 1.00 29 569 320 151] 200 1.00 15
524] 880 114] 200/ 1.00 25 570/ 448] 151] 200 1.00 12
525  0.00] 111 275 1.00 1 571 528 151] 200 1.00 18
526 000 111 275 100 4 572| 652 151] 200  1.00 14
527]  0.09] 114] 275 1.00 3 573 000 151] 275 1.00 8
528 035 111 275 100 16 574] 000 151] 275 1.00 4
5201  079] 14| 275 1.00 17 575|007 151] 275 1.00 -15
530] 141 111 275 1.00 23 576]  026] 151] 275 1.00 12
531 2200 114 275 100 24 577] 059 151] 275 1.00 13
532]  347] 114 275 100 26 578)  1.04] 151] 275 1.00 14
533 431 111 275 100 30 579 163 151] 275 1.00 11
534 563 114] 275 1.00 32 580 235 151] 275 1.00 13
535] 743 111 275] 1.00 36 581 320 151] 275 1.00 14
536 880 111 275 1.00 38 582| 418|151 275 1.00 9
537] 000 11.1] 325 1.00 4 583 528 151] 275 1.00 12
538] 000 111 325 1.00 4 584 652 151] 275 1.00 11
539  0.09] 1114] 325 1.00 2 585|  0.00] 151 325 1.00 0
540 035 111 325 100 17 586] 000 151] 325/ 1.0 1
541]  079] 14| 325 1.00 20 587|  0.07| 151] 325 1.00 -16
542 141 111 325 100 24 588]  026] 151 325 1.00 12
543 220 111] 325 100 24 589 059 151] 325 1.00 13
544] 347/ 114|325 1.00 32 500  1.04] 151] 325 1.00 14
545 431 111 325 100 35 501 163 151] 325 1.00 13
546] 563 114] 325 1.00 35 502| 235 151] 325 1.00 13
547 743 111 325] 100 39 503] 320 154] 325 1.00 14
548 880 111 325 1.00 41 504  418]  151] 325 1.00 15
549] 000 111] 525 1.00 3 595| 528 151] 325 1.00 15
550  0.00] 111 525 100 5 506] 652] 151 325 1.0 16
551  0.09] 1114] 525 1.00 4 597|000 151] 525 1.00 -1
552] 035 111 525 1.00 19 598] 000 151] 525 1.00 2
553] 079 114|525 1.00 26 599|  0.07| 151] 525 1.00 -26
554 141 111 525 1.00 24 600 0.26] 151] 525 1.00 3
555 220/ 111 525 1.00 26 601] 059 151] 525 1.00 19
556] 317 114|525/ 1.00 32 602 1.04] 151] 525 1.00 25
557] 431 111 525 1.00 38 603] 163 151] 525 1.00 29
558] 563 114] 525 1.00 39 604| 235 151] 525 1.00 19
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Run J* | %circ.| abD j/D | [ Run J* | %circ.| abD D @
605 320] 151] 525 1.00 22 664 1.26] 295] 200 1.00 60
606 4.18] 151] 525 1.00 20 665 171 295 200 1.00 63
607 528 151 525 1.00 19 666] 224 205 200 1.00 66
608 652] 151 525 1.00 23 667 283 295 200 1.00 68
609] 000 194 200 100 1 668 349 205 200 1.00 70
610 000 194 200 100 0 669] 000 205 275 1.00 5
611 005 194] 200 1.00 -18 670 000 295 275 1.00 5
612 021 194 200 100 11 671 004] 205 275 1.00 -12
613 046] 194] 200[ 1.00 18 672 014] 205] 275 1.00 -11
614 082 194 200 100 18 673 031 205 275 1.00 19
615 128 194 200 1.00 20 674  056] 205 275 1.00 41
616 1.85] 194] 200 1.00 22 675/ 087] 295] 275 1.00 61
617 251 194 200 1.00 25 676] 1.26] 205 275/ 1.00 71
618 328 194] 200[ 1.00 23 677 171 295] 275 1.00 76
619] 415/ 194 200 1.00 24 678 224] 205 275 1.00 82
620 513 194 200 1.00 20 679] 283 205 275 100 84
621] 0.00] 194] 275/ 1.00 0 680] 349] 205] 275 1.00 84
622] 000 194 275 100 0 681 000 205 325 1.00 5
623 005 194 275 100 -20 682] 000 295 325 1.00 4
624 021 194 275 100 11 683] 004 205 325 1.00 -13
625  046] 194 275 100 19 684 014] 205 325 100 0
626] 082 194 275 100 19 685 031 205 325 1.00 20
627] 128 194 275 100 21 686] 056] 205 325 1.00 42
628] 1.85] 194] 275/ 1.00 21 687 087 295 325 1.00 58
629 251 194 275 100 23 688] 1.26] 205 325 1.00 66
630 328 194] 275 1.00 24 689 171 295] 325 1.00 70
631] 415/ 194 275 100 27 690] 224] 205 325 1.00 76
632] 513 194 275 100 26 691] 283 205 325 1.00 75
633 000 194 325 100 0 692] 349] 295] 325 1.00 77
634 000 194 325 100 0 693] 000 205 525 1.00 8
635 005 194 325 100 22 694 000 295 525 1.00 8
636] 021 194 325 100 10 695 0.04] 205 525 1.00 13
637]  046] 194 325 100 16 696] 0.14] 205 525 1.00 16
638] 082 194 325 100 18 697 031 295] 525 1.00 24
639] 128 194 325 100 20 698] 056] 205 525 1.00 43
640 1.85] 194 325 100 23 699] 087 295 525 100 67
641 251 194 325 100 25 700  1.26] 205 525 1.00 80
642] 328 194 325 100 26 701 171 295 525 1.00 93
643] 415 194 325 100 27 702]  224] 295 525 1.00 87
644 513 194 325 100 28 703] 283 205 525 1.00 92
645 000 194 525 100 5 704]  349] 205 525 100 95
646] 000 194 525 100 2 705 000 500/ 200 1.00 -1
647 005 194 525 100 23 706 000 500/ 200 1.00 0
648 021 194 525 100 7 707] 002 500/ 200 1.00 -4
649] 046] 194 525 100 19 708 006/ 500/ 200 1.00 -9
650 0.82] 194 525 100 21 709  0.14] 500/ 200 1.00 -9
651 128 194 525 1.00 26 710 025/ 500/ 200 1.00 -10
652 1.85] 194] 525 1.00 25 711]  039] 500/ 200 1.00 -5
653 251 194 525 100 29 712]  057] 500/ 200 1.00 70
654 328 194 525 100 32 713 077] 500 200 1.00 20
655 4.15] 194] 525 1.00 34 714|101 500/ 200 1.00 93
656] 513 194 525 1.00 37 715 127/ 500 200 1.00 89
657 000/ 295 200 1.00 3 716] 157 500/ 200 1.00 20
658] 0.00] 205 200 1.00 4 717] 000 500 275 1.00 7
659] 0.04] 295 200 1.00 -8 718 000 500 275 1.00 4
660] 0.14] 295 200 1.00 0 719] 002 500 275 1.00 -4
661 031 295 200 1.00 19 720 0.06] 500 275 1.00 7
662] 056] 295 200 1.00 36 721  014] 500[ 275 1.00 6
663 087 205 200 1.00 49 722]  025] 500 275 1.00 5
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Run J* % Circ. | a/D Jj/D D
723 0.39 50.0 2.75 1.00 47
724 0.57 50.0 2.75 1.00 77
725 0.77 50.0 2.75 1.00 96
726 1.01 50.0 2.75 1.00 87
727 1.27 50.0 2.75 1.00 86
728 1.57 50.0 2.75 1.00 89
729 0.00 50.0 3.25 1.00 0
730 0.00 50.0 3.25 1.00 4
731 0.02 50.0 3.25 1.00 -4
732 0.06 50.0 3.25 1.00 -7
733 0.14 50.0 3.25 1.00 -8
734 0.25 50.0 3.25 1.00 -5
735 0.39 50.0 3.25 1.00 52
736 0.57 50.0 3.25 1.00 77
737 0.77 50.0 3.25 1.00 88
738 1.01 50.0 3.25 1.00 91
739 1.27 50.0 3.25 1.00 86
740 1.57 50.0 3.25 1.00 87
741 0.00 50.0 5.25 1.00 2
742 0.00 50.0 5.25 1.00 2
743 0.02 50.0 5.25 1.00 -4
744 0.06 50.0 5.25 1.00 -10
745 0.14 50.0 5.25 1.00 -7
746 0.25 50.0 5.25 1.00 -9
747 0.39 50.0 5.25 1.00 37
748 0.57 50.0 5.25 1.00 58
749 0.77 50.0 5.25 1.00 85
750 1.01 50.0 5.25 1.00 87
751 1.27 50.0 5.25 1.00 85
752 1.57 50.0 5.25 1.00 80
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A.3 Test Parameters of Three-Component PIV Study

Run | J* | %Circ.| aD | jD XD down- | | g0 | e wcie. | ap | o | @ | XD down
stream stream

753] 0.00] 295 2.00] 1.00 3 8| | 798| 0.14] 295] 2.00] 1.00 0 12
754| 0.00] 295 200 1.00 4 8| | 799] 031 295 200 100 19 12
755 0.04| 205 200 1.00] -8 8| | 8o0| 056 295] 200 100 36 12
756] 0.14| 295 2.00] 1.00 0 8| | 801| 087 295| 200 100 49 12
757 031] 205 2.00] 1.00] 19 8| | 802| 126] 295/ 200 1.00 60 12
758| 056| 295 200 1.00] 36 8| | 803] 171 295| 200 100 63 12
750 0.87] 295 200 1.00] 49 8| | s04| 224 205 200 1.00] 66 12
760 1.26] 205 200 1.00] 60 8| | 805| 283 205] 200 100 8 12
761 171 295 200 1.00] 63 8| | 806] 349 295 200 100 70 12
762] 224] 205 200 1.00] 66 8| | so7| 000 205 525 1.00 8 12
763 2.83] 205 200 1.00] 68 8| | 808| 000 295 525 100 8 12
764| 349 205 200 1.00 70 8| | so9| 0.04] 205 525 1.00 13 12
765 0.00] 295 525 1.00 8 8| | 810] 0.14] 205 525/ 100 16 12
766| 0.00] 295 525 1.00 8 8| | 811] 031] 295 525 100 24 12
767| 004| 205 525 1.00] 13 8| | 812| 056] 205 525 1.00] 43 12
768] 014| 295 525 1.00] 16 8| | 813 087 205 525/ 100 67 12
769| 056] 295 525 1.00] 43 8| | 814| 126] 295/ 525 1.00 80 12
770 087| 205 525 1.00] 67 8| | 815] 171 295 525/ 100 93 12
771| 126] 295 525 1.00 80 8| | 816] 224] 295 525/ 100] 87 12
772| 000] 500] 2.75] 1.00 7 8| | 817] 283 295 525 100/ o2 12
773| 000] 500 2.75] 1.00 4 8| | 818] 349 295 525/ 100 o5 12
774 002] 500] 2.75] 1.00] 4 8| | 819] 000 500/ 275 1.00 7 12
775| 006] 500 2.75| 1.00] 7 8| | 820] o000 500/ 275 1.00 4 12
776| 0.14] 500 275 1.00] -6 8| | s21] 002 500/ 275 100 4 12
777| 025 00| 2.75| 1.00] 5 8| | 822] 006] 500[ 275 100 -7 12
778| 039 500 275 1.00] 47 8| | 823] 014] 500/ 275 100 6 12
779 057 500] 2.75] 1.00] 77 8| | 824| o025 500/ 275 100 -5 12
780 077| 500 2.75| 1.00] 96 8| | 825] 039] 00| 275 100 47 12
781 1.01| 500/ 275 1.00] 87 8| | s26| 057 500/ 275 1.00] 77 12
782| 127 500] 2.75| 1.00] 86 8| | 827] 077] 00| 275 100 96 12
783| 157 500/ 275 1.00] 89 8| | 828] 101 500] 275 100] 87 12
784| 000] 500] 3.25] 1.00 0 8| | 820] 127] 00| 275 100 86 12
785| 0.00] 500 325 1.00 4 8| | 830 157 00| 275 100 89 12
786| 0.02| 500 325 1.00 4 8| | 831] 000 500/ 325 1.00 0 12
787 006] 500 325 100 7 8| | 832] 000 500/ 325 1.00 4 12
788| 0.14] 500/ 325 1.00 -8 8| | 833 002 500/ 325 100 4 12
789| 039] 500] 3.25] 1.00] 52 8| | 834] 006] 500[ 325 100 -7 12
790 057 500] 325 100 77 8| | 835 014] 500/ 325 100 -8 12
791| 077] 500] 3.25] 1.00] 88 8| | 836 039 500/ 325 1.00 52 12
792 101] 500 325 1.00] o 8| | 837] 057] 00| 325 100 77 12
793| 127 500 325 1.00 86 8| | 838] 077] 500/ 325/ 1.00] 88 12
794| 157| 500] 325 1.00] 87 8| | 839] 1.01] 500[ 325 100 o 12
795 0.00] 295 200 1.00 3 12| | 840| 127 500] 325 1.00] 86 12
796] 0.00] 295 2.00] 1.00 4 12| | 8a1| 157] 500/ 325 100 87 12
797| 004| 205 200 100 -8 12
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Appendix B
Machinist Drawings

Shown are the machinist drawings created in Solid Edge v. 20, beginning with the test
assembly and curved wall radius drawings and followed by sections including modulator

drawings for the jet impingement and circumferential exit slot studies, respectively.
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B.1 Machine Shop Drawings of Jet Impingement Study
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Machine Shop Drawings of Exit Slot Study
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