Natural Resources and Environmental Issues

Volume 8 SwarmPFest 2000 Article §

1-1-2001

Ascape: Abstracting complexity

Miles T. Parker
BiosGroup, Inc. Washington DC

Follow this and additional works at: http://digitalcommons.usu.edu/nrei

Recommended Citation

Parker, Miles T. (2001) "Ascape: Abstracting complexity," Natural Resources and Environmental Issues: Vol. 8, Article S.
Available at: http://digitalcommons.usu.edu/nrei/vol8/iss1/S

This Article is brought to you for free and open access by the Quinney A

Natural Resources Research Library, S.J. and Jessie E. at A

Digital Commons@USU. It has been accepted for inclusion in Natural il & UtahStateUnive rsity
Resources and Environmental Issues by an authorized administrator of AN MERRILL-CAZIER LIBRARY

Digital Commons@USU. For more information, please contact

becky.thoms@usu.edu.

http://digitalcommons.usu.edu/nrei?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/nrei/vol8?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/nrei/vol8/iss1/5?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/nrei?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.usu.edu/nrei/vol8/iss1/5?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:becky.thoms@usu.edu
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Parker: Ascape: Abstracting complexity
22 Natural Resources and Environmental Issues

ASCAPE: ABSTRACTING COMPLEXITY

MILES T. PARKER

BiosGroup, Inc. Washington D.C., 1100 North Glebe Road, Suite 720, Arlington, VA 22201, Email:
miles.parker@biosgroup.com

Abstract. Software tools used in science typically
take a kitchen-sink approach to design. From
statistics to mathematics to engineering to agent
modeling, even those tools that have a strong
organizing theme tend towards supporting every
contingency and methodology. This impulse
toward generalization and breadth is laudable and
necessary. However, there is a complementary
case to be made for the discipline of abstraction,
parsimony, and depth, and that is the case I make
for Ascape.

I argue in general for the importance of abstraction
in agent-based modeling. I then discuss three key
abstractions enforced in Ascape, and the
opportunities they create for expressibility and
simplicity. While these abstractions seem
especially suited to the domain of social and
economic systems, they are not limited to it. By
drawing concrete examples from Ascape and
comparing Ascape code to other environments, I
show how these apparently constraining
abstractions benefit the Ascape user and developer
experience.

“In summary, a primary goal of software
design and coding is conquering
complexity. The motivation behind many
programming practices is to reduce a
program’s complexity. Reducing
complexity is a key to being an effective
programmer.”

Steve McConnell (1993)

INTRODUCTION

A central argument for agent modeling, elegant
in its obviousness, can be expressed in one phrase.
“Why don’t we model it as it is in the real world?”
This argument is a strong tonic following
hundreds of years of attempts to model
phenomena (and especially social and economic
phenomena) by generalizing the “real world”
away. Agent modeling is exciting because it
allows us to work, not with supposedly ideal (and
somehow lifeless) generalizations, but with the
ordinary (and somehow lifelike and thus
extraordinary) things that occur when discrete
objects are allowed to interact with one another.

The argument is so compelling that we could
get swept away by it and set as our ultimate goal
the creation of real world models of every
conceivable system. Imagine as a thought
experiment a vast complete model of the universe
detailing every scale, connecting every kind of
system; an awe-inspiring vision. If we could build
such a model we would have an incredible
experimental platform and device for prediction.
But would we have explained anything, except as
a by-product of the discovery of the system
components and behaviors?

The real work of explanation still involves
some form of generalization. The act of
explanation seems to involve describing some
interesting essence of a system using less
information than the system itself. In agent-based
modeling we might discover that a set of simple

" Miles Parker was a software engineer at the Brookings Institution and developer of the Ascape framework. Diagrams in this
paper were initially presented at a workshop on Agent Simulation at the University of Chicago in October 1999.

Published by Digital Commons@USU, 2001

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 5
2000 Swarm User Group Meeting 23

rules iterated across a collection of agents
produces a particular dynamic, we may observe
that a similar phenomenon occurs in the natural
world, and we might infer from that that the
dynamic is caused by a specific kind of simple
interaction. This kind of explanation is different
from simply building a model and observing that it
seems to have interesting correlation with the real
world.

And it is certainly possible to discover these
explanations without our “complete” model. In
fact, it could be argued that a complete model
would not directly contribute much toward their
making. On examination, our complete model is
different in kind than an explanatory model since
it involves no discrimination between factors in
the model. In contrast, the act of explanatory
modeling is in some sense identifying the objects
and behaviors that matter, and ignoring those that
don’t.

In other words, there is a crucial distinction to
be made between modeling reality and ‘modeling
the model’. In the first case, our aim is to build a
mirror world that can be examined. In the latter,
we are creating a conceptual model of a system
and using modeling tools to realize that
conceptualization. But aren’t all models in fact
based on some set of abstract conceptualizations,
no matter how fine-grained? At some level aren’t
we always modeling an abstraction? Why pretend
otherwise?”

In this context, disciplines that we enforce on
modeling are not just practical syntactical
considerations. They are semantic. Every time you
create an abstraction, you reveal a hidden
symmetry that allows apparently different
semantic structures to be treated in the same way.
If we can describe a system using fewer
declarations than another description, or in a
manner more consistent with other explanations,
we have arguably created a better description of

" This analysis skirts an interesting argument. Might models
designed as purely conceptual exercises miss critical model
dynamics that either have not or can not be conceptualized?
If so, how would explicit work with such dynamics
challenge our current approach of the scientific process?
These questions merit further study but are beyond the scope
of this paper.

http://digitalcommons.usu.edu/nrei/vol 8/iss1/5

that system. Any models that use strong
abstractions potentially carry all the explanatory
power that they are built upon.

A sometimes-overlooked aspect of abstractions
is that they involve giving something up to get
something else. Typically, you give up some
degree of fine-grained control and freedom. What
you gain is not just ‘free’ additional functionality,
but power and expressibility. Arguably, this is
what distinguishes a framework from a library. A
library typically just provides some set of standard
functionality that one can draw upon. In contrast, a
framework requires one to enter into a kind of
contract. The agreement typically reads something
like: “I will agree to conform to a particular set of
interfaces, and put up with having some rather
obvious things hidden from me, in order to gain
much more powerful higher level functionality
and leverage.” That said, in an ideal framework, it
should be possible to completely control all
aspects of an environment, making it possible to
have the best of both worlds. Moving from the
realm of theory to practice, we now examine some
key abstractions that Ascape uses.

THE ABSTRACTIONS

Ascape 1s an agent modeling environment
developed at The Brookings Institution to support
the design, analysis and distribution of agent-
based models. Its principal design goals include
abstraction and generalization of key agent
modeling concepts, ease of use, configurability,
and performance. It is written completely in Java
in order to provide maximum deployment options,
and to take advantage of Java’s strong typing and
idioms. Taking the term ‘agent’ broadly, and
understanding a ‘scape’ to be a kind of collection
of these agents, they are:

1. All scapes are themselves agents.
2. Scape structure is hidden from agents.
3. Behaviors occur across scapes, as ‘rules’.

On initial inspection, these abstractions do not
appear particularly novel. Critical aspects of them
have appeared as explicit design features
pioneered by Swarm. For instance, it is certainly
possible in Swarm to build an agent composed of

Parker: Ascape: Abstracting complexity
24 Natural Resources and Environmental Issues

other agents. In fact, this is the original vision of
Swarm, as immortalized in the swarm logo. So we
must be careful to differentiate between
foundational ideas and later realizations. There are
certainly a number of novel features and
techniques in Ascape. But for many of the
abstractions I discuss, the real power lies in
realizing important aspects of a modeling vision
first articulated by Swarm. And, speaking very
broadly, the realization of an abstraction rests not
in what it allows or envisions, but what it
supports, requires and prevents.

All Scapes Are Themselves Agents

Scapes can be seen as glorified collections
which seem to correspond quite closely to the
conception of swarms. In Ascape, the identifying
properties that represent an aggregation of agents
and the methods we use for accessing its members
are tightly bound. By requiring all scapes to be
agents, we are assuring that all structural features
of an agent model are defined in the context of a
basic agent-modeling paradigm. And because, as I
describe below, all behaviors occur upon agents as
mediated by scapes, we are assuring that all
behavior is also closely defined by this paradigm.

It could be argued that viewing scapes as
agents is a stretch. While there are many possible
definitions of agent, it is generally agreed that they
involve some aspects of autonomy and self-
agency. For now, we simply observe that our
understanding of how autonomy and agency relate
to what we call agent-based models is an open
one, and may evolve over time. It is not even
clear, for instance, that the primary focus of these
models should be independent actors. Perhaps the
question of agency per se has been overlooked to
some extent because agent-based models have
their roots in artificial life and have tended to
explore models of biological aggregates that by
virtue of their ‘aliveness’ seem to automatically be
privileged with agency. But many models that are
natural candidates for exploration using agent
tools demonstrate that the distinction of autonomy
and agency might not be as natural or useful as we
assume. For the geomorphologist: does a landform
have agency? For the physicist: does a particle?
For the economist: does a firm? This question

Published by Digital Commons@USU, 2001

becomes more important as we work with more
abstract aspects of models.

These issues warrant further exploration; for
now, I will rely on the argument that treating
scapes as agents seems to work very well on a
practical level. For those who are uncomfortable
with the usage of ‘agent’, consider that what we
call agents in the existing milieu may more
broadly represent a relatively clean, but arguably
arbitrary boundary between system components.”
The terms of agent-based modeling are made less
clear because of the many glancing similarities
and obvious differences between the terms of
agent-based modeling and those of multi-agent
systems in general. Perhaps it is the description
‘Agent’ itself that is limiting, and, as a radical
suggestion, we might invent a new terminology
for the constituents of our models. We could
directly reflect the viewpoint that agent models are
really based on aggregations of objects that are
defined more by their useful boundaries than by
any agency. New terms (I, only half-seriously,
propose ‘Agrent’) or adoption of other
descriptions, such as ‘finite models’ may serve to
clarify this issue, though it is just as likely that
they would serve as distractions, given the broad
acceptance of existing terminology.

To return to the discussion of the abstraction, if
we take the admittedly arguable point that agents
are really arbitrary boundaries, our abstraction
imposes the requirement that any boundaries
between different generalizations must be
presented explicitly and must carry the same
privilege. In this sense, there can be no structural
assumptions about the model that are not reflected
in the strict hierarchy itself. At the same time, we
must recognize that as we move further up the
model hierarchy, the model becomes more
abstract, and scapes become more practical
conveniences and less natural features of the
system we are modeling. Again, this is an area for
further study beyond the scope of this paper.

The real practical benefit of all of these
requirements is composability. All models become

* As has been observed for millennia (but will not be
addressed here,) even the status of a human being as an
autonomous well-bounded entity is not completely certain.

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 5
2000 Swarm User Group Meeting 25

defined in the context of a sophisticated hierarchy.
Expressed in design pattern language, an Ascape
model is essentially a composite. (Gamma et al
1995) This composite pattern takes the form of a
sophisticated hierarchy, where each node of the
hierarchy can impose any topology on its
constituent sub-nodes. This means that a complete
tour of the model is always well defined and
typically easily understood and expressed.

As an example, consider a simple model of a
demographic prisoner’s dilemma game (Epstein
1998). In this case, players make up a collection
with other players (Figure 1). Players also move
upon a lattice made up of specialized host cell
agents, or locations, designed to contain other
agents. The lattice and the collection of players are

members of a root scape.
Root

¥ N
\

Players

B A EAVE

Laﬁice\ l \

e

Player

Location

FIGURE 1. A simple Ascape model composition

In the prisoner’s dilemma model, the only
‘agents’ that really have any model behavior are
the players. In other models, such as Sugarscape
(Axtell and Epstein 1996), the lattice would also
have obvious behavior, as for instance map
locations replenish their supply of sugar every
model period.

A more complex example draws out the
composability benefits of the ‘scape as agent’
approach (Figure 2). This ‘Artificial Anasazi’

http://digitalcommons.usu.edu/nrei/vol 8/iss1/5

model attempts a reconstruction of the
environmental and demographic history of native
pueblo people in the Long House Valley of
northern Arizona (Dean et al 2000). In this model,
map locations are occupied by settlements, which
are collections of households. Households are
members of a collection composed of households.

Root

Zones, Etc

] : RSET =F
:g%i \\Rﬁlemenfs .

\V'\{H Households

Location

Settleme

Household

F1IGURE 2. Long House Valley model composition

A household in this model thus has two
contexts; as a member of a settlement, and as a
member of the population of the valley as a whole.
As we will see, scapes serve two purposes; as
structural contexts, and as contexts for the
iteration of behavior across constituents. Note that
both contexts are potential sources for household
behavior, but the most straightforward context for
managi*ng household behavior is the households
vector. In recent work, households themselves
have been disaggregated into a scape of individual
family members.

The base model is defined to be root, and is just
another scape within the model. As stated, a
completely unified method of touring the model
constituents is available throughout. All Ascape
system behaviors, such as statistic collection and
visualization, are managed by the same rule
mechanism. Generic rules that manage these
behaviors can be propagated through the levels of
model hierarchy. If desired, generic model
behavior such as initialization and updating and

" Whenever agents exist in more than one scape, it seems
natural to push aggregate control up the hierarchy to the
most general scape possible.

: Parker: Ascape: Abstracting complexity
26 Natural Resources and Environmental Issues

even model specific behavior can also be easily
propagated.

The strict hierarchical structure that the basic
abstraction requires is easy to understand, easy to
explain, and easy to code. More importantly, the
model developer can be easily assured that all
behaviors are well defined and completely
determined. Finally, it is a natural fit for
technologies like XML that rely on a well-defined
hierarchy, and may also have significant
advantages for strictly declarative approaches.
Scape structure is hidden from agents

This abstraction is expressed as a negative.
Expressed positively, agents have high-level ways
of interacting with the space they exist upon and
are free from implementation and topologically
specific issues. Ideally, agents should not know
anything about the specific structure of the scape
they exist within. In practice, agents can
potentially access topology specific information,
but Ascape’s design encourages pushing this down
to the framework.

At first glance, this seems an odd burden to
impose. Interaction space seems crucial to so
many dynamics that abstracting it out of model
design seems questionable. However, this
abstraction is not about removing scape structure
but ensuring that algorithms that relate to scape
structure are actually built within the scape, where
they belong.

As a quick illustration of how this abstraction
works, imagine a model in which an agent
searches for the best food source within 2 cells of
its present location. A model developer would
ordinarily code this search by hand. In Ascape, it
is only necessary to make a method call looking
something like:

Cell mostFoodCell =
findMaximumWithin(FOOD, 2)

If we take the filled circle as the target agent,
the open circle as the optimal location, and the
shaded area as the search region, Figure 3 shows
how the search is conducted in each space.

In a basic implementation, it should be possible
to change the entire geometry with a single
statement change.

Published by Digital Commons@USU, 2001

Von Neumann

Vector

FIGURE 3. Polymorphic searching

This simple abstraction is responsible for a lot
of the productivity advantages of Ascape. By
pushing all searching and movement algorithms
into the framework, we eliminate masses of
redundant code. More importantly, the code for a
particular algorithm is managed in one place. To
see the practical advantage of this approach I show
a sample of code realizing a common example
model in three modeling frameworks (Table D
This model, first realized in Swarm’s ‘Heatbugs’
code, causes an agent to seek, with some random
component, the nearby cell that has the optimal
heat level based on the agent’s preferences.

This is an example rather obviously designed to
show Ascape in the best possible light, but the
important issues is that the same basic
functionality used here is used throughout a
modeling environment. In fact, it is probably the
case that a large percentage of modeling code is
wrapped up in agent searching and movement
throughout an environment.

Now, a set of libraries could be created that
would infer a number of the benefits described
above. For example, one could create a two-
dimensional library that provided a common
routine for exploring a two-dimensional space.
But such a library would in some sense miss the
point. First, abstraction means more than

" To facilitate direct comparison I have removed white space
and comments and made bracket usage consistent.

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 5
2000 Swarm User Group Meeting 27

TABLE 1. Example of code-size benefit achieved principally through abstraction.

Swarm RePast Ascape
NewX =x;) Int type = (heatHere < idealTemp) ? space.HOT : space.COLD; DataPoint maximizeFor = (((HeatCell) getHostCell()).getHeat() < ideai Temperature)
newY =y, { Point p = space.findExtreme(type, X, y); ? HeatCell MAXIMUM_HEAT_POINT :
HeatCell heatCelt = new HeatCell (newX, newY); If (Uniform.staticNexiFloatFromTo(0.0f, 1.0f) < randomMoveProb) { HeatCell. MINIMUM_HEAT_POINT;
p.x = x + Uniform staticNextIntFromTo(-1, 1); Celt bestLocation = getHostCell().fii i Within(; imizeFor, 1, true);
heat.findExtremeTypeSX$Y (((heatHere < idealTemperature) p.y = y + Uniform.staticNextIntFromTo(-1, 1); if (!bestLocation.isAvailable() && bestLocation != oldHost) {
? HeatSpace.hot randomWalkAvaijable();
: HeatSpace.cold), if (unhappiness == 0) { }
heatCell); space.addHeat(x, y, outputHeat); else if (bestLocation != oldHost) {
newX = heatCell.x; }else { moveTo((HostCell) bestLocation);
newY = heatCell.y; int tries = 0; }
} if(px!=x|pyl=y){ if (getRandom().nextFloat() < ((HeatbugModel)
if ((Globals.env.uniformDblRand. getDoubleWithMinSwithMax (0.0, 1.0)) while ((world.getObject At(p.X, p.y) !=null) && tries < 10) { getRoot()).getRandomMoveProbability()){
< randomMoveProbability) v { int location = Uniform.staticNextIntFromTo(1, 8); randomWalk(};
1 pick a random spot 11 get the neighbors }
newX = int prevX = (x + xSize - 1) % xSize;
X + Globals.env.unifor d.getlntegerW i i -1, 1) int nextX = (x + 1) % xSize;
newy = int prevY = (y + ySize - 1) % ySize,
y + Globats.env.unifor getlntegerWi in$withMax (-1, 1); int nextY = (y + 1) % ySize;
switch (location) {
/1 normalize coords case 1:
newX = (newX + worldXSize) % worldXSize; p-x = prevX;
newY = (newY + worldYSize) % worldYSize; p.y = prevY;
} break;
case 2:
if (unhappiness == 0) { pxX=x%
1 onty update heat - don't move at all if no unhappiness p.y=prevy;
heat.addHeat$XSY (outputHeat, x, y); break;
} case 3:
else { p-x = nextX;
tries = 0; p.y = prevY;
/f only search if the current cell is neither the optimum break;
// or randomly chosen location - else dont bother case 4:
if ((ewX !=x || newY =)) { PX = nextX;
while ((world.getObject AtXSY (newX, newY) {= nully PY=Y;
&& (tries < 10)) { break;
int location, xml, xpl, yml, ypl; case 5
1/ choose randomly from the nine possible p-x = prevX;
// random locations to move to PY=V;
location = break;
Globals.env.unifor d.getIntegerWithMi (1,8 case 6:
xml = (x + worldXSize - 1) % worldXSize; px = prevX;
xpl = (X + 1) % worldXSize; p.y=nextY;
ymi = {y + worldYSize - 1) % worldYSize; break;
ypt ={y + 1) % worldY Size; case 7:
switch (location) { pPX=%;
case b p.y = nextY;
newX = xml; newY = yml; // NW break;
break; case 8:
case 2: p-x = nextX;
newX =X ;newY = ymi; /N p.y = nextY;
break; default:
case 3: break;
newX = xpl ; newY = yml; // NE }
break; tries-++;
case 4: }
newX = xml ; newY =y, /W if (tries == 10) {
break; PX=X
case 5: PY=Y,
newX = xpl ;newY =y, HE }
break; }
case 6: space.addHeat(x, y, outputHeat);
newX = xml ; newY = ypl; // SW world. putObjectAt(x, y, null);
break; X=PX;
case 7: Yy=p.¥%
newX =x;newY =ypl; #S world.putObjectAt(x, y, this);
break; }
case 8:
newX = xpl ; newY = ypl; #/ SE
default:
break;
}
tries++; // don try too hard.
}
if (tries == 10) {
no nearby clear spot, so just don’t move,
newX = x;
newY =y,
}
}
world.putObjectSatXSY (null, x, ¥);
X = newX;
y=newY;
world. putObjectSatXSY (this, newX, newY);
simply wrapping an elegant, high-level shell library, unless it generalizes space, becoming in
around an existing design - in fact, it is often not itself a framework, would still lock a model into a
practical to create meaningful abstractions on top specific topology.

of pre-existing systems. Abstraction involves
collapsing apparent differences away, and this

typically involves qeep support for the abstraction " Of course, I do not argue that such a library would not have
throughout the environment. Second, such a great value.

http://digitalcommons.usu.edu/nrei/vol 8/iss1/5

Parker: Ascape: Abstracting complexity
28 Natural Resources and Environmental Issues

There is an important science reason for not
doing this. Space, at least as we relate to it in finite
models, is essentially also an arbitrary idealized
concept. To test our models effectively we should
be willing to subject them to many different
spaces. Hopefully, a tool that enforces the
capability to explore these spaces transparently
will encourage further exploration.

Behaviors Occur Across Scapes, As ‘Rules’

The final abstraction is quite straightforward,
and has been pointed to earlier. Behaviors can
only be executed collectively across a scape as a
whole. Rather than support more complex action
scheduling, Ascape supports only the iteration of
rules across members of a scape. The primary
justification for this is that it makes organization
and comprehension of scape models more
straightforward, and it greatly facilitates user-level
control of models.

There is some theoretical justification for
treating behavior this way. First, we should
recognize that Ascape ‘rules’ are not completely
analogous to Swarm ‘actions’, though their usage
1s typically indistinguishable. Actions appear
intended to be more fine-grained and dynamic or
dispatchable. Rules are somehow more high-level,
though it is difficult to draw any solid distinctions.
While rules can conceivably be fired at individual
agents, they typically refer to a class of behavior,
or a variation on a class of behavior, that apply to
an entire collection of agents. But these
distinctions are really nitpicking; in actual usage
Ascape simply treats the very common case of
iterating actions for each agent as an explicit and
assumed part of the model design.

In an Ascape model, while scape hierarchy is
organized along structural lines, agents are also
organized into scapes because they share the same
class of behaviors, or behavioral context. Again,
this only makes explicit something that is already
a clear feature of most agent-based models.
Because rules have a one to many relationships
with scapes, they become a more clear and
definite part of the model structure. Because
scapes are already organized as a composite, this
means that behaviors also always have a clear
place in a potentially declarative hierarchy. Rules

Published by Digital Commons@USU, 2001

carry important information of their own; for
instance a rule knows if it needs to be executed
randomly, or if might potentially cause elements
to be deleted, and this information can be used by
the scape engine for optimization of execution.

The user and developer experience benefits
most from requiring behavior to fit into a strict
rule approach. Because all rules must belong to
scapes, the developer has one clear target for
managing and maintaining behavior. For the user,
the abstraction also allows the creation of very
clear run-time tools for experimenting with model
behavior. For example, the following window
allows a user to easily explore a model’s scapes,
selecting rules and changing model execution
order and style (Figure 4).

Select Seape

Selectand Drderfutes

, Rile. 0 heve |
“15ugar-Grow Back Infinite N
Sugar-Grow Back 1 v

2
Exgcution Drder. -
e Obyagent L[Ya
‘Egséuiimé‘fyie‘: o

@@ l:qmpletye'Telynr,!]

agents Per %%émiiuﬁ o

@Al O

FIGURE 4. A model settings window

Of all the Ascape abstractions, this is one that
appears most likely to be unworkable for some
classes of models, and that might benefit from
more sophistication. There are many features of
the Swarm scheduling system that would no doubt
be valuable in many contexts, and RePast appears
to take a nice higher level approach to scheduling
actions. However, for Ascape, given its design

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 5
2000 Swarm User Group Meeting 29

goals, it would be better to retain the current
scheme’s simplicity. There are many opportunities
to build additional sophistication into the existing
Ascape infrastructure, while retaining a scape-
centric approach. That said, I have not
encountered models that do not work well with the
Ascape methodology -- though our experience
with models is necessarily limited and I welcome
counter examples.

CONCLUSION

The following table summarizes the
abstractions discussed, and their [Gamma et.al.]
design pattern (Table 2).

Any theoretical reduction in complexity should
carry with it a practical advantage in coding
complexity. And an unscientific review of code
does demonstrate real advantages in code size.
While code line counts are at best a rough and
somewhat discredited method of measuring code
complexity, especially across languages, it can

TABLE 2. Summary of key abstractions.

certainly be a strong measure of potential
productivity (Table 3). In fact, Java and Objective
C seem very similar in their expressiblity
(arguably, Java is slightly denser), so relative
differences in code size is a strong measure of
cognitive load. To avoid Obj C’s inherent
disadvantage, I do not count the size of header
files (shown in parentheses) in the comparison,
though a programmer cannot so easily avoid the
necessity of them!

As many agent modelers have discovered, it is
all too easy to create models that seem to have
fascinating dynamics, but for which it is difficult
to tease out any real understanding or even a
consistent description. Careful block by block
exploration of basic agent interactions seems
necessary. This kind of exploration requires
common languages and ideas that we can use to
describe model structure and interaction. It can
also be helped by the judicious use of strong
abstractions. When we use abstractions, we are
working within a high-level expressible semantic
structure.

Abstraction All scapes are themselves Scape structure is hidden ~ Behaviors occur across scapes, as ‘rules’.
agents. from agents.
Theoretical ‘Agents’ are essentially Space is essentially an Rules provide a clear logic for collective
justification arbitrary boundaries between arbitrary construct. We behavior. A scape is a context for behavior.
different systems. Any need to be able to Agents are organized into scapes not
boundaries between different understand important simply because they share the same place
scales and generalizations must ~ mechanisms in the in a structure, but because they share the
be presented explicitly and must contexts of many different same class of behaviors.
carry the same privilege. spaces.
Practical Composability Flexibility Comprehensibility Repeatability
Benefits . .
Consistency Consistency
Robustness
Expressiveness
Experimentation
GOF Pattern ~ Sophisticated Composite Strategy-like Iterator

http://digitalcommons.usu.edu/nrei/vol 8/iss1/5

Parker: Ascape: Abstracting complexity
30 Natural Resources and Environmental Issues

TABLE 3. Code size compared.

Swarm Repast Ascape
Heatbugs 989 (1157) 622 63% 395 40%
Heatbugs (No Comments) 683 577 84% 304 45%
Sugarscape 1050 (1246) 815 78% 585 56%

The difference between a hodgepodge of
description and a truly useful explanation is
structure. A measure of growth in the agent
community will be our adoption of strong
common patterns and abstractions. Many efforts,
including continuing theoretical work, adoption of
standard structures such as XML, and
experimentation with approaches such as strictly
declarative models will be helpful. I hope that
Ascape will make a strong contribution.

ACKNOWLEDGMENTS

For valuable comments he thanks Robert
Axtell, Joshua M. Epstein and David Hines of the
Brookings Institution. For valuable discussions he
also thanks Marcus Daniels, Alex Lancaster, Irene
Lee, Sander van der Leeuw, Nelson Minar, Glen
Ropella and the many other members of the agent-
based modeling and complexity community. Of
course, he is solely responsible for any omissions
or shortcomings.

LITERATURE CITED

Axtell, R. A. and J. M. Epstein. 1996. Growing
Artificial Societies: social science from the

Published by Digital Commons@USU, 2001

bottom up. Brookings Institution Press/MIT
Press.

Collier, N. 2000. RePast.
http://repast.sourceforge.net. University of
Chicago.

Dean, J. S., G. J. Gumerman, J. M. Epstein, R. A.
Axtell, A. C. Swedlund, M. T. Parker, S.
McCarroll. 2000. Understanding Anasazi
Culture Change through Agent-Based
Modeling The Dynamics of Human Primate
Society Oxford University Press.

Epstein, J. M. 1998. Zones of Cooperation in
Demographic Prisoner’s Dilemma. Complexity
4(2):36-48.

Gamma, E., R. Helm, R. Johnson, J. Vlissides.
1995. Design Patterns: elements of reusable
object-oriented software. Addison-Wesley.

Langton, C., R. Burkhart, N. Minar, M. Askenazi,
G. Ropella, M. Daniels, A. Lancaster, 1. Lee,
and V. Jojic 1995. Swarm.
http://www.swarm.org. Swarm Development
Group.

McConell, S. 1993. Code Complete Microsoft
Press. pp. 776.

	Natural Resources and Environmental Issues
	1-1-2001

	Ascape: Abstracting complexity
	Miles T. Parker
	Recommended Citation

