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ABSTRACT 
 

Impact of Land-Applied Biosolids on Forage Quality and Water  

Movement During Rangeland Restoration Activities 

 
by 
 

Issaak Vasquez, Doctor of Philosophy 

Utah State University, 2008 
 

Major Professor: Dr. Michael McFarland 
Department: Civil and Environmental Engineering 

 
The land application of biosolids to provide nutrients and organic matter is widely 

practiced in agricultural applications. However, the potential benefit of applying biosolids 

to disturbed rangelands has not been adequately evaluated. Thus the main goal of the 

current study was to evaluate the potential economic and environmental benefits of 

applying biosolids to disturbed rangeland with the main focus on evaluating the impact 

on forage quality and quantity as a function of biosolids type and application rate.  Three 

types of biosolids (aerobically, anaerobically, and lime stabilized biosolids) were surface 

applied with no subsequent tilling at various loading rates (1, 5, 10, and 20 times nitrogen 

plant requirement) in Skull Valley, Utah.  It was demonstrated that forage quality (crude 

protein and in vitro digestibility) and quantity (biomass) can be improved by biosolids 

land application.  Also, the analyses of the soil and forage for 16 specific metals indicated 

no measurable accumulation except for a statistical increase of sodium compared with the 

control.  No negative impact on soil moisture infiltration (e.g., drainage) properties were 
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seen.  The economic analysis of biosolids land application on disturbed rangeland 

associated with improvements in forage quality indicated that use of biosolids for land 

restoration would be profitable. The highest potential financial return was observed when 

anaerobically digested biosolids were land applied at 20 times the agronomic rate.  

Finally, despite the numerous benefits associated with biosolids land application, 

there remain a number of human health and environmental concerns regarding its use on 

publicly accessible lands that should be addressed in future studies.  These concerns are 

primarily associated with the accumulation of heavy metals and recalcitrant organics (e.g. 

polychlorinated biphenyls, dioxins, brominated biphenyls, and pharmaceuticals and 

personal care products) that may be associated with the biosolids.   

(93 pages) 
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CHAPTER 1 

INTRODUCTION 
 
 

The national regulatory framework for controlling water quality in the United 

States was established by the 1948 Federal Water Pollution Control Act (FWPCA).  The 

1948 FWPCA has been amended many times resulting in today’s regulation which is 

simply known as the US Clean Water Act (CWA).  The CWA is the comprehensive 

federal law that contains the basic national framework for water pollution and water 

quality control in the United States (McFarland 2001).  Under the CWA, biosolids, which 

are treated sewage sludge from municipal wastewater treatment plants (WWTPs), may be 

beneficially used (e.g., land application) if they meet certain quality standards.  These 

standards are defined in the CWA by the 40 Code of Federal Regulations (CFR) Part 503 

rule (Desai 2006).  The 40 CFR Part 503 rule states that biosolids that meet the pollutant 

(e.g., heavy metal), pathogen and vector attraction requirements for beneficial use may 

not be land applied at rates above the agronomic rate except when used to reclaim 

marginal or disturbed land.  This rule stipulates that biosolids that contain regulated 

pollutants at concentrations above the ceiling concentrations can not be beneficially used 

(e.g., land applied).  Also, the pathogens concentrations in biosolids must achieve either 

Class A or B before the material can legally be land applied.  Class A and B biosolids 

have low levels of heavy metals.  They differ because Class B biosolids has detectable, 

yet low, levels of known human pathogens, while the pathogen levels of Class A 

biosolids are not detectable.  Finally, the vector attraction reduction standard requires that 

biosolids be treated (chemically and/or biologically) to reduce microbially activity or 
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physically incorporated into the soil (tilling or injection of biosolids) as part of the land 

application requirements. 

Rangelands in the western United States have experienced heavy livestock 

grazing during the past century, which has led to a substantial reduction in total plant 

cover and density.  These western rangelands are categorized as disturbed rangelands 

because its forage productivity has decreased considerably as consequence of land 

disturbances.  Any rangeland restoration approach that has the net effect of increasing 

plant cover over time will have the beneficial impact of promoting moisture infiltration 

and reducing soil erosion.  Moreover, many rangeland soils have been significantly 

depleted of organic matter and, in many cases, supplemental organic matter is needed to 

improve rangeland productivity. 

Since treated sewage sludge (or biosolids) is rich in organic matter and nutrients, 

it is believed that they will help in restoring the vigor of disturbed rangelands.  Biosolids 

represent a low cost source of organic matter when land applied to affected soils.  In 

addition, organic matter decomposition from land-applied biosolids releases chemically-

bound nutrients (e.g., proteins), making them available for assimilation by plants and soil 

microorganisms. 

The overarching goal of the current study is to determine the potential economic 

and environmental benefits of land applied aerobically digested, anaerobically digested 

and lime-stabilized biosolids to disturbed alkaline rangelands located in Tooele County 

(Skull Valley), Utah.  There are very few studies available that have evaluated the impact 

of sludge processing methods on biosolids quality and its effectiveness in restoring 
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deteriorated rangeland.  Moreover, the impact of applying biosolids at rates as high as 20 

times agronomic rate based on nitrogen needs of the plants has never been documented. 

From a regulatory standpoint, biosolids can be applied on undisturbed sites at 

rates much higher than the agronomic rates.  The state of Utah wants to document the 

environmental impact of applying biosolids at large rates to disturbed rangelands. Since 

the various types of biosolids have different allocations of the various nitrogen forms 

(e.g., nitrate, ammonia, organic nitrogen), a rangeland’s response to these biosolids 

quality differences are of particular importance to state regulators.  

It is important to note that since the selected land application site is disturbed 

land, the study is not limited to the agronomic rate as the ceiling application rate for 

biosolids.  In fact, the range of biosolids application rates is established at 1 to 20 times 

the estimated agronomic rate (based on the vegetation crop nitrogen requirement). 

For the specific case of lime stabilized biosolids, the application rate was limited 

to 10 times the agronomic rate because higher rates were considered to be unpractical.  

For example, since the nitrogen content in the lime stabilized biosolids was relatively 

low, the biosolids application rate required to achieve a nitrogen loading twenty times the 

agronomic rate would have resulted in producing a biosolids layer several inches in 

thickness.  After discussions with agricultural specialists, it was surmised that, without 

tilling, the resulting surface application would have physically impeded plant emergence.  

An additional concern expressed by local agricultural specialists was the potential 

toxicity of large inorganic salt additions (as lime) on the already disturbed rangeland.  

Given the potential negative physical and chemical impacts associated with adding large 
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amounts of lime to soils already high in salt content, application of lime stabilized 

biosolids was limited to no more than 10 times the agronomic rate. 

 Because the focus of this study is to evaluate the impact of both biosolids quality 

and quantity on soil moisture transport, biomass yield, and biomass quality, the 

parameters whose values will be monitored throughout the study include: hydraulic 

conductivity, water drop penetration time, forage minerals, crude protein and energy 

analyses. 

 The principal goal of this study is to document and quantify various effects of 

applying different types and amounts of biosolids during the restoration of disturbed 

semiarid rangelands.  The specific research objectives include the following: 

1) To characterize qualitative and quantitative the effect of biosolids application on 

soil water transport properties by evaluating water drop penetration time and soil 

hydraulic conductivity for a range of biosolid types; 

2) To clarify the effect of biosolids in increasing the forage value of disturbed 

rangelands, biomass yield and quality (protein and energy content) will be 

documented and evaluated; 

3) To evaluate the impact of biosolid type and application rate on rangeland forage 

crop production; 

4) To analyze the effect of mineral concentrations on the forage after biosolids 

application, and see if they are a possible threat for the cattle consumption;  

5) Optimize biosolids application for a sustainable range management by accounting 

for the economic benefit associated with the improvement in forage 

quality/quantity. 
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CHAPTER 2 
 

EFFECT OF BIOSOLIDS ON RANGELAND FORAGE QUALITY 
 
 
Abstract The productivity and quality of rangeland of western Utah could be improved 

with the addition of nutrients and organic matter.  Land application of biosolids has been 

promoted as a potentially cost effective approach to supplying these necessary nutrients 

and organic matter.  However, few studies have directly evaluated the potential of land 

applied biosolids to improve marginal rangelands.  To address this deficiency, a 2-year 

field study was conducted in Skull Valley, Utah to evaluate the effectiveness of land 

application of manure and biosolids in improving the forage quality of marginal 

rangelands. Manure (a common fertilizer on rangelands) and three different types of 

biosolids were compared with a control plot on which no amendments were applied.  

Biomass and forage samples were collected and measured respectively for each 

treatment.  The crude protein (CP, %) and the in-vitro true digestibility (IVTD, %) were 

measured.  Although the IVTD analysis did not show a statistical improvement in forage 

grown on biosolids amended rangelands, improvements in CP associated with biosolids 

land application were found to be statistically significant.  Based on improvements in CP 

and IVTD, modeling results demonstrated that the estimated daily gain in weight for a 

136.4 kg (300 lb) beef cow was considerably higher for animals grazing on forage from 

biosolids amended sites compared to the control.  Finally, the increase in vegetative yield 

(e.g., biomass production) was found to be statistically significant greater on sites 

amended with biosolids, which led to a considerable improvement in stocking rate.   



 7 

Introduction  

 Biosolids are the final solid products of waste water treatment plants (WWTP) 

(USEPA 1991).  Biosolids can be directed to beneficial use such as land application for 

agricultural, (USEPA 1994), and the production and sale of biosolids products like soil 

substitute products, alkaline-stabilized soil additives, heat-dried pellets, compost among 

others (McFarland 2001). 

 Forage quality directly affects a rangeland’s ability to support the nutritional 

needs of livestock.  Good forage quality can be achieved by applying fertilizer.  Fertilizer 

applications in the form of manure have been shown to increase the biomass of rangeland 

(Bell et al. 2006).  Few studies have compared the benefit of applying manure and 

biosolids on a rangeland (Mata-Gonzalez et al. 2006).  The present research program, 

which attempts to increase knowledge about the subject, is focused on comparing the 

impact of land applying manure and three types of biosolids (aerobically digested, 

anaerobically digested, and lime stabilized biosolids) on disturbed rangelands.  Owing to 

the types of pathogen treatment processes used in generating the material, the three 

biosolids were characterized as Class B.  Class B biosolids differ from Class A biosolids 

in that they have detectable, yet low, levels of known human pathogens.  Even though 

lime stabilized biosolids are readily available, few field studies have been conducted 

using them (Mata-Gonzalez et al. 2006). 

It is well known that higher water application to sites where biosolids were 

applied will lead to higher responses in forage biomass and the absorption of nitrogen 

(Mata-Gonzalez et al. 2004).  In the present study, none of the test sites were irrigated 

although the mean precipitation rate for this area is approximately 382.5 mm/year. 
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In this study, a control plot (where organic amendments were not applied) was 

used to establish a performance baseline.  We initially determined the application rate 

needed to just meet the plant’s needs based on nitrogen. This application rate is defined 

as the agronomic rate. For the current study, biosolids and manure application rates were 

limited to 1, 5, 10, and 20 times the agronomic rate.  For the specific case of the lime-

stabilized biosolids, the 20 times agronomic rate was not applied because the amount of 

biosolid was considered to be too high to allow unfettered emergence of rangeland 

vegetation.  Since the nitrogen content in the lime stabilized biosolids was low, the 

amount of biosolids needed to achieve an application rate equivalent to 20 times the 

agronomic rate would result in a surface application layer of several inches.  Without 

incorporation, surface application of lime stabilized biosolids would result in a soil 

amendment layer of several inches. The physical limitations associated with vegetation 

emerging from such a layer as well as the high inorganic salt additions led to a number of 

concerns expressed by agricultural specialists affiliated with the project.  It was 

determined that to limit the potential negative impacts of land applying lime stabilized 

biosolids, its maximum application rate would be 10 times the estimated agronomic rate.   

A unique characteristic of the current study compared with other reported field results 

(Martin and Jack 2002; Jurado and Wester 2001) is that this is one of the few studies that 

established biosolids application rates based on multiples of the estimated nitrogen-based 

agronomic rates.  Even though some other studies based their application rate on 

estimated agronomic rate (Tiffany et al. 2000b), they did not apply more than twice the 

rate needed by plants.  Some other researchers applied manure and biosolids in 
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laboratory-size pots to determine the reaction of two specific species (Mata-Gonzalez et 

al. 2006).  In this research program, however, a field demonstration study was conducted. 

The main objective of this study was to determine the influence of manure and 

biosolids at different application rates on forage quality.  Among the parameters that were 

analyzed were the dry biomass, the CP and the IVTD.  The stocking rate was calculated, 

and the daily gain in weight of a 136.4 kg (300 lb) cow was estimated based on the CP 

and IVTD analysis. 

 
Materials and Methods 

Field studies were conducted on a series of rangeland test plots in Skull Valley, in 

Tooele County, at the coordinates lat 40° 27’ 06’’ N and long 112° 44’ 42’’ W.  The 

predominant surface texture of the soil is sandy loam.  The mean annual air temperature 

fluctuates from 7 to 10°C (USDA-NRCS 2000).  The average mean precipitation is 382.5 

mm/year (GIS Climate Search 2006).  The average mean precipitation at the site of study 

was calculated by extrapolating the values from nearby stations to the study site using the 

inverse distance weighting method (Gao 2006).  Table 2.1 shows the precipitation in 

millimeters per month over the mentioned periods. 

 

Table 2.1 Extrapolated mean precipitations for stations “Grantsville 2 W” and “Johnson 
Pass” over a period of 51 and 34 years, respectively, expressed in mm per month   
Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Grantsville 2 W 17.0 21.6 32.4 38.0 32.9 21.6 19.2 19.2 24.1 27.4 24.8 20.9 
Johnson Pass 38.8 39.7 44.6 44.1 52.4 24.7 29.0 25.8 29.3 34.6 36.3 34.2 

Working Site 30.5 32.8 40.0 41.8 45.0 23.6 25.3 23.3 27.3 31.9 31.9 29.2 
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Treatments 

Biosolids (aerobically digested, anaerobically digested and lime stabilized) were 

obtained from three different municipal wastewater treatment plants (WWTP) located 

along the Wasatch Front, Utah while the beef cattle manure was obtained from the 

Ensign Ranches of Utah, Inc. feedlot.  The biosolids and beef cattle manure were applied 

in December 2004, and rates were determined based on the plant nitrogen requirement.  

The agronomic rate was determined from Equation 1 (McFarland 2001). 



















=








 tonmetric

N-kg
 manurebiosolids/ ofper ton nitrogen  availableplant 

ha

N-kg
 (ANR)t requiremennitrogen  adjusted

ha

 tonmetric
 Rate Agronomic

 

 
                                     

[ ]10)(NK)(NHK)(NO

 ANR
 

omin4v3 ++
=   (1) 

 
where: 
 
ANR Adjusted nitrogen requirement (kg N/ha) 
NO3  nitrate concentration in biosolids/manure (kg N/metric ton) 
NH4  ammonia concentration in biosolids/manure (kg N/metric ton) 
No  organic nitrogen concentration in biosolids/manure (total nitrogen content found in 

biosolids/manure minus nitrate plus ammonia content)  
Kv  volatilization factor (0.5 if biosolids/manure are not tilled into soil) 
Kmin organic nitrogen mineralization rate (assumed to be 0.3) (McFarland 2001) 

 

The ANR was determined based on the estimation that a healthy rangeland in this 

area would exhibit a nitrogen demand of approximately 168.5 kg nitrogen per ha (150 

lbs-N/acre) as detailed below.  It is known that, on average, the plant biomass at the 

rangeland test site is approximately 1123 kg/ha (1000 lbs/acre) (USDA-NRCS, 2000).  

Also, it was assumed that the nitrogen content of the biomass was around 15% (Desai 

2006).  From this, the total nitrogen needed by the plant is approximately 168.5 kg-N per 

ha (150 lb/acre).  Soil analysis indicated that there was already approximately 112 kg-N 
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per ha (100 lb-N per acre) of available nitrogen.  From this, the nitrogen that needed to be 

applied at the site was around 56.1 kg-N per ha (50 lb-N/acre).  Table 2.2 shows the 

different rates applied for each of the soil treatments based on the nitrogen analysis on 

biosolids and background soil. 

Sixteen 0.13-ha test plots were established for the field demonstration study.  To 

facilitate the selection of random samples, each of the 0.13-ha subplot was divided into 

approximately 144 sections having physical dimensions of 3 by 3 m (10 by 10 ft).   

On May 8th, 2006, 6 out of the 144 plots were selected randomly in each subplot.  

A random generator was used to select the random plots.  The wet biomass was harvested 

in each of the six plots.  In addition, forage samples were taken for three out of the 6 

sections, and the dry matter, crude protein and neutral detergent fiber were analyzed by 

the Utah State University Analytic Laboratories.  The sampling and analysis was repeated 

on May 15th, 2007, but for this year, four forage samples were analyzed per subplot.  The 

five parameters calculated on this study are described in the following sections: 

 

Table 2.2 Application rates for the three different biosolids and manure 
Metric tons per hectare 

Manure Central Valley Snyderville Tooele 
Agronomic 

Rate 
  (Anaerobically Digested) (Aerobically Digested) (Lime Stabilized) 

1 11.8 2.9 3.4 19.7 

5 59.2 14.3 17.2 98.6 

10 118.3 28.6 34.4 197.3 

20 236.6 57.1 68.8 †394.5 

† 20 times agronomic rate for Tooele biosolid was not applied because it was considered to be impractical to plant 
growth because of its thick layer.  
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Dry Biomass (kg/ha).  The dry herbage biomass was calculated by multiplying the 

average wet weight of herbage biomass in each subplot by the average of the dry matter 

obtained in each subplot.  The dry matter obtained for the 2006 and 2007 years had 3 and 

4 samples respectively per subplot. 

Stocking Rate.  Stocking rate is defined as the amount of land per animal unit (Holechek 

and Rex 1995).  An animal unit is defined as a 454.5 kg (1,000-lb) cow with a calf 

(USDA-NRCS 2008).  Stocking rate was calculated using the following procedure: 

* Calculation of total usable forage.  The total usable forage is the amount of forage that 

the cattle will eat on a specific unit of land.  It is expressed by Equation 2. 

( ) UseAllowablePercent 
ha

kg
 BiomassDry Forage  UsableTotal 















=    (2) 

The percent allowable use can be classified as heavy, moderate, or light.  

Moderate gives the higher net return per unit of land, so economically it is more 

profitable in the long term to use a moderate percent allowable use on the range. 

Different analyses had been done for estimating the percent allowable use.  A 

simple classification can be used, such as consumption from 45 to 60% on humid regions, 

from 35 to 45% on a semiarid rangeland, and from 25 to 35% on more arid region (mean 

annual precipitation below 300 mm) (Holechek and Rex 1995).  According to the mean 

annual precipitation of this study site, this rangeland is classified as semiarid rangeland, 

and a value of 45% was taken as percent allowable use. 

* Calculation of Forage Demand per Cow per Number of Days.  The forage demand that 

a single cow will require is given by the following equation: 

( ) ( )grazed be  willpasture  thedays ofnumber *DMIDemand Forage   =  (3) 
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The dry matter intake or DMI is expressed in kg/day/cow.  The number of days 

the pasture will be grazed was considered for one month (30 days).  The DMI was 

calculated for a 454.5 kg (1000 lb) cow weight, and the approach used for calculating this 

for beef cattle is expressed in Equation 4 (Belyea et al. 2005). 

( ) ( )
% NDF

1.08%*Cow Beef ofWeight 
IntakeMatter Dry   =  (4) 

The NDF value used in Equation 4 represents the average neutral detergent fiber.  

For the years 2006 and 2007, three and four samples were analyzed respectively for each 

subplot.  The NDF was determined using an Ankom 200 fiber analyzer. 

* Calculation of Stocking Rate.  The stocking rate was calculated using Equation 5, and it 

is expressed in numbers of hectares per animal per month. 

Forage  UsableTotal

Demand Forage
Rate Stocking   =   (5) 

 

Crude Protein.  Nitrogen was measured at the Utah State University Analytic 

Laboratories by combustion using a LECO TruSpec CN carbon-nitrogen analyzer.  For 

the year 2006, three sub-samples were taken randomly from each subplot and the CP was 

calculated in each sub-sample.  For the year 2007, four sub-samples were taken randomly 

from each subplot.  The crude protein (CP) was estimated by multiplying the percent 

nitrogen (dry basis) of the vegetation by 6.25 (Schroeder 1994). Higher CP denotes better 

forage quality.  

In-Vitro True Digestibility.  One of the most accurate methods to measure forage 

digestibility is by the IVTD test (Van Soest 1982).  The IVTD is a lab methodology that 

simulates the digestion that occurs in the cow’s rumen, and is performed in anaerobic 



 14 

conditions.  Rumen fluid is collected and the forage samples are incubated anaerobically 

at 39oC.  During the time of incubation, the forage samples are digested by the microbial 

population that are in the rumen.  The IVTD experiment was done in the Skaggs 

Nutrition Laboratory, and a Daisy incubator was used (Ankom model).  Dried samples 

were used for this experiment, and Equation 6 was used for calculating the IVTD: 

( )








=

 WTSample

100* WTBag -  WTFinal
 -100(%) IVTD      (6) 

 
Bag WT   = weight of each sample bag. 
Sample WT  = sample weight before the experiment. 
Final WT  = weight of the bag plus the undigested fibrous residue. 
 
Increased Weight.  The two main factors that influence the daily gain in weight per day in 

beef cattle are the CP and the digestibility of the forage.  A simple estimation of the daily 

weight gain of a 136.4 kg (300 lb) cow was analyzed to determine the influence of these 

two factors.  The lowest daily gain between the CP and the IVTD for a specific subplot 

was considered as the daily weight gain of the cow.  Also, cattle maximum daily gain was 

no more than 1.14 kg (2.5 lbs) because of water limitation.  Table 2.3 was used to obtain 

the daily gain of a 136.4 kg cow (National Research Council 1984). 

 
Table 2.3 Cattle daily gain in weight for a 136.4 kg cow 

Daily Gain CP IVTD 
(lbs/day) (%) (%) 

0.5 9.5 52.5 
1.0 11.3 56.0 
1.5 12.9 59.5 
2.0 14.6 63.5 

2.5 16.3 67.5 

3.0 18.0 72.0 
3.5 20.3 78.5 

 

 



 15 

Statistics 

The experimental design was based on a pseudo-replication method because of 

budget and time constraints.  The main factors that might affect the final results were not 

affected by the lack of a replicated design.  For example, temperature and water content 

were assumed to be the same for all treatments.  Therefore, these factors should not affect 

the outcomes of the experiment. 

Basically two statistical methods were used in this experiment.  Since it was an 

unbalanced design, a fixed-effect analysis of variance with one treatment factor by using 

contrast statements to isolate comparisons of interest was used.  This methodology was 

used for the analysis of the CP (%), and IVTD (%). 

The dry biomass and the stocking rates were obtained from the multiplication of 

at least two collected or measured samples.  For this reason, a fixed-effect analysis of 

variance with one treatment factor was not performed for these cases, and a normal Z-test 

was considered a better fit in this case.  The standard error was determined, and it was 

calculated using a statistic for propagation of measurement error (Berthouex 2002). 

In both statistical analysis, each subplot was compared with the control, and the 

subplots were considered to be statistically significant different if the level of confidence 

was 95% or more. 

 
Results and Discussion 

Dry Biomass (kg/ha) 

Figure 2.1 shows that the biomass harvested in 2006 is highly variable, which is 

reflected in the low statistical difference of the treatments with the control.  It is believed 
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that this high variability is because it was harvested just one year after biosolids 

application, which did not allow a consistent effect of the biosolids.  On the other hand, 

Figure 2.2 shows better uniformity, and a more consistent trend for the biomass.  Hatched 

subplots represented by bars shows their biomass production to be significantly higher 

than that of the control plot.  In general, it can be seen that higher dry biomass will be 

obtained for higher agronomic rates.  This result was expected because of the higher 

nitrogen content for higher application rates.  These results are consistent with other 

studies where higher rates of biosolids application resulted in an increase in biomass 

(Walter et al. 2000; Martinez et al., 2003).  This does not seem to be the case for the 

lime-stabilized treatment, where, for higher agronomic rates, lower biomass yields were 

obtained.  Sodium absorption ratio (SAR), pH, electrical conductivity (EC), and 

mineralogical analysis of the soil did not seem to explain the inverse relationship between 

biomass production and increasing application of lime stabilized biosolids.  Related 

studies show that heavy applications of manure were unsuitable for rangelands where 

Blue grama is the predominant species (Stavast et al. 2005), however, in the present 

study, the predominant specie is Bromus tectorum, and no adverse effect were seen for 

high manure applications on this species. 

 
Stocking Rate 

The stocking rate was calculated based on the dry biomass and on the NDF 

obtained for each subplot.  Figures 2.3 and 2.4 show the stocking rate for the years 2006 

and 2007, respectively.  The lower the number of hectares needed per animal unit month, 

the more productive the site.  Even though the subplots are not significantly different than 
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the control, all the subplots are more productive than the control.  No much difference in 

the productivity obtained by the manure with the biosolids can be seen.  In addition, some 

subplots were 5 times more productive than the control.  This trend can be confirmed for 

the years 2006 and 2007. 
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Fig. 2.1.  Herbage biomass vs. biosolid application rate for year 2006. Error bars indicate 
standard error. 
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Fig. 2.2.  Herbage biomass vs. biosolid application rate for year 2007. Error bars indicate 
standard error. 



 18 

 
As mentioned before, we have speculated that, for 2007, a more uniform biomass 

was obtained because more time had passed since biosolids land application.  It is 

anticipated that, for the future years, productivities similar to that observed in year 2007 

will be seen.  
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Fig. 2.3.  Stocking rate vs. biosolid application rate for year 2006. Error bars indicate 
standard error. 
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Fig. 2.4.  Stocking rate vs. biosolid application rate for year 2007. Error bars indicate 
standard error. 
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Crude Protein 

The improvement in CP compared with the control was consistent for the years 

2006 (Figure 2.5) and 2007 (Figure 2.6).  These results are consistent with previous 

studies that showed that biosolids application increased the CP content compared with the 

control (Tiffany et al. 2000a, Martin and Jack 2002; Jurado et al. 2006).  All treatments 

were significantly higher in CP content compared with the control.  The CP is directly 

related to the nitrogen content in the forage, so higher nitrogen content will lead to a 

higher CP content.  Since the treatments receive a high nitrogen loading compared to the 

control, it was anticipated that the forage that grew on biosolids amended soils would 

have a high nitrogen content.  Some studies have shown higher nitrogen content in the 

forage for treatments where biosolids were applied (Pierce et al. 1998).  This increase in 

nitrogen availability will lead to higher CP content in the forage associated with the 

biosolids amended sites compared to the control. The subplots represented by hatched 

bars show statistically higher CP than the control.  In general, higher agronomic rates 

resulted in the same response in crude protein, with the exception for rangeland test sites 

receiving lime stabilized biosolids.  

 
In-Vitro True Digestibility 

The IVTD data seen in Figures 2.7 and 2.8 shows how digestible the forage is for 

the different treatments.  The subplots represented by hatched bars were statistically 

significantly different than the control.  A previous study showed that IVTD improves 

with biosolids application (Jurado et al. 2006).  In contrast with this study, a significant 

difference could not be seen when the digestibility of the different biosolids treatments 
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are compared with the control for years 2006 and 2007.  The reason for this result may be 

because the samples were taken in the early part of the growing season.  A previous study 

compared in vitro organic matter digestibility (IVOMD) of forage grown with biosolids 

amendments with a control area where no biosolids were applied.  This earlier study 

revealed that there was no significant difference in the IVOMD for early season’s forage 

compared to the control.  This study also illustrated that, during the latter part of the 

growing season, the statistical difference of the IVOMD was significant when the control 

was compared with the biosolids treatments (Tiffany et al. 2000 a). 
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Fig. 2.5.  Crude protein vs. biosolid application rate for year 2006.  
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Fig. 2.6.  Crude protein vs. biosolid application rate for year 2007.  
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Fig. 2.7.  In vitro true digestibility vs. biosolid application rate for year 2006.  
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Fig. 2.8.  In vitro true digestibility vs. biosolid application rate for year 2007.  
 
 
Increased Weight 

Figures 2.9 and 2.10 depict the estimated average daily gain in weight of a 136.4 

kg beef cow for the years 2006 and 2007.  From these figures, it can be seen that the 

forage quality, IVTD and CP, increase significantly with increasing daily weight gain in 

most of the treatments compared with the control.  This gain of weight was consistent for 

years 2006 and 2007.  It is important to mention that these types of estimations of daily 

gain based on CP and IVTD have not been reported in other studies using biosolids 

and/or manure soil treatments. 

 
Conclusions 

The application of biosolids and manure, in general, resulted in higher biomass 

growth, which increased stocking rates, and improved the carrying capacity of a 

rangeland compared with the control area.  For lime stabilized biosolids, application at 

one time the agronomic rate was found to result in greater productivity than at higher 

applications. 
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Forage quality was also improved with increasing biosolids application rates.  

This was documented by comparing the increase in CP values in forage grown on 

biosolids-amended soils to forage grown on control plots.  The digestibility for the 

treatments compared to the control did not show consistent improvement.  Finally, 

improvements in forage quality were found to directly benefit the daily gain in animal 

weight.  
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Fig. 2.9.  Estimated average daily meat gain vs. biosolid application rate for year 2006.  
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Fig. 2.10.  Estimated average daily meat gain vs. biosolid application rate for year 2007.  
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CHAPTER 3 
 

SOIL AND RANGELAND FORAGE MINERALOGICAL ANALYSIS POST  
 

APPLICATION OF MANURE AND THREE BIOSOLIDS’ TYPE 
 

Abstract 

 

Manure and biosolids can be land applied to disturbed rangelands to improve soil 

fertility.  The primary focus of the field study was to quantify how the application of soil 

amendments (biosolids and beef cattle manure) might impact metal accumulation within 

the soil and to evaluate and document the possible adverse impact of metal accumulation 

on as well as in rangeland forage.  The present research study was conducted from 2004 

through 2007 in Tooele County, Utah.  Cattle manure and three types of biosolids 

(aerobically digested, anaerobically digested, and lime stabilized biosolids) were land 

applied at rates up to 20 times the nitrogen-based agronomic rate.  The results of these 

soil treatments were compared with a control area on which no amendments were 

applied.  Soil analysis, one year later after the amendments application, showed a 

statistical increase in the sodium and a statistical decrease in the potassium concentration 

compared to the control.  The analysis of the other minerals do not show a statistically 

significant increase compared to the control site.  The forage analysis demonstrated that, 

of all the metals species investigated, only the forage molybdenum concentration grown 

in sites amended with cattle manure might be a problem during land restoration activities.  

The molybdenum concentration one year later after its application was found to be higher 

than 6 mg/kg, which exceeds the levels recommended by the US National Research 

Council.  Moreover, forage grown on the different rangelands amended with biosolids 
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and manure indicated that sodium and copper supplements were necessary to ensure 

livestock health.    

 
1. Introduction 

Biosolids are the final solid products from the treatment of municipal wastewater 

(USEPA, 1991).  Because of its abundance of organic matter and large concentration of 

nutrients, biosolids can be utilized in restoring vegetation on disturbed lands as well as 

for other agricultural purposes (USEPA, 1994). 

Although biosolids land application has been demonstrated to have significant 

potential for restoring disturbed land, there is considerable concern regarding soil mineral 

accumulation that could potentially yield negative environmental effects.  In New 

Mexico, a post sludge application study reported that soil macro-minerals and micro-

minerals increased for higher sludge application (Fresquez et al., 1990). In addition, 

several studies have reported that, in the long term, the mineral concentration in the soil 

following biosolids land application increases but without toxic levels ever being reached 

(Lane, 1988; Julia et al., 2003).  

Many studies have reported that biosolids application can improve the nutritional 

quality of native grasses (Pierce et al., 1998; Adjei and Rechcigl, 2002; Mata-Gonzales, 

2006).  Rangeland forage quality is vital because it directly affects the land’s ability to 

support the nutritional needs of wildlife and livestock.  The amount of macro-minerals, 

micro-minerals and other minerals contained in the rangeland vegetation is an indicator 

of forage quality.  A surplus or deficit in mineral content in rangeland vegetation could 
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adversely impact forage quality, leading to animal illness or, in extreme cases, death 

(Linn and Martin, 1999). 

In Georgia, a forage analysis taken before and after biosolids application showed 

that the mineral concentrations are lower than the recommended maximum tolerable 

levels for beef cattle (Julia et al., 2003).  A similar study in Florida reported that biosolids 

land application at rates equivalent to 2 times the agronomic rate resulted in no toxic 

mineral concentration being achieved in the vegetation (Tiffany et al., 2000).  In New 

Mexico, a study reported that the nutrient levels in forage will be better at rates of 22.5 

and 45 mt/ha than at 90 mt/ha after biosolids application.  They were measured within the 

first 5 growing seasons after biosolids application (Fresquez et al., 1991). 

In the present study, three different types of biosolid and beef cattle manure were 

land applied to increase forage productivity on disturbed rangeland.  Both biosolids and 

manure were added at rates equivalent to 1, 5, 10 and 20 times the estimated rangeland 

agronomic rate based on nitrogen (USEPA, 2000).  In addition to biosolids and manure 

test plots, a control area was used to establish a performance baseline.  However, it was 

determined that, because of its relatively low nitrogen content, the application rate for 

lime stabilized biosolids was excessive in terms of the mass of biosolids actually applied.  

In other words, application of lime stabilized biosolids at 20X the agronomic rate would 

have resulted in a biosolids layer too thick for effective plant emergence.  Owing to this 

concern, the maximum lime stabilized biosolids application rate was limited to 10X the 

estimated agronomic rate.   
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2. Experiment 

Field studies were conducted on a series of rangeland test plots in Skull Valley, in 

Tooele County, UT at the coordinates lat 40° 27’ 06’’ N and long 112° 44’ 42’’ W.  The 

predominant soil surface texture in the study site is sandy loam.  The site’s mean annual 

air temperature fluctuates from 7 to 10°C (USDA-NRCS, 2000), and the average mean 

precipitation is 382.5 mm/year (GIS Climate Search, 2006).  The mean precipitation at 

the site of study was calculated extrapolating the values of “Grantsville 2 W” and 

“Johnson Pass” stations to the study site using the “Inverse Distance Weighting” Method 

(Gao, 2006).  Table 3.1 shows the precipitation in millimeters per month over the 

mentioned periods. 

 
2.1. Treatments 

Biosolids (aerobically digested, anaerobically digested and lime stabilized) were 

obtained from three different municipal wastewater treatment plants (WWTP - Central 

Valley, Snyderville, and Tooele, respectively).  In addition, beef cattle manure was also 

land-applied, which was obtained from the Ensign Ranches of Utah, Inc. feedlot.  Manure 

application was selected because it is a commonly used fertilizer.  Biosolids and beef 

cattle manure were surface-applied on 0.13-ha (1/3-acre) test plots separated by buffer 

strips.  A control area, where no soil amendment was applied, was used as a treatment 

performance baseline. 
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Table 3.1 
Extrapolated mean precipitations for stations “Grantsville 2 W” and “Johnson Pass” over 
a period of 51 and 34 years respectively 
Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Grantsville 2 W 17.0 21.6 32.4 38.0 32.9 21.6 19.2 19.2 24.1 27.4 24.8 20.9 
Johnson Pass 38.8 39.7 44.6 44.1 52.4 24.7 29.0 25.8 29.3 34.6 36.3 34.2 

Working Site 30.5 32.8 40.0 41.8 45.0 23.6 25.3 23.3 27.3 31.9 31.9 29.2 
 

The biosolids and beef cattle manure were applied in the middle of December 

2004, and rates were determined based on the plant nitrogen requirement.  The 

agronomic rate was determined from Equation 1 (McFarland, 2001). 
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where: 
 
ANR Adjusted nitrogen requirement (kg N/ha) 
NO3  nitrate concentration in biosolids/manure (kg N/metric ton) 
NH4  ammonia concentration in biosolids/manure (kg N/metric ton) 
No  organic nitrogen concentration in biosolids/manure (total nitrogen content found in 

biosolids/manure minus nitrate plus ammonia content)  
Kv  volatilization factor (0.5 if biosolids/manure are not tilled into soil) 
Kmin organic nitrogen mineralization rate (assumed to be 0.3) (McFarland, 2001) 

 

The ANR was determined based on the estimation that a healthy rangeland in this 

area would exhibit a nitrogen demand of approximately 168.5 kg nitrogen per ha (150 

lbs-N/acre) as detailed below.  It is estimated that, on average, the total plant biomass at 

the test site is approximately 1123 kg/ha (1000 lbs/acre) (USDA-NRCS, 2000).  

Assuming that the nitrogen content of the biomass is approximately 15% (Desai, 2006), 

the total nitrogen needed by the plant is approximately 168.5 kg-N per ha (150 lb/acre).  
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Soil analysis indicated that there was already approximately 112 kg-N per ha (100 lb-N 

per acre) of available nitrogen.  From this estimation, the nitrogen required by the 

rangeland vegetation was approximately 56.1 kg-N per ha (50 lb-N/acre).  Table 3.2 

shows the different rates of land applied biosolids. 

Table 3.2 
Application rates for the three different biosolids and manure 

Dry Metric Tons per Hectare 

Manure Central Valley Snyderville Tooele 
Agronomic 

Rate 
  (Anaerobically Digested) (Aerobically Digested) (Lime Stabilized) 

1 11.8 2.9 3.4 19.7 

5 59.2 14.3 17.2 98.6 

10 118.3 28.6 34.4 197.3 

20 236.6 57.1 68.8 † 394.5 

† 20 times agronomic rate for Tooele biosolid was not applied because it was considered to be impractical to plant 
growth because of its thick layer.  

 

The mineralogical analyses of the biosolids based on the dry weight before being 

land applied are summarized in Table 3.3. 

Table 3.3 
Metal content of biosolids (mg/kg) before application on the site 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Lime Stabilized Biosolid 
Pollutants 

(Central Valley) (Snyderville) (Tooele) 

Arsenic 21 2 Non detect 

Cadmium  2 0.98 0.261 

Copper   560.9 99 51 

Lead     65.6 41 5 

Mercury  3.2 1 0.185 

Molybdenum 16.4 1.8 1.3 

Nickel   38.5 2.1 2.8 

Selenium        21.9 2 Non detect 

Zinc     877.3 200 54 
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Sixteen 0.13-ha test plots were established for the field demonstration study.  To 

facilitate the selection of random samples, each of the 0.13-ha subplot was divided into 

144 sections having physical dimensions of 3 by 3 m (10 by 10 ft).  A random generator 

was used to select the random plots.  At the time of field sampling, 6 out of the 144 

subplots were selected randomly for each treatment.  Each one of the six sections in each 

treatment has a dimension of 3 by 3 m.   

On May 8th, 2006, soil samples at a depth of 0.23 m (0.75 ft) were obtained in 

each one of the randomly selected subplots and analyzed for its mineral concentrations.  

In addition, forage samples were taken for three out of the six subplots, and its mineral 

concentrations were analyzed by the Utah State University Analytic Laboratories.  The 

forage collection and mineral analysis were repeated on May 15th, 2007, but for this year, 

four forage samples were analyzed per subplot.  The forage minerals were determined by 

the wet acid digestion procedure using nitric acid and 30% hydrogen peroxide (Gavlak et 

al., 2003).  The soil was digested by using the EPA 3050 method.  In this method, the soil 

was digested using concentrated nitric acid supplemented with 30% hydrogen peroxide.  

The soil was then saturated and allowed to sit at least 4 hours (Edgell, 1988).  After this, 

the liquid was extracted and the minerals were analyzed by an ICP spectrophotometer. 

 
2.2. Statistics 

Because of limited budget, the field experiments were considered a pseudo-

replication design.  Since it is an unbalanced design, it was decided to use a fix-effect 

analysis of variance with one treatment factor to isolate comparisons of interest.  This 

methodology was used to compare whether the subplots for the different treatments are 
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statistically different from the control.  The subplots were considered to be significant 

different if the level of confidence was 95% or more.  A light and dark color over the 

subplots means that they are statistically significant lower and higher than the control.  

The values that were below the method detection limit (MDL) were represented by “<”.  

The MDL was based on the dry weight.  The numbers that follow the “±” symbol 

represent the standard error. 

 
3. Results and Discussion 

3.1. Soil Analyses 

Six out of the nine regulated metals by EPA were analyzed (Table 3.4, trace 

elements).  Of the three regulated metals that were not measured by the commercial 

laboratory, e.g., As, Se and Hg, As and Se detection was confounded by the presence of 

high levels of Fe.  Adjustment of the inductively coupled plasma (ICP) instrument to 

compensate for the high iron concentrations would have been prohibitively expensive.  

Similarly, Hg detection required that the ICP set up and operational conditions be varied 

significantly compared to what was used for the detection of the other six heavy metals.  

Given the costs associated with targeting Hg, As and Se on the ICP, it was decided to 

focus the study’s limited resources in quantifying the levels of Cd, Cu, Pb, Mo, Ni, and 

Zn.  The mineral concentrations for most of the treatments are not statistically different 

than the control.  The sites where organic amendments were applied did not show 

significant increases in the metal concentrations in the surface soils as was expected.  

Because of a number of environmental processes e.g., soil erosion (wind and/or moisture 

induced), leaching etc., a complete mass balance on metal species could not be 



 35 

performed.   Despite the absence of a mass balance, it was expected that, in an alkaline 

soil, many of the heavy metals associated with biosolids would simply accumulate at the 

soil surface.  However, the initial metal concentrations found in the biosolids were low 

(Table 3.3).  This finding coupled with the fact that biosolids adds dry matter to the soil 

profile suggests the possibility that application of high quality biosolids can effectively 

“dilute” the existing background metal concentrations.   These results are consistent with 

previous studies that reported that biosolids application did not result in an accumulation 

of heavy metals in soil in soil (Lane, 1988). 

There was a statistically significant increase and decrease of sodium and 

potassium, respectively, because of the application of the different soil amendments.  

Many reasons could lead to the increase and decrease of these metals.  The decrease in 

potassium could be due to the increase in plant uptake on these sites receiving biosolids.  

This increasing uptake is due to the significant increase in biomass on the sites where the 

biosolids were applied.  The increase in sodium could be due to the increase in 

evapotranspiration because of the significant increase of biomass in the amended sites.  

The increase in evapotranspiration leads to a greater salt movement to the soil surface.  In 

general, the macro-minerals and micro-minerals in the treatments do not show a linear 

increase for higher agronomic rates which contrast with a study in New Mexico 

(Fresquez et al., 1990). 

 



 36 

Table 3.4  
Trace elements, micro-minerals and macro-minerals present in the soil for the different 
treatments 

Manure Lime Stabilized Biosolid Trace 
Elements 
(mg/kg) 

MDL  
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Cd 2 < < < < < < < < 

Cu 2 9.2±0.7 < 9.8±0.2 10.6±0.6 11.6±0.6 22.4
 a

 4.2
 a

 < 

Pb 10 * 13.3 < 10.6±0.1 < < 27.3
 a

 14.1
 a

 10.5
 a

 

Mo 2 46.2±2.0 < 46.6±1.0 38.8±2.0 48.9±2.3 57.3
 a

 < < 

Ni 8 30.8±5.3 < 20.8±0.7 22.1±1.9 19.5±0.4 40.3±31.2 8.1
 a

 16.6
 a

 

Zn 2 51.5±2.2 < 52.3±1.2 55.6±10.1 53.5±2.3 60.0±7.6 56.2±5.7 44.3±2.1 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Trace 
Elements 
(mg/kg) 

MDL  
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Cd 2 < < < < < < < < 

Cu 2 < 10.2±1.5 2.6
 a

 < < < 4.1
 a

 < 

Pb 10 < < 12.1
 a

 10.2
 a

 < < 11.7
 a

 10.0
 a

 

Mo 2 < < < < < < < < 

Ni 8 12.7
 a

 < < < 22.2
 a

 11.6
 a

 16.3
 a

 20.0
 a

 

Zn 2 47.4±3.20 54.20±4.00 51.2±0.8 45.5
 a

 36.4±1.1 52.4±3.5 48.1±2.9 47.7±1.2 

Manure Lime Stabilized Biosolid Macro 
Minerals 
(mg/kg) 

MDL  
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

K 0.01 1.24±0.06 0.73±0.05 1.35±0.03 0.77±0.16 1.43±0.12 0.77±0.10 0.68±0.02 0.70±0.02 

Ca 0.01 4.85±0.26 5.09±0.53 4.36±0.38 10.14±1.12 5.27±0.25 5.08±0.32 5.03±0.33 5.31±0.31 

Mg 0.01 1.15±0.05 1.19±0.08 1.20±0.04 1.30±0.05 1.29±0.06 1.21±0.07 1.22±0.06 1.48±0.04 

Na 0.01 0.04
 a

 0.17±0.06 0.17±0.05 0.26±0.06 0.13±0.03 0.12±0.06 0.16±0.03 0.15±0.03 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Macro 
Minerals 
(mg/kg) 

MDL  
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

K 0.01 0.81±0.05 0.86±0.03 0.90±0.01 0.82±0.05 0.59±0.03 0.97±0.05 0.83±0.04 0.83±0.03 

Ca 0.01 4.55±0.54 5.29±0.28 5.98±0.25 6.91±0.52 4.92±0.20 4.55±0.52 4.74±0.33 5.28±0.27 

Mg 0.01 1.42±0.09 1.54±0.05 1.73±0.02 1.51±0.08 1.24±0.06 1.47±0.08 1.40±0.04 1.45±0.04 

Na 0.01 0.17±0.03 0.16±0.05 0.26±0.06 0.11±0.04 0.04±0.00 0.20±0.02 0.16±0.02 0.19±0.04 

Manure Lime Stabilized Biosolid Micro 
Minerals 
(mg/kg) 

MDL  
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Co 2 * 2.8 < < 3.9±1.2 3.9±1.2 10.8±5.4  2.9
 a

 2.8
 a

 

Fe 100 13789±604 13062±995 15502±508 14212±1272 14347±330 13898±855 14743±633 14512±419 

Mn 1 335.0±15 288.3±18 337.3±11 286.0±51 349.6±21 854.1±513 342.4±17 281.0±79 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Micro 
Minerals 
(mg/kg) 

MDL  
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Co 2 4.7
 a

 6.4±0.30 5.7±0.1 2.7
 a

 < < 4.7
 a

 3.7
 a
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Table 3.4 (Continued)        

Fe 100 13708±854 14272±457 14998±292 13267±925 12910±374 15680±682 13883±725 13603±445 

Mn 1 383.8±26 373.6±11 391.2±22 358.4±28 329.5±15 365.4±15 333.7±11 346.9±9 
a  At least one of the six values is below detection limit. The maximum detection limit was used for 

calculating the average. 
 

In the soil analysis, a high variability was seen.  One example of this variability 

can be seen in the Cu concentration for the case of lime stabilized biosolids.  In this soil 

treatment, Cu concentrations decreased with higher biosolids applications.  This 

observation could be due to a high variability in the soil background horizons.  In 

general, all the metal concentrations after biosolids application with exception of 

molybdenum are below average background levels (Frink, 1996; Lindsay, 1979).  The 

high molybdenum concentrations are high not because of the treatments applications, but 

because the soil itself has high background concentration of this metal.  

 
3.2. Forage Analyses 

Cattle require the consumption of a certain amount of micro and macro-minerals 

to remain healthy.  The excess intake of these minerals can be harmful and, in extreme 

cases, result in death.  The maximum mineral concentrations for beef cattle diets (i.e. 

Maximum Tolerable Levels) recommended by the National Research Council (National 

Research Council, 1984) are shown in Tables 3.5.  Tables 3.6 and 3.7 represent the 

different minerals analyzed on the rangeland forage for the different treatments on the 

years 2006 and 2007, respectively. 
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Table 3.5 
Macro-minerals, micro-minerals and trace elements recommended on forage for cattle 
consumption 

Macro minerals Recommended Levels (%) Maximum Tolerable Levels (%) 

K 0.5 to 0.7 3 

Ca 0.4 2 

Mg 0.05 to 0.25 0.4 

Na 0.06 to 0.10 10 

Micro minerals Recommended Levels (mg/kg) Maximum Tolerable Levels (mg/kg) 

Co 0.07 to 0.11 5 
Cu 10 115 
Fe 50 to 100 1000 
Mn 20 to 50 1000 
Mo --- 6 

Trace Elements Maximum Tolerable Levels (mg/kg) 

Al 1000 

As 50 

Cd 0.5 

Pb 30 

Sr 2000 

 

Table 3.6 
Trace elements, micro-minerals and macro-minerals present in the forage for the different 
treatments for 2006 year 

Manure Lime Stabilized Biosolid Trace 
Elements 
(mg/kg) 

MDL     
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Al 6 104±15 71±16 96±12 72±22 52±12 77.6
 a

 121±34 61.1
 b

 

As 5 < < < < < < < < 

Cd 0.5 < < < < < < < < 

Pb 1.5 < 10.5
 b

 < < 1.6
 b

 < < < 

Sr 1.5 39.3±2.5 25.5±1.5 33.8±6.1 38.2±2.0 33.1±1.9 38.2±2.2 38.4±0.9 29.9±1.6 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Trace 
Elements 
(mg/kg) 

MDL     
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Al 6 142±48 121±42 256±101 128±31 132±40 70±16 129±21 261±154 

As 5 < < < < < < < < 

Cd 0.5 < < < < < < < < 

Pb 1.5 < < < 2.4
 a

 2.0±0.3 < < < 

Sr 1.5 29.1±2.2 31.8±3.4 35.2±1.5 39.9±2.7 33.3±4.1 33.4± 1.1 34.5±2.2 43.1±7.1 
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Table 3.6 (Continued)       

Manure Lime Stabilized Biosolid Macro 
minerals      

(%) 

MDL           
(%) Control 

1X 5X 10X 20X 1X 5X 10X 

K 0.0025 1.55±0.20 1.93±0.28 1.99±0.36 2.05±0.11 2.24±0.15 1.86±0.16 2.65±0.38 2.30±0.16 

Ca 0.0005 0.40±0.03 0.23±0.01 0.29±0.04 0.35±0.05 0.25±0.02 0.40±0.03 0.37±0.04 0.33±0.03 

Mg 0.0005 0.13±0.01 0.11±0.01 0.12±0.01 0.13±0.01 0.11±0.01 0.15±0.00 0.13±0.00 0.12±0.00 

Na 0.0005 0.020±0.00 0.005±0.00 0.009±0.00 0.004±0.00 0.015±0.01 0.028±0.01 0.028±0.00 0.023±0.00 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Macro 
minerals    

(%) 

MDL           
(%) 

1X 5X 10X 20X 1X 5X 10X 20X 

K 0.0025 2.39±0.19 2.13±0.36 1.82±0.14 1.76±0.24 2.81±0.11 2.91±0.19 2.10±0.20 1.75±0.27 

Ca 0.0005 0.30±0.03 0.34±0.04 0.49±0.06 0.42±0.02 0.38±0.05 0.30±0.02 0.32±0.03 0.48±0.04 

Mg 0.0005 0.11±0.01 0.11±0.00 0.13±0.01 0.13±0.01 0.11±0.01 0.12±0.01 0.12±0.01 0.15±0.00 

Na 0.0005 0.015±0.01 0.011±0.01 0.017±0.01 0.008±0.00 0.012±0.01 0.013±0.00 0.123±0.04 0.037±0.01 

Manure Lime Stabilized Biosolid Micro 
minerals    
(mg/kg) 

MDL 
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Co 0.5 < < < < < < < < 

Cu 0.5 8.5±0.7 8.2±1.5 7.3±0.6 6.6±0.2 6.9± 0.1 8.4±0.1 9.8±1.5 11.8±0.7 

Fe 0.5 131±17 101±15 128±12 107±23 87±14 111±18 170±42 106±1 

Mn 0.0005 56.0±4.7 36.4±1.2 46.6±10.6 47.4±4.1 39.1±4.2 59.4±1.8 39.1±4.5 32.3±1.0 

Mo 7.5 < 10.7
 a

 14.7±0.5 16.4
 a

 < < < < 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Micro 
minerals    
(mg/kg) 

MDL 
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Co 0.5 < < < < < < < < 

Cu 0.5 6.8±0.5 6.4±0.4 8.1±1.1 8.2±0.9 11.7±1.0 9.3±0.9 9.3±0.9 8.5±1.0 

Fe 0.5 177±49 154±41 296±100 160±31 173±40 115±12 168±23 305±155 

Mn 0.0005 35.9±4.5 44.1±6.7 57.1±8.2 58.4±8.0 53.9±10.4 40.2±1.7 42.3±6.4 65.7±1.9 

Mo 7.5 < < < < 7.97
 b

 < < < 

 
a  One of the three values is below the detection limit.  The average of the other two values is being 

displayed. 
b  Two of the three values are below the detection limit.  Just the value that is not below detection limit 

is being display. 
 

Table 3.7 
Trace elements, micro-minerals and macro-minerals present in the forage for the different 
treatments for 2007 year 

Manure Lime Stabilized Biosolid Trace 
Elements 
(mg/kg) 

MDL     
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Al 6 173±68 285±177 167±82 87±19 142±44 148±72 99±17 161±15 

As 5 < < < < < < < < 
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Table 3.7 (Continued) 
Cd 0.5 < < < < < < < < 

Pb 1.5 < < < < < < < < 

Sr 1.5 36.9±3.8 26.8±0.6 32.5±1.7 44.6±3.1 40.7±4.5 28.4±3.5 36.7±2.7 36.7±1.9 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Trace 
Elements 
(mg/kg) 

MDL     
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Al 6 260±142 268±140 47±8 137±63 161±92 117±22 93±16 134±51 

As 5 < < < < < < < < 

Cd 0.5 < < < < < < < < 

Pb 1.5 < < < < 5.8
 a

 10.3
 b

 < 21.6
 b

 

Sr 1.5 32.2±4.0 32.5±2.7 37.2±1.2 38.2±1.7 58.2±14.7 56.9±11.0 30.6±1.8 48.3±19.9 

Manure Lime Stabilized Biosolid Macro 
nutrients     

(%) 

MDL           
(%) Control 

1X 5X 10X 20X 1X 5X 10X 

K 0.0025 1.32±0.09 1.22±0.00 2.54±0.15 2.26±0.35 2.58±0.03 1.45±0.12 1.83±0.14 2.11±0.19 

Ca 0.0005 0.33±0.04 0.33±0.05 0.31±0.04 0.30±0.02 0.32±0.04 0.32±0.07 0.34±0.07 0.43±0.05 

Mg 0.0005 0.13±0.01 0.14±0.01 0.13±0.01 0.14±0.01 0.15±0.01 0.11±0.01 0.13±0.01 0.14±0.01 

Na 0.0005 0.16±0.06 0.01±0.00 0.10±0.05 0.13±0.07 0.04±0.01 0.03±0.01 0.17±0.08 0.08±0.02 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Macro 
nutrients     

(%) 

MDL           
(%) 

1X 5X 10X 20X 1X 5X 10X 20X 

K 0.0025 2.06±0.16 1.90±0.12 1.68±0.12 1.95±0.10 1.99±0.22 2.02±0.32 2.35±0.05 2.35±0.16 

Ca 0.0005 0.35±0.06 0.33±0.05 0.33±0.02 0.34±0.04 0.70±0.36 0.55±0.17 0.25±0.02 0.56±0.31 

Mg 0.0005 0.14±0.01 0.13±0.01 0.14±0.01 0.14±0.00 0.21±0.07 0.17±0.03 0.12±0.00 0.17±0.05 

Na 0.0005 0.07±0.03 0.05±0.02 0.02±0.01 0.07±0.04 0.09±0.02 0.26±0.10 0.05±0.02 0.03±0.01 

Manure Lime Stabilized Biosolid Micro 
nutrients      
(mg/kg) 

MDL 
(mg/kg) Control 

1X 5X 10X 20X 1X 5X 10X 

Co 0.5 < < < < < < < < 

Cu 0.5 7.5±1.0 7.9±1.1 9.5±0.9 8.2±1.1 8.4±0.2 7.3±0.9 9.2±0.6 10.7±0.3 

Fe 0.5 202±71 297±162 206±96 122±13 200±45 167±63 113±11 158±16 

Mn 0.0005 86.8±1.2 79.3±3.9 63.8±6.2 80.3±6.3 55.5±7.3 77.9±7.0 54.2±4.0 44.9±3.0 

Mo 7.5 < < < < < < < < 

Anaerobically Digested Biosolid Aerobically Digested Biosolid Micro 
nutrients      
(mg/kg) 

MDL 
(mg/kg) 

1X 5X 10X 20X 1X 5X 10X 20X 

Co 0.5 < < < < 3.5
 b

 2.3
 b

 < 1.1
 b

 

Cu 0.5 8.9±0.6 9.3±1.1 7.4±0.2 10±1.7 26.7±16.6 20.1±11.3 8.8±0.3 33.8±24.6 

Fe 0.5 298±149 274±147 85±11 185±64 135±34 152±32 118±26 620±481 

Mn 0.0005 55.6±11.6 59.1±12.2 64.2±7.5 80.0±8.5 106.7±45.2 72.2±25.0 39.9±5.7 88.4±58.7 

Mo 7.5 < < < < < < < < 
a  Two of the four values are below the detection limit.  The average of the other two values is being 

displayed. 
b  Three of the four values are below the detection limit.  Just the value that is not below detection limit 

is being display. 
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All the biosolids soil treatments resulted in forage mineral concentrations below 

the maximum tolerable levels for beef cattle consumption.  These results are consistent 

with other prior studies (Tiffany et al., 2000; Gaskin et al. 2003). 

Some forage calcium deficits are shown in most of the treatments and a 

supplement of this mineral will be required for healthy livestock production.  A sodium 

supplement is also required for all the treatments.   

Forages were normally high in potassium concentration relative to cattle 

requirements.  This excess potassium is removed in the kidneys.  With high potassium 

excretion, there is an obligatory loss of sodium also from the kidneys.  Consequently, all 

ruminants require supplemental sodium when consuming forage based diets.  Regardless 

of treatments, all forages were deficient in copper for cattle, consequently 

supplementation of this mineral is necessary.  The manure treatments increased 

molybdenum to a level higher than the maximum tolerable level.  Excess molybdenum 

interferes with copper metabolism.  Supplementing copper to about 110% of the 

molybdenum requirement can potentially neutralize this problem (Weidmeier, personal 

comm.., 2007). 

 
3.3. Implications 

The current research study attempted to determine the impact of applying three 

different types of biosolids at rates equivalent to up to 20 times agronomic rate, and 

compare them with manure applications.  The mineral concentrations in the soil for the 

different treatments were compared with a control plot to see if they represent a possible 

risk to livestock health.  Also, the concentration of minerals in the forage were analyzed, 
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and compared to standard values to determine if they show a possible risk to cattle health.  

This study demonstrated that biosolids application can be applied at rates as high as 20 

times the agronomic rate without posing a significant risk to livestock. 

 
4. Conclusions 

From the soil analyses, high levels of minerals in the top layer of the soil were not 

observed.  In part, this is because the low concentration of some minerals in the biosolids.  

Even in the cases where the biosolids mineral concentrations were high, the forage 

mineral concentrations remained comparable to the control.  This may be because the 

minerals were made unavailable through chemical reactions within the soil environment 

and/or because they were diluted by the low mineral concentration of the control.  In 

addition, it is believe that leaching problems to the groundwater will not be a problem of 

concern because of the low mean precipitation reported at the site. 

Based on the forage analyses, it is recommended that sodium and calcium 

supplements to livestock diet be considered for all the treatments (control and other 

treatments).  Also, a copper supplement for cattle is recommended to make up for the 

deficiencies found in the forage.  Levels higher than the tolerable levels in molybdenum 

concentrations were found in the manure treatments for the 2006 year. 

A major concern associated with the treatment of rangeland soils with biosolids 

would be the accumulation of minerals in the forages such that there would be 

imbalances and/or toxicity.  With the exception of molybdenum, this does not appear to 

be the case.  The problem of excess molybdenum can easily be overcome by 

supplementing with copper. 
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CHAPTER 4 
 

ECONOMIC ANALYSIS OF APPYING BEEF CATTLE MANURE AND 
 

 BIOSOLIDS TO RESTORE DISTURBED RANGELANDS 
 

Abstract 

 

This study, which took place in Skull Valley, Utah during the Years 2006 and 

2007, was focused on determining the economic benefits of land applying biosolids to 

restore the forage productivity on disturbed rangeland.  A control area where no 

amendments were applied, and the effect of applying beef manure and three types of 

biosolids (aerobically digested, anaerobically digested, and lime stabilized) were 

analyzed.  Two economic analyses were applied to each treatment.  The first was based 

on the assumption that the land would be leased with the objective to graze cattle after the 

soil amendment application.  The other economic analysis was based on the value 

associated with improvements in forage quality.  For this second analysis, the quality and 

quantity of the forage were compared to standard alfalfa quality.  From these analyzes, if 

the land were leased for grazing purposes, then the application of soil amendments is not 

economically profitable.  On the other hand, if the forage quality obtained through 

biosolids land application is taken into account, it is profitable to apply soil amendments 

for specific rates.  Application of aerobically digested biosolids at 20 times the nitrogen-

based agronomic rate is the treatment that gave the highest return (73.1 $/ha/year) 

compared to the control. 
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1. Introduction  

If they meet certain qualities in terms of pollutants and pathogens, the solid 

residuals from the processing of municipal wastewater are legally considered biosolids 

(USEPA, 1991).  Because of their nutritional and soil conditioning properties, biosolids 

can be utilized as soil amendments (USEPA, 1994)  

 Increasing its forage production and quality are examples of rangeland 

improvement.  A rangeland’s ability to support the nutritional needs of livestock is 

directly influenced by its forage quality.  By applying different types of amendments, 

improved forage quality and productivity can be achieved.  For example, amendment 

applications in the form of manure have been shown to increase the biomass of rangeland 

(Bell et al., 2006). 

Few studies have compared the benefits to forage productivity by applying 

manure versus biosolids (Mata-Gonzalez et al., 2006).  In addition, even though lime 

stabilized biosolids are readily available; few studies have been carried out using those 

(Mata-Gonzalez et al., 2006).  For the present study, manure and three types of biosolids 

(aerobically digested, anaerobically digested, and lime stabilized biosolids) were applied 

at the site as amendments. 

In this study, a control area (where amendments were not applied) was used as a 

reference.  It was determined that the application rate would be based as a multiple of the 

forage nitrogen amendment requirement needs.  For this field demonstration study, land 

applications rates of 1, 5, 10, and 20 times the agronomic rate were applied.  For the 

specific case of lime stabilized biosolids, the application rate was limited to 10 times the 

agronomic rate because higher rates were considered to be unpractical.  For example, 
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since the nitrogen content in the lime stabilized biosolids was relatively low, the biosolids 

application rate required to achieve a nitrogen loading twenty times the agronomic rate 

would have resulted in producing a biosolids layer several inches in thickness.  After 

discussions with agricultural specialists, it was surmised that, without tilling, the resulting 

surface application would have physically impeded plant emergence.  An additional 

concern expressed by local agricultural specialists was the potential toxicity of large 

inorganic salt additions (as lime) on the already disturbed rangeland.  Given the potential 

negative physical and chemical impacts associated with adding large amounts of lime to 

soils already high in salt content, application of lime stabilized biosolids was limited to 

no more than 10 times the agronomic rate. 

There are many studies that have reported the application of biosolids or 

wastewater on the soil (Pedro and Wester, 2001; Tiffany et al., 2001; Martin and Jack, 

2002; Mata-Gonzalez et al., 2004).  Some analyze the nutritive values of the forage 

(Martin et al. 2002), and others analyze the mineral composition post application in the 

forage and soil (Fresquez et al., 1991; Pierce et al., 1998; Gaskin et al., 2003).  This 

study, in contrast, focused on an economic analysis. 

The main objective of this study was to quantify the economic value of the 

improvement of the forage in the different treatments with respect to the control.  To 

achieve this, two economic analyses were performed.  The first one considered forage 

quality for the different treatments and quantified them based on the quality of a standard 

alfalfa crop.  The other analysis took into consideration the improvement in the stocking 

rate, which is the number of animal unit months (AUM) that can be supported per 

hectare. 
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2. Materials and Methods 

Skull Valley, in Tooele County test site has the following coordinates: lat 40° 27’ 

06’’ N and long 112° 44’ 42’’ W.  The mean annual air temperature at the site fluctuates 

from 7 to 10°C, and the predominant surface texture of the soil is sandy loam (USDA-

NRCS, 2000).  The average mean precipitation was calculated to be 382.5 mm/year (GIS 

Climate Search, 2006).  This calculation was done by extrapolating the values from 

nearby stations to the study site using the inverse distance weighting method (Gao, 2006).  

Table 4.1 shows the precipitation in millimeters per month over the mentioned periods. 

 
2.1. Treatments 

The beef cattle manure was obtained from the Ensign Ranches of Utah, Inc. 

feedlot, while the biosolids (aerobically digested, anaerobically digested and lime 

stabilized) were obtained from three different WWTP (Snyderville Basin, Central Valley 

and Tooele WWTP, respectively).  The beef cattle manure and the biosolids were applied 

on December 14, 2004.  The rates of application were based on plant nitrogen 

requirement.  Equation (1) was used to determine the agronomic rate (McFarland, 2001). 



















=








 tonmetric

N-kg
 manurebiosolids/ ofper ton nitrogen  availableplant 

ha

N-kg
 (ANR)t requiremennitrogen  adjusted

ha

 tonmetric
 Rate Agronomic

  (1) 

 
Table 4.1 
Extrapolated mean precipitations for stations “Grantsville 2 W” and “Johnson Pass” over 
a period of 51 and 34 years, respectively, expressed in mm per month 
Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Grantsville 2 W 17.0 21.6 32.4 38.0 32.9 21.6 19.2 19.2 24.1 27.4 24.8 20.9 
Johnson Pass 38.8 39.7 44.6 44.1 52.4 24.7 29.0 25.8 29.3 34.6 36.3 34.2 

Working Site 30.5 32.8 40.0 41.8 45.0 23.6 25.3 23.3 27.3 31.9 31.9 29.2 
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where: 
 
ANR Adjusted nitrogen requirement (kg N/ha) 
NO3  nitrate concentration in biosolids/manure (kg N/metric ton) 
NH4  ammonia concentration in biosolids/manure (kg N/metric ton) 
No  organic nitrogen concentration in biosolids/manure (total nitrogen content found in 

biosolids/manure minus nitrate plus ammonia content)  
Kv  volatilization factor (0.5 if biosolids/manure are not tilled into soil) 
Kmin organic nitrogen mineralization rate (assumed to be 0.3) (McFarland 2001) 
 

The ANR was determined based on the estimation that a healthy rangeland in this 

area would exhibit a nitrogen demand of approximately 168.5 kg nitrogen per ha (150 

lbs-N/acre) as detailed below.  It is known that in average the plant biomass at Skull 

Valley, in the site where the experiment was done, is approximately 1123 kg/ha (1000 

lbs/acre) (USDA-NRCS, 2000).  Also, it was assumed that the nitrogen content of the 

biomass was approximately 15% (Desai, 2006).  From this value, the total nitrogen 

needed by the plant was estimated to be approximately 168.5 kg-N per ha (150 lb/acre).  

Soil analysis indicated that there were already approximately 112 kg-N per ha (100 lb-N 

per acre) of available nitrogen.  From this estimate, the nitrogen needed at the site was 

approximately 56.1 kg-N per ha (50 lb-N/acre).  Table 4.2 shows the different rates 

applied for each one of the rangeland soil amendments based on the analysis previously 

described. 

Sixteen 0.13-ha test plots were established for the field demonstration study.  To 

facilitate the selection of random samples, each of the 0.13-ha subplot t was  divided  into  

approximately  144 sections having  
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Table 4.2 
Application rates for the three different biosolids and manure. 

Dry Metric tons per hectare 

Manure Central Valley Snyderville Tooele 
Agronomic 

Rate 
  (Anaerobically Digested) (Aerobically Digested) (Lime Stabilized) 

1 11.8 2.9 3.4 19.7 

5 59.2 14.3 17.2 98.6 

10 118.3 28.6 34.4 197.3 

20 236.6 57.1 68.8 † 394.5 

† 20 times agronomic rate for Tooele biosolid was not applied because it was considered to be impractical to plant 
growth because of its thick layer.  

 

physical dimensions of 3 by 3 m (10 by 10 ft).  A random generator in excel was used to 

select the random subplots.   

 
2.2. Forage Samples 

On May 8th, 2006, 6 out of the 144 subplots were selected randomly from each 

treatment plot.  The wet biomass was harvested in each of the six subplots.  In addition, 

forage samples were taken for three out of the six sections, and analyzed by the Utah 

State University Analytic Laboratories.  This experiment was repeated on May 15th, 

2007, but for this year, four forage samples were analyzed per subplot.  In the lab, the dry 

matter (DM, %), crude protein (CP, %), and in vitro true digestibility (IVTD, %) were 

measured. 

The dry biomass was obtained by multiplying the wet biomass by the dry matter.  

The CP was estimated by multiplying the percent nitrogen (dry basis) of the vegetation 

by 6.25 (Schroeder, 1994).  The nitrogen was measured at the Utah State University 

Analytic Laboratories by combustion using a LECO TruSpec CN carbon-nitrogen 

analyzer.  The IVTD experiment was done in the Skaggs Nutrition Laboratory, and an 
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Ankom Daisy II In Vitro Incubator was used.  Dried samples were used for this 

experiment.  The following equation (2) was used for calculating the IVTD:  

 

[ ]
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
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


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 WTSample

100* WTBag -  WTFinal
 -100(%) IVTD      (2) 

 
Bag WT  = It is the weight of each sample bag. 
Sample WT  = It is the sample weight before the experiment. 
Final WT = It is the weight of the bag plus the undigested fibrous residue. 
 

2.3. Economic Analysis 

To conduct a reasonable economic analysis, two scenarios were investigated, 

which were based on the following assumptions: 1) land leasing and 2) forage quality.  It 

is assumed in the economic model that the manure and the biosolids are available for 

free.  The manure can be obtained by the ranchers for free, and the WWTP pays a tipping 

fee to the ranchers to accept their biosolids.  The WWTP transports their biosolids to the 

rangelands without charge, but the ranchers are responsible for spreading the material 

once it is delivered.  The only cost associated with the handling of the soil amendment 

that is taken into account is the spreading of the amendments onto the rangelands.  It is 

known that 30 metric tons can be applied in 1 hour, and the cost of spreading 

amendments for 1 hour is approximately 60 dollars.  It was assumed that the application 

of the manure and biosolids is in its wet form.  It was also assumed that a loan for 

spreading the amendments will be taken out at a discount rate of 8%.  This assumption 

was based on data taken from the St. Louis Federal Reserve Board Bank for prime rates 

(Federal Reserve Bank of St. Louis, 2007).  It was assumed that the positive effect of the 
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amendments will be for a period of time of five years, and after this time more 

amendments will be applied.  The productivity of the rangelands for the years 2006 and 

2007 was averaged and it was assumed to remain constant for 5 years. 

 
2.3.1 Leasing of Land 

Some rangeland owners rent their land in the form of grazing leases.  In Utah, the 

cost for grazing in 2006 was around 14 dollars per animal unit month (AUM) according 

to the National Agriculture Statistics Service (2007).  The amendment application 

increases the stocking rate of the lands.  The increasing stocking rate enhances the 

financial returns of the range, but at the same time, the amendment applied will increase 

costs.  The net return that the control produced was subtracted from each treatment net 

return.  This subtraction represent the extra net return obtained because the application of 

the treatments.  The estimated cost for applying each amount of amendment in each 

treatment was calculated, and this value was brought annually during the five years.  The 

five year time period was chosen because it was assumed that the forage productivity and 

quality will last at least five years before more soil amendments are needed.  From these 

assumptions, the net annual benefit was calculated taking into account the extra income 

and the annual cost. 

 
2.3.2 Forage Quality 

This analysis was based on the cost of hay mid bloom alfalfa.  According to the 

CP and the IVTD, the average cost for the years 2006 and 2007 was approximately 

$137.5/metric ton ($125/US-ton) according to the USDA Agricultural Marketing Service 

(USDA Agricultural Marketing Service, 2006 and 2007).  The CP and IVTD for hay mid 
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bloom alfalfa are 17% and 60%, respectively (National Research Council, 1996).  As 

mentioned before, the dry biomass (kg/ha), the CP (%) and the IVTD (%) are known for 

each treatment.  The CP and the IVTD produced for each treatment were estimated in 

kilograms per hectare (kg/ha).  These two calculated values were used to estimate the 

amount of dry biomass needed to achieve the minimum required of CP and IVTD 

representative to the alfalfa.  This representative biomass was transformed into a net 

economic return for each treatment.  The next calculations are the same as mentioned for 

the leasing of land’s case. 

 
3. Results and Discussion 

On average, the control area will bring a net return of 2.9 $/ha/year and 9.1 $/ha/year if 

the rangeland is used for leasing of land or forage quality purposes, respectively.  Figure 

4.1 shows the net annual benefit for the different treatments minus the net return obtained 

from the control for the mentioned methodologies.  For the two methodologies, the 

leasing of land is not economically profitable.  On the other hand, the methodology of 

forage quality is profitable in some cases (Fig. 4.1).  Figure 4.1 can be seen in a more 

detail by looking at Table 4.3. 

 
4. Implications 

Many field studies have demonstrated that soil amendments like manure or 

biosolids can improve rangeland’s productivity.  However, a benefit-cost analysis has 

never been conducted to determine at what point the application of biosolids can be 

profitable for the ranchers.  This study was focused on developing a more comprehensive 
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economic understanding of how profitable land application of biosolids can be for a 

rangeland. 
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Fig. 4.1. Net benefit comparing two methodologies. 

 
Table 4.3 
Net benefit comparing two methodologies 

Type of

Analysis

Forage Quality

Leasing of Land

Type of

Analysis

Forage Quality

Leasing of Land

5X

-228.0

-267.4

10X

-506.5

-542.8

20X

73.1

-15.3

1X

17.7

-37.9

1X

66.5

9.2 1.9

62.6

5X 10X

60.5

-5.4

Lime Stabilized BiosolidAerobically Digested Biosolid

Manure Anaerobically Digested Biosolid

5X 10X 20X5X 10X 20X 1X

-52.9

2.6

-5.6

41.8 14.3

-25.0-121.7 -260.6

-215.1 46.5

5.0

1X

18.0

-4.2 -62.0

-33.3 -59.8

 

 
5. Conclusions 

Application of amendments and soil conditioners are important to enhance 

rangeland productivity.  The economic benefits that the application of manure and three 
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types of biosolids may produce on a rangeland were analyzed.  Two economic scenarios 

were analyzed in order to determine under what conditions land application of soils 

amendments become economically beneficial for rangeland purposes.  From this analysis, 

the following conclusions were obtained: 

If the enhanced economic value associated with forage quality were included, then 

the application of soil amendments is profitable under certain conditions.  The application 

of manure and lime stabilized biosolids will generate an added return over the control just 

for one time the agronomic rate (18 and 17.7 $/ha/year, respectively).  The anaerobically 

digested biosolid application is profitable for all land application rates investigated.  

However, the higher economic benefit is obtained for one time agronomic rate (46.5 

$/ha/year).  For the case of the aerobically digested biosolids, it is also profitable for all 

land application rates investigated.  However, 20 times agronomic rate resulted in the 

highest return (73.1 $/ha/year).  From all the treatments and all the rates; the treatment 

that brings the largest economic benefit is aerobically digested biosolid for 20 times the 

agronomic rate. 

If the rangeland will be used with the purpose of land leasing following land 

application of soil amendments to increase stocking rate, then the application of 

amendments is not profitable.  Under these circumstances, it will be better to use the land 

without any soil amendment land application. 
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CHAPTER 5 
 

BIOSOLIDS APPLICATION INFLUENCE ON INFILTRATION, UNSATURATED  
 

HYDRAULIC CONDUCTIVITY, AND WATER DROP PENETRATION TIME 
 

ABSTRACT 

 
In December 2004, three types of biosolids were applied on a rangeland located in 

Skull Valley, Utah.  The impact of biosolids application on the soil properties (first two 

years after biosolids application) was analyzed.  Soil properties analyzed were the 

unsaturated hydraulic conductivity, cumulative infiltration, infiltration rate, and water 

drop penetration time.  The study used three types of biosolids (aerobically digested, 

anaerobically digested, and lime stabilized biosolid) which were applied at 1, 5, 10, and 

20 times the agronomic rate based on the nitrogen requirement.  The results demonstrated 

that there is no statistical difference between the control (where no amendment was 

applied) and the other soil treatments regarding unsaturated hydraulic conductivity values 

at any biosolids/manure application rate.  The infiltration test analysis showed a similar 

result, with no statistical difference observed between the control and the other 

treatments.  In addition, the water drop penetration time indicated that all the treatments 

are classified as wettable soils. 

Biosolids are the final solid products from the treatment of the municipal 

wastewater (USEPA, 1991).  Biosolids can be beneficially used or land applied for 

agriculture (USEPA, 1994) as a soil conditioner and fertilizer because they are rich in 

organic mater and nutrients. The western rangelands in Utah suffer from high 

overgrazing. The land application of biosolids may be used to improve forage quality.  
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Both environmental regulators and land owners must fully understand the impact of 

biosolids land application on soil properties if potential environmental problems are to be 

avoided. 

Some researchers had shown that the application of biosolids can modify the 

physical properties of soil (Khaleel et al., 1981; Kuntal et al., 2006).  These physical 

properties change according to the type of the soils where the biosolids are applied 

(Aggelides and Londra, 2000).  Infiltration rates can significantly increase after biosolids 

application (Moffet et al., 2005; Tsadilas et al., 2005).  In addition, some other 

researchers had shown that unsaturated hydraulic conductivity decreases as rates of 

biosolids addition increased (Gupta et al., 1977).  Other studies have demonstrated that 

no tilling results in higher infiltration rates compared to tilled plots (Bruggeman and 

Mostaghimi, 1993).  In the current study, untilled plots were evaluated. 

The objective of this field study was to document the change in unsaturated 

hydraulic conductivity, water drop penetration time (WDPT), cumulative infiltration, and 

infiltration rates associated with biosolids land application on disturbed rangelands. 

 

MATERIAL AND METHODS 

 
This field study was conducted at Skull Valley, Tooele County, UT, at test sites 

located at the following coordinates 40° 27’ 06’’ N, 112° 44’ 42’’ W.  The predominant 

surface texture of the soil is sandy loam.  Its mean annual air temperature fluctuates from 

7 to 10°C (USDA-NRCS, 2000).  The average mean precipitation at the site is 382.5 

mm/year.  This precipitation value was calculated using two of the closest weather 

stations to the study site which are “Grantsville 2 W” and “Johnson Pass” stations over a 
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period of 51 and 34 years, respectively (GIS Climate Search, 2006).  The average mean 

precipitation at the site was calculated extrapolating the values of these stations to the 

study site using the “Inverse Distance Weighting” method (Gao, 2006).  Table 5.1 shows 

the precipitation in millimeters per month over the mentioned periods. 

 
Treatments 

 
Biosolids were surface-applied on 0.13-ha (1/3-acre) test plots separated by buffer 

strips.  A control area where no amendments were applied served as a treatment 

performance baseline. 

Biosolids were taken from three different WWTPs.  The biosolids applied were 

anaerobically digested, aerobically digested, and lime stabilized biosolids that came from 

Central Valley, Snyderville Basin, and Tooele City WWTPs, respectively.  These 

treatments were applied in the middle of December 2004, and land application rates were 

determined based on the plant nitrogen requirements, background nitrogen concentrations 

and nitrogen content of biosolids.  These parameters are used to establish the rangeland’s 

agronomic rate as depicted in Eq. [1] (McFarland, 2001). 
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Table 5.1. Extrapolated mean precipitations for stations “Grantsville 2 W” and 

“Johnson Pass” over a period of 51 and 34 years, respectively, expressed in 
mm per month. 

Name Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 
Grantsville 2 W 17.0 21.6 32.4 38.0 32.9 21.6 19.2 19.2 24.1 27.4 24.8 20.9 
Johnson Pass 38.8 39.7 44.6 44.1 52.4 24.7 29.0 25.8 29.3 34.6 36.3 34.2 

Working Site 30.5 32.8 40.0 41.8 45.0 23.6 25.3 23.3 27.3 31.9 31.9 29.2 
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where: 
 
ANR Adjusted nitrogen requirement (kg N/ha) 
NO3  nitrate concentration in biosolids/manure (kg N/metric ton) 
NH4  ammonia concentration in biosolids/manure (kg N/metric ton) 
No  organic nitrogen concentration in biosolids/manure (total nitrogen content found in 

biosolids/manure minus nitrate plus ammonia content)  
Kv  volatilization factor (0.5 if biosolids/manure are not tilled into soil) 
Kmin organic nitrogen mineralization rate (assumed to be 0.3) (McFarland, 2001) 

 

The ANR was determined based on the estimation that a healthy rangeland in this 

area would exhibit a nitrogen demand of approximately 168.5 kg nitrogen per ha (150 

lbs-N/acre).  It is known that, on average, the plant biomass in this area is approximately 

1123 kg/ha (1,000 lbs/acre) (USDA-NRCS, 2000).  Also, it was assumed that the 

nitrogen content of the biomass was approximately 15% (Desai, 2006).  From these 

values, the total nitrogen needed by the plant is approximately 168.5 kg-N per ha (150 

lb/acre).  Soil analysis indicated that there was already approximately 112 kg-N per ha 

(100 lb-N per acre) of available nitrogen.  Given the available background nitrogen 

levels, the nitrogen that needed to be applied at the site was around 56.1 kg-N per ha (50 

lb-N/acre).  Table 5.2 summarizes the different rates applied for each one of the 

treatments based on the analysis described above. 

To facilitate the selection of random samples, each of the 0.13-ha subplots was 

divided into approximately 144 sections having physical dimensions of 3 by 3 m (10 by 

10 ft).  After this, a random generator was used to select the random plots.   
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Table 5.2.   Application rates for the three different biosolids and manure. 
  

Dry Metric tons per hectare 

Central Valley Snyderville Tooele 
Agronomic 

Rate 
(Anaerobically Digested) (Aerobically Digested) (Lime Stabilized) 

1 2.9 3.4 19.7 

5 14.3 17.2 98.6 

10 28.6 34.4 197.3 

20 57.1 68.8 † 394.5 

† 20 times agronomic rate for Tooele biosolid was not applied because it was considered to be impractical to plant 
growth because of its thick layer.  

 

On 12 and 13 July 2006, three test plots were selected randomly in each subplot.  

Four unsaturated hydraulic conductivity tests were performance around each selected 

spot.  A total of twelve tests per subplot were measured.  On 13 July 2006, the WDPT 

experiment was tested over the same three chosen test plots.  Ten water drops around 

each chosen test plot were tested. 

On 15 and 16 May 2007, a double ring infiltration experiment was conducted.  

Random test plots were chosen for each test.  The infiltration test was done for the 

control and for twenty times the agronomic rate for Central Valley and Snyderville 

treatments.  Six tests were run for the Central Valley treatment.  For the control and for 

the Snyderville site, four tests were run for each plot. 

 
Statistics 

 
The experimental design was based on a pseudo-replication method because of 

budget and time constraints.  The main factors that might affect the final results were not 

affected by the lack of a replicated design.  For example, temperature and water content 
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were assumed to be the same for all treatments.  Therefore, these factors should not affect 

the outcomes of the experiment. 

Basically two statistical methods were used in this experiment.  Since it was an 

unbalanced design, a fixed-effect analysis of variance with one treatment factor by using 

contrast statements to isolate comparisons of interest was used.  This methodology was 

used to compare if each subplot from the different treatments are statistically different 

than the control.  The subplots were considered to be significantly different if the level of 

confidence was 95% or more.  This methodology was used for the unsaturated hydraulic 

conductivity and for the analysis of the cumulative infiltration as well as infiltration rate. 

For the analysis of the cumulative infiltration and the infiltration rate tests, 

specific times were chosen.  The cumulative infiltration was recorded for each infiltration 

test.  In each test, the cumulative infiltrations were recorded for different times.  Specific 

times were chosen, and the cumulative infiltration that did not match for the chosen times 

were interpolated.  As mentioned above, the same statistical analysis used for the 

unsaturated hydraulic conductivity was used for this case for each specific time.  The 

control was compared with the Central Valley and with the Snyderville treatments for 

plots that received biosolids at rates equivalent to twenty times the agronomic rates for 

each specific chosen time. 

A statistical analysis was not used for the WDPT test because the average time 

that each drop took for infiltrating the soil for all the subplots was less than 1 second.  All 

the subplots soils were characterized as wettable because each drop of water takes less 

than 5 seconds to infiltrate. 
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Unsaturated Hydraulic Conductivity Test 

 
For measuring the unsaturated hydraulic conductivity, a minidisk infiltrometer 

was used.  This device had a suction of 4 cm with an outside radius of 1.27 cm.  This 

minidisk infiltrometer has an air-inlet tube above the base. 

The data needed for using this method is the volume of water infiltrated as a 

function of time as can be seen in Eq. [2] (Equation 4 Zhang et al., 1997a). 

I = C1t
1/2 + C2t [2] 

The parameters C1 (m s-1/2) and C2 (m s-1) are related to the sorptivity and the 

hydraulic conductivity of the soil.  I and t represent the water infiltrated and the elapsed 

time, respectively.  The hydraulic conductivity was found using Eq. [3]. 

K(ho) = C2/A(ho) [3] 

The “A” value was computed from Eqs. [4] and [5]: (Zhang et al., 1997b) 
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where: 

ro,  radius of the porous disk (1.27 cm) 
ho  suction head (-4 cm) 
n and α van Genuchten parameters (1.89 and 0.075, respectively) 

 
The parameters n and α change according to the soil texture.  The soil texture 

measured in all the treatments was Sandy loam.  The n and α were classified according to 
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this soil texture classification (Van Genuchten parameters were taken from Carsel, and 

Parrish, 1988). 

For the calculation of unsaturated hydraulic conductivity, four minidisk 

infiltrometers were operated simultaneously.  An innovative methodology developed at 

Utah State University was applied for running the minidisk infiltrometer (Madsen and 

Chandler, 2007).  Infiltration information from each of the minidisk infiltrometers were 

recorded in real-time by a data logger HOBO U12 (On-Set Computer Corporation, 

Boston, MA).  Figure 5.1 shows 3 minidisk infiltrometers connected to a HOBO U12 

data logger  

Variations on the volume on water in the minidisk were registered by the 

variation of voltage.  The different voltages were downloaded onto a laptop computer 

where they were converted to volume of water infiltrated using Eq. [6]. 

 

 
















−
−−=

min_Volts  max_Volts

Vol._used
*Volts_min) (Volts_t    Vol._used Vol.(t)  [6] 

where: 

Vol.(t)  = Calculated volume infiltrated at a specific time. 
Vol._used  = Volume used in the minidisk infiltrometer. 
Volts_t = Voltage at a specific time. 
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Fig. 5.1.  Three minidisk infiltrometers connected to a HOBO U12 data logger. 
 

Volts_max = Maximum voltage that the data logger reads at the beginning. 
Volts_min = Minimum voltage that the data logger reads when the minidisk infiltrometer 

is empty. 
 

Once the volume infiltrated is known, the water infiltrated is determined by 

dividing the volume by the cross section area of the minidisk infiltrometer.  The 

infiltrated water and the time recorded were used in Eq. [2], and the parameter C2 was 

found.  A total of 12 readings were obtained for each subplot. 

 
Infiltration Test 

 
For these tests, a 30 cm-ring infiltrometer diameter was used.  To achieve a 

vertical infiltration, a circular soil berm was built around the ring infiltrometer using a 

shovel and water was poured in it.  Also, a metallic ruler and a stop watch were used for 

the measurements.  Each infiltration test was run for approximately 2½ hours.  Four tests 
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were run for the control and Snyderville Basin (i.e., aerobically digested) biosolids test 

sites while six for tests were conducted on those rangeland soils that received Central 

Valley (i.e., anaerobically digested) biosolids. 

 
Water Drop Penetration Time 

 
Water drop penetration time is the time that it takes for a drop of water to 

completely penetrate the soil.  This methodology basically measures the hydrophobicity 

of the soil (Mainwaring et al., 2005).  For performing this test, a standard medicine 

dropper was used.  Table 5.3 shows the seven different classification levels for water 

repellency that have been established according to the time that a drop takes to infiltrate 

into the soil. 

 
RESULTS AND DISCUSSION 

 
Unsaturated Hydraulic Conductivity 

 
Previous research has shown that unsaturated hydraulic conductivity decreases as 

the rates of biosolids application increases (Gupta et al., 1977). Fig. 5.2 indicates that 

there is no statistical difference in hydraulic conductivity between the control and each 

subplot. 

 
Table 5.3.  Repellency classification of the soils (Dekker et al., 2001)  

Class Description Time 

0 Wettable < 5 s 

1 Slightly Water Repellent 5 - 60 s 

2 Strongly Water Repellent 60 - 600 s 

3 Severely Water Repellent 600 - 3600 s 
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Table 5.3 (Continued)  

4 1 - 3 h 

5 3 - 6 h 

6 

Extremely Water Repellent (> 
1 hr) 

> 6 h 
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Fig. 5.2.  Unsaturated hydraulic conductivities vs. estimated agronomic rate based 
on nitrogen. 
 

Infiltration Test 

 
Cumulative Infiltration Test 

Figure 5.3 shows the average of the cumulative infiltration tests measured in the 

control as well as those sites that have received aerobically digested (e.g., Snyderville 

Basin) and anaerobically digested (e.g., Central Valley) biosolids.  The statistical analysis 

applied at each specific chosen time shows that there is no significant statistical 

difference in cumulative infiltration between the control and the other treatments. 
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Fig. 5.3.  Cumulative infiltration depth vs. time with its respective standard errors. 

 

Infiltration Rate 

Some studies have reported that infiltration rate can significantly increase with the 

application of biosolids (Moffet et al., 2005; Tsadilas et al., 2005).  Figure 5.4 shows the 

average of the different infiltration rates for the control as well as rangeland test sites that 

have received Snyderville (e.g., aerobically digested) and Central Valley (e.g., 

anaerobically digested) biosolids.  The statistical analysis applied for each specific time 

shows that there is no significant difference between the control and the other two 

treatments at the 95% confidence level.  One possible reason for this is that the soil below 

the biosolids is highly impermeable and it decreases the infiltration rate. 
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Water Drop Penetration Time 

 
Table 5.4 shows that the WDPT is lower than 1 second on average for the control 

and for the other treatments.  The repellency classification for the control and for all the 

other treatments is classified as “Wettable.” 
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Fig. 5.4.  Infiltration rate vs. time with its respective standard errors. 

 

Table 5.4.  Water drop penetration time for all the treatments with respective 
standard errors. 

Control T 1X T 5X T 10X 

0.65 ± 0.07 0.62 ± 0.07 0.41 ± 0.03 0.64 ± 0.05 

SB 1X SB 5X SB 10X SB 20X 

0.51 ± 0.05 0.32 ± 0.02 0.55 ± 0.04 0.51 ± 0.03 

CV 1X CV 5X CV 10X CV 20X 

0.76 ± 0.09 0.39 ± 0.03 0.40 ± 0.02 0.51 ± 0.06 
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CONCLUSIONS 

 
Three tests were applied to determine whether soil properties have changed as a 

result of biosolids land application.  The different soil moisture parameters that were 

evaluated as part of the field included the unsaturated hydraulic conductivity, the water 

drop penetration time and the infiltration.  From evaluating these three parameters, the 

following conclusions were obtained: 

The unsaturated hydraulic conductivity test indicated that there is no statistical 

difference between the control and those sites that received biosolids at the 95% 

confidence level.  The infiltration test analysis (cumulative infiltration and infiltration 

rate) also indicated that there is no significant difference (at the 95% confidence level) 

between the control and sites that received Snyderville Basin (e.g., aerobically digested) 

and Central Valley (e.g., anaerobically digested) biosolids at rates equivalent to 20 times 

the estimated agronomic rate.  From the WDPT test, the repellency soil classification for 

the control and those soils that received land applied biosolids was wettable.  This finding 

indicates that all the treatments are classified as non-hydrophobic soils. 

The soil properties were analyzed one and two years after biosolids applications.  

It is entirely possible that more significant changes could occur if the same tests were 

applied after a longer period of time. 
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CHAPTER 6 
 

SUMMARY AND CONCLUSIONS  

 
This dissertation presents the analysis of the environmental and economic benefits of 

utilizing biosolids on disturbed rangeland.  The land application of three types of 

biosolids was analyzed.   Each biosolids type was applied at rates equivalent to 1, 5, 10 

and 20 times the agronomic rate based on nitrogen needs of the vegetation.  Among the 

studies performed are forage quality analyses, soil and forage mineralogical analyses, 

economic analyses, and soil property changes after biosolids application.  From this 

study, the following conclusions were obtained: 

The land application of biosolids results in higher biomass growth, which 

increased the stocking rates or the animal carrying capacity of a rangeland compared with 

the control area.  Higher application rates increased the carrying capacity.  Forage quality 

was improved, which could be seen in higher CP values compared to the control.  The 

forage quality, based on the CP and IVTD, makes a direct impact on the daily gain in 

livestock weight.  This impact is reflected in a higher daily weight gain by livestock 

utilizing the forage grown on biosolids-amended rangelands as compared to the control.  

The application of biosolids did result in a significant Na increase and K decrease.  

The other soil mineral concentrations did not show significant statistical differences 

compared with the control.  These results suggest that the application of biosolids on the 

environment had a minimal impact, even when applied at rates equivalent to as high as 20 

times the estimated agronomic rate.  



 75 

Some copper, calcium and sodium supplement may be needed to ensure a healthy 

cattle diet.  Forage analyses indicated that all the minerals levels were below the 

maximum tolerable levels for cattle consumption.  These results suggest that the risk to 

livestock health due to an increase in mineral concentration in vegetation is minimal 

when biosolids land application is utilized in rangeland restoration activities.  The land 

application of beef manure could be problematic because it results in a significant 

increase in soil molybdenum.  The problem of excess molybdenum, however, can easily 

be overcome by supplementing with extra copper.   

Land application of biosolids to enhance forage production increases the 

profitability of the rangelands.  The highest cost-benefit analysis was calculated for each 

one of the soil treatments.  The highest financial return was obtained for lime stabilized 

biosolid at 1X agronomic rate (17.7 $/ha/year), aerobically digested biosolid at 20X 

agronomic rate (73.1 $/ha/year), and anaerobically digested biosolid at 1X agronomic 

rate (46.5 $/ha/year). 

If the rangeland were leased by ranching interests, application of biosolids may 

not profitable.  The collection of tipping fees can be a significant source of financial 

revenue for land owners and can make biosolids land application profitable with or 

without the enhancement of forage production. 

The application of biosolids had no significant impact on a number of important 

soil parameters including unsaturated hydraulic conductivity, cumulative infiltration, 

infiltration rate and the WDPT.  Finally, the increase in vegetative density will help to 

reduce the soil erosion of the rangelands. 
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Inverse Distance Weighting Method 

This methodology is used when there is not available data on the study site.  In order to 

obtain the data in the required site, data from the closest stations are used.  The stations 

that are closer to the working site will have more influence or more weight into the 

working site.  The following lines show the procedure used to calculate the data in the 

working taking the precipitation from the 2 closest stations to the working site:  
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For this study R was considered equal to “1”. 

di = distance from station I to the working site 
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Pseudo Replication Design 

Pseudo replication design is a form on non-independent replication in an 

experiment that may be due to sub-sampling on experimental units or measuring 

experimental units over time. 

 

Unbalance Design 

An experimental design is balanced if all combinations of factor levels have equal 

numbers of observations.  All other designs are unbalanced.  For the present study, it is 

considered an unbalance design because basically there are 5 different treatments and 

they do not have the same number of sub treatments as it can be seen in the following 

figure: 

1 X 1 X 1 X 1 X

5 X 5 X 5 X 5 X

10 X 10 X 10 X

20 X 20 X control 10 X 20 X

Anaerobically Digested 
Biosolid

Manure Control
Lime Stabilized      

Biosolid
Aerobically Digested 

Biosolid  

Most of the treatments have 4 different sub treatments, but the control and lime 

stabilized biosolids have one and 3 sub treatments respectively.  
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Statistic for Propagation of Measurement Error  

The propagation of measurement errors for calculating the standard error was used for 

calculated for the dry biomass and for the stocking rate.  The following procedure was 

done for the calculation of the standard error of the dry biomass for manure 1X the 

agronomic rate. 

 

Calculating the Dry Biomass (DB) as kg per ha for the Manure 1X; 

DB
S  DM* WB DB ±=  

DB  =   Dry Biomass (lbs/ft2) 
WB  =   0.0233 lbs/ft2 (Wet Biomass) 
DM  =   0.3563 (Dry Matter) 

DB
S       =   Standard Error of the Dry Biomass  

 

( ) 






























=
lbs 2.2

kg 1
*

ha 1

m 000 10
*

m 0.3048

ft 1
*3563.0*

ft

lbs
 0.0233  DB

22

2
 

( ) ( )lbs-kg/ha-ft 9.926 48*3563.0*
ft

lbs
 0.0233  DB 2

2 






=  

 
DB = 406.8 kg/ha 
 

DB
S   406.8  DB ±=  

The original equation taking into account the change of units will be: 

DM*WB*926.9 48  DB =  

 

Calculating the Standard Error of the DB: 

a) Calculating the total variance: 

( )
( )

( )
( )

2
DM

2

2
WB

2

2
DB S*

DMd

DBd
S*

WBd

DBd
  S 







+






=  
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( )
( ) DM*926.9 48
WBd

DBd = = (48 926.9)*(0.3563) = 17 432.9 

( )
( ) WB*926.9 48
DMd

DBd =  = (48 926.9)*(0.0233) = 1 141.6 

2
DBS = Variance of the Dry Biomass 

SWB
2 =  0.00005 

SDM
2 =  0.0020 

 

( ) ( ) 0020.0*6.114100005.0*432.9 17  S 222
DB +=  

1.19126 S2
DB =  

 
b) Calculating the Standard Error: 

2/1

DMWB
DBDB n

1

n

1
  S 








+= S  

DB
S  = Standard Error of the Dry Biomass 

DBS  = Standard Deviation of the Dry Biomass 

nWB =  6 (number of samples taken for the wet biomass) 

nDM =  3 (number of samples taken for the dry matter) 

 
2/1

DB 6

1

3

1
1.19126  S 







 +=  

97.8  S
DB

=  

 
So, the total dry protein for the control will be: 

97.8   406.8  DB ±= kg/ha 
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Fix effects analysis of variance with one treatment factor 

The fixed-effects analysis of variance model is applied when there are several treatments 

to the subject of the experiment and when we want to see if there is any change with the 

response variable.  By this methodology, the range of response variable values generated 

in the population as a whole by the treatment can be estimated. Vita 
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