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ABSTRACT

Assessing Changes in the Abundance of the Continental Population of Scaup Using

a Hierarchical Spatio-Temporal Model

by

Beth E. Ross, Master of Science

Utah State University, 2012

Major Professor: Dr. Mevin Hooten
Department: Mathematics and Statistics

In ecological studies, the goal is often to describe and gain further insight into

ecological processes underlying the data collected during observational studies. Be-

cause of the nature of observational data, it can often be difficult to separate the

variation in the data from the underlying process or ‘state dynamics.’ In order to

better address this issue, it is becoming increasingly common for researchers to use

hierarchical models. Hierarchical spatial, temporal, and spatio-temporal models al-

low for the simultaneous modeling of both first and second order processes, thus

accounting for underlying autocorrelation in the system while still providing insight

into overall spatial and temporal pattern. In this particular study, I use two species

of interest, the lesser and greater scaup (Aythya affinis and Aythya marila), as an

example of how hierarchical models can be utilized in wildlife management studies.

Scaup are the most abundant and widespread diving duck in North America, and

are important game species. Since 1978, the continental population of scaup has de-

clined to levels that are 16% below the 1955-2010 average and 34% below the North

American Waterfowl Management Plan goal. The greatest decline in abundance of
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scaup appears to be occurring in the western boreal forest, where populations may

have depressed rates of reproductive success, survival, or both. In order to better

understand the causes of the decline, and better understand the biology of scaup in

general, a level of high importance has been placed on retrospective analyses that

determine the spatial and temporal changes in population abundance. In order to

implement Bayesian hierarchical models, I used a method called Integrated Nested

Laplace Approximation (INLA) to approximate the posterior marginal distribution

of the parameters of interest, rather than the more common Markov Chain Monte

Carlo (MCMC) approach. Based on preliminary analysis, the data appeared to be

overdispersed, containing a disproportionately high number of zeros along with a

high variance relative to the mean. Thus, I considered two potential data models,

the negative binomial and the zero-inflated negative binomial. Of these models, the

zero-inflated negative binomial had the lowest DIC, thus inference was based on this

model. Results from this model indicated that a large proportion of the strata were

not decreasing (i.e., the estimated slope of the β parameter was not significantly

different from zero). However, there were important exceptions with strata in the

northwest boreal forest and southern prairie parkland habitats. Several strata in the

boreal forest habitat had negative slope estimates, indicating a decrease in breeding

pairs, while some of the strata in the prairie parkland habitat had positive slope

estimates, indicating an increase in this region. Additionally, from looking at plots

of individual strata, it seems that the strata experiencing increases in breeding pairs

are experiencing dramatic increases. Overall, my results support previous work in-

dicating a decline in population abundance in the northern boreal forest of Canada,

and additionally indicate that the population of scaup has increased rapidly in the

prairie pothole region since 1957. Yet, by accounting for spatial and temporal auto-

correlation in the data, it appears that declines in abundance are not as widespread
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as previously reported.

(52 pages)
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INTRODUCTION

Hierarchical Modeling

In ecological studies, the goal is often to describe and gain further insight into

ecological processes underlying the data collected during observational studies. Be-

cause of the nature of observational data, it can often be difficult to separate the

variation in the data from the underlying process or ‘state dynamics.’ In order to

better address this issue, it is becoming increasingly common for researchers to use

hierarchical models, or models that have multiple levels of mathematical and statis-

tical equations describing the overall system (e.g., Cressie et al. 2009). Hierarchical

models are constructed in such a way that they are able to explicitly account for

a model describing the data, as well as a model describing the process from which

the data arise (e.g., Royle and Dorazio 2008). For example, hierarchical models can

be easily applied in a study focused on assessing changes in abundance of a certain

species in a given area. If we assume that the individuals of a population (with popu-

lation size Ni) are independently observed, for each sample unit i = 1, 2, . . . ,M , then

the data are counts of ‘observed’ individuals, yi, that come from a binomial distribu-

tion, [yi |Ni] =Bin(yi |Ni, p) , where the square bracket notation implies a probability

distribution, p is the detection probability, and [yi |Ni] is commonly called the ‘data

model’. Here, Ni are unobserved parameters, and could likely arise from a Poisson

distribution indicating the intensity of abundance in each sample unit (e.g., an N-

mixture model, Royle and Dorazio 2008). This would be indicated by the process

model, [Ni |λ] =Poisson(Ni |λ) . While the parameters p and λ are confounded in this

specification, conducting additional site visits to estimate p would solve this problem.

By using a hierarchical framework and repeated site visits to answer this problem,
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we are able to simultaneously model the data while accounting for the underlying

process the data arises from, thus accounting for parameter uncertainty as well as

process uncertainty. This last step is an important distinction of hierarchical models,

in contrast to traditional statistical procedures which focus solely on the uncertainty

in the data (Dennis et al., 2006). When the uncertainty due to the ecological pro-

cess of interest is ignored, it can result in spurious conclusions (Cressie et al., 2009).

Additionally, de Valpine and Hastings (2002) showed that ignoring observation error

can also lead to inaccurate estimates of the population parameters of interest (e.g.,

survival or abundance). Hierarchical models can also be helpful when evaluating

the level of density-dependence exhibited in a population. When parameters related

to density-dependence are estimated using response and explanatory data that are

dependent, it can lead to invalid conclusions (Krebs, 2002). Evaluating these same

models using a hierarchical structure allows for the proper separation of process noise

and observation error (Dennis et al., 2006).

Hierarchical Spatial Models

Hierarchical models are especially useful for handling data that contain latent

forms of autocorrelation. By their nature, spatial data are hierarchical, as data can

be gathered at a local scale (e.g., in 1 meter plots) all the way up to regional or broad

geographic scales (e.g., data measured at a state-wide level). When sampled spatially,

it is quite likely that data points taken in close proximity to one another will be more

similar than those points separated by a broad geographic scale. This is the concept

of spatial autocorrelation (Koening, 1999). When inference is made on data that are

thought to have independent errors, when they are actually dependent, the critical

level of the test falls above where truth actually lies, thus leading to false rejections

and erroneous inference because the estimated variance is too small (Cressie and
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Wikle, 2011). The added benefit of using hierarchical modeling with spatial data is

the ability to parse out first and second order processes occurring in the system, thus

accounting for spatial covariance between data points. For example, with a simple

linear model yi = µi + εi, the µi account for first order effects and the εi can be used

for second order effects. Hierarchical spatial, temporal, and spatio-temporal models

allow for the simultaneous modeling of both first and second order processes, thus

accounting for underlying autocorrelation in the system while still providing insight

into overall spatial and temporal pattern.

Estimating Changes in Animal Abundance

The question of how to best estimate animal populations has been an area of

research for many years, especially regarding changes in populations over space and

time (Williams et al., 2002). Some of the commonly used methods of estimating

population abundance are capture-mark-recapture models (Lebreton et al., 1992),

the inclusion of abundance counts in occupancy modeling (MacKenzie et al., 2002),

and distance sampling methods (Buckland, 2001). While all of these methods account

for the additional confounding issue of detection probability, they also require more

information than may be readily available (or even feasible to collect) in long-term,

broad-scale wildlife surveys. Generally, when surveying for wildlife on the scale of the

entire continent, surveys are conducted using aircraft to fly over the survey region

and count the visible wildlife. This method is efficient, and allows biologists to cover

a broad spatial scale in a relatively short period of time. The downside of this

monitoring scheme is that, in most cases, it does not allow for the incorporation of

methods to estimate detection probability, and is therefore only able to address trends

in relative abundance, not necessarily true abundance. Additionally, if a survey region

is quite large, then the assumption of a constant detection probability (e.g., visibility
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correction factors) may not be valid, as detection of a species likely varies between

different habitat types and over time.

Application of Hierarchical Modeling

An example of a continental-scale flight survey is the North American May Breed-

ing Pair Survey (BPS), which provides a rich source of demographic data on 10 focal

duck species (as well as others), and covers a large portion of each species’ breeding

range, covering areas in the northern United States, western Canada, and Alaska

(Zimpfer et al., 2011). This survey has been conducted every May through June

since 1955 using aerial transects (Smith, 1995). Observers count which duck species

are observed, and whether or not the ducks are paired (with a mate), single drakes,

or in mixed-sex groups of ducks. Surveys are flown at approximately 120 miles per

hour at an altitude of 90-100 feet. The detectability of each duck species is estimated

using ground crews to truth the aerial surveys; the difference in counts is then used to

estimate a visibility correction factor (VCF). Unfortunately, the ground-crew surveys

are not conducted every year nor done the same way across strata. For example,

while crews can easily access transects in the prairie pothole region of the survey, it

is quite difficult logistically to reach the transects in some areas of the boreal forest

by road. In these cases, transects in the boreal forest have been ‘ground truthed’ by

helicopters. Additionally, the ground crews have only been conducted in some years

of the survey, and then applied in subsequent years until the next ground-truthing

survey. Habitat conditions will likely be similar between consecutive years, but VCF

estimates are sometimes used over much longer periods of time (e.g. decades), with-

out a reevaluation of the VCF. Lastly, and perhaps most importantly, the calculation

of the VCF assumes that the ground crews are conducting a census of the area, and

there are many instances when the aerial crews will have higher counts of ducks over
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a given segment than the ground crews. This could be both because of the delay

between the aerial and ground surveys, or because the ground crews are unable to see

as many of the ducks as the aerial crews. Either way, there are many potential flaws

with the estimation of the VCF, and because of this, I used only raw counts from the

aerial surveys in my analysis of the BPS data.

Lesser Scaup Decline

Two particular species of interest that are surveyed during the BPS are the lesser

and greater scaup (Aythya affinis and Aythya marila), which are counted collectively

as scaup. Scaup are the most abundant and widespread diving duck in North America,

and are important game species (Austin et al., 1998). Since 1978, the continental

population of scaup has declined to levels that are 16% below the 1955-2010 average

and 34% below the North American Waterfowl Management Plan goal (Zimpfer et al.,

2011). This decline has sparked concern amongst hunters, management agencies,

and conservation groups alike (Afton and Anderson, 2001). The greatest decline

in abundance of scaup appears to be occurring in the western boreal forest, where

populations may have depressed rates of reproductive success, survival, or both (Afton

and Anderson, 2001; Walker and Lindberg, 2005; Corcoran et al., 2007; Hobson et al.,

2009). However, the specific vital-rate pathways responsible for the decline are not

known (Koons et al., 2006).

Based on the recent decline, the U.S. Fish and Wildlife Service has implemented

a decrease in the bag limit of scaup (Boomer and Johnson, 2007). Because they are

such a popular species to hunt, this has caused quite a negative response from hunting

groups, and raised concerns about the methods used to determine harvest numbers

for the species. While the report suggesting new harvest regulations made use of ad-

vanced modeling techniques (Boomer and Johnson, 2007), it did not explicitly model
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the impacts of harvest on survival. Also, if the relative pressure of hunting has less

impact on the population decline than factors such as low nest success and duckling

survival, then a decrease in the harvest rate will have little impact on population

growth, especially if the population experiences compensatory mortality. By consid-

ering spatial variation in abundance when making management decisions, perhaps

the reduced bag limit could be implemented in only those flyways most impacted by

breeding areas that have been experiencing significant declines.

A leading hypothesis for the underlying cause of scaup decline is that they are

experiencing decreased food availability during spring migration, thus arriving on

the breeding grounds in poor body condition (i.e., the Spring Condition Hypothesis;

(Austin et al., 2000; Anteau and Afton, 2004)). Studies tracking body condition and

nutrient reserves throughout the scaup migration have observed a long-term decline

in both body condition and nutrient reserves that could have a significant impact

on reproductive effort and success (Anteau and Afton, 2004). Moreover, Anteau and

Afton (2008) found a long-term decline in consumption of their preferred food (Am-

phipod spp.) in the upper Midwest. Recent studies in the boreal forest, however,

suggest that scaup in 2003 and 2004 had a similar body condition relative to his-

torically collected scaup (Devink et al., 2008). Scaup on the great lakes and other

migratory stopover locations are also known to contain high levels of toxins, partic-

ularly selenium (Anteau et al., 2007; Custer and Custer, 2000). However, DeVink

et al. (2008) and others (Fox et al., 2005; Matz and Rocque, 2007) concluded that

selenium and mercury levels are low in boreal scaup, and not likely responsible for the

population decline in this important breeding region that is exhibiting the sharpest

declines. Conflicting findings and a variety of other explanations (e.g., change in

North American climate, anthropogenic developments in the boreal forest) illustrate

the complicated nature of the decline in scaup abundance. Several factors are likely
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impacting scaup, and perhaps no single hypothesized cause can explain the decline

entirely.

In order to better understand the causes of the decline, and better understand

the biology of scaup in general, a level of high importance has been placed on ret-

rospective analyses that determine the spatial and temporal changes in population

abundance (Austin et al., 2006). By focusing on scaup as a model system to develop

more efficient ways to make use of aerial survey data, I will address an issue of impor-

tance, the use of hierarchical models in ecological applications, and concurrently gain

insight into an issue of biological importance: the decline of the scaup population. In

addition, the population decline seems to have a large spatial component to it; as the

rate of birds occupying survey transects in the northern boreal forest of Canada is de-

creasing, the analogous rate is increasing in the southern prairie parklands (Ross and

Koons, in progress). Any development of statistical methodology intended to yield

insightful conclusions about the species needs to address changes in the population

across different spatial locations. Future research and management actions should be

directed at the specific locales where significant change in scaup abundance has actu-

ally occurred. However, because survey locations are not thought to be independent

of one another, additional spatial structure will be needed in statistical models used

to guide management actions aimed at reversing declines in scaup abundance.

Integrated Nested Laplace Approximation

In order to implement Bayesian hierarchical models, I used a method called Inte-

grated Nested Laplace Approximation (INLA) to approximate the posterior marginal

distribution of the parameters of interest, rather than the more common Markov

Chain Monte Carlo (MCMC) approach (Rue et al., 2009). Many models used in eco-

logical applications are based on latent Gaussian random fields, ranging from linear
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regression models, temporal models, spatial, and spatio-temporal models. By making

use of these latent Gaussian models, INLA is capable of approximating the posterior

distribution with high accuracy at a much faster computational rate than MCMC

(Rue et al., 2009). Unlike MCMC, INLA is not an iterative stochastic procedure, but

rather a multi-step mathematical process used to approximate posterior distributions.

To do so, INLA involves a three step process. It first uses Laplace approximation to

calculate the posterior marginal of the parameter of interest, θ. It then computes

the Laplace approximation, or the simplified Laplace approximation of the posterior,

[θ |Y,π] , where θ is our parameter of interest, Y the data, and π the hyperparame-

ters, or priors, of the parameters. This second step is performed for selected values of

π to improve on the approximation. Lastly, INLA combines the previous two steps

by using numerical integration. While it is usually more computationally efficient

than MCMC, the computational cost is exponential with respect to the number of

hyperparameters in the model (Rue et al., 2009). When the number of parameters

is few, however, the problem may not be that severe. Additionally, INLA cannot ap-

proximate nonlinear transformations of model parameters, which may be a drawback

for some ecological studies, but does not interfere with this research.



9

METHODS

Survey Details

I utilized May Breeding Pair Survey (BPS) data collected by the United States

Fish and Wildlife Service (USFWS) and Canadian Wildlife Service (CWS). The BPS

has been flown every May–June since 1955 in the Traditional Survey Area (TSA),

which encompasses the north-central United States, central and western Canada, and

a large portion of Alaska (Fig. 1). This region is thought to represent the primary

breeding grounds for a large proportion of North American waterfowl, including scaup.

Moreover, the TSA consists of strata divided by similar habitats and duck densities

(Smith, 1995). Within each stratum pilots fly multiple transects, each comprised of

28.8 km strip-segments. The number of segments sampled in a transect ranges from

1 to 35, and has changed over time. The TSA encompasses several different habitat

types (e.g., boreal forest, prairie parkland, and tundra). Throughout the survey,

pilots count the number of paired, single, and grouped ducks of each species to the

left of the plane; accompanying biologists record the same information on the right

side as well as pond numbers (ponds are only counted in the prairie parkland region).

Here, the focus is on the delineation of scaup recorded in breeding pairs, rather than

total scaup abundance, as these pairs best represent the breeding potential of the

population. I did not utilize data regarding single drakes due to the skewed sex ratio

in scaup (Afton and Anderson, 2001), and the methods of counting the mixed-sex

non-breeding groups changed in 1975 (Smith, 1995); thus, use of these data would

confound long-term analysis from 1955 to the present.
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Fig. 1: Map of surveyed area from U.S. Fish and Wildlife Service. Only the area in
yellow was used for this study.

Model

In order to best account for process and sampling variation, I used Bayesian

hierarchical models to examine change in scaup abundance for each stratum between

1957 and 2009 (1955-1956 had a paucity of spatial data). This approach allowed me

to incorporate spatial autocorrelation among strata into the process model while also

gaining insight into the changes within each stratum. Additionally, using hierarchical

models allowed me to select between two data models to determine which model best

fit the data. Bayesian hierarchical models are usually comprised of three ‘submodels’:

a data model describing the distribution of the data, a process model specifying the

underlying mechanism that gives rise to the data, and the parameter model indicating

the distributions of the parameters in the process model (Berliner, 1996).
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Data Model

Based on preliminary analysis, the data from the BPS appeared to be overdis-

persed, containing a disproportionately high number of zeros along with a high vari-

ance relative to the mean. Thus, I considered two potential data models, a model

where yi,j,t ∼ NegBinom(µj,t, φ), and a model where

yi,j,t ∼

 0, with probability ψ

NegBinom(µj,t, φ), with probability (1− ψ)

for segments i = 1,. . . ,nj in stratum j = 1,. . . ,m during observation period t = 1,. . . ,T

(i.e., years 1957-2009). Models were then compared using the Deviance Information

Criterion (DIC). I considered the zero-inflated model because it helps to account for

excess zeros, perhaps due to birds that were present during the survey, but unob-

served. One of the benefits of hierarchical modeling is that the proper support could

be specified for the data distribution, and thus transformations (e.g., log-transform,

sin-transform) were not necessary in order to use a linear process model, as it has

been shown that models based on the negative binomial distributions can perform

better at modeling count data than transformed data (O’Hara and Kotze, 2010).

Process Model

Each data model was incorporated into a simple log-linear regression model with

an error term incorporating spatial and temporal autocorrelation. This allowed me

to analyze the temporal trend for each stratum separately, as well as determine the

relative influence of both the fixed (the β parameters) and random (ε and η) effects on

relative scaup abundance. Using µj,t from the above data model, the process model
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can then be specified as

zj,t = log(µj,t) = β0,j + β1,jt+ εj,t + ηj,t,

where εt = (ε1,t, . . . , εm,t)′ ∼ N(0,Σε), and Σε ≡ σ2
ε (D−W)−1 for all t = 1,. . . ,T

representing spatially correlated errors and ηj = (ηj,1, . . . , ηj,T )′ ∼ N(0,Ση) for all j

= 1,. . . ,m representing temporally correlated errors. The ε and η terms incorporated

into the model are intended to account for variation in both the spatial and temporal

dimensions of the system, as W is a matrix containing the spatial field, and D is a

diagonal matrix with the row sums of W as diagonal elements (Banerjee et al., 2004).

Again, if these sources of uncertainty are not accounted for, erroneous inference could

be made because model assumptions would not be met (Cressie and Wikle, 2011).

Rather than standardize the survey area to some sort of grid as past studies

have done (e.g., Gardner et al. (2007)), I instead used the existing spatial structure

present in the survey, and based my spatial field on the strata units as areal regions.

This provided the basis for a conditional autoregressive structure (CAR; Besag 1974;

Brook 1964), while also yielding results that were directly useful for management of

the species. The CAR model is a commonly used spatial model for areal processes, and

incorporates dependence among areal locations through the neighborhood structure

of the strata. In constructing the proximity matrix, W, I calculated the Euclidean

distance between the center of each stratum, and then denoted all pairs of strata as

neighbors if they were within a threshold distance of 7.75 decimal degrees of each

other. This distance was chosen because it was the shortest distance at which all

strata had at least one neighbor, and constructing the proximity matrix in such a

way accounted for the more spatially isolated strata in the north and the highly

connected strata in the south.
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In addition to the spatial structure, I also wanted to account for latent temporal

dependence in the system. I addressed this by incorporating temporal dependence

into the ηj . I let ηj,t ∼ N(αηj,t−1, σ
2
η), which induces a correlation structure on the

vectors ηj such that ηj ∼ N(0,Ση). Then the entire latent process is a Gaussian

Markov random field, which allows for the use of INLA to approximate posterior

distributions.

Due to the spatial and temporal autocorrelation likely present in the data, I

analyzed the contributions of the fixed and random effects in the model residuals.

In order to address this, I conducted a Moran’s I test on the residuals from the

top model without including the spatial random effect (i.e., the spatial field). This

showed whether the remaining variation from the spatio-temporal trend model had

significant spatial autocorrelation. Furthermore, I constructed an autocorrelation

function (ACF) and partial autocorrelation (PACF) graphs on the residuals with

and without a temporal trend, to determine how much variation the temporal trend

accounts for compared to the random effect.

Parameter Model

The parameter model consists of all the prior distributions given to the unknown

variables in the process model. The overdispersion parameter for the negative bino-

mial distribution was specified as φ = log(n), where n is the original negative bino-

mial size parameter, and then modeled as φ ∼ N(0, 100). The regression parameters

were specified with conjugate Gaussian priors so that β0,j, β1,j ∼ N(0, 1000), for j =

1,. . . ,m. The variance component, which was defined as the precision, or the inverse

of the variance component (Rue et al., 2009), was given a conjugate inverse gamma

prior, σ−2
ε ∼ Gamma(1, 1/20000). The parameter α, the autocorrelation parameter

in the temporal random effects model, was assigned the prior α ∼ N(0, 0.15).
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Model Implementation

Combining the data, process, and parameter models to form a hierarchical model

yielded the posterior distribution:

[
{µt} , φ, {βj,t} , σ2

ε , σ
2
η, α| {yi,j,t}

]
∝
∏
i

∏
j

∏
t

[yi,j,t|µj,t, φ]
∏
t

∏
j

[
µi,t|βj , σ2

ε , σ
2
η, α
]

× [φ] [β] [α]
[
σ2
ε

] [
σ2
η

]
.

In the above equation, I use square brackets ‘[.]’ to denote a probability distribution.

Typically, the above model would be fit using Markov Chain Monte Carlo, usually

using a Gibbs sampler and a Metropolis-Hastings algorithm (Banerjee et al., 2004).

However, as discussed in the Introduction, MCMC can be computationally expensive.

For this reason, I implemented the above model using the INLA package in R (Rue

et al., 2009).
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RESULTS

Summary Statistics

The TSA covered approximately 3.3 million square kilometers during an annual

survey route, sampling 52 unique strata comprised of approximately 2588 segments

each year, resulting in 103,266 counted scaup pairs from 1957-2009. The area sampled

in 1955 and 1956 was quite limited spatially, thus those two years were not included

in the analysis. When calculating the total counted scaup breeding pairs in each year,

preliminary analysis indicated a decline during the last twenty years, coinciding with

estimates of total abundance based on the VCF (Fig. 2).

INLA

Two data models were chosen for comparison based on the Deviance Information

Criterion (DIC, Spiegelhalter et al. 2002). This allowed me to assess how well each

model fit the data without presuming to know the best fit a priori. The two cho-

sen distributions were the negative binomial and the zero-inflated negative binomial

(ZINB). Of these models, the ZINB had the lowest DIC (24391 compared to 24933

for the negative binomial) and further analysis proceeded using this model.

Results from the ZINB model indicated that a large proportion of the strata were

not decreasing (i.e., the estimated slope of the β parameter was not significantly dif-

ferent from zero; Fig. 4). However, there were important exceptions with strata in

the northwest boreal forest and southern prairie parkland habitats (Fig. 5). Several

strata in the boreal forest habitat had negative slope estimates, indicating a decrease

in breeding pairs, while some of the strata in the prairie parkland habitat had posi-

tive slope estimates, indicating an increase in this region (Fig. 4 & 6). While Figure
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Fig. 3: Population estimates based on the posterior predictive distribution for Stra-
tum 13 from the zero-inflated negative binomial (left) and negative binomial (right)
models.
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4 compiles all of the fixed effects into one image, another way to view the output

from INLA is to look at each stratum individually. Viewing each stratum individ-

ually allows one to visualize the combined temporal and spatial effects on changes

in breeding pairs (Fig. 7). For example, by looking at the estimated time trend for

stratum 18, a stratum with an estimated negative slope, a steady decrease in the

number of breeding pairs since the 1950s is noted, while looking at the trend for

stratum 45, the population increased in the mid-1980s, decreased from the mid-1980s

to the mid-1990s, and has increased dramatically since the mid-1990s.

Removing the random effects had little impact on changing the posterior distri-

butions for the parameters, indicating that the trend is accounting for the majority

of spatial autocorrelation in the system. There were only 3 years in which there was

significant spatial autocorrelation in the residuals, based on the Moran’s I test. Addi-

tionally, there were only 7 strata that had significant temporal autocorrelation based

on the ACF and PACF graphs. The autoregressive parameter α had a mean of 0.975

with lower and upper 95% quantiles 0.949 and 0.991.
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Fig. 5: Increases and decreases in the abundance of breeding pairs since 1957 based
on posterior distributions for the β1,j coefficients. Highlighted areas show an 80%
chance of the population increasing or decreasing in the area since 1957.
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Fig. 6: Changes in counted breeding pair abundance since 1957 based on posterior
distributions for the β1,j coefficients. Negative numbers indicate pairs lost and positive
numbers indicate pairs gained. Note that not all differences are estimated to be
statistically different from zero.
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Fig. 7: Marginal posterior predictive distributions from Strata 18 and 45 from the
zero-inflated negative binomial model.
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DISCUSSION

Scaup Decline

My results provide further insight into the continental decline of breeding scaup

abundance. Due to uncertainty associated with the slope parameters, however, the

majority of strata in the survey region did not indicate evidence of either a decline or

increased breeding pair abundance (Fig. 4). This could imply that those strata where

there is a decline are declining quite severally, which appears to be the case for the

northwestern boreal forest (Fig. 5), especially Strata 18 and 20 (Fig. 6). There were

only 4 strata for which 95% credible intervals indicated significant population decline,

whereas 8 strata were significant when considering 80% credible intervals. This could

indicate that it is difficult to detect changes in breeding pair abundance, given the

amount of sampling variation and autocorrelation present in the data. Additionally,

from looking at plots of individual strata, it seems that the strata experiencing in-

creases in breeding pairs are experiencing dramatic increases, but intially had lower

abundance. Both of these changes are well illustrated in Figure 7.

Given the results from this study, there are several possible changes occurring in

the population. First, scaup may not be migrating as early as they have historically,

thus reaching their final breeding grounds later in the spring, and not being counted

as breeding pairs during the BPS survey, especially in the northern boreal forest.

This would mean that upon finally reaching the boreal grounds, they have a shorter

season for breeding and raising young, which may limit successful recruitment (Daw-

son and Clark, 2000). Additionally, the breeding season has historically coincided

with the peak hatching season of invertebrates in the boreal forest, which provides

important resources for ducklings. With a shift in breeding phenology, this could
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cause a mismatch between predator and prey, again resulting in poor reproductive

success (Visser et al., 1998). Secondly, scaup may be choosing to forego migration

up to the boreal forest, and are instead utilizing the prairie parklands at higher rates

than in the past. Scaup are however very philopatric (Afton, 1984; Rotella et al.,

2003), and a wholesale change in habitat selection does not seem likely. Rather, the

birth-death balance has likely been negative for quite some time in the northwestern

boreal forest, and positive in the southern PPR, perhaps due to the Conservation

Reserve Program and other landscape management efforts that have increased nest

success (Stephens et al., 2005). While my results and others seem to indicate an

increase in scaup numbers in the prairie parkland area (Afton and Anderson, 2001),

this increase is not large enough to offset the large decrease in the boreal forest (Fig.

6). While the U.S. prairie population seems to have been growing exponentially since

the mid-1990s, it is worth noting that the increments for the mean count of paired

birds are quite small, ranging from only 1 to 3 (Fig. 6). This small growth does

not offset the large decrease observed in the boreal forest (e.g., Stratum 18, Fig. 7).

While these strata are only an example from each of the respective habitat types,

there are only a few strata showing statistically significant increases and decreases.

This approach differs substantially from the current methods used to estimate

waterfowl numbers, which may be why there is a discrepancy between my results and

those of the USFWS (Boomer and Johnson, 2007; Zimpfer et al., 2011). Specifically,

the USFWS does not decompose the survey into population changes in each stratum,

but rather looks at how extrapolated numbers are changing at the continental scale.

While the continental count can be related back to changes occurring in each stratum,

for future management decisions, an approach focused on counts in specific spatial

regions may be more useful for guiding management actions on the ground. Under-

standing why scaup are declining in certain areas of the boreal forest, and increasing
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in areas of the prairie pothole region is likely critical to preservation of the species as

a game species. It seems that the decrease in scaup is occurring on a much more local

scale than previously thought, and looking at the population change on a continental

scale will not help identify the cause of decline in specific areas (Afton and Anderson,

2001). Furthermore, intensive monitoring of individual strata might be useful for

management purposes, as count information on a finer spatial scale could help elu-

cidate the causes and prevalence of population decline. Recent studies indicate that

current and future climate change may negatively impact late-nesting ducks such as

scaup (Drever et al., 2012) and monitoring in preparation for this decline is critical.

My results may differ somewhat from similar studies (Afton and Anderson, 2001)

because of the time period taken into consideration, as well as using a hierarchical

model with slightly different data. Because I only took into consideration the count

of breeding pairs, I was able to make inference on population changes since 1957. If

a different time period is used (e.g., from 1955 to 1997 or 1978 to 1997, as in Afton

and Anderson 2001), different conclusions may have been reached. Methodological

changes occurred in 1975 that made it difficult to compare counts of grouped birds,

and thus the total number of birds, from time periods before and after 1975. My focus

on breeding pairs alleviates this problem and my use of flexible hierarchical models

alleviated the need to choose a year of peak abundance (e.g., the mid-1970s) from

which to analyze subsequent population decline (du Toit, 2010). Additionally, my

model was based on raw count data on breeding pairs, rather than extrapolated num-

bers based on the VCF. These numbers differ greatly, with raw counts ranging from

4000-6500 breeding pairs, and extrapolated VCF estimates ranging in the millions.
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Integrated Nested Laplace Approximation

Using INLA, I was able to successfully implement and compare several differ-

ent data and process models to determine the best fit to the data, making this the

most sophisticated and proper analysis of the BPS data. While this can be done

using traditional MCMC methods, the processing time using INLA was considerably

shorter, allowing me to fit models that might have otherwise not been considered

due to computing limitations. For example, the processing time for the full negative

binomial model was approximately 27 minutes on a 2 × 2.93 GHz 6-Core Intel Xeon

workstation, making it roughly an order of magnitude faster than MCMC for this

model and dataset. While INLA does restrict the user to generalized linear models,

it could be quite useful as an initial step for determining variables of importance to

incorporate into a non-linear model using MCMC.

Conclusions

Overall, my results support previous work indicating a decline in population

abundance in the northern boreal forest of Canada, and additionally indicate that

the population of scaup has increased rapidly in the prairie pothole region since 1957.

Additionally, it seems that the most important processes influencing population dy-

namics are not related to underlying autocorrelation, but rather parameters in the

model explicitly accounting for the differences among the strata (i.e., the fixed in-

tercept and slope parameters). Much of the variation in the model was explained by

the fixed effects, and the temporal trend in the model was of greater importance in

predicting dynamics than the random effects. These results could be expanded to ac-

commodate additional covariates that might be important in determining population

trends, including information related to habitat quality (e.g., drought conditions,

large scale weather patterns such as PDO) and hunter harvest information. Non-
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linear influences such as density dependence could also be included outside of the

INLA framework (or by using INLA with linear analogs for modeling density depen-

dence with log counts). Additionally, results from the INLA analysis can be used

to better inform the way in which the BPS is conducted, using an optimal sampling

scheme to maximize the amount of information gathered during the survey while

minimizing associated error (Hooten et al., 2012).
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APPENDIX

R code for INLA and related analysis

Analysis conducted using R version 2.12

#### Load Libraries

library(INLA)

library(classInt)

library(maps)

library(maptools)

library(pscl)

library(TSA)

#### Read Data

scaup.df=read.table("count_data.txt",header=TRUE)

strats=readShapePoly("MAS_stratum_boundaries")

#### Setup Variables

idx.extra=c(19,51,52) # Extraneous Strata to Remove

scaup.2.df=scaup.df[!is.element(scaup.df$strata_no,idx.extra),]

tmp=as(strats,"data.frame")[-idx.extra]
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unique.strata=sort(unique(scaup.df$strata_no))

n.strata=length(unique.strata)

years=1957:2009

n.years=length(years)

#### Convert Data into Regression Format

counts.vec=as.vector(as.matrix(scaup.df[,-(1:6)]))

strata.vec=rep(scaup.df$strata_no,n.years)

new.strata.vec=rep(0,length(strata.vec))

obs=1:length(new.strata.vec)

for(i in 1:n.strata){

new.strata.vec[strata.vec==unique.strata[i]]=i

}

years.vec=as.vector(col(as.matrix(scaup.df[,-(1:6)])))

X=model.matrix(~0+as.factor(rep(scaup.df$strata_no,n.years)))

colnames(X)=sort(unique(scaup.df$strata_no))

counts.reg.df=data.frame(cbind(counts.vec,X,X*years.vec,strata.vec,

new.strata.vec,years.vec,obs))

counts.reg.noNA.df=counts.reg.df[!is.na(counts.reg.df$counts.vec),]

#### Aggregate Data by Stratum

n.per.stratum.per.year=matrix(NA,n.strata,n.years)

counts.sum=matrix(NA,n.strata,n.years)
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for(i in 1:n.strata){

for(t in 1:n.years){

tmp.vec=scaup.df[scaup.df$strata_no==unique.strata[i],6+t]

if(!all(is.na(tmp.vec))){

n.per.stratum.per.year[i,t]=sum(!is.na(tmp.vec))

counts.sum[i,t]=sum(tmp.vec,na.rm=TRUE)

}

}

}

for(i in 1:n.strata){

for(t in 1:n.years){

if(is.na(n.per.stratum.per.year[i,t]))

{n.per.stratum.per.year[i,t]=n.per.stratum[i]}

}

}

n.sum=length(counts.sum)

X.sum=model.matrix(~0+as.factor(rep(1:n.strata,n.years)))

colnames(X.sum)=1:n.strata

X.sum.year=X.sum*as.vector(col(counts.sum))

counts.sum.reg.df=data.frame(y=as.vector(counts.sum),

N=as.vector(n.per.stratum.per.year),stratum=rep(1:n.strata,n.years),

X=cbind(X.sum,X.sum.year),year=rep(1:n.years,each=n.strata))

#### Make Proximity Matrix
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m=n.strata

strats.coords=coordinates(strats)

m.full=dim(strats@data)[1]

s.idx=rep(0,m)

for(i in 1:m){

tmp.df=strats@data[strats@data$STR_ID==unique.strata[i],]

tmp.idx=(1:m.full)[strats@data$STR_ID==unique.strata[i]]

s.idx[i]=tmp.idx[tmp.df$AREA==max(tmp.df$AREA)]

}

D=as.matrix(dist(strats.coords[s.idx,]))

max.min.dist=max(apply(max(D)*diag(m)+D,1,min))

#D.thresh slightly larger than max.min.dist to insure every stratum has neighbor

D.thresh=7.75

W=ifelse(D>D.thresh,0,1)

diag(W)=0

#### Write Proximity Matrix to File for INLA

D.col=col(D)

file="W.dat"

cat("",file=file, append = FALSE)

cat(m,file=file,"\n",append=TRUE)

for(i in 1:m){

tmp.neigh=D.col[i,W[i,]==1]

tmp.n=length(tmp.neigh)

cat(i,tmp.n,tmp.neigh,"\n",sep=" ",file=file,append=TRUE)
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}

#### Prepare Model 1 Formula for use with INLA

formula.tmp="y~0"

for(j in 1:m){

formula.tmp=paste(formula.tmp,"+X.",j,sep="")

}

for(j in 1:n.strata){

formula.tmp=paste(formula.tmp,"+X.",j,".1",sep="")

}

formula.tmp=paste(formula.tmp,"+f(stratum,model=’besag’,

graph.file=’W.dat’,replicate=year)+f(year,model=’ar1’,

replicate=stratum)",sep="")

formula.1=as.formula(formula.tmp)

#### Run ICAR NegBinom and ZINB{1} Trend Model (1)

inla.1.1.out=inla(formula.1,family="nbinomial",E=N,data=counts.sum.reg.df,

control.predictor=list(compute=TRUE),control.compute=list(dic=TRUE))

inla.nb1.out=inla(formula.1,family="zeroinflatednbinomial1",E=N,

data=counts.sum.reg.df,control.predictor=list(compute=TRUE),

control.compute=list(dic=T))

## code for model with independent errors
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formula.tmp="y~"

for(i in 1:(n.strata-1)){

formula.tmp=paste(formula.tmp,"X.",i,"+",sep="")

}

formula.tmp=paste(formula.tmp,"X.52",sep="")

for(j in 1:n.strata){

formula.tmp=paste(formula.tmp,"+X.",j,".1",sep="")

}

formula.tmp.2=paste(formula.tmp,"+f(year,model=’ar1’,

replicate=stratum)",sep="")

formula.2.ind=as.formula(formula.tmp.2)

inla.nb.inderror=inla(formula.2.ind,family="nbinomial",E=N,

data=counts.sum.reg.df,control.predictor=list(compute=TRUE),

control.compute=list(dic=T))

## code for model with independent spatial and temporal errors

formula.tmp="y~"

for(i in 1:(n.strata-1)){

formula.tmp=paste(formula.tmp,"X.",i,"+",sep="")

}

formula.tmp=paste(formula.tmp,"X.52",sep="")
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for(j in 1:n.strata){

formula.tmp=paste(formula.tmp,"+X.",j,".1",sep="")

}

formula.3.ind=as.formula(formula.tmp)

inla.nb.inderror.all=inla(formula.3.ind,family="nbinomial",

E=N,data=counts.sum.reg.df,control.predictor=list(compute=TRUE),

control.compute=list(dic=T))

#moran’s I test on residuals from model with independent

#spatial errors and AR1 model

mat.moran=matrix(0,52,53)

for(v in 1:53){

for(k in 1:n.strata){

mat.moran[k,v]=counts.sum.reg.df$y[k*v]-inla.nb.inderror

$summary.fixed[k,1]+(inla.nb.inderror$summary.fixed[k+52,1]*v)

}

}

results.moran=rep(0,53)

for(a in 1:53){

moran.tmp=Moran.I(mat.moran[,a],W,na.rm=T)

results.moran[a]=moran.tmp$p.value

}
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plot(seq(1,53),results.moran, ylab="p-value from Moran’s I test",

xlab="Year")

abline(h=.05,col="red")

## Kriging to look at variograms based on residuals

strats.moran=strats@data[-c(11:13,20,50,57,62,65,68,69,29,30,33,

42,44,60,61,63,66,67,73,74,75),]

coords=coordinates(strats)

coords=as.data.frame(coords)

coords$STR_ID=strats@data$STR_ID

coords$x=coords$V1

coords$y=coords$V2

coords.rm=coords[-c(11:13,20,50,57,62,65,68,69,29,30,33,43,44,

60,61,63,66,67,73,74,75),-c(1,2)]

df.moran=as.data.frame(mat.moran)

df.moran$STR_ID=c(seq(1,18),seq(20,50),75,76,77)

moran.df=merge(df.moran,coords.rm,by= "STR_ID")

center_grid=data.frame(x=moran.df[,55],y=moran.df[,56])

for(i in 1:53){

grid.cnt=matrix(c(moran.df$x,moran.df$y,moran.df[,i+1]),52,3)

geodat=as.geodata(grid.cnt)

summary(geodat)
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ini.val=matrix(c(100000,60000,50000,40000,30000,20000,10000,

5000,1,1,1,1,1,1,1,1),8,2)

varog=variog(geodat,coords=geodat$coords,data=geodat$data,

trend="cte", max.dist=5)

varfit=variofit(varog,ini.cov.pars=ini.val,fix.nug=T)

x11()

plot(varog)

lines(varfit,col=2)

}

### Time series analysis

for(i in 31:52){

win.graph(width=4.875,height=3)

acf(mat.moran[i,],na.action= na.pass,ci.type=’ma’)

win.graph(width=4.875,height=3)

pacf(mat.moran[i,],na.action=na.pass)

}

#### View Results of Model 1

summary(inla.1.1.out)

summary(inla.nb1.out)

source("plot.coef.0.R")

plot.coef.0(inla.nb1.out,unique.strata)
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plot.coef.0(inla.1.1.out,unique.strata)

x11()

source("plot.trend.inla.4.R")

layout(matrix(1:2,1,2))

plot.trend.inla.4(scaup.df,counts.reg.df,inla.nb1.out,

unique.strata,18,FALSE)

plot.trend.inla.4(scaup.df,counts.reg.df,inla.nb1.out,

unique.strata,45,FALSE)

### Graph to indicate net gain/loss over 52 years

strat.bound=readShapePoly("MAS_stratum_boundaries.shp")

net.loss=matrix(seq(1:52),52,4)

net.loss[,2]=inla.nb1.out$summary.fitted.values[1:52,1]

net.loss[,3]=inla.nb1.out$summary.fitted.values[2705:2756,1]

net.loss[,4]=net.loss[,3]-net.loss[,2]

#color=brewer.pal(6,name="Greys")

plot(strat.bound[-c(11:13,20,50,57,62,65,68,69,29,30,33,

43,44,60,61,63,66,67,73,74,75),],lwd=2)

net.loss[19:49,1]=seq(20,50)

net.loss[50:52,1]=c(75,76,77)

#cooresponding stratum

net.color.1=strat.bound[c(17,26,1,2,10,28),] #18, 20, 14, 13, 3, 76

net.color.2=strat.bound[c(36,34,18,9,41, 7, 24),] #26, 25, 15, 17, 27, 16, 77

net.color.3=strat.bound[c(6,48,13,31,21,42,46),] #6, 40, 5, 22, 7, 37, 28

net.color.4=strat.bound[c(22,35,49,38,27,51,47),] #23, 50, 35, 31, 24, 29, 33

net.color.5=strat.bound[c(52,4,8,23,39,40,19),] #38, 4, 10, 21, 36, 32, 1
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net.color.6=strat.bound[c(32,37,45,55,15,53,25),] #75, 30, 34, 41, 2, 39, 8

net.color.7=strat.bound[c(5,59,72,16,71,70,58),] #11, 42, 49, 9, 48, 44, 43

net.color.8=strat.bound[c(56,3,54,64),] #47, 12, 45, 46

plot(strat.bound[-c(11:13,20,50,57,62,65,68,69,29,30,33,43,44,60,61,63,66,67,

73,74,75),],lwd=3)

plot(net.color.1,col="purple4",add=T)

plot(net.color.2,col="royalblue",add=T)

plot(net.color.3,col="seagreen",add=T)

plot(net.color.4,col="seashell",add=T)

plot(net.color.5,col="khaki",add=T)

plot(net.color.6,col="orange",add=T)

plot(net.color.7,col="red",add=T)

plot(net.color.8,col="red4",add=T)

map("world",add=T)

legend(locator(1),legend=c("-25.8 : -3.9","-3.7 : -1.7","-1.5 : -0.5",

"-0.3 : -0.01","0.0 : 0.4","0.4 : 2.1","2.4 : 3.9","4.2 : 6.5"),

fill=c("purple4","royalblue","seagreen","seashell","khaki","orange","red","red4"))

##Significant changes (%95) since 1957

color.1=strat.bound[c(1,9,18,21,26,35,17,24),]

color.2=strat.bound[c(71,64,58,54),]

plot(strat.bound[-c(11:13,20,50,57,62,65,68,69,29,30,33,43,44,60,61,63,66,67,73,

74,75),],lwd=2)

plot(color.1,col="lightblue",add=T)
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plot(color.2,col="red",add=T)

map("world",add=T)

legend(locator(1),legend=c("increasing","no change","decreasing"),

fill=c("red","white","lightblue"))
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