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BIOENGINEERING FOR WATER CLEANUP: 

STATE-OF-THE-ART ASSESSMENT 

1.0 INTRODUCTION 

A national sense of urgency with regard to cleaning up contaminated water has been 

motivated by recent legislation promulgated as a result of adverse public health and 

environmental impacts. However, current technologies for cleaning up contaminated water 

containing hazardous organic substances are often expensive, inappropriate for specific 

conditions, or ineffective in handling complex mixtures of pollutantsf03 Bioengineering (biological 

engineering), in the context of water cleanup, is the use of biological principles of 

thermodynamics, kinetics, and toxicology for applications to the conceptualization, design, 

management, monitoring, and economic evaluation of engineered systems to accomplish treatment 

of water in order to protect public health and the environment from the adverse effects of target 

chemicals. Non-pathogenic organisms, including bacteria, fungi, and algae, individually too small 

to be seen by the unaided human eye (referred to as microorganisms), are the primary agents 

utilized by the biological engineer to remove chemicals from contaminated water. Some of the 

most promising technologies for solving problems associated with contaminated water involve the 

use of these biological treatment systems, i.e., use of the technology referred to as bioremediation. 

The biodegradation of organic compounds has been used for hundreds of years for the treatment 

ofhwnan wastewaters (e.g., using sewage farms and trickling filters), with treatment effectiveness 

detennined on the ability of the treatment process to reduce the levels of oxygen-demanding 

substances and nutrients in the waste effluent (in order to prevent putrefaction and eutrophication 

of the receiving waters) as well as to reduce the pathogenic nature of the waste effluent In 1907, 

microorganisms were first identified as playing an important part in the biodegradation process. 

In 1914, the now commonly-used activated sludge process for the treatment of wastewater was 

developed in England. Since that time, collaboration by microbiologists, biochemists, 

environrriental engineers, and chemical engineers has developed the field of bioremediation to its 



present state as an effective means for treatment of domestic wastes and selected industrial waste 

streams. However, the application of existing bioengineering systems and processes, which have 

been developed for the removal of organic materials in general, to the treatment of specific 

xenobiotic, recalcitrant and persistent organic compounds found in contaminated water, is an 

area of high-priority research in the environmental field. Reactor studies have shown that the 

prediction of the fate of a single organic compound in a complex wastewater is difficult to achieve. 

Also, water with many types of contaminants is more difficult to remediate than a water 

contaminated with only one pollutant. Challenges still remain for the successful use of 

bioremediation in the treatment of specific organic pollutants within current regulatory 

requirements. 

Bioremediation, as accomplished through biodegradation, refers to the remedial process 

by which an organic compound, called the parent compound (which includes both naturally 

occurring and xenobiotic compounds), is biotransformed (i.e., mineralized) in a treatment reactor 

(which may be an above-ground reactor (contained vessel) or an in situ treatment system) by the 

action of living microorganisms or their enzymes to carbon dioxide, water, and other inorganic 

constituents (if elements other than carbon, hydrogen, and oxygen are present in the parent 

compound), resulting in ultimate biodegradation or mineralization of the parent compound. 182, 

183 A portion of the constituents of the parent compound will also be assimilated into the biomass 

of the organisms in a process called cell synthesis, or anabolism. If the microorganism produces 

energy during the degradative process, the process is referred to as catabolism. Though 

bioremediation is usually accomplished under aerobic conditions, anaerobic metabolic activities 

are used in some bioremedial techniques 184,196-198; anaerobic degradation results in the 

transformation of parent compounds to intermediates that are more easily biodegraded upon 

exposure to an environment containing molecular oxygen (0 ~. but that will accumulate as 

incompletely oxidized organic substances such as organic acids and gaseous products such as 
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methane or hydrogen gas in an environment without molecular oxygen. 

Under natural conditions, biodegradation may not proceed to ultimate biodegradation. 

Since biodegradation is frequently a stepwise process involving many enzymes and many species 

of microorganisms, the parent compound may be only changed to an intermediate transformation 

product This transformation product may be more, less or equally as toxic as the parent 

compound, as well as more or less mobile in the environment, thus generating its own 

environmental and health consequences. 196 Acceptable biodegradation occurs when the parent 

compound is converted to the extent that undesirable properties are no longer manifested 12. 

Information on detoxification of a parent compound is obtained using chemical and bioassay 

analyses.186, 128 Before bioremediation is implemented at a contaminated site, degradation 

pathways for specific constituents present should be identified, and/or detoxification 

demonstrations using bioassays should be conducted to ensure that environmental and health 

protection can be achieved. During performance of a bioremedial process, monitoring should be 

implemented to ensure that toxic biotransformation products are not accumulating in the system 

or in the effluents. 

Complete degradation of a specific organic compound usually requires an association, or 

consortia, of microorganisms, in which individual types of organisms carry out different 

specialized reactions that, when combined, can lead to the complete mineralization of a specific 

compound.196 Biological systems are complex mixtures of thousands of biochemical reactions 

being conducted by many biological organisms; this complexity produces an outstanding ability 

for the systems to adapt to the treatment of a wide variety of pollutants, with the microorganisms 

using the pollutants as energy sources for metabolic and reproductive activities. 158 The release of 

large quantities of synthetic compourids into the environment has resulted in the evolution of new 

degradative functions by indigenous microorganisms 40, which may have resulted from the 

transfer of genetic materials, since microbial populations in nature seem to be capable of 
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substantial movement of genes between both the same and different genera and species. 96, 188 

Interacting microbial consortia may also have evolved to degrade compounds introduced to the 

environment, since a community of microorganisms is more likely to result in the degradation of 

a specific waste constituent than a single microorganism. 188 New techniques developed in the field 

of genetic engineering are enabling the bioengineer to develop microorganisms with new 

degradative capabilities, rather than depend on natural adaptations by indigenous 

microorganisms. 

Where possible, bioremedial technologies are developed to utilize indigenous 

microorganisms that have been demonstrated to metabolize pollutants present in a specific 

contaminated water or bioreactor system. In these cases, the number and/or rate of degradative 

activity of the microorganisms, and thus the speed at which a pollutant is broken down, may be 

increased in several ways, such as by adding nutrients or other amendments to the contaminated 

water or bioreactor system, in a process referred to as biostimulation. In other cases, acclimated 

or genetically engineered microorganisms known to metabolize the specific pollutants present can 

be introduced, if necessary, to stimulate biodegradation, in a process referred as 

bioaugmentation. 

Bioremediation is an attractive remedial technique because it is a "natural process," and 

the residues from biological processes, including the degradation of xenobiotic compounds, are 

usually geochemically cycled through the environment as harmless products (e.g., carbon dioxide 

in the carbon cycle). The use of bioremediation, especially when used for in situ ground-water 

cleanup, minimizes site disruption and reduces or eliminates costs associated with transportation, 

handling, and disposal of recovered contaminants. In addition, compared to other physical or 

chemical processes used to treat hazardous wastes, in which contaminants are merely transferred 

from one environmental medium to another, bioremediation can degrade and destroy the target 

chemicals. 

Common assumptions concerning bioremediation often include unrealistic expectations of 
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what the technology can accomplish. Though microorganisms have been demonstrated in the 

laboratory and at some contaminated sites to be extremely versatile in destroying organic 

compounds that are major environmental pollutants, non-specialists often assume that nearly all 

wastes and sites contaminated with biodegradable contaminants can be bioremediated. 3, 172 They 

may believe that if microorganisms with appropriate metabolic capabilities are added to any 

contaminated environment, if growth of indigenous organisms is enhanced with nutrients or 

oxygen, or if a supplemental carbon source is added to encourage cometabolism of contaminants, 

the site or waste can be successfully treated with bioremediation. However, many compounds that 

are readily destroyed by microorganisms in the laboratory may not be so easily degraded in a 

contaminated environment, Le., the determination of whether or not a chemical is biodegradable 

reflects laboratory knowledge more often than it reflects engineering information and field 

experience (CA). For example, microorganisms that can degrade compounds that are considered 

recalcitrant may exist in natural environments, but they may not be present at a specific site where 

the recalcitrant compounds occur. Other substances may be present that are toxic to the 

microorganisms, or the environment may contain or be subject to biologically unfavorable 

conditions that hinder or prevent bioremediation. Microbial activity is often impeded by either very 

high or very low concentrations of the target chemical. 192 In addition, the target chemicals may be 

sorbed, dissolved in nonaqueous phase liquids (NAPLs), present in a physically inaccessible state, 

or bound in some way that prevents microorganisms with biodegradative enzymes from 

accomplishing biodegradation of the chemicals by preventing transport of the chemicals into the 

bacterial cell 3. Some pollutants are resistant to biological degradation due to their size or 

chemical composition.192 Therefore, physical and chemical characteristics, as well as the 

biological characteristics, of an engineered bioremedial system will determine the rate and extent 

of biological remediation by controlling the expression of inherent microorganism capabilities of 

the system. The success of bioremediation is site-specific, and a thorough understanding of the 
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biological, physical, and chemical characteristics of the specific system to be remediated is 

required Ultimate limitations to the use of bioremediation for a specific contaminated water 

source will usually be related to: (1) time required for cleanup, (2) level of cleanup attainable, and 

(3) cost of cleanup using bioremediation. 

Bioremediation in many cases should have an economic advantage for cleanup of 

contaminated water because of low capital, energy, and materials costs. 192 Bioremediation is also 

relatively "low-tech", does not have intensive labor requirements, and does not require costs f.or 

transportation of the hazardous contaminants. However, sometimes this cost advantage may be 

offset by factors such as high testing costs to characterize the system and possible limiting factors, 

additional technologies required for use in a treatment train to address multiple contaminants, 

long periods of time required to accomplish cleanup to regulatory levels, monitoring costs to 

provide the ability to quickly discover problems and implement changes, and contingency costs to 

cover possible upsets and failures in the system that may result in the system to stop performing 

according to specifications. 192 However, since estimated costs to cleanup present contaminated 

sites is so large, the use of bioremediation as a potentially inexpensive and easy technique is being 

recommended for development by the U.S. Environmental Protection Agency as a means to save 

billions of dollars in remedial costs. 71, 192 

Though bioremediation is a potentially efficient and cost effective remedial technology, 

there are still many research questions remaining before this technology can reach its full 

potential for use. In this state-of-the art assessment of bioengineering the cleanup of contaminated 

waters, the following areas are addressed: (1) important technical issues; (2) bioengineering 

technologies; (3) important regulatory issues; and (4) current state of knowledge regarding 

applications and limitations for bioengineering, with recommendations for future approaches for 

water cleanup. This review addresses the bioremediation of waters that have been contaminated in 

the past, such as polluted ground water, as well as bioremediation of wastewaters, which is used 
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at the source to prevent contamination of ground and surface waters. This review does not 

address the use of microorganisms for the conversion of toxic forms of metals to less toxic forms, 

nor does it address the use of microorganisms for the accumulation of toxic metals, resulting in 

their removal from a contaminated water system, though microorganisms do have the capabilities 

to accomplish these potentially useful remedial actions. 192 

2.0 TECHNICAL ISSUES 

2.1 Introduction 

In real world situations, the extent of biodegradation within a fIxed time limit is an 

important component in the determination of the feasibility of use of bioremediation for a specific 

waste, i.e., biodegradation should be considered and evaluated as a rate process. For example, 

biodegradation of some compounds, such as urea to ammonia and CO 2, can be accomplished in 

seconds or minutes, biodegradation of lignin by white-rot fungi may take months, while tree resins 

may resist biodegradation for centuries. Basic engineering questions related to the time required 

for treatment and the fmal effluent concentrations that can be achieved cannot be reliably 

answered for biological treatment of many environmentally signifIcant chemical compounds, even 

when prior laboratory or pilot-scale studies have been implemented. 20 

An example of the lack of integration of science and engineering disciplines regarding 

biological treatment concerns the use of pure-culture microorganism studies (one organism type) 

by scientists versus the use of mixed-culture systems from natural environments by engineers.20 

Pure-culture studies, often with only one carbon source, have been used to characterize biological 

degradation of many compounds (thousands of papers have been published in this area; reviews 

of these studies are available. 39, 80, 108-110, 125, 169 However, the mixed-culture microbial systems 

used in waste treatment systems are much more complex, and their system behavior and 

performance is much more difficult to predict The design of biotreatment systems by the 

bioengineer has traditionally focused on the use of mixed-culture systems for the removal of 
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organic materials in general, as measured as the removal of biochemical oxygen demand (BOD), 

chemical oxygen demand (COD), and/or total organic carbon (fOC). However, the kinetics of 

removal of specific organic compounds may be very different from and unrelated to the removal of 

these overall parameters. Therefore the focus of environmental microbiology, which forms the 

microbial basis of biological engineering technologies, has traditionally been supportive but 

insufficient for solving the types of problems inherent in complex environmental systems. 

Bioengineering approaches have often been based upon inappropriate hypotheses. For 

example, the most commonly used test for biodegradability that is used in bioremediation systems 

has been and still is the disappearance test, i.e., if the target chemical was not found or its amount 

decreased in the water, the observation was incorrectly interpreted as biodegradation. This 

functional definition of bioremediation has given a false sense of security, since the contaminant 

may not be completely transformed to harmless by-products. For example, the commonly-used 

cleaning solvents, tri- and tetrachloroethylene, may be transformed into the leukemia-causing 

agent, vinyl chloride, a persistent intennediate in anaerobic (oxygen-deficient) environments. 

Bioengineering methods have also often been based upon inadequate methods of 

measurement of biodegradation. Using the measurement of disappearance from water as the 

criterion for bioremediation also ignores the roles of competing mechanisms that influence the fate 

of a target compound, such as stripping/volatilization, sorption, and non-biological (abiotic) 

chemical reactions. In the above example, both trichloroethene and vinyl chloride have strong 

tendencies to volatilize. Therefore, measurement of physical abiotic loss mechanisms and 

partitioning of target organic chemicals into other environmental compartments in a contaminated 

water source or treatment system should be used in conjunction with conventional degradation 

studies to ensure that information generated from the investigation of degradation represents only 

biological degradation of target compounds, and not other possible disappearance mechanisms of 

the chemicals in the system. 

Thus, the prediction of the effectiveness of a bioremedial process for a specific organic 
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compound at field-scale is unfortunately, in many ways, still more of an art than a science. J.W. 

Blackburn, in ~ review of the uncertainties associated with the prediction of performance of mixed­

culture systems at the reactor level, ecological level, cellular level, and molecular level 20, has 

proposed the following research approach to reduce these uncertainties: (1) development of 

molecular tools for community structure analysis (e.g., by using gene probes), in order to 

determine more accurate kinetic relationships and greater scale-up reliability; and (2) 

development of improved lab-scale experimental protocols that will allow the identification of 

critical causative processes and mechanisms, with emphasis on potential adaptability of microbial 

systems, potential non-linearity of processes, experimental reactor design for system data 

collection, and instrumentation required for continuous data collection of important variables. Dr. 

Blackburn emphasized especially the difficulties of studying a complex, undisturbed operating 

system without disturbing the system. 

22 Approaches to the Determination of Bioremediation Potential 

Measurement of physical abiotic loss mechanisms and partitioning of organic constituents 

in a contaminated water source or treatment system should be used in conjunction with 

conventional degradation studies (Le., the use of a chemical mass balance approach) to ensure 

that information generated from the investigation of degradation represents only biological 

degradation of parent compounds, and not other possible disappearance mechanisms of the 

constituents in the system.142,185 Contaminated water is a complex system and may consist of 

several components, including: (1) the aqueous phase; (2) an interface with the atmosphere; (3) 

inorganic solids (e.g., sediments, suspended solids); (4) organic solids (e.g., microbial mass, 

organic humic materials); and (5) non-aqueous phase liquids (e.g., oils, grease). An organic 

waste constituent in a contaminated water source may be associated with one or more of these 

components. The environmental fate of the constituent is dependent on the phase with which it is 

associated. A chemical mass balance approach to the evaluation of the fate and transport of a 
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target chemical in a specific water system identifies mechanisms by which a chemical may be 

removed from the water compartment without being biodegraded, and therefore provides a tool 

for the biological engineer to develop more accurate infonnation concerning the rate and extent of 

bioremediation, and avoids an incorrect interpretation of data based upon inadequate methods of 

measurement. Biotransformation results for specific compounds from laboratory studies are 

often very different from results observed in pilot-scale, full-scale, and even other laboratory 

studies when a chemical mass balance is not used because of the differences in relative volumes of 

water, sediment, oil, and air phases in different test systems. 

Treatability studies for water sources contaminated with organic wastes are used to 

provide specific infonnation conceming the potential rate and extent of bioremediation by 

providing infonnation on fate and behavior of specific organic constituents among the phase 

components present at a specific contaminated site. 143 Treatability studies can be conducted in 

laboratory microcosms, in bench scale or pilot scale facilities, or in the field. To determine 

whether a specific contaminated water can be treated using bioremediation, information from 

treatability studies is combined with infonnation concerning site and waste characteristics in 

order to determine potential applications and limitations of the technology. 

Information from treatability studies is also used to prepare an approach to the 

engineering design and implementation of a bioremediation system for a specific contaminated 

water source. An engineering design to accomplish bioremediation is generally based upon 

information from simulations (e.g., mathematical modeling) or estimates of degradation reactions 

(both biotic and abiotic) and pathways of migration of chemicals. These simulations or estimates 

are generated from treatability data and site/water characterization data, in order to: (1) develop 

techniques to maximize mass transfer. of chemicals affecting microorganism activity (addition of 

mineral nutrients, oxygen, additional energy sources, pH control products, etc., and removal of 

toxic products) in order to enhance bioremediation; and (2) design a cost-effective and efficient 

monitoring program to evaluate effectiveness of treatment. 
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2.3 Determination of Biodegradation Potential 

During the perfonnance of a treatability study, biodegradation, detoxification, and 

partitioning (immobilization) processes should be evaluated. as they affect the fate and behavior of 

organic constituents in the specific contaminated. water system. To assess the potential for 

biological degradation at a specific contaminated. site, the treatability studies should incorporate 

both chemical mass balance and mineralization approaches to determine the environmental fate 

and behavior of the constituents in the specific water system. Rate of degradation is calculated by 

measuring the loss of the parent compound (chemical mass balance approach) and the 

production of carbon dioxide with time of treatment (mineralization approach), as well as 

production and disappearance of intermediate products (chemical mass balance approach). 

Abiotic (poisoned) controls are also used in order to evaluate the mechanism(s) of degradation. 

Results can be reported, for example, as rate/extent of biological degradation corrected. for 

volatilization and for other abiotic losses. The degradation rate is often reported as half-life, 

which represents the time required for 50 percent of the compound to disappear, based upon a 

first-order kinetic model 

2.4 Assessment ofTransformationlDetoxification 

Transformation refers to the partial alteration of hazardous constituents into intermediate 

products. Intermediate products may be less toxic or more toxic than the parent compound, and 

therefore the rate and extent of detoxification of the contaminated. water source should be 

evaluated.186, 199 For example, the degradation pathway of the single chlorinated. compound, 

trichloroethylene (feE) leads to the production of six chlorinated. volatile hydrocarbons. The 

degradation of tetrachloroethylene (PCE) leads to the production of seven chlorinated volatile 

hydrocarbons, while the degradation.of I,I,I-trichloroethane (I,I,I-TCA) leads to the production 

of four chlorinated. hydrocarbons. Two of the metabolic products formed, vinyl chloride and 1,1,­

dichloroethane (1, 1-DCA), have been classified as a carcinogen and a probable carcinogen, 

respectivelyJ14 Vinyl chloride is the most persistent of the compounds under anaerobic 
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conditions, but can be rapidly degraded under aerobic conditions. 66, 94 Management of a 

bioremediation system to accomplish treatment of these compounds in order to protect human 

health and the environment should incorporate considerations of the detoxification of the parent 

compounds as well as their disappearance. For example, for these halogenated organic 

compounds, a bioremediation system could consist of maintenance of an anaerobic environment 

followed by aeration after anaerobic degradative processes have reduced the levels of parent 

compounds to acceptable levels. 

To assess detoxification, bioassays may be used to quantify toxicity by measuring the effect 

of a chemical on a test species under specified test conditions. 128 The toxicity of a chemical is 

proportional to the severity of the chemical on the monitored response of the test organism(s). 

Toxicity assays utilize test species that include rats, fish, invertebrates, microorganisms, and 

seeds. The assays may utilize single or multiple species of test organisms. The use of a single 

bioassay procedure does not provide a comprehensive evaluation of the toxicity of a chemicals in a 

water/chemical-impacted system. Often a battery of bioassays is utilized that may include 

measurements of effects on general microbial activity (e.g., respiration, dehydrogenase activity, 

A TP analysis, C02 evolution) as well as assays relating to activity of subgroups of the microbial 

community (e.g., nitrification, nitrogen fixation, cellulose decomposition). Bioassays utilizing 

organisms from different ecological trophic levels may also be used to determine toxicological 

effects. However, use of a single assay as a screening test to identify relative toxicity reduction in 

the environment is a commonly used procedure. Assays using microorganisms are often used due 

to their speed, simplicity, ease in handling, cost effectiveness, and the ability to use a statistically 

significant number of test organisms, which is required to detect the effects of potentially toxic 

materials in the environment 59, 127 _ 

Two microbial bioassays that have been used to evaluate toxicity of wastes in water 

systems are the Ames Salmonella typhimurium mammalian microsome assay and the Microtox™ 
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test system. The Ames assay is a measure of the mutagenic potential of hazardous compounds 5, 

134 and has been widely used to evaluate environmental samples. 186 A high correlation has been 

shown between carcinogenicity and mutagenicity, where about 90% of known carcinogens tested 

mutagenic in the Ames assay.135 Special strains of Salmonella typhimurium that require histidine 

to grow are used to test for mutagenicity. When plated on a histidine-free medium, the only 

bacteria able to form colonies are those that have reverted to the "wild" ~tate and are able to 

produce their own histidine. Without the addition of test chemicals, this back mutation occurs at a 

rate specific to each strain type (spontaneous reversion rate). The addition of chemicals that are 

mutagenic increases the reversion rate. Several dose levels of a chemical, mixture of chemicals, or 

an environmental sample are added to obtain a dose response. Some mutagens act directly on the 

bacterial cells while others require activation by mammalian microsomes. These micro somes are 

generally obtained from liver extracts of Aroclor 1254-induced rats (i.e., rats injected with the 

polychlorinated biphenyl (PCB), Aroclor 1254). The extract, referred to as the S-9 fraction, 

contains enzymes that metabolically convert certain chemicals to active mutagens, simulating the 

activity that occurs in living mammalian systems. Several strains of Salmonella typhimurium have 

been developed in order to detect different types of mutagens. The recommended strains for 

general mutagenicity testing include TA 91, TA 98, TA 100, TA 102. TA 97 and T A 98 detect 

frameshift mutagens. T A 100 detects mutagens causing base-pair substitutions, while T A 102 

detects a variety of mutagens not detected by the other strains. 

The Microtox™ assay is an aqueous general toxicity assay that measures the reduction in 

light output produced by a suspension of marine luminescent bacteria in response to an 

environmental sample. 32 Bioluminescence of the test organism depends on a complex chain of 

biochemical reactions. Chemical inhibition of any of the biochemical reactions causes a reduction 

in bacterial1uminescence. Therefore, the Microtox™ test considers the physiological effect of a 
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toxicant and not just mortality. Results from the Microtox test have in many cases shown good 

correlation with other bioassays such as fish lethality tests and daphnid static bioassays. 31 

25 Assessment 0/ Partitioning 

Calculation of the rate of decrease of parent compound by itself does not provide complete 

infonnation concerning mechanisms and pathways by which organic constituents are interacting 

within the water environment185 Further infonnation is necessary to understand whether a 

constituent is simply transferred from one phase (e.g., solid phase)to another (e.g., air phase) 

through a process of interphase transfer, or is chemically altered so that the properties of the 

parent compound are destroyed. Evaluation of the fate of a constituent in a contaminated water 

source therefore also requires identification and measurement of the distribution of the constituent 

among the physical phases or components that comprise the system as well as differentiation of 

the mechanisms by which the constituent may be chemically altered in the system. The distribution 

among phases may be predicted with partitioning coefficients that describe the tendency of the 

waste constituent to be associated with, and to transfer among, particular environmental phases. 

Partition coefficients are calculated as the ratio of the concentration of a chemical in the solid, oil, 

or air phase to the concentration of a chemical in the water phase, and are expressed as K 0 

(oil/water, or Kow, the octanoVwater partition coefficient, which indicates the tendency to be 

associated with organic matter), K h (air/water), and Kd (solid/water). 

2 .6 Use o/Treatability Studies 

Either laboratory microcosm, bench scale or pilot scale reactors, or full-scale reactors 

may be used to generate treatability data. The set of experimental conditions, e.g., temperature, 

waste concentration, etc., under which the studies were conducted should be presented along with 

experimental results. 

Treatability studies usually represent optimum conditions with respect to mixing, contact of 

microorganisms with waste constituents, and homogeneous conditions throughout the treatability 
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reactor. Therefore, treatability studies provide infonnation concerning potential levels of 

treatment achievable at a specific site. However, under full-scale operating conditions, the rate 

and extent of bioremediation is generally limited by such factors as rate of mass transfer of 

oxygen, nutrients, and other amendments to the contaminated soil, accessibility and bioavailability 

of the contaminants to the microbial population, removal of microbial degradation products, and 

environmental conditions. These limitations may not have been adequately addressed in 

treatability testing, due to difficulties in simulating field-scale conditions. 

2.7 Control and Optimization of Bioremediation 

The primary means a bioengineer has for controlling and optimizing biodegradation 

processes in treatment systems are by selecting appropriate microorganisms and by providing 

proper environmental conditions, i.e., using bioaugmentation and/or biostimulation as 

appropriate for the specific waste and system. Examples of the use of bioaugmentation and 

biostimulation are given in Tables I and 2. A new tool for use in bioremediation is genetic 

engineering, which may potentially produce microorganisms that are more robust than natural 

strains and thus result in improvements in process improvement. However, at this time, if a 

bioengineer is to improve and optimize performance of a bioremedial system, he/she must develop 

a complete understanding of the biology, chemistry, and engineering involved in bioremedial 

processes. 

The determination of effectiveness of biostimulation or bioaugmentation by a certain 

amendment or environmental change is not necessarily a straight-forward procedure. For 

example, a study may indicate that the degradation of crude oil was enhanced by increasing the 

temperature of the system.1l4• However, without an understanding of the mechanism of the 

enhancement, the validity of the conclusion for other situations may be in doubt The enhancement 

of degradation could have been induced by shifts in the members of the microbial community, 

changes in catabolic pathways by a microorganism, increases in enzyme reaction rates, or 

increases in the availability of the hydrocarbon substrates to the microorganisms due to physical 

15 



changes of the oil, including dispersion and emulsification. Also, the separation of biological 

degradation as a removal mechanism from abiotic loss mechanisms must be determined 

In order to accomplish bioremediation, the physical environment of the microorganisms 

responsible for the desired degradation must be conducive to their functioning. Microorganisms 

responsible for biodegradation may include indigenous microorganisms or microorganisms that 

must colonize the site in order to be active in the biodegradation process. An evaluation of the 

environment with respect to stress tolerable to indigenous microorganisms or with respect to 

conditions that allow colonization and maintenance of an active population of colonizing 

microorganisms is required to assess the potential for biodegradation. Critical environmental and 

biological factors that can be evaluated, and in some cases managed, for the enhancement of 

bioremedial processes include 17, 45: 

(1) Carbon source; 

(2) Electron donors; 

(3) Electron acceptors; 

(4) Nutrients; 

(5) Salinity 

(6) pH; 

(7) Temperature; 

(8) Phase interfaces; 

(8) Mixing and mass transfer; 

(9) Solids (Le., microorganisms) retention time (SRT); 

(10) Concentrations of toxic or inhibitory compounds; 

(11) Concentrations of contaminants; and 

(11) Microbial populations. 

2.7.1 Carbon Sources, Electron Donors, and Electron Acceptors 

Non- halogenated organic compounds generally represent reduced forms of carbon, 
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making degradation by oxidation energetically favorable. An organic chemical is said to be 

reduced if it undergoes a net gain of electrons as a result of a chemical reaction (electron 

acceptor), and is said to be oxidized if it undergoes a net loss of electrons (an electron donor). 

Heterotrophic organisms (i.e., organisms that obtain their carbon from organic carbon, which 

includes humans and most bacteria, in contrast to autotrophs, which obtain their carbon from 

carbon dioxide in photosynthetic processes), oxidize organic compounds to obtain energy in a 

process called respiration. 196 In this process, electrons from the oxidizable organic compound 

(i.e., the substrate, which is the electron donor) are transferred to and reduce an electron 

acceptor. The electron acceptor may be an inorganic or organic compound During this electron 

transfer process, usable energy for the organism is obtained through a complex series of 

oxidation-reduction (redox) reactions. The oxidation of organic compounds coupled to the 

reduction of molecular oxygen is referred to as aerobic heterotrophic respiration. When 

molecular oxygen is unavailable (i.e., under anaerobic, or more precisely, anoxic, conditions), the 

oxidation of organic compounds is coupled with inorganic or organic electron acceptors other 

than oxygen. Denitrifying bacteria can use nitrate (NO 3-), sulfate-reducing bacteria can use 

sulfate (S04=), while methanogens can use C02 as an electron acceptor in the production of 

methane. The potential energy available from the use of different electron acceptors varies, and a 

higher energy yielding process will predominate if the required electron acceptor is present. 

In fermentation, which is a metabolic process that uses a series of enzyme reactions rather 

than the use an electron transport chain, an organic compound serves as both electron donor and 

electron acceptor, with a portion of the compound becoming a reduced end product and another 

becoming an oxidized product)7 A common example of this process is the alcoholic fermentation 

of starch to CO 2 (the oxidized product) and ethanol (the reduced product). 196 

In an engineered bioremediation system, aerobic organisms will degrade biodegradable 

organic matter as long as oxygen is available. 17,196 Electron acceptors tend to be used 
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successively in order of decreasing free energy yield. Therefore, if oxygen becomes depleted by the 

degradative process, and the other electron acceptors are present (i.e., nitrate, sulfate, and carbon 

dioxide), aerobic respiration will slow and eventually stop, while denitrifying organisms will 

become active and will use nitrate in the degradation of organic compounds until nitrate is 

depleted. Then sulfate reducers will become active as long as the sulfate concentration remains 

adequate, possibly leading to the production of sulfides. Mter depletion of sulfate, methanogens 

will form methane from acetic acid or carbon dioxide. Other electron acceptors such as iron or 

manganese may also be important in some anaerobic environments. 

Anaerobic treatment using CO 2 as the terminal electron acceptor (referred to anaerobic 

digestion) has been used extensively for the treatment of biological sludges produced in 

wastewater treatment plants. Anaerobic digestion is dependent on three stages (i.e., three 

metabolic groups, or consortia, of microorganisms) to accomplish biodegradation. 187 In the first 

stage, hydrolytic and acidogenic bacteria hydrolyze organic compounds to organic acids, 

alcohols, C02, and H2- The second metabolic group, called the H2-producing acetogenic 

bacteria, converts the various products formed by the first group into H 2, C02, and acetate. The 

third group involves the bacteria that utilize H 2, CQz, and acetate in the production of the fmal 

products CH4 and CO 2. The range of organic compounds that can be broken down by anaerobic 

digestion is large, and includes carbohydrates, proteins, lipids, and petroleum hydrocarbons such 

as benzene, toluene, styrene, naphthalene, acenaphthalene, and benzothiophene.83, 88, 90 

Methanogenic degradation of aromatic hydrocarbons usually is dependent on an acclimation 

period, during which time the microorganisms develop a capacity to degrade the compounds. 

Certain classes of compounds are degradable under specific redox conditions. For 

example, degradation of aliphatic hydrocarbons has not been reported without the presence of 

oxygen; oxidation of monoaromatic compounds have been demonstrated under denitrifying 

conditions4. 164; oxidation of toluene and xylene has been demonstrated under sulfate-reducing 
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conditions (though the accumulation of the reduced product hydrogen sulfide may inhibit the 

degradation process) 61,62; and an iron-reducing bacteria has been shown to able to degrade 

toluene, cresol, and phenol.131 Summaries of laboratory research with regard to anaerobic 

transformation of hydrocarbons involving microcosms and enrichment cultures have been 

prepared by D. Grbic-Galic. 88, 89 

Halogenated organic compounds (i.e., compounds containing chloride, bromide, fluoride, 

or iodide ions), which are common contaminants of water sources and are particularly 

troublesome because of their low solubility, toxicity, resistance to both biotic and abiotic 

transformations, and their tendency to accumulate in food chains, are susceptible to anaerobic 

degradation, and especially degradation by reductive processes, rather than the oxidative 

processes that are more commonly responsible for the degradation of organic compounds. 184 

Halogenated organic compounds are relatively oxidized by the presence of halogen substituents, 

which are highly negative, and thus are more susceptible to reduction. With increased 

halogenation, organic compounds become more likely to be reduced than oxidized. 214. In the 

reductive process, which occurs in anaerobic environments, halogenated compounds can lose 

halogens through a process called reductive dehalogenation. Specifically, dehalogenation by 

reduction is the replacement of a halogen on an organic molecule by a hydrogen ion. Reductive 

dehalogenation is a cometabolic process, and an electron donor compound, such as lactate, 

acetate, methanol, or H 2, must usually be added to stimulate the process. 24 Since reductive 

dehalogenation results in compounds with lower numbers of halogens, these products are more 

susceptible to further degradation by oxidative and hydrolytic processes. Classes of compounds 

shown to be susceptible to reductive dehalogenation processes include: (1) carboxylated benzenes; 

(2) oxygen-, nitrogen-, cyano-, and methylene-substituted benzenes; (3) chlorinated benzenes; and 

polychlorinated biphenyls (PCBs).120 

Anaerobic microbially-mediated reductive dehalogenation was observed about 25 years 
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ago by C.E. Castro and N.D. Belser,36 but has been intensively studied for only about a 

decade.198 As a remedial process for contaminated water sources, it is a new concept and still 

subject to field demonstrations. Research is currently being perfonned to better defme the basic 

mechanisms of reductive dehalogenation reactions, especially with regard to developing 

anaerobic microbial systems with faster dechlorination rates as well as evaluating the potential 

for applying the process to bioremediation. 184 A possible obstacle to the use of reductive 

dehalogenation is the foflnation of halogenated intennediate products that may themselves be of 

public health concem.138 Research studies have shown complete dehalogenation of some 

halogenated compounds 56, 72, but additional research is required to determine how effectively 

reductive dehalogenation can consistently reduce the levels of halogenated compounds to 

regulatory limits as well as result in the formation of non-toxic end products in complex water 

environments. Research areas that must also be addressed include: (1) methods to stimulate 

desirable metabolic sequences in contaminated systems through the intentional introduction of 

suitable electron donor and acceptor combinations 197 (for example, acetate has commonly been 

added as an electron donor in research studies 25); (2) identification of levels of nutrients required 

to meet the nutritional requirements of dehalogenating microorganisms 157; (3) identification of 

environmental factors and metabolic requirements that will result in complete reductive 

dehalogenation to non-toxic end-products 24; (4) use of engineered microorganisms with optimum 

dehalogenating activity 157; (5) development of cell-free enzymes capable of catalyzing reductive 

dehalogenation reactions 55; (6) evaluation of rates of reductive dehalogenation processes with 

regards to meeting treatment objectives within regulatory limitations, since rates by indigenous 

microorganisms appear to be slow 24; and (7) development of anaerobic microbial consortia that 

use reductive dechlorination for respiration rather than cometabolism, in order to increase 

transformation rates. 24 

Biodegradation potential of specific organic compounds is in part dependent upon the 
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aerobic/anaerobic status of the specific environment and the presence of specific electron 

acceptors. To assess the aerobic/anaerobic status of a contaminated water source or a treatment 

system, the redox potential, which reflects the potential for the transfer of electrons to a reducible 

material, can be measured by using a platinum electrode, or alternatively, by measuring oxidized­

reduced couples of certain materials, such as ferrous ion (Fe +2) and ferric ion (Fe +3). The 

platinum electrode, which is sensitive and reversible to oxidation-reduction conditions, is used in 

combination with a reference electrode; measurements, referred to as Eh values, are reported in 

volts. Well-oxidized environments have redox potentials ofOA to 0.8 V, while extremely reduced 

environments may have potentials of -0.1 to -0.5 ~8 

2.7.2 Nutrients 

Microorganisms also require an adequate supply of macro- and micronutrients for 

proper growth. Because many target chemicals are composed of a large percentage of carbon 

and low percentages of nitrogen and phosphorus, the rate and extent of biodegradation are often 

limited by low concentrations of nutrients in a water environment, and therefore nutrients must be 

added52, 123. Required macronutrients include phosphorus, nitrogen, and sulfur, while 

micronutrients (those required in minute quantities for growth) include many different substances, 

such as potassium, sodium, some metals (e.g., iron, magnesium, calcium, cobalt, potassium, 

molybdenum, and manganese), and vitamins (also referred to as growth factors). Required 

nutrients must be present and available to microorganisms in (1) a usable form; (2) appropriate 

concentrations; and (3) proper ratios. 58 Nutrient requirements of anaerobic microorganisms are 

generally lower than for aerobic organisms, because less biomass is formed. Requirements for 

nitrogen and phosphorus in anaerobic treatment processes have been determined to be in the 

C:N:P ratio of 700:5: 1, compared to a recommended C:N:P ratio of 120:10:1 for aerobic 

treatment processes. 

Bioengineers should attempt to determine which nutrients are required for a specific 
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process, as well as their optimal concentrations, though quantitative infonnation is often lacking. 

Further research by microbial ecologists is required to detennine nutrient requirements for 

different types of microorganisms that participate in biodegradation activities in order to be able 

to better control and predict the bioremedial process. 

Another approach to the optimization of microbial requirements is use of a 

thennodynamic engineering modeling approach for the detennination of the appropriate amounts 

of nutrients, electron acceptors and electron donors that must be supplied for growth of bacteria 

as well as for the estimation of the amounts of biomass and other products that will be formed. In 

a model developed by Dr. Perry McCarty of Stanford University 137. 142, calculations are made in 

which electrons from an electron donor are coupled with an electron acceptor to generate energy 

or used to synthesize biomass. The relative amounts of electron donor being oxidized for energy 

and being converted to biomass is established with an energy balance. The amount of energy 

released during oxidation of the electron donor must balance the amount of energy required to 

synthesize cell material. 24 

2.7.3 Salinity 

Increased salinity in water sources can adversely affect the growth and activity of 

microorganisms. 114 Each microbial species has a limited range of osmotic pressures that it can 

tolerate. Species tolerant to high concentrations of solutes, referred to as halophiles, are able to 

tolerate higher salinity levels because they have either developed the ability to synthesize enzymes 

that function normally only at high temperatures, or are able to raise their internal osmotic 

pressure with internal solutes in order to balance the osmotic pressure of the external 

environment.26 Fungi are generally more able to tolerate highly saline environments, including 

exposure to non-aqueous phases. 

2.7.4 pH 

Most microorganisms require a neutral or near neutral pH for optimal growth, though 
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specific microorganisms have their own optimum pH range. Aerobic microorganisms usually 

tolerate a wider range of pH than anaerobic microorganisms. 22 

pH and redox potential in some systems may jointly affect the extent of mineralization of 

organic compounds, since protons are often involved in biological oxidation/reduction reactions. 

For example, the mineralization of naphthalene and octadecane in sediments was shown to be 

enhanced by higher redox potentials and higher pH values, suggesting that aerobic 

microorganisms in the upper, oxidized sediments possessed the greatest potential for 

mineralization of these reduced substrates. 92 

2.7.5 Temperature 

Optimal temperatures for biodegradation may vary, according to the specific process. In 

conventional aerobic treatment, the optimal temperature ranges from 20° C to 25° C. For 

mesophilic anaerobic treatment, the optimal temperature is 35° C, and for thermophilic bacteria, 

the optimal temperature is 55° Co Also, biological processes exhibit a temperature dependency. An 

exponential increase in reaction rate is observed up to the optimum temperature, or temperature 

range. Above that temperature range, the reaction rate rapidly decreases. 98 

2.7.6 Phase Interfaces 

Phase interfaces have been recognized as sites of enhanced biodegradative activity. 114 At 

these interfaces, higher concentrations of contaminants are often found. With liquid-gas interfaces, 

such as are found in lakes and ocean waters, compounds accumulate in the liquid surface micro­

layer. The addition of inert solids to bacterial cultures and water environments also results in 

enhanced biodegradation and increase in cell numbers. Microbial cells naturally adhere to and 

colonize virtually any surface immersed in an aquatic environment 65 The tangled mass of cells 

that develop on a surface are referred to as a biofilm. These liquid-solid interfaces not only 

provide surfaces for the attachment of microorganisms, but also ion-exchange and adsorption 

sites for contaminants, microorganisms, and their enzymes. Adsorption of contaminants to solids 
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may protect them from biodegradation, or conversely, degradation may be enhanced if 

contaminants are sorbed to a surface that is readily colonized by microorganisms. In some cases, 

compounds have been shown to be sorbed to the surfaces of microorganisms without the 

metabolic capability to degrade them; this sorption often results in protection from degradation 

by other microorganisms. 220 Biodegradation may also be enhanced if toxic metabolic products 

are removed from the environment by sorption to solids, and if the pH of the environment is 

regulated by the buffering capacity of the solids. 

Liquid-liquid interfaces, such as in mixtures of oil and water, are often present in 

contaminated environments. Biodegradation of components and contaminants of the oil are 

limited by their solubility in water, since microorganisms usually inhabit the water phase of an 

environment Microorganisms can become associated with the oil-water interface and accomplish 

biodegradation at this interface. Most microorganisms can not survive in the oil phase; those that 

can must obtain water and water-soluble nutrients at the oil-water interface. 

2.7.7 Mixing and Mass Transfer 

Adequate mixing is required for the transport of nutrients, electron donors, electron 

acceptors, and any other required amendments to microorganisms responsible for 

biodegradation. Inadequate mixing in bioreactors may lead to system failure, even if all other 

environmental requirements are met Bioremediation of ground water is especially challenging in 

terms of ensuring contact among contaminants, microorganisms, required nutrients and other 

amendments. 

Oxygen mass transfer is often an important limiting factor in the overall reaction rate in 

waste treatment processes. Oxygen mass transfer can be increased by: (1) increasing the. 

saturation concentration by increasing total pressure or by increasing oxygen partial pressure; 

(2) increasing the concentration gradient by increased mixing or decreased diffusion distance; (3) 

increasing the area of gas-liquid interface, by using small bubbles or high turbulence; (4) 

increasing the diffusion coefficient by increasing temperature; or (5) using oxygen substitutes such 
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as hydrogen peroxide.98 

2.7.8 Solids Retention Time 

Solids (Le., microorganisms) retention time (SRT) is a measure of the average length of 

time microorganisms spend in a bioreactor. If environmental requirements are met, longer 

retention time of microorganisms in bioreactors results in greater biodegradation. 17 SRT is 

evaluated as the mass of microorganisms in the system divided by the mass of microorganisms 

removed (i.e., wasted) per unit time. Another important aspect of bioengineering of bioreactors is 

the difference between hydraulic retention time (HRT) and SRT. For continuous-feed, completely 

mixed systems without solids (i.e, microorganisms) recycling, SRT equals HRT. For continuous­

feed, complete mix systems with recycling (or continuous-feed, fixed film systems), SRT may be 

many times greater than HRT. In an ideal system, HRT should be low and SRT should be high. 

Low HRT allows for greater feed flow rates in a bioreactor, but a high SRT will lead to more 

effective biodegradation of organic compounds, and allow a process to meet regulatory effluent 

quality requirements. 

Growth and increase in biomass of microorganisms in a bioreactor can be modeled using 

biokinetic models. These models may be found in standard environmental engineering textbooks.8, 

14,50.145.159. One model commonly used for aerobic systems is the Monod mode1.17 The Monod 

expression assumes a frrst-order relationship between substrate concentration and biomass 

conversion. The equation may be modified to allow for competition between substrates or for 

limiting nutrients. 139 

Using the Monod model, four kinetic parameters, which can be used to bioengineer a 

bioreactor system, are determined experimentally. 17 These parameters include: (1) k, maximum 

rate of substrate use per unit weight of microorganisms, (2) K s, Monod half velocity coefficient, 

equal to the substrate concentration when the rate of microbial substrate use per unit volume is 

equal to 0.5 k, (3) Y, growth yield coefficient, and (4) b, microorganism decay coefficient. Each 
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organism has a characteristic set of kinetic parameters, which cannot be changed by the 

bioengineer. However, when microorganisms undergo genetic changes, ie., mutation, in response 

to exposure to toxic chemicals, these kinetic parameters can change. Bioengineers refer to these 

changes due to mutation as acclimation. They describe this phenomenon of acclimation as the 

development of resistance to toxicity or the development of a mechanism (e.g., the production of an 

enzyme) that leads to enhanced biodegradation. Basically, any indigenous microorganism is 

viewed as adaptable to and able to degrade any synthetic organic compound. However, further 

research is required to identify the conditions and factors that affect the ability as well as the 

amount of time required for microorganisms to acclimate to specific organic compounds. These 

factors may include substrate structure, co-occurrence and concentration of other more easily 

degradable substrates, and environmental conditions. Examples of the use of acclimation in 

bioremediation are given in Table 3. 

The bioengineer uses the kinetic parameters in equations that provide useful information 

that can be used to optimize SRT and HRT in a bioreactor. 17 For example, the concentration of 

effluent substrate (i.e, waste organic constituent), the amount of sludge that will be produced, and 

the concentration of microorganisms at steady state in the bioreactor can be predicted with the 

parameters. With this information, the bioengineer can obtain the desired HRT by controlling the 

rate of influent, and obtain the desired SRT by selecting the amount of sludge to be wasted from a 

complete-mix system. With a high concentration of active biomass, the size of the bioreactor can 

be reduced, and the conversion of toxic compounds can be increased. 212 With a greater rate of 

degradation, concentrations of contaminants can be kept below toxic limits. High concentrations 

of organisms can be maintained by separation of microorganisms from treated wastewater and 

subsequent return to the bioreactor, by immobilization of microorganisms on carrier materials, 

or by the use of membrane reactors. 

The bioengineer can only change the microbial growth that leads to the production of 
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sludge by selection of microorganisms. 17 Sludge minimization is accomplished by selection of the 

appropriate microorganisms. For example, anaerobic processes result in production of almost 

an order of magnitude less sludge than aerobic processes. 

2.7.9 Toxic or Inhibitory Compounds 

Treatability studies should be performed on any proposed biological treatment process for 

a specific contaminated water to determine if there are any organic or inorganic contaminants 

that may cause inhibition of thebiodegradative processes. Inhibition may be non-competitive or 

alternatively, competitive, in which the substrate and the toxic, inhibitory compound compete for 

the same enzyme site. Many organic compounds, such as formaldehyde, can cause competitive 

inhibition, while inorganic compounds such as ammonia and nickel can cause non-competitive 

inhibition.IS, 19 During the degradation process, intermediate products may be formed that are 

also toxic to the bioprocess and may have to be removed. In complex systems, if two substrates 

are present in high concentrations, the more easily metabolized substance can repress and inhibit 

the metabolism of the other compound 

Again, using modelling techniques, bioengineers can determine an inhibition coefficient, 

KI, which is a measure of microbial resistance to toxicity. 17 This coefficient cannot be changed by 

the bioengineer, because if an organism does not have the ability to resist toxicity, no engineered 

bioprocess can create that ability. However. the microorganisms may, through mutation, or 

acclimation. develop resistance, thereby increasing K I. For example, carbon tetrachloride, a 

highly chlorinated solvent, has been shown to be toxic to unacclimated cultures of anaerobic 

microorganisms at 0.5 mg/L, but with acclimation, 15 mg/L could be tolerated. 227 Results of 

other studies have indicated that in general, the maximum allowable concentration for treatment of 

chlorinated compounds ranges from between 10 and 100 mg/L. depending on the specific 

compound. This range is typical of levels found in many contaminated ground water systems.24 

Other organic substances that are inhibitory include alcohols, phenols, agricultural chemicals, 
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organic nitrogen compounds, and surfactants. 194 These compounds may serve as substrates that 

are biodegradable at lower concentrations, but may be toxic at higher concentrations. 

The most well-known group of toxic substances that can inhibit biological processes are 

the heavy metals.194 This group includes many transition elements (e.g., cadmium, chromium, 

copper, mercury, nickel, zinc), some non-transition metals (e.g., lead), and the metalloids (arsenic 

and selenium). In anaerobic systems, metals are toxic to anaerobic organisms at very low 

concentrations. Toxicity seems to be associated with free metal ions, however, so the degree of 

toxicity is dependent on the presence of complexing or precipitating anions. Metal sulfides are 

extremely insoluble, so if contaminated water contains high levels of sulfur compounds (e.g., 0.5 

mg sulfide/mg toxic metal), fairly high concentrations may be tolerated in the water. 

As more information is developed concerning environmental factors that enhance 

acclimation, bioengineers may be able to provide conditions to encourage acclimation, thus 

resulting in increased resistance to toxicity as well as increased biodegradative capabilities. 17 One 

technique for the development of microorganisms for the degradation of specific compounds is by 

identifying organisms shown to be active in the presence of a specific toxic compound, adapting 

them to progressively higher concentrations of the compound, selecting the most active colonies, 

and preserving them for later use in bioremedial systems. This technique is a type of genetic 

engineering process, which has been used to produce microorganisms that are acclimated for the 

degradation of a specific organic compound This technique involves the selection and breeding of 

a clone from a single organism that exhibits some type of desirable properties.The desirable 

properties available are those related to the natural variability of the group of microorganisms 

investigated. 

2.7.10 Concentration of Contaminants and Cometabolism 

Biodegradation of a contaminant being utilized by microorganisms as a primary carbon 

source is controlled by a limiting concentration of that contaminant (e.g., < 50 ppm). Below that 
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concentration, referred to as S min, microorganisms cannot use the contaminant, because the 

concentrations may be too low to stimulate production of the specific enzymes required to degrade 

the contaminant. I? Smin is determined by the four kinetic parameters from the Monod model, and 

cannot be engineered by the bioengineer. The bioengineer can, however, select microorganisms 

that have a set of kinetic parameters that will lead to a low S min. 

Biodegradation of organic compounds with concentrations lower than S min carl be 

accomplished if the microorganisms can use the compounds as secondary substrates, or 

cometabolites.1? Cometabolism is the process of degrading compounds without metabolizing 

them, Le., the compounds are not consumed as a source of carbon or energy; biodegradation of 

the compounds does not lead to energy production or cell growth. 106 Cometabolism has also been 

referred to as co-oxidation if the transformation involves an oxidation reaction. 160 During 

metabolic activities, enzymes are produced for use in degrading specific primary substrates, but 

these enzymes can also initiate the degradation of a range of nonspecific compounds that are 

neither essential for, nor sufficient to, support microbial growth. These non-growth, or secondary, 

substrates are usually only incompletely oxidized, or otherwise transformed, by the 

microorganism involved, although other microorganisms may utilize by-products of the 

cometabolic process. For cometabolism to occur, a primary substrate(s) must be present for the 

microorganisms to use a carbon source. For example, in municipal wastewater treatment plants, 

domestic wastewater may serve as the carbon source, and low concentrations of organic 

compounds in the wastewater may be biodegraded by cometabolism by the existing 

microorganisms in the treatment plant. 

An advantage to cometabolic ~egradation of a contaminant is that there is no lower limit to 

its final concentration. 213 If a contaminant served as a primary substrate, fewer microorganisms 

would survive when its supply became low, and further degradation would cease)36 However, 

when a contaminant is used as a secondary, cometabolic substrate, it can be continued to be 
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degraded by a large, healthy population grown on the primary substrate until the contaminant is 

completely transformed. 

Cometabolism may be a prerequisite for the mineralization of many recalcitrant 

substances found in the environment, such as polynuclear aromatic hydrocarbons. 114, 115 

Another example of the cometabolic process is the cometabolism of halogenated aliphatic 

compounds, such as trichloroethane (TCA), using methane as the primary substrate. 45 

Methanogenic microorganisms cometabolically degrade the halogenated compounds, forming 

transformation products. Other heterotrophic bacteria continue the degradation to stable end 

products. Cometabolism is found both under aerobic and anaerobic conditions. 

The underlying mechanisms that result in cometabolism have not yet been clearly 

elucidated. Possible mechanisms that have been postulated include 114; (1) the non-growth 

substrate is unable to act as an inducer of the pathway(s) required for its own transport into the 

cell or for its metabolism, but the primary substrate can; (2) the structure of the non-growth 

substrate prevents its metabolites from acting as nutrients; (3) the non-growth substrate or its 

metabolites are co-repressors for a growth-limiting cellular function, but the primary substrate 

relieves the repression; and (4) growth on the other substrate may provide energy required for the 

cometabolism. 

2.7.11 Microbial Populations 

An appropriate and active population of microorganisms must be present in a bioremedial 

system to accomplish biodegradation of specific organic compounds. Microorganisms have 

outstanding capabilities to degrade organic molecules. Almost all naturally-produced organic 

compounds, including those with such substituents as halogen atoms, are degradable by some 

microorganisms or consortia of microorganisms; this versatility extends to anthropogenic 

compounds also. It has been said that microbes are infallible with regard to their ability to 

degrade organic compounds, Le., whatever man or nature can make, microorganisms can 
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degrade. 194 This ability may be expected for naturally occurring compounds, since it would 

involve a reversal of existing bio-synthetic pathways, but for xenobiotic compounds, ie., those that 

do not occur naturally, microorganisms may not have the enzyme systems required However this 

principle appears to be true to a considerable extent, and it would be difficult to disprove. 

Examples of classes of compounds that contribute to serious pollution problems in water 

environments and that been demonstrated to be biodegradable (to some extent) include: 

chlorinated phenols, haloalkanes, nitroaromatic molecules, chlorinated biphenyls (PCBs), 

chlorinated phenoxy herbicides, chlorobenzenes, aromatic and polynuclear aromatic 

hydrocarbons (p AHs), and pesticides such as the triazines, organophosphorus compounds, 

carbamates, anilines, and pyridines. In the Netherlands, a list of 140 groups of organic 

compounds have been identified having environmental significance; of those 140 groups, 75 

percent have been identified as being able to be completely or partially degraded by 

microorganisms under aerobic conditions, while 30 percent have been shown to undergo 

anaerobic biodegradation. 224 

The ability to detect and isolate microorganisms with specific metabolic capabilities in the 

environment is being developed with a procedure called gene probing. 173 To prepare a specific 

probe for a specific metabolic capability, DNA of known metabolic origin is isolated, purified, and 

labelled (e.g., with32P, 3H, 35S, antigen-antibody complexes, or enzyme-substrate reactions). 

Then the double helical structure of the probe DNA is destroyed by heating to create single­

stranded probe nucleic acid. The probe is then added to the sample of interest, in which target 

DNA from a bacterial colony or an extract of DNA from an environmental sample has been 

similarly treated as the probe DNA and bound to a hybridization mter. Under proper conditions, 

the probe and target DNA are allowed to re-associate to re-form the double helical structure. Re­

association of the probe with complementary strands of the target nucleic acid results in a hybrid 

molecule that is readily detected by the probe-associated label. 
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Gene probes have been used to monitor and detect specific degradative genotypes in 

complex environmental matrices, as well as to investigate the stability of specific genotypes with 

specific metabolic capabilities over time. Also, mineralization rates of specific organic compounds 

have been correlated with genotype frequency over time. In a study by IW. Blackburn, R.K. Jain, 

and G. S. Saylerfl the population density of a genotype of microorganisms that can degrade 

naphthalene in an activated sludge system was monitored using a gene probe specific for 

naphthalene-degraders. An increase in cell numbers of the naphthalene-degrading genotype was 

directly correlated with an increase in mineralization of naphthalene and a decrease in removal of 

naphthalene by volatilization. Results of such a study may be used to provide infonnation that can 

be used to determine bioengineering activated sludge treatment process variables that will 

optimize naphthalene-degradative microbial cell densities at levels that will result in the maximum 

biological mineralization. The use of gene probes to determine critical cell densities and to control 

system variables should be encouraged for a variety of treatment systems, in order to enhance 

naturally occurring biodegradation or to establish engineered biodegradative processes. 173 

To achieve biodegradation, the following potential uses of microbial populations should be 

considered: (1) microbial consortia; (2) fungi; (3) immobilization of microbial popUlations; (4) 

bioaugmentation using natural or genetically engineered microorganisms; and (5) genetically 

engineered microorganisms. 

2.7.11.1 Microbial Consortia 

In an effective bioremediation process, usually a consortium of several types of 

microorganisms are present that together interactively accomplish mineralization of the organic 

compoundsJ14 For example, the interactions that occur in a consortium may involve partial 

transfonnation of a substrate by one microbial group, with subsequent utilization of the 

transfonned product by a second group. The second group may excrete some growth factor 

essential to the fIrst group or may remove the product of the metabolism of the fIrst group, if it is 
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inhibitory to the :fIrst group, resulting in mutual positive feedback between the two groups. Other 

groups of microorganisms may also be present in the consortium, utilizing transformation 

products of the first two groups .. The advantages of microbial consortia include 196: (1) 

thermodynamically unfavorable reactions are made possible when metabolically linked with 

favorable reactions within the consortia; (2) toxic or inhibitory compounds are degraded by 

resistant members of the consortia; and (3) newly introduced contaminants are degraded more 

quickly than if a given species had to evolve a novel complex degradation pathway. 

2.7.11.2 Use of Fungi 

In most bioremedial processes, bacteria are the primary types of microorganisms that 

accomplish degradation of specific organic compounds. Recently, research has focused on the use 

of fungi in bioremedial systems. Fungi are part of the natural scheme of carbon recycling, but 

have not been extensively used for the treatment of wastes. Many fungi that are found in waste 

treatment systems are pathogenic, while others cause a disruption in the treatment process (e.g., 

in activated sludge systems, they can cause precipitation of the sludge blanket). However ,wood­

degrading fungi are currently being investigated for their potential to degrade hazardous 

wastes.6. 33, 81 The white-rot fungi can degrade lignin, which is one of the most recalcitrant 

natural molecules, and which is thought to be similar in structure to aromatic organic waste 

compounds. Therefore, theoretically, this fungus, Phanerochaete chrysosporium, should be able 

to degrade aromatic hazardous materials. The fungus operates in two distinct metabolic cycles. In 

the primary, or growth, cycle, the fungus utilizes carbon substrates such as sugars or polymeric 

saccharides such as cellulose. However, depending on growth conditions and the availability of 

nutrients such as nitrogen, the fungus may adopt a secondary metabolic cycle in which the 

organism secretes a complex mixture of peroxidases commonly referred to as ligninases, which 

are used in the degradation of lignin. The ligninases rely on a supplemental enzyme system to 

supply the necessary hydrogen peroxide to initiate the oxidation of lignin. Lignin has a random 

composition and a highly polymeric structure, so the enzymes that degrade lignin have low 
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specificity, meaning that they can react with many substances, including organic waste 

compounds. 

Research is being conducted on the use of the white-rot fungus for the degradation of 

organic contaminants associated with the wood-preselVing industry. 82 A biological reactor, 

incorporating the necessary conditions for the cellular morphology of fungi and the required 

physiological requirements, has been developed for the treatment of liquid waste streams. The 

reactor is configured as a rotating biological contactor (RBC), consisting of several rotating disks 

on which the fungus can attach and grow. The fungus is sensitive to shock loadings, which can 

reduce its degrading ability, and use of the RBC protects the fungus from these effects. Bench 

scale tests using the RBC have shown that pentachlorophenol can be degraded from 250 mg/L to 

5 mg/L in eight hours. Further research is being conducted to determine optimal operating 

conditions, including mass transfer of oxygen and substrate to the fungi and type and quantity of 

growth substrates required. 

2.7.11.3 Immobilized. Microorganisms 

Immobilization of microbial cells has been used to ensure the presence of appropriate 

microorganisms in an engineered bioremedial system, which in turn will enhance the 

biodegradative potential of the system.51, 60, 65, 116, 181, 191, 195,218 Immobilization of microbial 

cells refers to the transfer of the cells from a free state to a state in which they are corifined or 

localized in a defined region of space, with retention of catalytic activity, and if possible, with 

retention of viability so that the cells can be used continuously or repeatedly. 65 Various gel 

compounds and other materials are used to entrap the microbial cells. Immobilized cells can 

conduct multi-enzyme reactions as easily as free cells, because, in their immobilized state, they are 

present in a much higher initial biomass concentrations (with concentrations of greater than 1010 

cells per mL of matrix possible), resulting in faster reaction times than with free cells. Natural 

"biofilms" also are considered to be immobilized. cultures, usually depending on polysaccharide 
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gel secretions for entrapment. 

Strains of microorganisms selected for metabolic capability for the degradation of specific 

compounds are immobilized in matrices such as polysaccharides (e.g., alginate and 

carrageenan), polyacrylamide, polyurethane foams, and activated carbon. 65 The selected bacteria 

are grown in large quantities in fermentors, concentrated by filtration or centrifugation, and 

entrapped in the immobilization matrix. These immobilized cells are usually used in some type of 

bioreactor, such as a batch, fluidized-bed, or packed-column reactor. hnmobilized cells have 

been shown to be long-lived and able to tolerate concentrations of toxic chemicals that would kill 

free cells. Their high biomass densities in the immobilized cells result in high total biodegradative 

activity. hnmobilized cells have characteristically long periods of enzyme activity, though 

eventually the immobilized cells show a loss of activity. In some cases, inactive matrices can often 

be re-activated by incubation under appropriate conditions. One especially desirable use of 

immobilized cell technology is the ability to customize treatment for particular types of 

contaminated waters by mixing supports containing different pollutant-degrading bacteria 

immobilized separately or together. 51 

One of the major problems associated with the use of immobilized cultures is the transport 

of target contaminants into the immobilization matrix. 65 This transport is limited by a double­

diffusion gradient that builds up: one into the matrix (Le., through the matrix-liquid interface) and 

the second from the matrix to the cell (Le., through the matrix-cell membrane interface). As a 

result of these diffusion barriers, many micro-environments within the matrix can be created, with 

differences in pH, oxygen concentration, and concentrations of substrate and transformation 

products. In some cases, a permeabilizing reagent may be added to the immobilized cells to 

decrease the diffusion resistance, which, however, may result in the death of the cells, though 

enzyme activity will be retained. The use of a too permeable structure may result, however, in 

excessive leakage of cells and required enzyme cofactors. 
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Immobilized cells usually become concentrated at the surlace of the matrix, while cells 

within the matrix, due to problems with diffusion of oxygen and nutrients into the matrix, may lose 

their viability or may lyse.65 However, as outer layer cells die and the outer layers of the matrix 

begin to disintegrate, diffusion to the inner cells may result in the inner cells becoming viable 

again as the barriers to diffusion of oxygen and nutrients are overcome. Cell lysis may also 

become a problem if the substrate or a transformation product is toxic to the cells, especially if 

these toxic substances are slow to diffuse away. 

The immobilized matrix may also be destroyed by simple physical abrasion, which causes 

tears and breaks in the structure. 65 In addition, cell division and growth, with resulting carbon 

dioxide production, may result in the breakup of the immobilized matrix. This problem may be 

controlled by supplying cells with only enough nutrients to keep them in a resting but viable state. 

Maintenance of cells in a resting state ensures that cofactors and other essential enzymes are 

continuously regenerated, but does limit the selection of microorganisms to those with enzymes 

that are always present in the cells (Le., constitutive enzymes) rather than inducible enzymes, so 

that the desired degradative activities are carried out Side reactions that do not result in 

degradation of the target chemicals may also occur, since immobilized cells have many metabolic 

pathways; these reactions may result in disruption of the matrix if carbon dioxide is produced in 

large amounts. 

The use of immobilized genetically engineered microorganisms may be mo,re effective than 

the use of free genetically engineered microorganisms because, since immobilized cells are often 

in a non-growth state, there is no loss of plasmids, which is unlike the loss that can occur in 

actively growing cellsp5 Possible applications of genetic engineering to improvements in the use 

of immobilized cells include: (1) development of strains that over-produce the required enzyme so 

that the majority of the energy in the system is used to degrade the target compounds rather than 

used in other, less desirable side reactions; and (2) development of strains in which inducible 
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enzymes are converted into constitutive types by alteration of the regulatory mechanism of the cell, 

so that prior induction of enzymes is not required. 

An alternative to the use of immobilized whole cells is the use of immobilized enzymeS?3 

Based on the techniques developed for the preparation and use of enzymes in industrial 

applications (e.g., immobilized lactase in the milk industry; glucose isomerase in the sugar 

industry; arninoacylase in the production of food supplements, medicines, and cosmetic additives), 

applications for the treatment of wastewaters have been proposed. Many enzymes for the 

degradation of many organic waste constituents have been identified; these enzymes could be used 

in waste treatment systems in immobilized states. For example, parathion hydrolase, covalently 

immobilized on glass, has been shown to able to detoxify organophosphate pesticides in industrial 

wastewaters 149; immobilized parathion hydrolase has also been shown to degrade parathion to p­

nitrophenol and diethyl thiophosphoric acid 200; immobilized phosphotriesterase has been used to 

detoxify organophosphate pesticides34; and immobilized peroxidase rnay potentially be used to 

remove carcinogenic aromatic arnines such as benzidine, naphthylarnine, and arninophenyl found 

in wastewaters from the coal, plastic, and textile industries. 117 

2.7.11.4 Bioaugmentation 

Bioaugmentation, commonly referred as microbial seeding or microbial inoculation using 

acclimated or genetically engineered microorganisms, has been used as a means of treating 

contaminated water sources. Treatment testing of bioaugmentation has generally been performed 

without the use of adequate experimental controls to demonstrate that improvements were due to 

the addition of the microbial inoculant, rather than due to other uncontrolled factors, and without 

the use of a chemical rnass balance approach to the assessment of fate and transport of the target 

chemicals.70 In addition, treatment results at field scale have been generally presented without a 

critical evaluation by experts (Le., without peer review). Without the use of adequate scientifically 

controlled studies, determination of whether these products are beneficial, detrimental, or 
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irrelevant to treatment is often not possible. 

Difficulties are incurred by introduced microorganisms as they try to function in a 

contaminated environment. The introduced microorganisms may be subject to predatory grazing 

by other organisms, such as protozoa, which have been identified as a major factor regulating 

bacterial populations. 2,91 In addition, microorganisms introduced into a non-sterile environment 

will experience competition for those factors essential for its survival and activity. These factors 

may include energy sources, essential nutrients, space, and attachment sites. Also compounds 

rarely occur singly in a contaminated environment; other compounds present may have beneficial 

or inhibitory effects on the introduced microorganism. A strain introduced at one site may be 

effective in the degradation of a target compound, but at another site, due to environmental 

conditions, be unable to degrade the same target compound. The ability to predict whether a 

specific microorganism will become established in a specific environment has not yet been 

developed, because of the many interdependent physical and biological factors that impact upon 

the ability of a microorganism to become established and to function in an environment. More 

research is required to identify the barriers to colonization by introduced microorganisms and to 

develop engineering responses to those barriers. 

Research is also required to identify potential ecological impacts of introduced 

microorganisms in different environments. 192 For example, introduced microorganisms could 

potentially displace indigenous microbial species vital to the operation of the local ecosystem. 

Microbial seeding using a microbial consortium may be a more effective means of 

bioaugmentation than introducing a single microorganism to an environment. Seeding a 

contaminated water source with members of a consortium previously selected for the degradation 

of a specific target compound may re~ult in acceptable degradation, provided that each member 

can survive in the physical environment present at the site, has access to the contaminant, and can 

utilize or tolerate the concentration level of the contaminant. Microbial seeding is also more likely 

to succeed in bioreactor systems rather than in in situ systems, since environmental conditions in 
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bioreactors can be more easily controlled. 

2.7.11.5 Genetic engineering 

A process called genetic engineering is a recent development of the field of molecular 

biology. Genetic engineering allows the manipulation of the genotype of microorganisms, which 

has led to the ability to manipulate genes in vitro. Advances made with new techniques in genetic 

engineering include the ability to isolate DNA from any source and to introduce it into organisms 

for which procedures for gene manipulation have been developed. 114 This technique involves the 

following three steps15: (1) insertion of the selected DNA into a special DNA molecule, the vector, 

which is used to transfer the selected DNA into the new host (commonly used vectors are 

plasmids. which are small circular extrachromosomal DNA molecules that can replicate 

autonomously in the host cell); (2) transfer of the modified vector into the host bacterium in such a 

way that is can be replicated and expressed; and (3) identification of the host bacterium that has 

taken up the modified vector and separation of this colony from unmodified colonies. 

A genetically engineered microorganism introduced to an environment may respond in the 

following ways14: (1) the microorganism will be unable to reproduce but will be metabolically 

active; it may, however, be able to transfer its DNA to other microorganisms by conjugation or 

transduction; (2) the microorganism will be able to reproduce, but will be unable to establish a 

stable population; it may transfer its DNA to indigenous microorganisms, leading to a persistence 

of a genetic potential in the environment; or (3) the microorganism will be able to both reproduce 

and persist indefinitely in the environment. Instability and loss of genetically engineered 

microorganisms can occur in several ways, including 114: (1) loss of the plasmid during 

replication of cells. resulting in a loss of key activities; (2) dilution of the microorganisms in the 

system due to increases in plasmid-free microorganisms; and (3) replacement of the 

microorganisms by indigenous microorganisms. Such problems may be minimized by using 

massive inoculum of the genetically engineered microorganisms or by using immobilized cell 
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systems, allowing the retention of high concentrations of organisms in the bioreactor. However, 

even if the host cells do not survive, the altered DNA fragments may be passed on the other 

microorganisms in the environment that are better adapted to growth within the particular 

environment This transfer can be encouraged if the DNA is placed within a highly conjugative 

plasmid 114 

Applications for use of genetically engineered microorganisms are focusing on several 

difft;:rent aspects of waste treatment These applications include 15: (1) optimization of existing 

processes, such as improved tolerance to extreme environmental conditions and increased 

resistance to inhibition by toxic substances; (2) development of new processes, i.e., the 

development of new metabolic pathways; (3) enhancement of degradation rates, e.g., by 

enhancement of enzyme production; (4) increase in extent of treatment, i.e., lower fmal 

concentrations of pollutants; (5) utilization of multiple substrates simultaneously; and (6) 

improvements in substrate uptake mechanisms. B.E. Rittmann 167 and J.B. Johnston and S. G. 

Robinson1l4 have identified several specific improvements in the biological treatment of waste 

waters that may be possible with the use of genetically engineered microorganisms, including (1) 

elimination of activated-sludge bulking (i.e., improved flocculation and settling); (2) reduction in 

sludge volume; (3) improvements in biofilm attachment; (4) reduction in oxygen limitations in 

aerobic processes; (5) enhancements in the biodegradation of xenobiotic organic compounds; (6) 

resistance to toxic upsets; (7) increased stability of anaerobic digestion processes; and (7) 

enhancement of sludge dewaterability. These improvements might be accomplished by 

modifications in enzyme activity, includingl4: (1) increase in enzyme levels in a microorganism; 

(2) re-arrangement of regulatory DNA base sequences controlling the expression of specific genes 

in response to specific stimuli; (3) introduction of genes for new enzymatic functions into 

microorganisms that do not normally have those functions; and (4) modification of individual 

genes to alter the characteristics of individual enzymes, such as substrate specificity, kinetic 
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parameters, or environmental requirements. Advances in genetic engineering at the laboratory 

scale for water cleanup are summarized for the degradation of a variety of pollutants by M. 

Alexanderl, G.S. Omenn and A. Hollaenderl56, J.B. Johnston and S. G. RobinsOl\l4, G.S. Sayler 

and others 174, A.M. ChakrabartyU, H-J. Knackmuss,18, the Hazardous Materials Control 

Research Institute 95, Rubio and Wilderer l70, and R.R. Fulthorpe and R.C. WyndharJii'5.Specific 

examples of the use of genetic engineering for bioremediation are given in Table 4. 

In certain highly contaminated in situ aquifer environments, microbial seeding of 

genetically engineered microorganisms has been proposed as a possibly effective means of 

bioremediation. A microorganism could be constructed to be able to transform and detoxify a 

target contaminant, but also would be constructed so as not be able to grow and divide under the 

environmental conditions present at the site. For example, the microorganisms could produce 

large amounts of the enzymes responsible for transforming the target contaminant, but the 

enzymes would not provide benefits to the microorganism itself. The microorganism could be 

engineered to use a specific substrate as an energy source that could not be used by the 

indigenous microorganisms; this energy source would be supplied to the contaminated 

environment. Chemical agents could be used to temporarily inhibit indigenous organisms to 

enhance the competitive ability of the introduced genetically engineered microorganism to survive. 

The regulatory aspects of such a scenario have not yet been decided, but this example illustrates 

some of the applications of genetic engineering that have been proposed for the enhancement of 

bioremediation. 

To select microorganisms appropriate as a source for biodegradation applications of 

genetic engineering, the following criteria have been suggested1l4: (1) the microorganisms should 

be normally present in soils, sludges; water, sources, or wastewaters; (2) they should be toler3!lt 

of extreme or toxic environments; and (3) they should be known to possess either a wide range of 

biodegradative capabilities or the capability for a specific biodegradative pathway of importance. 
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Types of biodegradative pathways useful for remediation include the capacity to metabolize long 

chain or branched alkanes; degradation of polycyclic aromatic hydrocarbons, and the ability to 

perfonn dehalogenation reactions. In addition, the microorganisms should be non-pathogenic to 

humans, plants, or animals. At this time, a major limitation in the use of genetic engineering in 

pollution management is that most of the bacterial genera known for the biodegradation of 

environmental pollutants are not yet well characterized in terms of gene exchange. 114 Fungi may 

also serve as a useful source of genes for metabolic enzymatic activities because of their tolerance 

of hostile environments and their ability to degrade polymers. 114 However, gene manipulation 

within fungi are complicated by their sexual and asexual reproductive methods as well as lack of 

well-developed techniques for introducing specific segments of DNA into fungal cells. 

Another potential problem with the use of genetic microorganisms in the field of waste 

treatment is the inability of the genetically engineered microorganisms to compete with indigenous 

organisms present in the contaminated water or reactor system, which are non-sterile. Selection 

of an appropriate genetically engineered microorganism should be conducted in relation to the 

ecological constraints of the target environment or bioreactor, such as nutrient status or 

concentration of contaminants present, i.e., the microorganism should be able to function in the 

target environment Also, since most biological treatment occurs as the result of a consortia of 

microorganisms in order to complete degradation of a specific organic substance, rather than as 

a result of only one type of microorganism, the use of one genetically engineered microorganism 

may not result in the degradation of the target compound. 

The release of genetically engineered microorganisms is controversial and has stirred up 

considerable debate 63. Therefore, the bioengineer must consider the potential hazards of release 

of genetically engineered microorganisms to the environment Selection of a microorganism for 

genetic manipulation should not only include considerations of its degradative abilities but also 

include considerations of all known properties of the strain, including any pathogenic properties 
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or potential. The microorganisms must be chosen and handled in such a way that they represent 

no threat to health to workers handling them or to anyone who might subsequently contact them in 

the environment. There is no way to completely assure the containment of microorganisms and 

their DNA in full scale waste treatment systems. For example, microorganisms have been found in 

aerosols downwind from treatment plants. Complete sterilization of effluents would be difficult to 

perform, for no disinfectant is completely effective; economic constraints would also be limiting. 

The possibility of transmission of chemically intact DNA exists, even frpm dead microorganisms, 

though it has not yet been shown to occur in natural environments. Therefore, any use of 

genetically engineered microorganisms for waste treatment should be considered and accepted as 

a deliberate and irreversible release of the microorganisms to the environment. The impacts of 

this release need to be thoroughly understood before the use of genetically engineered 

microorganisms is permitted The use of genetically engineered microorganisms for 

environmental applications is regulated under the Toxic Substances and Control Act (fSCA). 119 

Any application of genetically engineered microorganisms for a specific bioremedial process 

should be carefully investigated and monitored using guidelines developed under TSCA. 

In addition, the California Biotechnology Counci1192 has suggested that research monies 

should be used to focus on finding indigenous microorganisms that can degrade specific organic 

chemicals, since natural microorganisms have been shown to have a wide ability to degrade 

organic chemicals, and they will also be native to the habitat, rather than spending large amounts 

of money engineering unproven, risky "superbugs". 

3.0 REGULATORY ISSUES 

3.1 Legislation Regulating Bioremediation 

Bioremediation of a specific water environment is regulated by legislation that addresses 

either the use of the water or the history of its contamination. 50, 54 Passage of the Safe Drinking 

Water Act in 1974, and the Safe Drinking Water Act Amendments (SDWA) of 1986 increased 
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requirements for removal of pollutants from drinking water, including chemical, biological, and 

particulate contaminants for the approximately 240,000 public water supply systems serving 170 

million people. According to the U.S. Environmental Protection Agency, more than half of these 

systems are out of compliance. 54 Applications of bioengineering systems in the treatment of 

drinking water for meeting new standards have been described for the removal by slow rate sand 

filtration of organic chemicals 47.48 and particles 144, where the degree of treatment was related to 

amount and type of biomass:-Biologically active rapid filters have been developed to remove mono-­

and di-chlorophenols and mono-and di-chlorobenzenes, 132 trihalomethane precursors and 

organic carbon, 124 as well as iron and manganese. 148 

The Clean Water Act is directed at used water in the form of municipal and industrial 

wastewaters. A list of toxic pollutants was developed (i.e., the priority pollutants), and effluent 

guidelines for point sources of wastewater were promulgated by the U.S. Environmental 

Protection Agency as the National Pollutant Discharge Elimination System (NPDES), which 

identified standards of performance for treatment. Under the Water Pollution Control Act 

Amendments of 1981 (Public Law 97-17), bioengineering systems were approved to accomplish 

secondary treatment; these systems included oxidation ponds, lagoons, and trickling filters. 50 

These bioengineering systems were effective for removal of general organic compounds at about 

85% removal efficiency. The use of the activated sludge process for wastewater treatment 

increased efficiency of organic compound removals to greater than 95 percent, 87 but these 

systems have not been consistently effective in achieving removal of novel, specific, toxic 

compounds. 

The Resource Conservation and Recovery Act (RCRA) of 1976 allows the U.S. 

Environmental Protection Agency to protect water sources by regulating the disposal of 

hazardous waste under Subtitle C of the Solid Waste Disposal Act, as amended by the Hazardous 

and Solid Waste Amendments. Regulations published in May of 1980 (40 Code of Federal 
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Regulations, parts 261-265) identify hazardous chemicals by definition and by listing of specific 

wastes, and controls the treatment, storage, transport, and disposal of hazardous waste 

chemicals. Stricter standards with regard to land disposal of hazardous wastes were promulgated 

for the protection of surface water and ground water resources. The development of genetically 

engineered microorganisms may be used in bioengineering systems as a Best Demonstrated 

Available Technology (BDAT) in the future to meet treatment standards under RCRA 119; the use 

of genetically engineered microorganisms is currently under development and has not been 

applied at field-scale. 

A bioengineering system that was eliminated for treatment of hazardous wastes under 

RCRA Subtitle C is land treatment, which incorporates biological processes in conjunction with 

physical and chemical processes used in the treatment and ultimate disposal of hazardous waste 

streams by mixing the wastes with soil for protection of water resources. 129 Land treatment has 

been replaced by another bioengineering system referred to as a prepared bed system for the 

treatment of hazardous wastes. A prepared bed consists of a lined (clay and synthetic 

geo-membrane) system with a leachate collection system to prevent contamination of water 

resources by containing wastes, soil, and water in the contained prepared bed bioreactor 

system.1 82 

In 1980 the first comprehensive federal law addressing releases of hazardous substances 

into the environment was enacted, the Comprehensive Environmental Response, Compensation, 

and Liability Act (CERCLA), or Superfund The primary goal of CERCLA was to establish a fund 

(Superfund) and a mechanism to respond to releases of hazardous substances at abandoned or 

uncontrolled hazardous waste sites that posed a threat to human health and the environment 

through contamination of surface water and ground water, air, and soil. Under CERCLA, the 

National Contingency Plan (NCP) outlined the level of cleanup necessary at a Superfund site. The 

Superfund Amendments and Reauthorization Act of 1986 (SARA), Section 121, Cleanup 
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Standards, stipulates rules for selection of remedial actions, provides for review of those actions, 

describes requirements for the degree of cleanup, and mandates conformance with the NCP 

whenever possible. Bioremediation of contaminated ground water and soil is considered a 

bioengineering process under CERCLA that is capable of achieving a permanent cleanup, as 

encouraged under SARA. However, attainment of regulatory limits with the use of bioremediation 

is site- and chemical-specific. 

The Toxic Substances Control Act ([SCA) regulates the manufacturing of toxic chemicals 

(chemicals that are linked to cancer, gene mutations, or birth defects), and the disposal of 

polychlorinated biphenyls (PCBs). TSCA also prohibited the production and distribution of PCBs 

after July 1979. The U.S. Environmental Protection Agency has interest in regulating biotreatment 

technologies, including genetically engineered microorganisms, under the TSCA biotechnology 

program promulgated in 1986 (51 Federal Register 23: 313, June). Laboratory scale as well as 

field applications of genetic engineering for cleanup of target chemicals in water are largely still in 

the developmental stages.95, 156 The use of genetically engineered microorganisms must be 

evaluated within the context of ecological constraints.! 

3.2 Regulatory Acceptance of Bioremediation 

Regulatory acceptance of bioremediation of specific organic compounds in water 

environments (and especially in aquifers) is sometimes limited by several factors, including 164, 

225: (1) inadequate understanding of the scientific fundamentals of bioremediation, including the 

biological, chemical, and environmental factors that are required to guarantee the success of the 

technology; (2) lack of successfully completed and documented field demonstration projects; (3) 

unpredictable transformation rates leading to uncertain cleanup times, poor process control, and 

uncertainty in costs; (4) uncertain environmental impacts, due to the formation of harmful 

transformation products; (5) lack of treatment objectives that are commensurate with the 

capabilities of bioremediation; (6) presence of multiple contaminants, since bioremediation may 
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only apply to a few; (7) concern for potential of greater environmental damage if bioremediation 

fails; and (8) unwillingness to negotiate flexibility in setting cleanup goals that can be 

accomplished with bioremediation. 

3.3 Regulatory Cleanup Levels 

At a site with a contaminated aquatic environment that has been designated for cleanup 

activities under a regulatory program such as CERCLA (better known as Superfund) or the 

RCRA Corrective Action Program, the degree of cleanup required is usually defined on a site-by­

site basis. Three commonly used conservative methods of deciding what is clean include155: (1) 

risk assessments; (2) federal drinking water standards; and (3) analytical detection limits. 

Cleanup levels based on risk assessment can be developed specifically for a particular site, 

with consideration of pathways of human contact and design methods used to prevent human 

contact.155 However, there are no standard methods defmed for conducting risk assessments, and 

even when the same method is used, the use of different assumptions will result in different results. 

Therefore, regulatory agencies often will not use risk assessment to defme cleanup levels required; 

if they are used, because of the variabilities in approaches and assumptions possible, an extended 

period of discussion among the regulators, consultants, industrial representatives, and the public 

may result before final decisions are made. 

Federal drinking water standards undergo extensive evaluation before acceptance; thus 

they have a strong technical basis. 155 However, not all compounds of environmental and health 

significance are covered by federal drinking water regulations. In addition, in contaminated 

aquifers, organic contaminants are often sorbed to the aquifer solid materials and provide a 

continuous source of contamination to the ground water. Drinking water standards address only 

concentrations of compounds in water, but do not address allowable concentrations that can be 

associated with solid materials. 

Analytical detection limits are sometimes used to set cleanup levels. I5S Their use may be 
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appropriate when the target organic compounds are highly toxic or when numbers determined 

during a risk assessment are less than the detection limits of the target compounds. However, 

analytical detection limits are usually continuously improved as analytical technology improves, 

and the required cleanup levels could be changed over the period of the remedial action. 

In some cases, when cleanup levels are set very low, _bioremediation may not be effective 

for meeting the goals. Microorganisms have a minimum level of pollutant substrate required to 

maintain their metabolic activities. Below those levels, biodegradation of the pollutant may slow or 

cease. However, if the pollutant is being degraded under cometabolic processes, very low levels 

may be achievable, for the microorganisms are not using the pollutant as a carbon or energy 

source. 

4.0 BIOENGINEERING TECHNOLOGIES FOR THE ACCOMPLISHMENT OF 

BIOREMEDIATION 

4.1 Use o/Bioengineering Technologies/or the Removal o/Specific Organic Compoundsfrom 

Contaminated Water 

Biological engineering systems have been developed for treatment of different 

contaminated water sources, including surface and ground waters. Treatment may also be 

required before the use of a specific water source, as with drinking water, or after use, as with 

municipal or industrial wastewater. Bioremediation of contaminated surface and waste waters is 

usually accomplished using a bioengineered contained liquid bioreactor system. In liquid 

bioreactors, toxic and hazardous pollutants are brought into contact with microorganisms to 

accelerate the degradation process. For contaminated ground water, the ground water can be 

extracted from the ground by pumping and subsequently treated in an above-ground reactor 
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(referred to as pump-and-treat), or treated in situ using bioremediation. 11, 44, 155, 171, 183 In situ 

biological treatment of contaminated ground water is usually less costly than pump-and-treat 

systems using above-ground reactors (either physical, chemical, or biological) but is less easily 

controlled45 A thorough understanding of the subsurface hydrology, geology, and geophysical 

properties is required in order to engineer a process to manage the subsurface for 

bioremediation. Pump-and-treat systems, though able to be more directly controlled, are more 

capital intensive. In addition, even after extensive pump-and-treat operations, often a significant 

amount of residual contamination may remain in the aquifer sorbed to the solid materials. An 

overview of bioengineering treatment systems is given in Table 5. In situ bioremediation of off­

shore oil spills was attempted as part of the cleanup effort of the Exxon Valdez spill off the coast of 

Alaska during 1989.104,162 Commercial fertilizers that were oleophilic in nature (Le., they tend to 

adhere to oil) were used to enhance biodegradation. 192 Because degradation takes place at the 

oil/water interface, these fertilizers are designed to be accessible to and stimulate growth and 

degradation potential of oil-degrading bacteria. The use of the fertilizers appeared to enhance 

degradation by two to five times, but some researchers have questioned the statistical significance 

of the results. In addition, environmentalists have concerns about the toxicity of the oleophilic 

fertilizers to humans and wildlife. 

Because no single unit operation or process can usually treat every contaminant found in 

a contaminated water source, two or more unit operations may be combined into a treatment 

train.45, 185 A treatment train might consist of a mixture of physical (e.g., air stripping, carbon 

adsorption, ion exchange, and membrane separation), chemical (e.g., precipitation, 

oxidation/reduction, hydrolysis) and biological processes. Conventional municipal wastewater 

treatment systems usually consist of a treatment train that incorporates physical and chemical 

settling processes for solids, chemical processes for the removal of nutrients, and biological 

processes for the removal of organic compounds. Treatment trains for ground water could 
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consist of (1) physical removal of non-aqueous phase liquids, followed by in situ bioremediation, 

(2) pump-and-treat, followed by re-injection of the treated water into the aquifer for further 

treatment in situ using bioremediation; or (3) containment of the water compartment using 

hydraulic barriers created through pumping ground water, and/or physical barriers using 

bentonite-based walls, in order to create an underground reactor where the water compartment 

can be biologically treated through biostimulation and/or bioaugmentation. 

A difficulty in peIforming and completing a bioremedial action, such~as in situ 

bioremediation of ground water, is that during the project, the concentrations of the target 

compounds decrease in a non-linear fashion. 155 As the remediation progresses, the rate of 

decrease in concentration decreases. The required cleanup levels may be set at the asymptotic part 

of the curve, which may mean the time required for cleanup may be very long, resulting in 

additional costs, but with little additional treatment occurring during the final stages of cleanup. 

Also, technologies appropriate for treatment of organic compounds at concentrations present at 

the beginning of cleanup may be different than technologies appropriate for treatment of 

concentrations at the end of the remedial action, necessitating a treatment train approach to 

design. There may be even be a point in a remedial action at which the engineered treatment 

system could be discontinued, and naturally occurring biodegradation could be used to complete 

the remedial process to the desired level, with appropriate monitoring and containment activities 

continuing. 

Descriptions of state-of-the-practice and state-of-the-art applications of bioremediation 

for the treatment of toxic and hazardous organic compounds in bioreactor systems as well as in in 

situ systems are available. Examples of information sources include: (1) proceedings from a 

conference on on-site and in situ bioremediation, 100, 101 sponsored by Battelle Memorial Institute 

(another conference is planned for 1993); (2) a newsletter, The Bioremediation Report, published 

monthly by COGNIS , Inc., of Santa Clara, CA, which reports on both technical and business 

developments in bioremediation; (3) proceedings from numerous conferences sponsored every 
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year by the Hazardous Materials Control Research Institute of Silver Spring. MD; (4) 

proceedings from conferences sponsored by the Biosystems Technology Development Program of 

the U.S. Environmental Agencyo<>; (5) proceedings of the international conferences on ground 

water quality and subsmface restoration 151; (6) reports of the U.S. Environmental Agency 

program to identify international treatment technologies for hazardous remediation in the United 

States152, 154; and (7) a monthly newsletter, Bioremediation in the Field, published by the U.S. 

Environmental Protection Agency, Cincinnati, OR The Superfund Innovative Technology -

Evaluation (SITE) Program of the U.S. Environmental Protection Agency, which was established 

in 1986, encourages the development and implementation of innovative treatment technologies for 

hazardous waste site remediation. 207 Bioremedial technologies that are being investigated as part 

of the SITE Program are described in Table 6. 

42 Use of Bioengineered Bioreactor Systems 

Historically, bioremediation has been used for the treatment of wastewaters; treatment 

effectiveness has been determined based on the ability of the treatment process to reduce oxygen­

demanding materials and nutrients in the waste effluent as well as to reduce the pathogenic nature 

of the wastes. However, bioremediation now is also being used to remove toxic and hazardous 

organic compounds from ground and smface waters, including potential drinking water sources, 

as well as from municipal and industrial waste streams. The use of bioreactors, as compared to 

uncontained in situ systems, may provide the following advantages192: (1) greater process 

management and control; (2) increased contact between microorganism and contaminants; (3) 

ability to use specific cultures or inoculum more easily; and (3) decreased acclimation times or 

faster biodegradation rates. 

In some cases, bioreactors are designed to remove specific organic contaminants from a 

specific contaminated water, such as the use of an above-ground bioreactor for treatment of 

contaminated ground water at a Superfund site. Often, bioreactors at publicly owned treatment 
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works (POTWs) used for the treatment of municipal wastewater may be utilized for the removal of 

specific organic compounds. Advantages in the use of POTWs for the treatment of hazardous 

wastes include203: (1) a diverse biomass that can be acclimated to many wastes; (2) dilution of 

toxic effects of the waste; and (3) availability of nutrients. 

Though bioremedial technologies being used for the treatment of toxic and hazardous 

organic compounds have not changed in any fundamental sense from technologies used in 

, ,- conventional wastewater treatment:. their effectiveness for the removal of toxic organic cOIll:pOunds 

may differ from their effectiveness in the removal of oxygen-demanding substances. Continued 

research is required to evaluate and to adapt conventional bioremedial treatment processes for 

the treatment of xenobiotic compounds, which are often present in very low, but still 

environmentally significant:. concentrations in contaminated water sources. 10, 86, 193, 221 

4.2.1 Fate and Transport of Organic Compounds in Bioengineered Bioreactor Systems 

Fate and transport mechanisms (Le., chemical mass balance considerations) that affect 

hazardous organic constituents in a water or wastewater treatment system include 17: 

(Bhattacharya 1992): (1) volatilization; (2) sorption; (3) chemical transformation (abiotic 

reactions); and (4) biodegradation. The bioengineer should account for these chemical mass 

balance considerations in order to ensure that the target chemicals are being destroyed and not 

simply transferred to another environmental compartment. For example, in conventional aerobic 

processes, volatilization is not controlled. However, if volatilization is expected to be a major 

pathway of loss of hazardous organic compounds from the system, the use of closed systems may 

be required (e.g., anaerobic processes). Alternatively, in aerobic processes, the use of fine bubble 

diffusers and deep tanks increases oxygen transfer efficiency, requires lower air flow rates, and 

minimizes losses of volatile compounds. Sorption of hazardous organic compounds into 

biological sludge produced in bioreactors will cause the sludge to be hazardous, and will impose 

special disposal requirements. 
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A review of the transport and fate of toxic materials in wastewater facilities was prepared 

by a group of researchers at Michigan Technological University and Clemson University for the 

Water Pollution Control Research Foundation. 9 They evaluated present methodology available 

for determining the fate of a toxic substance in a wastewater treatment facility. focusing on 

whether it was simply removed from a waste stream and discharged to land or air. or whether the 

substance was transformed to harmless end products. In a comparison of six comprehensive fate 

and transport models, using five organic toxic compounds in a hypothetical treatment plant, model 

simulations showed wide differences in distribution of the toxic compounds among the various fate 

paths for the different models. As a result of their assessment, they identified the following critical 

research needs in several major areas; 

(1) determination of biokinetic constants and physical properties for pollutants, including: 

(a) relationship of sorption of pollutants and their availability for biodegradation, 

including means to enhance desorption or solubilization in order to promote biodegradation; 

(b) factors that control acclimation periods; 

(c) rate and extent of biodegradation of pollutants in complex mixtures; 

(d) effects of inhibitors on biodegradation; 

(e) development and expansion of database of biokinetic rate constants, obtained using 

standardized protocols, for compounds of regulatory interest and developed for specific treatment 

technologies where biodegradation represents a significant fate mechanism; 

(f) development of predictive methods for determining biokinetic rate constants, such as 

Quantitative Structure-Activity Relationships (QSARs); 

(g) quantitation of biomass population in order to determine what fraction of biomass 

actively participates in degradation processes; 

(h) analysis of the biomass population to detennine the extent of sorption of organic 

compounds on the microbial biomass and residual accumulation in the biomass, which could be 

mistaken for biodegradation; and 
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(i) effect of waste matrix (e.g., presence of oils and sUIfactants) on volatilization of 

contaminants from wastewater treatment systems; 

(2) development of methods for testing and calibration of fate and transport models, including: 

(a) development of testing equipment; and 

(b) collection of field measurements of mass balances of organic compounds in full-scale 

treatment facilities; 

(3) sensitivity analyses to determine parameters that affect biokineticrate constants; and 

(4) development of a fate and transport model based on a consensus of scientific and engineering 

opinion. 

4.2.2 Types of Bioengineered Bioreactor Systems 

Two major types of bioreactors are used for the treatment of hazardous organic 

constituents in contaminated water 17, 193: (1) attached-growth; and (2) suspended growth. Both 

of these types of systems involve the use of naturally oecurring immobilized whole cells for the 

removal of organic wastes from the contaminated water. 65 In attached-growth systems, cells are 

immobilized in their own polymer matrix onto a sUIface, such as stone or plastic, in the form of a 

"bioftlm." In suspended-growth systems, cells bind to each other through physical force 

interactions and in a polymer matrix to form "floes. If Reviews of biofilm formation and kinetics of 

substrate removal at biofilm/liquid interfaces have been prepared by the research teams of W.G. 

Characklis 42, 43, 201 and C.S. Criddle?2 

4.2.2.1 Attached-Growth Bioreactor Systems 

Attached-growth bioreactors (sometimes referred to as fixed-film bioreactors) are often 

used because microorganisms are not wasted from the system, and the SRT is high, which allows 

for the production of a large biomass volume and the acclimation of the microorganisms to 

inhibitory compounds in the contaminated water, while minimizing the HRT.17 In these systems, 

the biomass is attached to an immobile carrier medium within the bioreactor. Attachment is 
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accomplished by the secretion of microbial polymers that form a sticky or slimy matrix in which 

the microorganisms are embedded 98 The type of media, e.g., plastic or stone, affects the type of 

microorganisms attached to the media and their metabolic activity. Problems sometime occur 

when freely suspended microorganisms secrete enzymes that degrade the matrix in which the 

microorganisms are embedded; this may be a problem especially during start-up. The 

concentration of suspended microorganisms is controlled by controlling the hydraulic flow, which 

washes the suspended microorganisms out of the system. Aeration can be provided by diffusion 

from the atmosphere or by moving air at a countercurrent to the water flow. 158 Attached-growth 

bioreactors are fairly easy to control, but several problems with their operation have been 

identified17: (1) clogging of the media with biomass; (2) sensitivity to changes in temperature; (3) 

high costs for capital equipment; and (4) less operating flexibility than the suspended growth 

systems. Examples of aerobic attached-growth systems include trickling filters, rotating biological 

contactors, and aerobic fluidized bed bioreactors for wastewater treatment and slow sand 

filtration for treatment of drinking water sources. 

A trickling f.tIter is a bioreactor in which randomly placed solid media provide surface 

area for biofilm growth. 159 The media often consist of crushed stone or rock, ranging in size from 

50 to 100 mm in diameter and with porosities of 40 to 50 percent The reactor is not actually a 

"mter," for organic compounds are not removed by physical filtration processes, but by sorption 

and subsequent biological degradation. Application of wastewater onto the media is accomplished 

by a rotating distribution arm. The jet action through the nozzles in the arm is usually sufficient to 

power the rotor. The wastewater is intermittently dosed, with air circulating through the pores 

between dosing. An underdrain system is used to carry away the treated wastewater and biomass 

that has sloughed from the media. A liigh organic loading may result in excessive microbial 

growth and plugging of the pores, but an increase in hydraulic loading will usually increase 

sloughing and keep the beds unclogged. Trickling f.tIters are extremely sensitive to temperature 

55 



variations, because of the biomass/water/air interfaces, and effluent quality decrease during 

cooler seasons. Trickling filters have traditionally been important for wastewater treatment 

because of their simplicity and low operating costs, but requirements for high quality effluent on a 

consistent basis have made their use less popular. 

Rotating biological contactors, used in the treatment of both municipal and industrial 

wastewaters, consist of a number of corrugated disks mounted on a central shaft, which in turn is 

mounted lengthwise on a horizontal cylindrical tank, which holds the solution to be treated. 107 The 

disks are rotated slowly (1 to 2 rpm), with about 40 percent submerged in the bath. During 

rotation, a [ilin of wastewater is carried on the surface of the disks out of the solution and into the 

air, where oxygen from the air dissolves into the wastewater. Microorganisms form a biofllm on 

the disks, where aerobic biodegradation reactions occur. The media must be covered to protect 

the system from climatic factors, as well as to minimize algal growth. The RBC system is a 

relatively new process, and experience with full-scale applications is limited.145 Also the system 

has a high capital cost and is sensitive to low temperatures. The RBC has been used for growth of 

white-rot fungi for the degradation of specific organic compounds. 8 2 

In the aerobic fluidized bed method of contaminated water treatment, sand, with a particle 

diameter of usually less than 0.3 mm, is used as the support media on which the biofJ1m 

develops1\.9 The sand particles are suspended in a vertical column by an upward flow of the water 

that is to be treated. The flow rate is adjusted so that the sand particles are kept in motion but are 

not swept out of the system with the treated effluent. These beds have a large surface area 

available for treatment, resulting in effective treatment of organic wastes in a minimum of time and 

area. This type of system also has an ability to withstand shock loadings of wastes with high levels 

of biodegradable compounds, i.e., wastes with high BOD levels. However, costs of the process 

are high, because air or oxygen are required to keep the particles in motion. 

A bioengineering process used in the treatment of surface water sources of drinking water 
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is slow rate sand :fIltration (SSF). 130 SSF is a bioengineering system that has been successfully 

used for providing potable water since the nineteenth century. SSF combines physicochemical 

processes with biological processes for the removal of turbidity,68, 189 cysts that can cause 

giardiasis, 100 bacteria, 68, 140 viruses,I40, 141 and dissolved organic chemicals from water. 47, 48 A 

mat of biological growth, schmutzd.ecke. composed of algae, bacteria, and other microorganisms 

including protozoa and rotifers develops primarily on top of a bed of sand approximately 3 feet 

deep.l44 The :fIlters are operated at low filtration rates, resulting in long retention times. 

4.2.2.2 Suspended-Growth Bioreactor Systems 

The activated sludge process is the best-known example of the group of treatment systems 

referred to as suspended-growth systems, in which the biomass is suspended in the liquid phase of 

the bioreactor. 45 Activated sludge systems have been a standard in the treatment of municipal 

wastewaters for many years, for they are efficient in the removal of suspended and dissolved 

organic materials. nutrients, and some trace minerals. 158 However, control of these systems can 

be fairly complex. The basic system consists of a large basin into which contaminated water is 

introduced, along with air or oxygen, utilizing diffusion (in which bubbles are produced from 

submerged porous media such as tubes, plates, or grids) or mechanical aeration devices (such as 

rotating brushes or surface impellers). The microorganisms involved in degradation are present 

in the aeration basin as suspended material. The microorganisms are kept in suspension and 

distributed through the reactor volume by the aeration process. The microorganisms are 

separated periodically from the water by gravity settling, after which a portion of the settled 

biomass is returned to the aeration basin, while the remainder is removed as biological sludge for 

treatment and disposal. 

If settling of the microorganisms does not occur, or occurs too slowly, the 

microorganisms can be washed out of the system, producing a turbid effluent and making the 

microorganisms unavailable for recycle to the aeration basin. Two kinds of organisms are 
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involved in a complex and poorly understood process that results in the settling of sludge: floc­

forming bacteria and fungi and filamentous bacteria. Floc-formers produce exudates and surface 

structures that promote the adhesion of microbial cells to each other, forming clumps of hundreds 

to thousands of cells. Filamentous microorganisms grow in long fiber-like sheaths that cross-link 

the flocs formed by the floc formers. If too few fIlaments are present, the flocs are not sufficiently 

cross-linked (referred to as the development of pin-point flocs) and tend to wash out, producing a 

turbid effluent. Too many filaments will result in the development of a loose and large floc particle 

that is of such bulk and "fluffiness" that it will not'settle, referred to as a bulking sludge. Though 

little is known about the mechanisms of floc formation76 conditions such as dissolved oxygen, 

organic loading, nutritional balance (e.g., iron, phosphorus, nitrogen) as well as reactor design 

(continuous or plug flow), reactor operation (e.g., settling time, mixing, aerator type) and shear 

stress on the flocs have been shown to affect the development of the fIlaments. Currently chemically­

assisted bioflocculation, using ferric salt, alum, and/or polyelectrolyte coagulant aids, is used 

during periods of inadequate flocculation. Improved settling of activated sludges is an area that 

requires continued research. Genetic engineering of microorganisms with desirable floc-forming 

characteristics has been suggested as a means of improving floc formation. 114 

Waste stabilization lagoons are suspended-growth microbial systems that rely on the 

symbiotic relationship between autotrophic algae and aerobic heterotrophic bacteria to treat 

organic wastes. 158 In this process, wastewater is channeled into a basin, in which it is retained 

for a period of several weeks, compared to a retention time of several hours for wastewaters in 

other types of aerobic processes. 76 Bacteria metabolize the organic carbon present in the waste, 

producing new cells and carbon dioxide. The carbon dioxide is used as a carbon source for algae 

and blue-green bacteria, which grow" and produce oxygen, which in turn is then used by the 

bacteria for metabolism of the wastes. High treatment efficiencies for the removal of nutrients and 

organic compounds can be achieved, especially in shallow lagoons where aeration and light 
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penetration allow for the optimization of photosynthetic and bacterial oxidation processes. Specific 

algae have been shown to be able to metabolize organic compounds that are often recalcitrant in 

bacterial systems; this degradation is only obselVed in the presence of light 37,38 To enhance 

aeration, lagoons may be aerated by mechanical agitation or by compressed air diffusion. In these 

systems, the dominant microorganisms include aerobic heterotrophic bacteria as well as 

facultative anaerobic heterotrophic bacteria In deep systems, an aerobic upper layer and an 

anaerobic lower layer may form. Soluble organic transformation products from anaerobic 

microbial metabolism may diffuse into the upper layer and be metabolized under aerobic 

conditions. 

4.2.2.3 Anaerobic Attached-Growth and Suspended-Growth Bioreactor Systems 

Anaerobic systems, which are used in environments that are depleted of oxygen, sulfates, 

and nitrates, but utilize CO 2 as the electron acceptor, have been used for about 100 years for the 

treatment of sewage sludges from wastewater treatment plants. Recently these types of systems 

have also been utilized in the treatment of wastewaters with high concentrations of organic 

contaminants. Advantages of anaerobic digestion include 17: (1) conversion of the organic 

contaminants almost quantitatively to a high energy fuel, methane; (2) production of less sludges 

(i.e., new biomass) because anaerobic organisms have a low growth yield coefficient, Y (however, 

anaerobic organisms are not slow-growers, for their k values (i.e., the maximum rate of substrate 

use per unit weight of microorganisms), which determine the rate at a waste can be biodegraded, 

are not low); (3) no energy required for aeration; and (4) efficient treatment of volatile 

compounds, since anaerobic systems must be closed to prevent the entry of oxygen. Examples of 

anaerobic processes include anaerobic contact processes, anaerobic filters, anaerobic fluidized 

bed reactors, and upflow anaerobic sludge blanket systems (fable 7). Anaerobic systems are 

sometimes built in two-stage configurations, separating the acidification stage (which includes 

hydrolytic, acidogenic, and acetogenic microorganisms) of the process from the methanogenesis 
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stage, in order to optimize environmental conditions for the different microbial consortia. 

4.2.2.4 Combined Anaerobic/Aerobic Bioreactor Systems 

The application of bioreactors is not limited to the use of either aerobic or anaerobic 

microorganisms, but combined systems, utilizing anaerobic and aerobic processes in sequence, 

may be used to treat certain waste organic compounds that require anaerobic degradation for 

initial break-down. Sequential anaerobic/aerobic treatment was used for the successful 

degradation of hexachlorobenzene, tetrachloroethene, and carbon tetrachloride in a biof'ilm 

column reactor system. 215 The f'rrst stage of treatment consisted ofa methanogenic biofilm column 

reactor fed acetate as the primary cometabolic substrate. Reductive dechlorination of the target 

compounds resulted in the formation of mono- and di-chlorinated transformation products. The 

effluent from the methanogenic biofllm reactor containing these transformation products was fed 

to an aerobic biofilm reactor seeded with settled sewage. The mono- and di-chlorinated 

compounds were effectively utilized by the aerobic biofilm. 

4.2.3 Economic Considerations in the Use of Bioreactors 

Costs of bioreactor systems for the treatment of contaminated water sources are 

dependent on the following factorsl7: 

(1) Cost of primary substrate, if required, for systems utilizing cometabolism; 

(2) Cost of nutrients, if required; 

(3) Cost of sludge handling (dependent on the amount of sludge generated; may account 

for 50 percent of the total cost of treatment); 

(4) Cost of source of alkalinity for pH control (complicated by cost versus ease and safety 

of handling); 

(5) Cost of pumping; 

(6) Relationship between operational and capital costs (i.e, anaerobic bioreactors require 

large volumes of capacity, but operating costs may be lower compared to aerobic processes that 
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require aeration and more sludge disposal capacity); and 

(7) Treatment of any volatile end or by-products (Le., costs of treatment of volatile 

transformation products using activated carbon can be very high). 

43 In Situ Bioremediation of Ground Water 

In situ bioremediation of ground water is being implemented for some contaminated 

aquifers. Not long ago the subsurface was thought to be sterile, but recent research has shown 

that the subsurface may contain bacterial populations up to one million organisms per gram of 

dry soil or aquifer material. 77 Fungi and protozoa have also been identified in the subsurface, but 

at lower levels.79 Many of these microorganisms thrive at low levels of organic carbon, but grow 

poorly or not at all under high nutrient conditions. 78 The bacteria appear to have storage 

granules, which allow their survival during periods of extended starvation. 219 Most of the bacteria 

identified are aerobic, but anaerobic bacteria have also been identified. 79 

The most commonly used technique for in situ bioremediation is biostimulation of 

indigenous microorganisms under aerobic conditions by adding nutrients and an oxygen 

source.153 However, both in situ aerobic and anaerobic bioremedial processes that use primary 

substrates to encourage cometabolism of target compounds that are susceptible to cometabolic 

processes are also being investigated, as well the potential of stimulating bioremediation using 

anaerobic processes by adding alternate electron acceptors such as nitrate. Application of 

anaerobic processes may be desirable in ground waters because ideal aerobic growth conditions, 

which includes adequate supplies of nutrients and oxygen, mixing, and a high microbial mass are 

difficult to maintain in aquifers)26 Aquifers may also have a high abiotic oxygen demand due to 

hydrogen sulfide, reduced iron, or other readily oxidizable compounds, making it difficult to 

maintain an well-oxidized environment. Aerobic biodegradation is usually faster than anaerobic 

biodegradation, but in an aquifer, the rate of degradation may be limited by mass transfer 

limitations, such as slow dissolution, dispersion, and/or desorption of the contaminants. Slower 
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degradation due to anaerobic processes or natural non-stimulated processes may be sufficiently 

fast for removing contaminants that are sorbed to aquifer materials and are slowly released to the 

ground water. However, when subsurface conditions do not provide a conducive environment for 

indigenous microorganisms, or do not allow transport of nutrients, oxygen, or other amendments 

to the contaminants and microorganisms, treatment in place may not be sufficiently effective or 

even possible. 

The California Biotechnology Action Council has concerns about the possible ecological 

impacts of added nutrients and other amendments on the functioning of the natural ecosystem, and 

recommends that analysis of such impacts should be a part of every bioremedial investigation. 192 

4.3.1 Design and Operating Considerations for In Situ Bioremediation of Contaminated Aquifers 

The most common design of an in situ system uses a combination of injection wells (or 

galleries or trenches for shallow aquifers) and one or more recovery or extraction wells. 153 A 

typical configuration would be a series of injection wells distributed parallel to the extraction 

wells. Withdrawal of water faster than it is being reinjected creates a hydraulic gradient that 

induces ground-water flow to the withdrawal point This operational technique also results in 

more effective hydraulic containment of the contaminated ground-water plume and increases the 

flow of nutrients through the aquifer. Greater depth to ground water at a contaminated site allows 

greater head at the injection points, which results in greater potential injection rates. Shallower 

water tables limit the head that can be attained, and are more favorable to the use of injection 

galleries or trenches. 

Recovered ground water may be treated (using an air stripper tower, activated carbon, an 

oil/water separator, a biological treatment unit, an advanced oxidation unit, or combinations of 

these treatment units) prior to amendment with nutrients, an oxygen source or alternate electron 

acceptor, andlor a primary substrate for cometabolism. 153 If the water has been treated in an 

above-ground bioreactor, pollutant-degrading microorganisms will also be present in the treated 
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effluent, and will re-injected into the aquifer with the treated water. Alternatively, cultures of 

microorganisms specifically developed for treatment of the target contaminants may be added to 

the treated water. Mter treatment and the addition of amendments, the ground water is re-injected 

into the contaminated aquifer, where bioremediation of the receiving ground water should be 

enhanced by the presence of the amended, treated ground water. However, at some sites, the 

introduced ground water may push away the native ground water containing the contaminants, so 

that the required mixing between the contaminants and the amendments does not occur. However, 

if the contaminants are sorbed to the aquifer materials, they will desorb into the introduced water, 

and contact with the amendments will be accomplished. At some sites, the extracted ground water 

is not treated in an above-ground reactor, but re-injected after the addition of the required 

amendments. In this system, as the contaminants are mixed and reinjected with the amendments, 

desired contact between the contaminants and the amendments is achieved, and the costs of the 

system are also reduced. In addition, most above-ground treatment reactors involve 

physica1!chemical processes, such as air stripping or carbon adsorption, which only transfer the 

contaminants to another environmental medium, but do not result in the their destruction , such as 

would occur when they are re-injected and subsequently biodegraded. 

Another system undergoing evaluation for delivering amendments to ground water is 

subsurface ground-water recirculation, which eliminates the need to pump ground water to the 

surface for above-ground treatment and addition of amendments. 138 This mixing method utilizes a 

subsurface sealed recirculation well with an upper and lower screen. A pump is installed in the 

well to induce flow through the well and through the aquifer. Amendments can be introduced 

directly into the circulating water through the well. 

To utilize in situ bioremediation at a specific site, the ground-water flow rate must be 

sufficient to deliver the required amounts of nutrients, oxygen, and/or other amendments in a 

reasonable time frame. 153 In addition, the flow paths of the amended ground water should cover 

the entire area requiring treatment Recovery wells should be sited to prevent migration outside 

63 



the designated treatment zone. To maintain control and containment of the ground water, usually 

only a portion of the recovered ground water is reinjected, and the other is discharged by an 

acceptable method Regulatory permits are usually required for the disposal of the ground water 

that is not reinjected. 

If light non-aqueous phase liquids are floating on the surface of the contaminated ground 

water, they should be removed using a dual phase pump or skimmer before implementation of 

bioremediation. 153 Treatment of the unsaturated· zone (for example, using in situ >vapor stripping) 

will reduce the source of contaminants to the ground water and reduce the time for ground-water 

cleanup. 

4.3.1.1 Addition of Electron Acceptors 

When oxygen is injected as the electron acceptor, oxygen requirements are based on 

stoichiometric relationships (e.g., 3 pounds of oxygen to convert 1 pound of hydrocarbon to 

carbon dioxide and water). 153 The limit of dissolved oxygen that can be delivered from air is 

about 8 to 10 ppm, unless injection occurs substantially below the water table. Use of pure oxygen 

instead of air can increase the amount of oxygen introduced by five times. Sources of oxygen 

include liquid oxygen, gaseous oxygen, and hydrogen peroxide. On-site generation of oxygen may 

be accomplished by using zeolite columns to act as a molecular sieve to remove nitrogen from 

air. 163 Hydrogen peroxide, which decomposes to oxygen and water, is completely soluble in water 

and may provide levels of oxygen in water 5 to 50 times greater than air injection. Concentrations 

of hydrogen peroxide are limited to 100 to 1,000 ppm, due to toxicity to bacteria. 

An innovative method to increase the delivery of oxygen to aquifers has recently been 

developed that involves the use of surfactants to create air microbubbles. 146 A microdispersion of 

very fine air or oxygen bubbles is fortned in a surfactant solution using a venturi or spinning disk. 

Air sparging is also being investigated as a means of enhancing oxygen transfer to aquifers. 27, 28, 

133, 147 With air sparging, air is directly injected into a ground-water formation through a well 
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that contains no water. In addition to increasing oxygen levels in the ground water, air sparging 

also results in enhanced dissolution of organic chemicals, thus increasing bioavailability. Another 

advantage of air sparging is that it results in the volatilization of volatile organic contaminants 

into the unsaturated zone above the water table, where they can be removed from the soil by a soil 

vapor stripping system. 

In systems where methanotrophic cometabolism is being stimulated, methane is added as 

a primary substrate, in addition to oxygen. 138 Both methane and oxygen are of limited solubility in 

water. Therefore, added concentrations of these two gases together with other gaseous 

components such as molecular nitrogen must be below the saturation partial pressure in the 

aquifer, which may not be much higher than one atmosphere in shallow ground waters. 

Anaerobic degradation is biostimulated by adding alternate electron acceptors to the 

aquifer. Alternate electron acceptors (except for ferric ion) are more water soluble than oxygen. 

Therefore, lower volumes of amended solutions need to be supplied to the aquifer.164 Lower 

biomass yields due to anaerobic growth reduces plugging problems associated with microbial 

growth, and without additional oxygen, iron precipitation is less of a problem. At this time, nitrate 

is the only alternate electron acceptor with demonstrated potential for use in large scale in situ 

bioremediation applications. 111, 164 Nitrate has been used as an electron acceptor in field studies 

of bioremediation of aquifers contaminated with various types of fuels at Traverse City, MI (JP-4 

jet fuel spill)112; Borden, Ontario (gasoline spill, including benzene, xylenes, and toluene) 16; Seal 

Beach, CA (gasoline spill)165; and Rhine Valley, Federal Republic of Germany (suspected fuel oil 

spill).217 

The use of biostimulated anaerobic processes in aquifers used for drinking water may 

cause problems with water qUality. 24 Under anaerobic conditions, metals such as iron and 

manganese will become solubilized, which can cause taste, odor, and staining problems. Copper, 

cadmium, lead and zinc oxides may also become solubilized and enter the distribution system. 69 
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Metabolites excreted by the anaerobic microorganisms increase the organic matter content of the 

water. When the water is disinfected to control pathogens, disinfection by-products, which are 

regulated by the Safe Drinking Water Act of 1986, can fonn as the disinfectants react with the 

organic matter. 

4.3.1.2 Addition of Nutrients 

Nutrient requirements are based on the mass of organic contaminant to be degraded and 

can be approximated by a ratio of carbon to nitrogen to phosphorus of 120: 10: 1. 1_53 

Requirements are adjusted by the following factors: nutrients already present in the contaminated 

aquifer, nitrogen fIxed by indigenous organisms, nutrients recycled from dead bacteria, and 

sorption of nutrients by aquifer materials. Nutrients commonly used include ammonium chloride 

and sodium orthophosphate salts. In aquifers high in clay content, the use of sodium salts may 

reduce the permeability of the aquifer, and potassium salts should be used instead. 

Tripolyphosphates, when used in a molar ratio equal to or greater than 1: 1, solubilize and 

sequester iron, calcium, and magnesium rather than precipitate these minerals, as may occur 

when orthophosphates are used, and are recommended for use in certain aquifers. 

4.3.1.3 Difficulties Associated with the Addition of Amendments for Biostimulation 

The delivery of large quantities of electron donors, electron acceptors, and nutrients to an 

aquifer can present an engineering challenge, especially when cometabolic processes are being 

stimulated. For example, in the cometabolic conversion of chlorinated solvents under anaerobic 

conditions, the mass of primary substrate (electron donor) to mass of chlorinated solvent 

biotransformed may range from 100: 1 to 1000/1. 24 In addition, the high levels of chemicals added 

are converted to large amounts of end-products, such as methane gas, carbon dioxide, and 

biomass. These products may adversely affect the bioremedial process in the aquifer, e.g., 

biomass growth may plug the pore space, reducing the penneability of the aquifer, and interfering 

with further addition of amendments required for the bioremedial process. 

Very high concentrations of contaminants in aquifers, especially in aquifers with lower 
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permeabilities, will create very high electron acceptor and/or nutrient demands, which may result 

in excessively long remediation periods and higher costs. 153 Viscous materials, such as heavier 

fuel oil blends, may prevent the flow of water and the diffusion of nutrients and electron acceptors 

through a contaminated aquifer, and prevent the implementation of bioremediation. The 

concentration at which this may occur is site-specific, but is usually above 20,000 mglkg. Non­

degradable contaminants in a contaminated aquifer should also be quantified. If they are above 

regulatory limits, another technology may be required in addition to bioremediation as part of a 

treatment train, or another technology should be selected as the remedial option. 

Capacities of recovery and injection wells may decrease with time, due to movement of 

fmes, precipitation of minerals, and excessive growth of microorganisms in or in the vicinity of the 

injection wells.l53 Ground water in a contaminated aquifer is usually in a reduced condition due 

to utilization of dissolved oxygen by naturally occuning biodegradation, with elevated levels of 

reduced, soluble iron. With the introduction of recovered, treated ground water to the aquifer, 

oxygen is added, and iron and other metals, as they become oxidized, may precipitate, which can 

reduce the permeability of the aquifer and hinder the distribution of the added nutrients, electron 

acceptors, or other amendments. The addition of nutrients in surges of high concentrations rather 

than in continuous addition at low concentrations may reduce the tendency of microbial growth in 

the well bore and in the vicinity of the injection well. Dilute hydrochloric acid may be added to 

remove mineral deposits and treat excessive microbial growth in the area of the injection wells. 

High levels of hydrogen peroxide may also be used to treat excessive microbial growth, and is 

preferred for this purpose, since its use results in the formation of a more flocculent dead 

microbial mass than the use of acidification, which results in the formation of a slimy mass. 

Determination of concentrations of contaminants sorbed to the aquifer solid materials or 

associated with immiscible phases is extremely important in estimating time required to 

accomplish the bioremedial action, since these contaminants serve as a continual source to the 
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ground water through time. 153 Concentrations of contaminants decrease with time through 

biodegradation, thus enhancing the rate of desorption from the solids or dissolution of an 

immiscible phase. Therefore, analysis of aquifer solid materials for the presence of contaminants 

is required in addition to analysis of ground water, in orner to estimate the total mass of 

contaminants requiring remediation. Determination of the total mass of contaminants is difficult to 

achieve due to heterogeneity in aquifer solid materials as well as heterogeneity in contaminant 

concentrations associated with the aquifer solid materials or immiscible phases. 

Bioremediation is more easily implemented in aquifers with higher permeabilities (Le., 

greater than 10 -3 cm/sec ).153 Nutrients and electron acceptors can be transported more easily to 

the contamination and there is less sorption of both contaminants and nutrients to the aquifer 

solid materials, since clay and organic matter content is usually lower in aquifers with higher 

permeabilities. Heterogeneity in an aquifer formation also complicates understanding of ground 

water flow direction and rate, and thus control of the remedial action. 

4.3.2 Monitoring of In Situ Bioremediation 

Monitoring wells within the treatment area are used to 153: (1) determine distribution of 

nutrients and oxygen; (2) monitor pH and other ground-water chemistry parameters that may 

impact bioremediation or system operation; (3) monitor ground-water chemistry parameters that 

are impacted by bioremediation (e.g., removal of electron acceptors, release of waste products 

such as carbon dioxide or methane) in order to assess the extent of biodegradation occurring; (3) 

measure ground-water elevations to evaluate ground-water flow; and (4) assess changes in 

contaminant concentrations to evaluate the extent of biodegradation. An extensive monitoring well 

network is required to evaluate changes in amount of contaminants present, since dispersion will 

reduce concentrations of contaminants even if no degradation has occurred. Wells should be 

located to monitor flows in different directions and at distances that produce changes in water 

quality, as determined by predicted flow times. Nutrient and electron acceptor distribution can be 
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adjusted by changing the relative rates of ground-water recovery or reinjection in the wells, or by 

installing additional wells. If nutrients or contaminants are detected outside the treatment zone, a 

reduction in the amount of recovered ground water that is being injected may be required. 

4.3.3 Application of In Situ Bioremediation to Specific Organic Compounds 

The properties and biodegradability of the contaminants present at the site will affect the 

rate and extent of bioremediation. 153 For example, at sites contaminated with petroleum 

hydrocarbons, lighter, more soluble constituents will biodegrade more rapidly-and to lower 

residual levels than heavier, less soluble constituents that tend to sorb to aquifer solid materials. 7 

Monoaromatic compounds such as benzene, toluene, ethylbenzene, and xylenes are more rapidly 

degraded than two-ring compounds, such as naphthalene, which are more rapidly degraded than 

three-, four-, and five-ring compounds.153 Smaller aliphatic compounds are generally degraded 

more readily than larger compounds, and branched hydrocarbons degrade more slowly than 

straight chain hydrocarbons. Therefore, gasoline will degrade more rapidly and to a greater 

extent than heavier products such as No.6 fuel oil or coal tar. The extent of conversion of gasoline 

may be limited by the distribution of nutrients and electron acceptors, while the conversion of 

heavier petroleum hydrocarbons is more likely to be limited by their rate of solubilization, their 

release from aquifer solid materials, or their rate of degradation. 

Non-chlorinated solvents, such as alcohols, ketones, esters, carboxylic acids and esters, 

are usually readily biodegradable, but may be toxic at high concentrations due to their high 

solubility in water.153 Toxicity is in some cases site-specific, since microbial communities have the 

ability to acclimate to higher concentrations of contaminants. 

Chlorinated solvents also have high water solubilities (e.g., 1 gIL), which is several orders 

of magnitude higher than the drinking water standards of those that are regulated. 153 If 

chlorinated solvents are present at high concentrations, they may inhibit the biodegradation of 

other organic wastes present, such as petroleum hydrocarbons. Since chlorinated solvents are 
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denser than water (referred to as dense non-aqueous phase liquids (DNAPLs» and have a low 

tendency to adsorb to soil and aquifer materials, they often penetrate deeply beneath ground water 

table. Chlorinated solvents, especially the lightly chlorinated, can be degraded under aerobic 

conditions, but usually require the addition or presence of cometabolites, such as toluene, phenol, 

propane, ethylene, cresol, ammonia, isoprene, vinyl chloride, or methane64, 66, 67,94,97,122,210, 

216 Two field pilot-scale studies at the Moffett Naval Air Base have been conducted to evaluate the 

aerobic degradation of chlorinated solvents using 105,168,177,178: (1) methane as the primary 

substrate to stimulate methanotrophs and the production of methane mono-oxygenase to 

cometabolize the chlorinated solvents; and (2) phenol to stimulate the production of toluene 

oxygenase by phenol-utilizing bacteria. Ground water extracted from the treatment zone was 

amended with oxygen and the primary growth substrate and reinjected to stimulate the growth of 

indigenous microorganisms. Above-ground treatment was not used; the chlorinated solvents 

extracted with the ground water were re-injected into the aquifer. Conclusions from the studies 

included: (1) stimulation of indigenous methanotrophs and phenol-utilizers was accomplished 

with the addition of the primary substrates and oxygen; (2) rates and extent of transformation 

were compound-specific, with removal rates ranging from 20 to 95 percent; (3) the rates of 

transformation were limited by the rates of desorption of the target compounds from the aquifer 

solids; and (4) the cometabolic transformations were competitively inhibited by the primary 

substrates, resulting in the reduction of the transfonnation rate; and (5) results correlated with 

laboratory microcosm studies, which mimicked the conditions of the field tests. 

Under anaerobic conditions, chlorinated solvents, especially those that are highly 

chlorinated, can also be degraded, but appropriate environmental conditions and 

microorganisms must be present for these reactions to occur. Also, some of the transformation 

products may be more hazardous than the parent compounds. The transformation of carbon 

tetrachloride by acetate-utilizing denitrifying bacteria was investigated at the field site at the 
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Moffett Naval Air Base under the mildly reducing conditions of denitrification.176 Ground water 

was extracted from the site and amended with acetate and nitrate. Conclusions from the study 

included: (1) stimulation of indigenous acetate-utilizers was accomplished with the addition of 

acetate and nitrogen; (2) carbon tetrachloride was transformed through reductive dechlorination 

reactions, with an average removal rate of 95 percent; and (3) chloroform was observed to be an 

undesirable transformation product, as was observed in laboratory microcosm studies. 

Concentrations of carbon tetrachloride below typical health-based standards of 5 to 10 ugIL were 

not achieved in this field study. A laboratory study, however, has shown that carbon tetrachloride 

can be transformed to CO 2, with residual concentrations below regulatory limits 53, so if these 

anaerobic processes can be optimized, they can meet relevant regulatory endpoints. 24 

The potential for degradation of chlorinated solvents using sequential anaerobic/aerobic 

processes has been investigated in a laboratory-scale aquifer simulator containing contaminated 

aquifer materials and ground water. 57 During the anaerobic portion of the study, a recirculation 

flow of glucose and nutrients was used to maintain methanogenic conditions, during which time 

tetrachloroethene and trichloroethene were degraded to dichloroethene. Oxygen was then 

introduced, and the oxidation of dichloroethene was accomplished by methanotrophic bacteria. 

Until more full-scale experience is available, in situ bioremediation should perhaps be 

limited to use at sites that contain more readily degradable contaminants, that are relatively 

simple hydrogeologically, and that have a well-defmed point source of contamination with only 

one or two contaminants (e.g., spills, leaking underground storage tanks, and simple 

manufacturing sites) rather than multiple and undefined sources of contamination. 138 Also, 

complete information should be made public concerning the types of living microorganisms and 

other amendments used at the site. 103 The use of bioremediation in this conservative manner will 

build public confidence as well as a reliable database of information. For example, 

bioremediation could be a potential effective remedial technique for an aquifer contaminated with 
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vinyl chloride, which is a known human carcinogen with very low regulatory limitsJ.38 Vinyl 

chloride is difficult and expensive to treat in conventional pump-and-treat systems, because it does 

not sorb well to activated carbon or other sorbent materials. However, it can be degraded in situ 

as a primary substrate as well as through cometabolism by methanotrophic bacteria, with only 

two kilograms of methane required per kilogram of vinyl chloride degraded. 

4.3.4 Natural Bioremediation 

Recently, recommendations have been made to utilize "natural (or passive) 

bioremediation" of aquifers in conjunction with and to supplement 'conventional remediation 

techniques to cleanup certain contaminated aquifers. 22 For example, pump-and-treat operations 

could be used to reduce concentrations of contaminants within an aquifer to some defmed level, at 

which time pump-and-treat operations would be terminated, and the natural biodegradation 

p'rocesses of indigenous microorganisms occurring in the aquifer would be used to complete the 

cleanup_ At this time there are no full-scale demonstrations of natural bioremediation used 

specifically to cleanup a site, but work has been performed investigating those processes that 

control the natural biodegradation of dissolved contaminant plumes. 22, 46, 84, 85, 223 

In natural bioremediation of a contaminated ground water plume, dissolved contaminants 

are degraded as they are transported down-gradient within the aquifer. 22 At the point where the 

contaminants enter the ground water from a source in the unsaturated zone, indigenous aerobic 

microorganisms will degrade the contaminants until the oxygen is used up. Because the solubility 

of oxygen in water is relatively low, only a small amount of the contaminants will be degraded. 

The contaminants that are not degraded will be carried down-gradient in the plume of anaerobic, 

contaminated water. As the plume migrates, dispersion will result in the mixing of the anaerobic 

contaminated water with clean oxygenated water at the plume fringes. After a period of 

acclimation, aerobic degrading bacteria will develop in the aquifer solids of this fringe area. As 

the oxygenated water mixes with contaminated water, the attached bacteria will utilize both the 
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contaminants and the oxygen, thus preventing the further spread of the contaminated plume. As 

dissolved contaminants disperse outward, they come in contact with the oxygenated ground water 

and are biodegraded. If this process is allowed to continue indefinitely, the dissolved contaminated 

plume will reach a quasi-steady state condition, where the long term rate of dissolution of 

contaminants from the source area is equal to the rate of biodegradation. In the core of the plume, 

conditions may become highly reducing, and anaerobic degradation processes may occur. Any 

organic contaminant degraded through an~erobic processes will reduce the oxygen demand on 

the aquifer, and result in more oxygen being available for those compounds that can only be 

degraded aerobically. The extent of aerobic biodegradation will be controlled by the amount of 

contamination released, the rate of oxygen transfer into the subsurface, the background oxygen 

content of the aquifer, and the environmental conditions present in the aquifer. In addition, 

heterogeneous conditions in the aquifer will prevent mixing and will allow the plume to migrate 

quickly down-gradient 

To utilize natural bioremediation for the cleanup of an aquifer, the source of 

contamination should be removed, followed by careful monitoring of system performance. A 

monitoring system typically inc1udes22: (1) interior wells to monitor the plume distribution and 

indicator parameters; and (2) guardian wells at the outside edge of the area of contamination to 

detect potential off-site migration and to determine if additional remedial actions are required. 

Typical indicator parameters measured in the interior wells include 22: (1) individual target 

contaminants, to determine extent of bioremediation; (2) dissolved oxygen, to determine if 

biodegradation is occurring, as well as to delineate the contaminant plume; (3) nitrate and 

dissolved iron, to assess the extent of anaerobic degradation; (4) redox potential, to assess the 

overall oxidation-reduction status of the aquifer; (5) carbon dioxide and pH, to evaluate the extent 

of microbial respiration and to determine if conditions are suitable for bioremediation; and (8) 

total organic carbon, to evaluate the extent of the contaminated plume, to monitor the production 

of organic transformation products, and to evaluate the extent of biodegradation. The guardian 

73 



wells are usually used for regulatory pmposes and are primarily monitored for target 

contaminants. 

An assessment of the distance a plume will migrate before contaminants are biodegraded 

is also required for the implementation of natural bioremediation. 22 This assessment requires an 

estimation of the rate of migration and the rate of biodegradation of the contaminants., The rate of 

contaminant migration can be estimated by measuring the hydraulic gradient and the permeability 

..of the aquifer. Estimation of the rate of biodegradation within the aquifer is much more difficult 

Modelling tools have been developed to predict the rate of natural biodegradation. An example of 

such a model is BIOPLUME IT , which was developed to simulate hydrocarbon degradation. 166 

This model incorporates advection, dispersion, oxygen-limited biodegradation, and first order 

decay in a two-dimensional aquifer. BIOPLUME II does not simulate dissolution of 

hydrocarbons nor the anaerobic degradation of hydrocarbons, which may result in an under­

estimate of biodegradation. 

The use of natural bioremediation at this time is limited by lack of acceptance of the 

approach by regulators, environmental groups, and the public. 22 These groups are concerned 

with the lack of control of the process as well as uncertainties whether public health and the 

environment will be protected without a definitive assurance of success. Though costs of operating 

such a system should be low, these low costs may be offset by substantial costs required to 

adequately characterize the site as well as costs to monitor the progression of natural 

bioremediation. 

4.3.5 Regulatory Considerations for the Use of In Situ Bioremediation 

Regulatory targeted endpoint contaminant concentration levels vary significantly at specific 

sites. These levels can be State-mandated levels, Federal-mandated levels, or risk-based levels. 

State regulations are sometimes the most difficult to meet, since they are often set at detection limit 

or at background levels. The use of non-specific parameters, such as total petroleum hydrocarbon 
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(!PH) levels, as remediation goals may cause misleading conclusions about system 

performance. 153 TPH analyses often measure components that are not of interest, such as asphalt 

particles, do not measure the most volatile compounds, and can yield highly variable results. 

Some states (e.g., New Jersey) require that final nutrient concentration levels be at or below 

background levels at the end of the remedial effort, which requires continuous, careful monitoring 

of nutrient levels used during the remedial process. 

With regards to specific contaminants, the most difficult regulatory endpoint to meet is 

usually for ben:rene, for as a carcinogen, the MCLs for benzene are usually an order of magnitude 

lower than for other light hydrocarbon constituents. 153 If the benzene endpoint is met, levels for 

other components are usually met also. For heavier petroleum hydrocarbons, TPH is a typical 

target analysis. However, during treatment, there will probably be residuals of slowly degraded 

compounds with low water solubilities in the aquifer. TPH analyses do not distinguish which 

hydrocarbon constituents have not been treated. Also, compounds that are not of environmental 

concern also contribute to TPH values and hinder interpretation of the effectiveness of the 

bioremediation system. 

Polyaromatic hydrocarbons are often difficult to treat to regulatory levels in contaminated 

ground water. 153 As suspected carcinogens, their MCLS are set very low. Their degradation rate 

is usually slow, they are associated with aquifer solid materials, and are only slowly released to 

the ground water. At low concentrations, they may not be able to support an active degrading 

population of organisms. Degradation is usually enhanced if other more degradable compounds 

are present, which support an active degrading population of organisms. 

4.3.6 Economic Considerations for the Use of In Situ Bioremediation 

Costs of implementing in situ- natural bioremediation under aerobic conditions using 

indigenous microorganisms are dependent on the following factors 153: 

(1) Mass of contaminants - affects amount of nutrients and electron acceptors required, 
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time required to achieve acceptable remediation, as well as capital expenditure for wells, pumps, 

and above-ground treatment reactors; 

(2) Volume of contaminated aquifer - affects number of injection and recovery points 

required and the time required to achieve acceptable remediation; 

(3) Permeability of aquifer materials - affects number of injection and recovery points 

required and the time required to achieve acceptable remediation; 

(4) System design - results in higher capital expenditure costs at sites with more injection 

and recovery wells, but may reduce the operating and maintenance ' costs by reducing the total time 

of remediation; 

(5) Selection of electron acceptor - impacts costs, with more expensive sources, such as 

hydrogen peroxide, increasing monthly operating costs but decreasing overall operating costs by' 

reducing the period of operation of the remedial activity; 

(6) Final remediation levels - results in higher costs with more stringent remediation 

goals, especially for sites with containing contaminants that are recalcitrant to biodegradation 

and that are poorly soluble; 

(7) Depth to ground water - results in higher costs for installation of wells at lower depths, 

but costs can be balanced by greater flows of injected water at depth, due to increased pressure 

head, resulting in shorter times required for remediation; 

(8) Monitoring requirements - affects costs considerably, depending on the number of 

wells to be monitored, frequency of monitoring required, and number and type of parameters 

requiring measurement; 

(9) Contaminant properties - affects the amount of contaminants that can be recovered in 

the ground water, thus affecting the ~sidual concentrations remaining in the aquifer that must be 

bioremediated in situ and the costs of the biorernedial process. Increased concentrations in the 

recovered ground water may result in increased costs for above-ground treatment. Important 

properties include solubility and tendency to be associated with aquifer solid materials (i.e, 
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partition coefficients); and 

(10) Site location - affects the cost of labor, with remote sites having higher travel and 

housing costs, especially at sites that have highly automated operations, where the presence of 

monitoring personnel are only required periodically. 

Examples of typical system costs are given in Table 8. 

5.0 Current State of Knowledge Regarding Applications and· Limitations for 

Bioengineering 

In July, 1991, a workshop on "Utilizing Bioremediation Strategies: Difficulties and 

Limitations" was held, organized by Rutgers University and sponsored by the U.S. Environmental 

Protection Agency, New Jersey Department of Environmental Protection, U.S. Navy, National 

Institute of Environmental Health Sciences, and Environment Canada. A guidance document, 

based on the discussions conducted at the workshop and compiled by the Interdisciplinary 

Bioremediation Working Group of Rutgers University, was developed to advance the field of 

bioremediation by facilitating communication and decision-making about choices of 

bioremediation treatments and approaches to implementing such treatments, within the contexts of 

known limitations of the technology! 13 

The following problems with the utilization of bioremediation were identified. as well as 

some proposed solutions, approaches, and factors for consideration 113: 

(1) Bioremediation assessment and implementation requires more integrated efforts across 

disciplines -

Continued basic science and engineering research is required to develop the full potential 

of bioremediation of contaminated water sources. Interdisciplinary research representing 

microbial biochemistry. genetics, ecology, environmental microbiology. hydrogeology, and 
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chemical and environmental bioprocess engineering must be encouraged from project inception to 

completion by project managers with the expertise to communicate with and coordinate scientist 

and engineers from different disciplines)73 The U.S. National Research Council has identified 

several reasons that inhibit collaborative research, including 209: (1) differences in conceptual 

approach, resulting in language and communication barriers; (2) lack of career incentives and 

rewards due to institutional and organizational constraints; and (3) differences in formal training 

and orientation among practitioners of different disciplines. 

The use of models (conceptual, mathematical, and physical) and knowledge-based decision­

making systems are powerful tools for integrating and focusing information from separate 

disciplines. Their development should be a high priority for research. Information flow from 

laboratory to field and back should be iterative, involving professionals from all appropriate 

disciplines. 

(2) Initial site characterizations can be inadequate to evaluate or employ bioremediation as a 

treatment alternative -

The use of scientifically and statistically valid sampling plans during initial site 

characterization should be employed to determine environmental heterogeneity and to measure 

relevant physical and chemical parameters that affect biological activity, such as pH, salinity, 

temperature, available electron acceptors, and presence and chemical redox state of metals 

(especially iron for contaminated ground-water sites). Site contamination should be well­

characterized, including concentrations and distribution. For ground-water contamination, 

hydrogeological properties and parameters should be determined, including hydraulic 

conductivity. direction of flow. water table fluctuations. recharge area, and type of aquifer 

(confined, unconfined). 

Appropriate microbiological tests should be conducted to evaluate microbial activity and 

toxicity of a site to critical microbial populations. Control testing should be conducted (e.g., for 

contaminated ground water sites, an adjacent background area should be tested). Microbial 

78 



testing could include respiration, 14 C02 evolution or A 1P analysis. 

The development of a knowledge-based decision-making system for site characterization 

would ensure that information was collected in a thorough and efficient manner. 

(3) Standard methods for the performance of treatability study protocols and methods as well as 

criteria for biotreatability assessments should be developed -

The goal of a specific treatability study should be well-defined with regards to whether the 

goal is to obtain basic data conceming biotreatability or whether it is to simulate all or part of the 

bioremedial process. In the performance of a treatability study, appropriate controls should be 

incorporated into the study design, including abiotic, killed, and endogenous treatments. There is 

often variability in degradation kinetics for compounds that exhibit resistance to degradation 

(Baillod et al.); therefore sufficient replication of testing should be included for valid statistical 

analysis; non-parametric statistics should be utilized if parametric statistics are not appropriate. 

Actual field materials should be used in treatability studies, as well as conditions reflecting existing 

and attainable field conditions. 

The use of a mass balance approach for the determination of the fate and transport of 

target organic compounds is mandatory, including analyses of mineralization, transformation, 

volatilization, and sorption processes. Appropriate toxicity testing in addition to chemical 

analyses should be used to evaluate treatment effectiveness. 

Rates of biodegradation should be determined to develop estimations of time required for 

cleanup of a specific contaminated water. Also, probable limiting factors to biodegradation should 

be considered, and engineering responses to those limitations should be developed. 

(4) Factors limiting degradation rates in bioremediation should be adequately identifzed and 

addressed -

Physicochemical conditions limiting to biodegradation, including factors such as 

temperature, pH, salinity, electron acceptors, redox potential, nutrients and toxic substances, 

should be identified. Engineering responses to these limiting conditions should be developed, since 
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one of the most important barriers to the use of bioremediation is the lack of ability to control and 

predict the rate and extent of bioremediation at field scale due to the influence of environmental 

conditions. 

Engineering responses may encompass the amelioration of problem conditions (e.g., 

biostimulation) or the use of appropriate strains of microorganisms resistant to the adverse 

conditions (i.e., bioaugmentation). Specific approaches include: (1) temperature limitations 

overcome by the use of contained bioreactors rather than in situ treatment; (2) bioavailability of 

poorly soluble or sorbed organic constituents improved with the use of surface active agents, 

either added to the system or produced in situ by microorganisms (3) transport of water, electron 

acceptors, nutrients, co-substrates, and introduced microorganisms is ground-water systems by 

improved control of pumping; (4) microbial biodegradative potential increased by the introduction 

of degrading microorganisms capable of degrading the target compound(s) after demonstration 

of efficacy in well-designed experiments incorporating appropriate control treatments; (5) 

presence of appropriate electron acceptors increased by the addition of, either singly or in 

combination, oxygen, hydrogen peroxide, nitrates, sulfates, or organic substrates; (6) oxygen 

transport limitations in contaminated ground water ameliorated by use of above-ground 

bioreactors; (7) degradation rates enhanced by the use of systems that maintain microorganisms 

in an active state (e.g., use of immobilized cells); (8) cometabolism promoted by the addition of 

primary organic substrates; and (9) reductive degradation reactions encouraged with the 

establishment of appropriate system redox conditions; 

Problems due to toxicity may be addressed by dilution, pH controls, treatment for metals 

(e.g., immobilization, volatilization, chelation), the use of sequential treatments in a treatment train 

approach to reduce toxicity, or the url?zation of microbial strains resistant to the toxic substances. 

However, more research is required to develop an understanding of limiting conditions, especially 

as conditions interact to affect biodegradative potential. 

(5) During selection of treatment options for a specific contaminated water, the full range of 
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options should be considered to ensure that bioremediation is not prematurely removedfrom 

consideration -

The feasibility of using bioremediation for a specific contaminated water source should be 

incorporated in the decision making process. The type of bioremedial process and well as possible 

treatment train combinations with physica1lchemical processes should be investigated as part of a 

feasibility study. A knowledge-based decision-making system consisting of decision trees that 

incorporate relevant site characteristics that affect the selection of an appropriate remedial option 

or combination of options should be developed 

(6) Additional information and enhanced modeling principles should be developed to improve 

scale up from laboratory scale reactors or microcosms to full-scale field systems. 

Laboratory. pilot and field experiments should be linked in an iterative process in order to 

develop rational scale-up criteria. Both stochastic and deterministic models should be used to 

identify limiting mechanisms and critical parameters. Inputs to models used should be site­

specific, including data concerning limiting conditions. The validation of models should be 

conducted using pilot scale information. To define operational parameters, best case/worst case 

scenarios should be used in the modeling efforts. 

(7) Techniques for monitoring field peiformance, utilizing mass balance concepts require 

continued development -

A chemical mass balance approach to evaluating transport and behavior of target 

contaminants as well as monitoring their concentrations should be used. Protocols for preparing 

sample plans that include sampling the solid, liquid, and gaseous phases of the system, as 

appropriate, and that are based on sound scientific and statistical practices, should be developed. 

Key measurements may include: (1) contaminants; (2) added substrates, nutrients, or electron 

acceptors; (3) transformation products; (4) toxicity; (5) non-degradable tracers; and (6) 

microbial populations (specifically contaminant-degraders). Samples should be collected 

periodically through the bioremedial process to monitor changes in the measured parameters. 
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(8) An accessible, tJwrough, and well-documented database on bioremediation sJwuld be 

developed -

Field experiments utilizing quantitative measures of treatment effectiveness should be 

conducted to provide a database for process design. Treatment plans and results for specific 

bioremedial actions should be reviewed by an external expert review panel. Results of quantitative 

field experiments and process designs for bioremediation should be published in peer-reviewed 

journals. Results of case studies should be included as part of remedial technology databases, 

such as the ATTIC, VISITJ208 and Pesticide Treatability 204 databases of the U.S. Environmental 

Protection Agency. 

The Bioremediation Action Committee of the U.S Environmental Protection Agency also 

sponsored a workshop on bioremediation in 1991. 205 The purpose of the workshop was to 

identify high priority topics for research to further advance bioremedial technologies. Four major 

areas of research were identified 205: (1) to determine factors governing the availability of 

pollutants for bioremediation and devise ways to increase their availability for biodegradation; 

constraints on availability include sorptiOn/desOlption processes, pollutants present in non­

aqueous phase liquids, matrix effects, weathering and aging of pollutants, and immobilization and 

solubilization processes; (2) to improve the design of processes, including management of limiting 

factors, development of effective monitoring processes, development of multi-stage processes and 

treatment trains, and determination of factors that affect the success of bioaugmentation; (3) to 

overcome problems associated with scale-up from simple laboratory systems to field operations, 

and (4) to develop innovative and novel bioremediation approaches and processes, including 

toxicity reduction approaches, cometabolic, anaerobic/aerobic multi-stage, and microaerophilic 

processes, and methods to control transformation pathways. Results of research addressing the 

above items should greatly expand the scope of use of bioremediation for the cleanup of 

contaminated waters in surface and subsurface environments. 
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6.0 Conclusion 

With regard to the use of bioengineering for cleanup of contaminated water. challenges for 

the multi-disciplinary area of bioengineering include focusing scientists and engineers beyond 

historical and traditional general classes of pollutants to novel. individual, specific, and often toxic 

chemicals that are recalcitrant with regard to biological transformations. Understanding of 

processes that relate biological activity to physical and chemical characteristics of the environment 

are needed in order to design systems to control and enhance bioremediation for water cleanup. 
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Table 1. Overview of Selected Research Regarding Bioaugmentation for the Remediation of 
CQntaminated Aquatic Environments. 

Experimental 
Profile 

Eight commercial bacterial cultures 

and two non-bacterial products were 

tested for their ability to degrade 

weathered Alaska North Slope crude 

oil. 

A bacterial product containing 

supplementary heterotrophic and 

nitrifying microorganisms was 

introduced in bench scale reactors. 

The impact of the addition of pure 

cultures (Pseudomonas putida PRS 

2015 pAC 27) on the performance of 

mixed culture reactors was evaluated. 

Specific 
Contaminants 

CruGeoil 

Municipal wastewater 

3-i:hlorobcnzoate was used as a 

model substrate representing 

chioroorganic pollutants. 

Treatment 
Status 

Bench scale respirometer 

and shake flasks 

Bench scale; continuous 

flow activated sludge 

systems 

Bench-scale bioreactors 

101 

Research 
Summary 

Substantial growth of oil 

degraders, high oxygen 

uptake rate, and the 

degradation of aliphatic 

and aromatic hydrocarbon 

fractions led to the 

decision to implement 

field testing. 

The results of this study 

indicate that 

bioaugmentation 

improVed nitrification at 

higher wastewater 

strengths. 

Bioaugmentation with 

nitrifying microorganisms 

could therefore potentially 

improve the activated 

sludge treatment of 

municipal wastewater. 

Results indicate that the 

startup times for full-scale 

reactors may be 

significantly reduced by 

the addition of pure 

cultures. 

Reference 

211 

228 

222 



Table 1. (Continued) Overview of Selected Research Regarding Bioaugmentation for the Remediation of 
~. Contaminated Aquatic Environments. 

Experimental 
Profile 

Oil degradation was enhanced by the 

addition of an oleophilic fertilizer. 

The oleophilic fertilizer (INEPOL) 

served to dissolve nutrients into the 

oil, thus facilitating bacterial growth. 

A variation of the activated sludge 

process, called an enricher reactor 

system, was used to degrade 

polycyclic aromatic hydrocarbons. A 

second reactor systems is specifically 

designed to grow cells capable of 

degrading the target compound. 

Specific 
Contaminants 

Crude oil 

Treatment 
Status 

Field-scale 

Research 
Summary 

Enhancement of the in situ 

biological degradation of 

crude oil using oleophilic 

fertilizer for nutrients is a 

promising bioaugmentation 

application. 

Naphthalene and phenanthrene Bench-scale laboratory Results indicate that this 

reactors 

102 

method is a promising way 

to increase the efficiency of 

the activated sludge process. 

Reference 

162 

35 



Table 2. Overview of Selected Research Regarding Biostimulation for the Remediation of Contaminated 
Aquatic ·;~nvironments. • 

El.,;Jerimental 
ProfIle 

Growth of an indigenous population 

of methane-utilizing bacteria was 

stimulated by the addition of 

dissolved methane and oxygen into a 

semiconfined aquifer. 

The presence of nutrients in waters 

of low redox potential promotes th~ 

growth of anaerobic bacteria that 

reduce nitrate to ammonium. 

Phenol is polymerized to form 

insoluble precipitates (by adding 

gelatin and polyethylene glycol) to 

reduse the amount of peroxidase 

(enzymatic treatment) required. 

Specific 

Contami&ants 

TeE 

Dissimilatory nitrate 

reduction to ammonium is 

suggested to be a significant 

process in the study of the 

fate of solutes in 

groundwater contraminated 

from the disposal of treated 

wastewater on sand beds (7). 

Wastewater containing 

phenol, 2-propanol, and 2-

butanone 

Treatment 

Status 

Controlled field 

experiments at Moffett 

Field Naval Air Station, 

Mountain View, 

California 

Field site studies 

Bench-scale 

103 

Research 
Summary 

Experimental results are 

lending to model 

development in order to 

compare simulated 

results with those in the 

field. 

Research aim is at 

developing methods for 

the addition of 

biostimulating agents to 

enhance biological 

degradation in situ. 

Research aim is at 

developing protOcols for 

the addition of agents 

such as gelatin and 

polyethylene gylcol, to 

reduce cost and space 

requirements for the 

enzymatic treatment of 

phenolic wastewaters. 

Reference 

175 

30 

150 



Table 2. (Continued) Overview of Selected Research Regarding Biostimulation for the Remediation of· 
Contaminated Aquatic Environments. 

Experimental Specific Treatment Research Reference 
Profile Contaminants Status Summary 

The reductive dechlorination of ~lbenzenes and Bench-scale microcosms Pote!1tial full-scale field 179 

tetrachloroethene was stimulated in chlorinated ethenes constructed from aquifer applications are expected 

aquifer microcosms by the addition solids containing alkyl for the future. 

of toluene. benzenes and chlorinated 

ethene's at the U.S. Coast 

Guard Air Station, 

Traverse City, MI 

A microbial consortia enriched from Mixed-organic wastes Bench-scale laboratory Research aim is at the 161 

subsurface sediments contaminated (benzene, toluene, xylene, bioreactors (continuous- potential bioremediation of 

with chlorinated hydrocarbons vinyl chloride and TCE) recycle expanded-bed) groundwater contaminated 

proved capable of degrading mixed- with mixed-organic wastes. 

organic wastes. 

The growth of indigenous Trichloroethylene (TCE), cis- Field demonstration Potential full-scale field 177 

methanotrophic microorganisms was dichloroethylene (cis-DeE), applications are expected to 

stimulated by the addition of methane trans dichloroethylene (trans- incorporate additions of 

and oxygen. The resulting microbial DCE) and vinyl chloride (VC) oxygen and methane to 

population promoted the degradation enhance biodegradation of 

of certain chlorinated aliphatic mixed chloroorganics. 

compounds. 

104 



Table 3. Overview of Selected Research Regarding Acclimation for the Remediation of Contaminated 
Aquatic Environments. 

Experimental Specific Treatment Research Reference 
Profile Contaminants Status Summary 

Linear alkylbenzenesulfonate (LAS) Linear alk:ylbenzenesulfonate Field-scale LAS-acclimated bacteria in 226 

was added to well-water at weekly (LAS) well-water multiplied 

intervals to evaluate the kinetics of rapidly after the fIrst 

acclimation in well-water. addition of LAS. 

A microbial consortia enriched from TeE, benzene, toluene, xylene, Bench-scale continuous- Results indicate the 161 

subsurface sediments contaminated and various chlorinated recycle expanded bed potential for 

with chlorinated hydrocarbons hydrocarbons reactors bioremediation of 

proved capable of degrading mixed groundwater contaminated 

organic wastes. with mixed organic wastes. 

Experiments were conducted to 3-chlorobenzoate (model Bench-scale sequencing The adaptation process was 222 

evaluate the effectiveness of selected substrate for chloroorganic batch reactors promoted by alternation of 

process strategies with respect to compounds) periods during which the 

maintenance of the degradative target substance was the 

capabilities of added only available carbon 

microorganisms. source., and during periods 

which 3-chlorobenzoate 

was available in 

combination with favorable 

growth substrates. 

Strains of mycobacteria (isolated Morpholine Bench-scale laboratory When morpholine was 29 

from activated sludge were correlated activated sludge system removed from the influent 

with their ability to degrade it was observed that the 

morpholine. morpholine degrading 

capacity of the 

microorganisms was 

decreased 

105 
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Table 3. (Continued) Overview of Selected Research Regarding Acclimation for the Re~ediation '.'f 
Contaminated Aquatic Environments. 

Experimental 
Profile 

The potential of a shallow aerobic 

aquifer to degrade the herbicide 

Mecoprop (2-(2-methyl-4-

chlorophenoxy)propionic acid) was 

evaluated using ground water and 

sediment suspensions. Mecoprop 

was added at increasing 

concentrations. Acclimation periods 

ranged from 20-110 days. 

Specific 
Contaminants 

Mecoprop (2-(2-methyl-4-

Treatment 
Status 

Bench-scale batch 

chlorophenoxy)propionic acid) suspensions 

106 

Research 
Summary 

The adapted 

microorganisms provided 

complete degradation after 

a second lag period i!1 most 

cases. 

Reference 

99 



Table 4. Overview of Selected Research Regarding Genetic Engineering for the Remediation of 
Contaminated Aquatic Environments 

Experimental 
Profile 

CY ANIDASE® is a new enzyme 

preparation capable of degrading 

cyanide in industrial wastewaters. 

Salicylate degrading bacteria were 

bred by transferring NAH-plasmid 

into floc-forming bacteria. 

A chlorobenzoate-<:atabolic transposon 

(fn5271) was introduced into a 

natural host, Alcaligenes sp. strain 

BR60 

A field application vector utilizing 1 % 

IgepaI CO-720 (detergent) as a 

selective substrate and Pseudomonas 

paucimobilis lIGP4 as the host was 

tested for its ability to increase the 

presence of nonadaptive tetracycline 

resistance marker genes in soil. 

Specific 
Contaminants 

Cyanide 

Salicylate 

3-chlorobenzoate, 

4-chloroaniline, 

2,4-dichlorophenoxy-

acetate, and 

3-chlorobiphenyl 

Potential applications 

include: TCE 

benzo(a)pyrene,and 

polychlorinated 

biphenyls 

Treatment 

Status 

Bench-scale 

recirculation fixed-bed 

reactor, expanded bed 

reactors or membrane 

reactors are expected 

for large scale 

processes. 

Bench-scale batch 

cultures 

Bench-scale 

flowthrough lake water 

and sediment 

microcosms 

Bench-scale 

microcosms 

107 

Research 
Summary 

Future goal is the 

development of an enzyme 

membrane reactor for the 

processing of cyanide-

containing industrial 

wastewaters without 

pretreatment. 

Isolates from the activated 

sludge (floc-forming 

recipients) are expected to 

be used in an advanced 

wastewater treatment 

process in the future. 

In situ applications for the 

degradation of 3-

chlorobenzoate and 4-

chloroaniline are expected in 

the near future. 

The current focus is to 

develop a field application 

vector for polychlorinated 

biphenyl degradation using 

1 %IGP( detergent)-strain 

lIGP4 combination. 

Reference 

13 

73 

74, 75 

121 



Table 4. (Continued) Overview of Selected Research Regarding Genetic Engineering for the Remediation 
of Contaminated Aquatic Environments 

Experimental Specific Treatment Research Reference 
Profile Contaminants Status Summary 

Organisms are genetically engineered N/A Small-scale field Future work aimed at 180 

to bioluminesce for monitoring introduction developing methods to 

applications in the environment. examine the movement and 

persistence of genetically 

engineered organisms in the 

environment. 

Isolation and sequencing of the N/A Non-treatment Research focus is on the 190 

dissimilatory nitrite reductase gene monitoring method development of a fast and 

(nir) from denitrifying bacterium successful in detecting economical method to 

Pseudomonas stutzer; JM300 provides denitrifying bacteria screen for tbe presence of 

a method for evaluating the popUlation from samples such as a denitrifying bacteria in 

of denitrifying bacteria in the bioreactor consortium. various environmental 

environment. aquifer microcosms and communities. 

denitrifying toluene-

degrading enrichments. 

Restriction fragment length N/A Non treatment Research focus is on the 202 

polymoIphisms, Western blot monitoring method development of a fast and 

(immunoblot) analysis. and successful in economical method to 

fluorescence-labelled signature probes determining the screen for the presence of 

were utilized for the characterization presence of bacteria bacteria that produce soluble 

of methanotrophic bacteria in addition that produce soluble MMO, indicating the 

to the identification of methanotrophs MMO in bioreactors organisms ability to degrade 

containing the soluble methane and environmental TCE. 

monooxygenase (MMO) gene and samples. 

capable of degrading trichloroethylene 

(TCE). 

108 



...L 

o 
<.0 

, 'I r~ 

Table 5. Types of Bioengineering Treatment Systems. 

Bioengineering Technique Description 

Attached-Growth Biomass attached to immobile carrier media within the bioreactor. 

Aerobic Bioreactor Systems Oxygen used as the terminal electron acceptor. 

Trickling Filters Media consists of crushed stone or rock; Contaminated water dosed on surface 

of media and is degraded as it "trickles" through the media. 

Rotating Biological Contactors Media consists of corrugated disks mounted on a central shaft, which is mounted 

lengthwise in a horizontal cylindrical tank, which holds the contaminated water; 

Disks rotate slowly, with about 40 % submerged in water: Water, as disks 

rotate, is moved out into the air for aeration; Microorganisms form biof1.lm on 

disks. 

Aerobic Fluidized Bed Reactors Media consists of sand particles suspended in a vertical column by upward flow 

of contaminated water; Flow adjusted so sand particles are kept in motion but are 

not swept out of the system; Addition of air or oxygen required. 
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Table 5 (Continued). Types of Bioengineering Treatment Systems. 

Bioengineering Technique Description 

Attached-Growth Biomass attached to immobile carrier media within the bioreactor. 

Anaerobic Bioreactor Systems Fermentation reactions used for degradation processes; Bioreactor systems are 

closed. 

Anaerobic Filter Media consists of gravel, rocks. or plastic media; Reactor operated in an upflow 

mode . 

Anaerobic Fluidized Bed Reactor Media consists of sand particles suspended in a vertical column by upward flow 

of contaminated water; Flow adjusted so sand particles are kept in motion but are 

not swept out of the system. 

In Situ Ground-Water Treatment Contaminated ground water treated in aquifer 

Aerobic with Indigenous Microorganisms Biostimulated with addition of nutrients, oxygen or oxygen source (e.g., hydrogen 

peroxide), and/or primary cometabolic substrates. 

Aerobic with Introduced Microorganisms Bioaugmented with acclimated, selected, or genetically engineered microorganisms 

as well as biostimulated with nutrients, oxygen or oxygen source, and/or primary 

cometabolic substrates. 
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Table 5 (Continued). Types of Bioengineering Treatment Systems. 

Bioengineering Technique Description 

Attached-Growth Biomass attached to immobile carrier media within the bioreactor. 

In Situ Ground-Water Treatment Contaminated ground water treated in aquifer 

~naerobic with Indigenous Microorganisms Biostimulated with addition of nutrients, alternate electron acceptors, and/or primary 

cometabolic substrates. 

Anaerobic with Introduced Microorganisms Bioaugmented with acclimated, selected, or genetically engineered microorganisms 

as well as biostimulated with nutrients, alternate electron acceptors, and/or primary 

cometabolic substrates. 

Drinking Water Treatment 

Slow Sand Filtration Media consists of fine sand particles. Biofilm forms as mat on top of 

sand bed (referred to as schmutzdecke). Schmutzdecke composed of algae, bacteria, 

protozoa, and rotifers. Filters are operated at low filtration rates, resulting in long 

retention times . 



Table 5 (Continued). Types of Bioengineering Treatment Systems. 

-----------------------------------------------------------------------------------------------\ 

Bioengineering Tecbnlque Description 

Suspended-Growth Biomass is suspended in the liquid phase of the bioreactor. 

Aerobic Bioreactor Systems Oxygen used as the terminal electron acceptor. 

Activated Sludge System consists of aeration basin to which contaminated water is introduced, 

along with air or oxygen. Flocculated microorganisms are kept in suspension and 

mixed by the aeration process. Microorganisms that are removed in the effluent are 

-" 
-" separated from the effluent by gravity settling; Part are returned to the aeration 
I\) 

basin; Part are removed as biological sludge for disposal; Retention time is hours. 

Waste Stabilization Lagoons System consists of a basin to which contaminated water is introduced. Bacteria utilize 

organic carbon present in wastes, producing new cells and carbon dioxide; Carbon 

dioxide is utilized by algae and blue-green bacteria, which produce oxygen that is 

used by the bacteria. Retention time for treatment is weeks. 

" 'I I~ "I 
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Table 5 (Continued). Types of Bioengineering Treatment Systems. 

Bioengineering Tecbnique Description 

Suspended-Growth Biomass is suspended in the liquid phase of the bioreactor. 

Anaerobic Bioreactor Systems Fermentation reactions used for degradation processes; Bioreactor systems are 

closed. 

Anaerobic Contact Process System consists of continuously stirred tank reactor (fermenter) containing an active 

popUlation of flocculated bacteria.. followed by a settling tank. Microorganisms that 

are removed in the effluent are separated from the effluent by gravity settling; Part are 

returned to the aeration basin; Part are removed as biological sludge for disposal. 

------------------------------------



Table 6. SITE Program Participants with Bioremediation Tecbnologies Applicable to tbe Treatment of 
Contaminated Water Sources.207 

-----------------------------------------------------------------------------
Technology Description Applications Developer 

Ir •• mobilized Cell Bioreactor 

Biological Aqueous Treatment 
System 

Methanotrophic Bioreactor 
System 

On-site Bioreactor 

P ACT® Wastewater 
Treatment System 

Chemical and Biological 
Treatment 

Membrane Separation 
and Bioremediation 

Aerobic flxed-fllm bioreactor 
utilizing a proprietary media 
that maximizes biological activity 
and a proprietary design that 
maximized contact between 
biofilm and contaminants. 

MUltiple-cell, submerged, 
IIXed Illm bioreactor using 
a microbial population 
indigenous to the waste-
water to which a specific 
has been added; may include 
pH adjustment. inorganic 
nutrient addition, heating, and 
aeration; may also be run under 
anaerobic conditions. 

Continuous flow, dispersed growth 
bioreactor using the enzyme 
methane mono-oxygenase to 
co-oxidize halogenated aliphatic 
hydrocarbons. 

Above-ground bioreactor for 
treatment of contaminated 
ground water. 

Aeration basin containing 
biomass for biodegradation 
and powdered activated carbon 
for removal of remaining 
organic compounds 
activated carbon; may include 
temperature and pH control and 
nutrient addition. 

Chemical oxidation, using 
hydroxyl radical, to 
produce transformation 
products that can be biologically 
degraded, followed by biological 
treatment using aerobic and 
anaerobic bioreactors either in 
sequence or alone. 
Filtration unit for concentration 
of contaminants from water and 
bioreactor containing proprietary 
microorganism mix for treating 
concentrated contaminants. 
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Organic compounds, 
including nitrogen­
containing compounds 
and chlorinated solvents; 
suitable for removal of 
low levels of contaminants. 

Ground water, lagoons, 
and process waters 
containing creosote, 

Allied-Signal, Inc. 
Morristown, NI 

BioTrol, Inc. 
Chaska, MN 

gasoline, fuel oil, chlorinated 
hydrocarbons, phenolics, 
solvents, and pentachlorophenol. 

Water contaminated 
with halogenated 
aliphatic hydrocarbons. 

Chlorinated solvents and 
non-chlorinated organic 
compounds. 

Municipal and industrial 
wastewaters, ground water 
and leachates containing 
organic compounds. 

Organic pollutants 
in water, including 
alkenes, chlorinated 
alkenes, aromatics, 
and substituted and 
complex aromatics. 

BioTrol, Inc. 
Chaska, MN 

Ecova Corp. 
Redmond., WA 

Zimpro/passavant 
Environmental 
Systems. Inc. 
Rothschild, WI 

Institute of Gas 
Technology, 
Chicago,IL 

Organic compounds, SBP Technologies 
including PAHs. Inc. 
creosote, PCBs, oily Stone Mountain. 
wastes, jet and diesel GA 
fuels, and trichloroethylene. 



Table 6 (Continued). SITE Program Participants with Bioremediation Technologies Applicable to the 
Treatment of Contaminated Water Sources.207 

Technology 

Two-Zone Plume Interception 
In Situ Treatment Strategy 

Descript ion 

Ground water treatment in 
which partial dechlorination is 
accomplished in ftrst zone by 
stimulation of methanogenic 
bacteria with addition of primary 
carbon source (e.g., glucose) and 
mineral nutrients; in second zone, 
in which oxygen is added, 
transformation by-products of first 
are degraded by aerobic 
methanotrophic bacteria utilizing 
oxygen and methane. 

115 

Applications Developer 

Ground water containing ABB 
chlorinated and Environmental 
non-chlorinated solvents. Services 

Wakefield, MA 



Table 7. Types of Anaerobic Bioreactor Systems. 

System 

Anaerobic Contact Process 

Description 

Consists of continuously stirred tank reactor (fennenter) containing an ad.ve 
population of flocculated bacteria, followed by a settling tank (claritier). SRT greater tha..'1 HRT is 
accomplished by settling solids from the effluent in the clarifier and recirculating a concentrated 
sludge back to the fennenter (similar to aerobic activated sludge process). 

Applications/Advantages/Limitations 

Since bacteria are retained and recycled, can treat medium strength wastewaters 
(i.e., containing CODs of 2,000 - 20, 000 mgIL). However, can be difficulties in recycli'1g bacteria. 

Anaerobic Filter 

Description 

Consists of a reactor filled with an inert support material with a high surface area, 
such as gravel, rocks, or some plastic media. Reactor is operated in the upflow mode. Long SRTs 
and high hydraulic loading rates are possible. Once established, reactors are resilient to variable 
loading rates and moderate environmental changes such as pH or temperature. 

Applications/Advantages/Limitations 

Has outstanding ability to retain biomass. May have accumulation of solids in the 
columns, if contaminated water is high in suspended solids. May require frequent blowdown of the 
column to remove solids. . 
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Table 7. (Continued) Types of Anaerobic Bioreactor Systems. 

System 

Anaerobic Fluidized Bed Reactors 

Description 

Consists of compact, tall, and slender reactors fIlled with small, heavy particles, 
which act as physical supports for the growth of biomass. These particles that are covered with 
biological growth are maintained in a fluidized state by an upwards-directed flow of water. Due to 
the heavy particles, the settling velocity is very high, and high liquid velocities can be maintained in 
the reactors, Biomass concentrations are very high due to the large surface area of the small 
particles (e.g., sand). 

Applications/ Advantages/Limitations 

The high liquid velocities prevent the accumulation of solids. Because of the high 
biomass concentrations and activity, a high treatment capacity is obtained. Reactors are compact 
and require little space. However, systems may have a long start-up period due to problems with 
the establishment of methanogens on the solid supports. More research is required to identify (1) 
optimal choice of particles (e.g., composition and size), (2) characteristics of waste water that 
affect biolayer development, (3) operational characteristics that affect biolayer attachment, and 
(4) factors that control the development of optimal biolayer thickness (i.e., the biolayer should be 
sufficiently thick to give a biomass concentration, but sufficiently thin to avoid washout from the 
reactor. Additional limitations include high energy consumption due to very high liquid 
recirculation ratios and difficulties with maintenance of the fluidized bed. 

Upflow Anaerobic Sludge Blanket Reactor (UASB) 

Description 

Consists of an upflow reactor with an internal baffle system for separation of gas, 
sludge, and liquid. With the baffle system, gas is separated from the sludge, collected under the 
plates, and piped away. Above the plates is a relatively quiet zone, where the sludge is separated 
from the fluid and can settle back towards the digesting zone. Reactor is primarily mixed by the 
gas production rather than forced mechanical mixing. 

Applications/ Advantages/Limitations 

Reactor accommodates well to hydraulic and organic shock loadings, temperature 
fluctuations, and low influent pH values, as long as the reactor pH stays above pH 6.0. Adequate 
sludge residence times and high anaerobic sludge concentrations can be rr..aintained. Sludge 
retention may be a problem if granular sludge is not obtained. 
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Table 8. Examples of Costs for Typical In Situ Systems for Aerobic Bioremediation of Ground Water Using 
Indigenous Microorganisms)53 

Site Location! Area 
of Contamination 

New York/I acre 

Iowa! Not given 

Kansas/700K cubic feet 

Type of 
Contamination 

Gasoline 

PAHs and BTEX 

BTEX 

California! 3,000 cubic yards Diesel and 
gasoline 

Michigan! 1/4 acre site 

Texas/20 acres 

Gasoline 

BTEX, 
chlorinated 
solvents, other 
organics 

System Type 

Inftltration trench for 
nutrients and hydrogen 
peroxide; three 80 gpm 

In situ 

Estimated 
Costs 

$250K 

$1.65M 

In situ with nitrate as $925K 
electron acceptor; combined 
with soil flushing 

Closed loop system with 
hydrogen peroxide as 
oxygen source 

Infiltration gallery and 
injection wells, with air and 
hydrogen peroxide as oxygen 
sources 

$1.6M 

In situ bioremediation, with $5.325M 
oxygen and nitrate as 
electron acceptors; 
combined with pump & 
treat in above-ground bioreactor 

$600K 
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