

COMBINING IMAGING STATISTICS AND SIDE SLITHER IMAGERY TO ESTIMATE RELATIVE DETECTOR GAINS

Cody Anderson, Dr. Andreas Brunn, Michael Thiele anderson@rapideye.com, brunn@rapideye.com, Calcon thiele@rapideye.com August 27, 2012

BACKGROUND

RapidEye operates a constellation of 5 optical satellites.

- 5 spectral bands Blue (440-510 nm), Green (520-590), Red (630-685), Red-Edge (690-730), NIR (760-850).
- 6.5 m GSD, 77km swathwidth.
- >5 million sq km/day imaging capacity.
- Daily revisit of any target possible!

RAPIDEYE

RELATIVE GAINS

PROBLEM DEFINITION

- A group of detectors can lose sensitivity fairly suddenly resulting in visiable banding.
- Customer order deadlines don't always allow for adequate statisitics to be collected.
- A side slither manuver can take away from customer collects and may take multiple days to pass over the site.
- A method to quickly and accurately correct new banding is needed.

Roll

SIDE SLITHER MANEUVER

- The side slither maneuver (SSM) involves yawing the satellite 90°.
- The focal plane is aligned with the flight direction.
- Each detector views the same location on the ground.

Collect Image Means

Collect Image Means

Compare to Previous Side Slither

Collect Image Means

Compare to Previous Side Slither

Locate New Banding

Collect Image Means

Locate New Banding

Compare to Previous Side Slither

Shift and Blend

Stat Mean Gains

Side Slither Gains Fit Stat Mean Gains Fit

PROCEDURE DETAIL LOCATE NEW BANDING CONTINUUM FIT

Side Slither Gains Fit Stat Mean Gains Fit Side Slither Continuum Fit Stat Mean Continuum Fit

PROCEDURE DETAIL LOCATE NEW BANDING CONTINUUM REMOVAL

PROCEDURE DETAIL LOCATE NEW BANDING DIFFERENCE BETWEEN SSM AND STAT

Continuum Removed Side Slither Gains Fit Continuum Removed Stat Gains Fit Continuum Removed Side Slither Gains Fit – Continuum Removed Stat Gains Fit

PROCEDURE DETAIL LOCATE NEW BANDING BAND LOCATIONS

August 27, 2012

PROCEDURE DETAIL SHIFTING AND BLENDING

- The the statisticaly derived realtive gains at the new 1.08 band location must be shifted and blended into the 1.06 previous side slither gains. 1.04
- 500 detectors are used to blend the two sets of gains.
- 1000 detectors are used to shift the statistic relative gains.

PROCEDURE DETAIL SHIFTING AND BLENDING SHIFTING

PROCEDURE DETAIL SHIFTING AND BLENDING BLENDING

RapidEye

- A weighted average between the statistic and side slither individual gains is used to blend to two sets of gains.
- The detector closest to the band location is 499 parts Stat and 1 part Side Slither, the next is 498 parts Stat and 2 parts Side Slither, and so on.
- Finally, the rest of the Side Slither Gains are used for all other detectors.

RESULTS

SAUDI ARABIA (02/20/2012)

Absolute Difference Images

BRAZIL (02/18/2012)

BRAZIL (02/18/2012)

Absolute Difference Images

Detector Means 6000 8000 10000 12000 Detector

SSM-Stat

- Clearly Side Slither is still the best method.
- The amount of visual banding in the Combination method is better than the STAT method.
- The main difference between the STAT and Combination methods is what happens to underlying gradient structure in the images.
 - The STAT method changes the gradient significantly while the Combination method preserves it.