Utah State University DigitalCommons@USU

Presentations

Materials Physics

Fall 10-2015

Comparing Experimental Apples and Oranges with Quantile-Quantile Plots

Allen Andersen Utah State University

JR Dennison Utah State Univesity

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation

Andersen, Allen and Dennison, JR, "Comparing Experimental Apples and Oranges with Quantile-Quantile Plots" (2015). American Physical Society Four Corner Section Meeting. *Presentations.* Paper 119. https://digitalcommons.usu.edu/mp_presentations/119

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Comparing Experimental Apples and Orange with Quantile-Quantile Plots

Case study

How to make a Q-Q plot.

What does a Q-Q plot mean?

How can I tell if two things are related?

Q-Q plots can

- Compare the distribution of two observables. (N need not be the same.)
- Compare theoretical curves.
- Compare data to a theoretical curve.

Voltage is increased across a dielectric sample in a parallel-plate capacitor and monitor the leakage current.

Plot of 5 voltage step-up to breakdown tests on LDPE.

Plot of 5 voltage step-up to breakdown tests on LDPE.

Plot of 5 voltage step-up to breakdown tests on LDPE.

Are pre-arcs related to the breakdowns?

Pre-arcing distributions

Breakdown distributions

The reviewer for our last paper was not convinced.

A better method was needed.

Step 1: Empirical Cumulative Distributions

Step 3: Plot pairs and fit to a line.

What does it mean?

Quantile-Quantile plots compare the distributions of two observables.

If the distributions are related the plot is a linear.

If the fields at each quantile are identical, points will lie on y=x.

Check the method.

We see that pre-arcing correlates very well to breakdowns.

Sample thickness and chamber pressure do not-no surprise.

Additional Applications of Q-Q plots.

A Q-Q plot of the two fits shows that the two fits are significantly different.

Q-Q plots can compare mathematical functions.

Additional Applications of Q-Q plots.

Q-Q plots comparing the two fits to the data show that the Lorentzian fit is better in this case.

Q-Q plots can compare data to theoretical fits.

Pre-arcing correlates to breakdown.

Q-Q plots are versatile and easy to make.

A powerful empirical tool for physics research.

ESD Test Assembly:

- (A) Adjustable pressure springs,
- (B) Insulating layer
- (C) Cryogen reservoir,
- (D) Thermally conductive, electrically isolating layer,
- (E) Sample and mounting plate,
- (F) Sample
- (G) HV Cu electrode
- (H) Cu thermocouple electrode,
- (I) Insulating base.

Plot of 5 voltage step-up to breakdown tests on LDPE.

Effect of scaling on Q-Q plots.

Re-scaling the fields the fields brings in the Q-Q plot closer to y=x.