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A numerical modeling approach was developed to predict the dielectric properties of heterogeneous particu-
late materials with arbitrary microstructures. To test the method, simulation and experimental data were ac-
quired for the effective permittivities of various glass sphere suspensions. Both ordered lattices and random
microstructures of up to 3600 spheres were modeled for volume fractions of 0.025–0.60. The electric fields in
the suspensions were computed using an iterative multipole method that included multiple-scattering effects.
The effective permittivities were obtained by averaging the electric field and electric displacement over a
representative volume. Frequency spectra, electric field images, and single-scattering results �i.e., no particle-
particle interactions� were additionally generated. The results were compared to experimental data for random
close-packed microstructures, to effective-medium approximations, to exact lattice models, and to a perturba-
tion expansion model. The comparisons showed that the iterative models agreed with the exact lattice models
to within 3.31% for crystalline suspensions. Results for random suspensions agreed with the perturbation
expansion model to within 1.76% for volume fractions up to 0.50. Single-scattering models additionally
predicted permittivities for the microstructures as well as or better than the Maxwell Garnett approximation
�Philos. Trans. R. Soc. London, Ser. A 203, 385 �1904��, suggesting that microstructural effects and multipole
moments higher than the dipole are required for more accurate statistical prediction of effective permittivities.
The effective permittivities, convergence behavior, and dispersion behavior of the simulations were sensitive to
both microstructure and the extent of multiple scattering included in the models, illustrating how the macro-
scopic properties depend significantly on the microscopic details of the interactions. In contrast to other
approaches, the iterative multipole method can model both the frequency and spatial dependencies of the
electromagnetic properties of particulate materials, as well as a wide variety of microstructures, including
polydisperse and hierarchical systems.
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I. INTRODUCTION

Determining the effective electromagnetic properties of
heterogeneous mixtures has been a continuing interest in
physics and other scientific fields for over 150 years since
the initial work of Faraday and Maxwell.1,2 A suspension of
spherical particles in a homogeneous matrix is the archetypal
example that has been investigated extensively. Although
much success has been achieved with mean-field theory and
other statistical approximations, the effects of local structure
�microstructure� on the macroscopic properties remain an in-
triguing and important problem. Predicting the effects of
various particle configurations, mixed particle compositions,
and multimodal size distributions continues to be a challenge
for predicting the dielectric properties of soils, composites,
biomaterials, and other random or complexly structured me-
dia. Mapping the spatial distribution of the electromagnetic
field intensity at the microscopic level is also vital for under-
standing phenomena such as dielectric breakdown in com-

posites or rf and/or microwave exposure in living tissues.
The Clausius-Mossotti formula �also known as the

Lorenz-Lorentz formula� is a first-order approximation for
the dielectric properties of mixtures, but contains parameters
more relevant to describing molecular effects �e.g., in dilute
gases� than heterogeneous mixtures with inclusions.3 In
1904, Maxwell Garnett rederived a macroscopic version of
the Clausius-Mossotti formula to describe the effective re-
fractive index and/or dielectric properties of a suspension of
spheres, and the Maxwell Garnett formula is still commonly
used for two-phase mixtures to this day.4 More recent and
sophisticated effective-medium, self-consistent, and other
approximation methods have been developed. Torquato pro-
vides an extensive review of these methods.5 Of particular
note are the self-similar or differential effective-medium
approach6 and a generalized approach that combines differ-
ent approximations into a single formula.7 Approximation
methods have also been extended to include multiphase, an-
isotropic, and chiral mixtures as well as mixtures containing
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ellipsoidal and layered particles.3,5 Most of these formulas
remain statistical in nature, however, deriving from averaged
field interactions rather than a first principles description of
all multiple interactions between particles. One exception is
the perturbation expansion method developed by Torquato
that includes microstructural input via three-point probability
functions.8

Multipole expansion methods are efficient and powerful
tools for modeling suspensions of spherical particles due to
the separability of the Laplace and Helmholtz equations in
spherical coordinates. The additional symmetry provided by
ordering the particles into periodic microstructures has al-
lowed the conductivity to be solved for simple-cubic �sc�,
body-centered-cubic �bcc�, and face-centered-cubic �fcc�
lattices.9–12 These models are generally based on the Ray-
leigh method, and similar methods have been applied to lat-
tices of spheroids.13–15 Other approaches are required, how-
ever, for modeling electrostatic and electromagnetic fields in
arbitrary configurations of spheres. These approaches include
iterative,16–21 T-matrix,22–26 fast multipole,27–30 and other
matrix methods.31 Inherent to all of these multipole ap-
proaches is the determination of effective properties by di-
rectly computing the microscopic interactions. This is
achieved by calculating the multiple-scattering effects with
the use of addition theorems, translation operators, or multi-
pole interaction tensors.

Iterative multipole �IM� methods provide a general ap-
proach for simulating the dielectric properties of suspensions
with fewer constraints on the microstructure than other meth-
ods �e.g., the suspension does not have to be ordered, isotro-
pic, or homogeneous on a macroscopic scale�. The approach
can, therefore, be tested against exact lattice methods to
verify its accuracy and can be applied to random or hierar-
chically structured media. Clusters of inclusions of finite size
can also be modeled with the iterative multipole method.
Such systems may have different dielectric properties than an
infinite lattice or random microstructure, a phenomenon
analogous to the size effect observed for the dielectric prop-
erties of some nanoparticles �where the inclusions would cor-
respond to the atoms in the nanoparticle’s crystal lattice�.
Finally, a direct iterative approach is computationally simpler
and more tractable than other approaches.

In this work, an iterative multipole approach was devel-
oped to simulate electromagnetic fields in suspensions con-
taining up to 3600 spherical particles. The approach used
vector multipole expansions, partial wave expansions, Mie
scattering solutions, and addition theorems to compute the
multiple-scattering interactions and resultant fields. The in-
clusions in the simulated media were configured into four
different lattice types and two different random arrange-
ments. The effective permittivities of the suspensions were
determined for particle-volume fractions up to 0.60. The
simulation results were compared to experimental data from
close-packed glass beads, results from effective-medium ap-
proximations, and predictions from exact lattice calculations.
The accuracy, convergence behavior, and stability of the
model were also determined as a function of the highest
computed multipole order, iteration step, and number of par-
ticles in the simulation. Finally, the dielectric frequency
spectrum and spatial distribution of electromagnetic field in-

tensities were simulated for a fcc lattice and random suspen-
sion.

II. METHODS

A. Multipole theory

The iterative multipole approach models the electromag-
netic fields of a spherical particle or inclusion with vector
multipole functions derived from the Maxwell equations.
The Maxwell equations for a macroscopic dielectric medium
with no free charges can be reformulated as a pair of wave
equations:

�2H −
��

c2

�2H

�t2 = 0, �1�

�2E −
��

c2

�2E

�t2 = 0. �2�

E and H are the electric and magnetic fields, respectively,
and �, �, and c are the electric permittivity, magnetic perme-
ability, and speed of light. Assuming a purely sinusoidal,
steady-state time dependence for the electric and magnetic
fields of the form E�x , t�=E�x�e−i�t, Eqs. �1� and �2� become
the familiar Helmholtz equations:

��2 + k2�H = 0, �3�

��2 + k2�E = 0. �4�

The wave vector k and index of refraction � are defined as

k =
�

c
��� , �5�

� =� �

�
. �6�

Solutions to Eqs. �3� and �4� in spherical coordinates tra-
ditionally take the form of vector multipole functions �also
referred to as vector spherical wave functions�. The vector
multipole functions are generated from a vector potential �
defined as

� = �
n=0

�

�
m=−n

+n

zn�kr�Ynm
n ��,�� . �7�

The radial function zn�kr� represents either a spherical Bessel
function �jn�kr�� or a spherical Hankel function of the first
or second kind �hn

�1��kr� or hn
�2��kr��. The vector spherical

harmonic Ynm
l �� ,�� is a pure-orbital vector spherical har-

monic and is defined with Clebsch-Gordan coefficients, sca-
lar spherical harmonics, and helicity basis vectors as
follows:32–34

Ynm
l ��,�� = Cl,m+1,1,−1

n,m Yl,m+1e−1 + Cl,m,1,0
n,m Yl,me0

+ Cl,m−1,1,1
n,m Yl,m−1e+1. �8�

The vector multipole functions are derived from the vector
potential in the following manner:
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V =
1

k
� � � , �9�

W =
1

k2 � � �� � �� . �10�

The resulting functions are complete and orthogonal multi-
pole expansions for transverse fields:

V = �
n=0

�

�
m=−n

+n �i� n + 1

2n + 1
zn−1�kr�Ynm

n−1��,��

− i� n

2n + 1
zn+1�kr�Ynm

n+1��,��� , �11�

W = �
n=0

�

�
m=−n

+n

zn�kr�Ynm
n ��,�� . �12�

The V and W vector multipoles are similar to the vector
spherical wave functions of Stratton,35 the vector multipoles
of Rose,36 Edmonds,37 and Greiner and Maruhn,32 and the
vector spherical harmonic of Jackson.38 V and W are related
to the electric and magnetic fields as follows:

E�r� = k�V�r� + iW�r�� , �13�

H�r� = k�V�r� − iW�r�� . �14�

The initial waves incident on the spherical particles in the
suspensions are modeled as plane waves. At least three dif-
ferent partial wave expansions have been presented in the
literature for transverse vector plane waves, including those
by Stratton,35 Jackson,38 and Greiner and Maruhn.32 Grandy
further derived expansions for plane-polarized waves from
Jackson’s circularly polarized waves.39 Mathematical and
numerical analyses show, however, that only the expansions
of Greiner and Maruhn are correct and converge properly.
Adapting their expressions, the partial wave expansions for
transverse waves propagating in the z direction and polarized
in the x and y directions are the following:

exe
ikz = �

n

in�	�2n + 1��Wn,+1 + Vn,+1 + Wn,−1 − Vn,−1� ,

�15�

eye
ikz = �− i��

n

in�	�2n + 1��Wn,+1 + Vn,+1 − Wn,−1 + Vn,−1� .

�16�

Simulation of multiple scattering in a suspension of
spherical particles requires scattering solutions for the indi-
vidual spheres for an arbitrary incident wave field. This so-
lution is the well-known Mie scattering solution. For scatter-
ing from a single sphere, there will be an incoming incident
field, a refracted interior field, and an outgoing scattered field
for each of the V and W wave fields. Each wave field com-
ponent will also have an associated amplitude coefficient.

Solution of Mie scattering from dielectric spheres has been
published extensively in the literature, so it will not be re-
produced here.

The scattered waves from each particle propagate to the
other particles in multiple scattering and modify the other
particles’ scattering interactions. Since the vector multipole
functions are specific to each particle’s coordinate system,
the scattered wave fields from each particle must be trans-
formed into the coordinate systems of the other particles in
order to compute the modified interactions. These transfor-
mations are the following:

V
�� = �
n=0

�

�
m=−n

n

�S
�
nmVnm + T
�

nmWnm� , �17�

W
�� = �
n=0

�

�
m=−n

n

�S
�
nmWnm + T
�

nmVnm� , �18�

where Vnm and Wnm are wave fields scattered from the origi-
nating sphere �designated ��, and are, therefore, in the �
sphere’s coordinate system �r�, ��, and ���. V
�� and W
��
are the same wave fields incident on a second sphere �desig-
nated ��, and are, therefore, in the � sphere’s coordinate
system �r�, ��, and ���. Equations �17� and �18� transform
the wave fields with expansions containing the original ���
multipole functions and translation coefficients denoted as
S
�

nm and T
�
nm. These translation coefficients are also known as

the vector addition theorems for spherical wave functions.
Figure 1 shows the geometric relationship for the field

translations between the two spheres. The position of sphere
� with respect to sphere � is R��=R�−R�, where R� and
R� are the global position vectors for the two spheres. The
translation coefficients are only valid on the surface of
sphere � �r�=a��, and the center of sphere � must lie outside
of sphere �. Although addition theorems can also be derived
for spheres embedded within larger spheres �a�R���, this
work only considered spheres external to each other and non-
overlapping �a��R���.

Many methods have been published for deriving the vec-
tor addition theorems, including directly transforming the co-
ordinates in the vector multipole functions and applying vari-

FIG. 1. Position �R� and R�� and translation �r�� vectors for
addition theorems with respect to local and global coordinates for
spheres � and �.
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ous identities and relationships to simplify the solution.40

Another approach is to expand the vector multipoles in the �
coordinate system as a series comprising expansion coeffi-
cients and vector spherical harmonics in the � coordinate
system.41,42 The expression can then be integrated in a man-
ner similar to a Fourier series to determine the translation
coefficients, which are the following:

S
�
nm = Z
,
,�

n,n,m, �19�

T
�
nm = − i�2
 + 1


 + 1
Z
−1,
,�

n,n,m = i�2
 + 1



Z
+1,
,�

n,n,m

= i�2n + 1

n + 1
Z
,
,�

n−1,n,m = − i�2n + 1

n
Z
,
,�

n+1,n,m, �20�

where

Z�,
,�
l,n,m �R��� = �

p=	l−�	

l+� 
i�−l−php
�1��kR���Yp,m−�����,����

�C�,0,p,0
l,0 �4	�2� + 1��2p + 1�

2l + 1

� �
�=−1

1

Cl,m−�,1,�
n,m C�,�−�,1,�


,� C�,�−�,p,m−�
l,m−� � . �21�

Although the vector addition theorems and corresponding
translation coefficients can be calculated directly, recurrence
formulas significantly reduce the number of operations for
their computation.43,44

B. Computational approach

The IM model first calculates the scattered wave fields for
each particle in the system due to an initial plane wave. The
scattered wave fields are then translated between all particle
pairs and summed at each particle. The new incident wave
field �initial plane wave+scattered wave fields� is then used
to compute revised scattered wave fields from each particle.
This process is repeated iteratively until the scattered wave
fields converge �i.e., no change in wave field amplitudes be-
tween consecutive iterations�. Each iteration represents a
successive order of scattering, where the first iteration is
first-order multiple scattering, the second iteration is second-
order multiple scattering, and so forth. The Cartesian com-
ponents �x, y, and z amplitudes� of the V and W multipole
fields are then calculated for an array of grid points in the
suspension. These grid-point values can be used to generate
either volume-averaged field values or images of the electro-
magnetic field distribution at the particle level.

Computation limits for the simulations include the maxi-
mum multipole expansion order �nmax� for computing the
field and translation coefficient expansions, and the conver-
gence criteria �precision limit� for stopping the iterations.
Computer algorithms for the model were written, debugged,
and compiled in FORTRAN 90 with double precision. Simula-
tions were performed on a personal desktop computer with
2.0 gigabytes random access memory and a 3.2 GHz proces-
sor. Computation times varied from 1 to 72 h.

Calculation of the translation coefficients for all particle
pairs in the suspension is computationally intensive and ex-
ceeds the dynamic memory capabilities of most desktop
computers. Since many particle-pair configurations, and thus,
their translation coefficients, are multiply redundant in lat-
tices, a template method was developed that computed the
translation coefficients for a single particle surrounded by a
lattice. The particle-particle configurations in the suspension
were then correlated to the particle-lattice configurations in
the template and the corresponding translation coefficients
applied to the suspension.

A similar template method was developed for the random
microstructures. However, in this case, the lattice surround-
ing the central particle in the template was replaced with a
grid constructed from tessellations of spherical shells sur-
rounding the particle. The grid-point spacing for the random
template was additionally much smaller than for the lattice
templates and on the order of a particle radius. In the com-
putation process, the randomly configured particles in the
suspension are correlated to the nearest grid point in the tem-
plate. Applied to random suspensions, the template method,
therefore, substitutes the exact translation coefficients with
approximate coefficients derived from the random template.
Correspondingly, a finer template grid provides more accu-
rate translation coefficients. Testing showed that this method
provided sufficiently accurate results without compromising
the random nature of the microstructure.

Representative suspensions of spherical particles with a
monomodal size distribution were generated for sc, bcc, fcc,
hexagonal-close-packed �hcp�, and random microstructures.
Particle-volume fraction varied from 0.025 to 0.60. The
simulated suspensions were configured into spherical, cubic,
and cylindrical shapes of fixed volume. Particle-volume frac-
tion was varied by increasing or decreasing the number of
particles in the volume. For cylindrical suspensions, the cyl-
inder’s diameter was equal to its length and its axis was
aligned with the direction of the wave propagation �z axis�.
The suspensions contained from 127 to 3587 particles �fcc,
0.025–0.60 volume fraction�. One of the random microstruc-
tures was constructed using a Monte Carlo type particle
dropping routine and by scaling the particle coordinates to
create the desired volume fraction.45 The other random mi-
crostructure was generated from a different but more well-
known Monte Carlo algorithm developed to compare the
structures of simple liquids to random close packings.46,47

The particles were modeled as glass spheres ��=7.6� in
air ��=1.0�. Except for simulations to determine the fre-
quency dependence of the effective permittivity, the diameter
of the glass spheres was 1.0 cm and the simulations were
performed at 10 MHz. Since the particle and matrix permit-
tivities were kept constant with frequency, the simulations
could also apply to 500 �m particles �used in the experimen-
tal measurements� at 200 MHz. Although the electric field
arises from a plane wave, the variation in the electric field
across the suspension was small since the simulations were
performed at very low frequencies.

The effective permittivity was obtained by averaging the
E and D fields over a representative volume containing the
particles and matrix. The effective macroscopic dielectric
constant was computed from the volume-averaged fields us-
ing the definition given by Sihvola:3

DOYLE et al. PHYSICAL REVIEW B 76, 054203 �2007�

054203-4



�ef f =
�D
�E

. �22�

The averaging was performed by evaluating the E and D
fields on a uniformly spaced three-dimensional grid contain-
ing 313=29 791 points for the ordered lattices and 373

=50 653 points for the random suspensions. For the ordered
lattices, the evaluation grid spanned a unit cell of the lattice
located in the center of the suspension. For the random sus-
pensions, the evaluation grid comprised a cube containing
from approximately 70 particles �0.10 volume fraction� to
420 particles �0.60 volume fraction�. Since the electric field
was polarized in the x direction in the simulations, only the x
components of the electric field and electric displacement
were used to compute the effective permittivity. This was
equivalent to the use of a parallel-plate capacitor for measur-
ing the dielectric constant, and provided results physically
comparable to experimental methods.

C. Experimental methods

The time domain reflectometry �TDR� method was used
to measure the effective permittivity of samples composed of
randomly close-packed spheres.48,49 TDR measures the
propagation velocity of a step voltage pulse that has a wide
bandwidth, usually 10 kHz–3 GHz. The approximate mea-
surement frequency for the TDR technique is dependent on
probe design, and was approximately 400 MHz for this
work. A Tektronix 1502C TDR cable tester was used for the
experiments to measure the effective permittivity. The TDR
was connected to a personal computer which was used to
collect and analyze wave forms using software developed by
Heimovaara and de Water.50 The software fits tangent lines to
the wave form to locate the end reflection, calculate the
travel time of the pulse from the end of the probe, and de-
termine the relative permittivity of the sample. The TDR was
connected via a 1.8 m, 50 � �RG 58� coaxial cable to a
coaxial waveguide constructed from steel, 200 mm long with
an internal diameter of 26.5 mm and a 6 mm diameter inner
electrode. The waveguide was calibrated for effective length
using de-ionized water and air.

Spherical glass beads �Mo-Sci Corp., Rolla, MO, USA�
made of soda lime silicate glass were chosen as a reference
spherical material. These precision 500 �m spheres had a
particle density of 2.49 g cm−3, determined using the ex-
cluded volume method. The permittivity of the spheres was
measured to be 7.6 using the immersion method.51 Measure-
ments were made by filling the coaxial probe with air or a
dielectric fluid and making a background permittivity mea-
surement at room temperature. A preweighed sample of
beads was then carefully poured into the coaxial cell. For a
dielectric fluid background, a portion of the fluid was first
removed to account for the displacement produced by the
beads. The container was tapped gently to allow the spheres
to pack to the desired volume fraction and the effective per-
mittivity was measured again.

D. Effective-medium approximations

Three effective-medium approximations were used for
comparison to the simulation results and experimental data.

The first of these approximations was the Maxwell Garnett
�MG� equation:4

�ef f = �0 + 3f�0� �1 − �0

�1 + 2�0 − f��1 − �0�� . �23�

The particle, matrix, and effective permittivities are �1, �0,
and �ef f, respectively. The particle-volume fraction is f .
Equation �23� is a first-order approximation accounting only
for dipole-dipole interactions between particles in the sus-
pension.

The second approximation is the self-similar or self-
consistent model of Sen et al.:6

f = 1 − ��1 − �ef f

�1 − �0
�� �0

�ef f
�1/3

. �24�

Note that the effective permittivity �ef f is implicit. Equation
�24� is also known as the differential effective-medium
�DEM� approximation,5 which models the suspension as a
fractal dispersion of particles. In the DEM model, a shell of
matrix material surrounds each particle. Each shell further
comprises smaller particles with their own shells of matrix
material, and so on. The DEM approximation is, therefore,
considered most applicable to random pore networks in geo-
logic media. For dispersions of monomodal-sized spheres,
the DEM approximation typically provides an upper limit for
the effective permittivity when the inclusion permittivity is
higher than the background.

The third approximation is from Sihvola and Kong �SK�,
and combines the MG equation �Eq. �25��, symmetric
effective-medium approximation �SEMA�, and coherent po-
tential formula into one equation:7,52–54

f = ��ef f − �0

�1 − �0
�� �1 + 2�0 + 3���ef f − �0�

�ef f + 2�0 + 3���ef f − �0�� . �25�

The parameter � is adjustable and yields the MG formula
�Eq. �23�� for �=0, the SEMA model for �=2/3, and the
coherent potential formula for �=1. Again, the effective per-
mittivity �ef f is implicit.

E. Lattice models

Equations �23�–�25� do not provide for any microstruc-
tural input for computing the effective permittivity, and are,
therefore, low-order approximations. In contrast, Torquato
developed a microstructure-dependent model based on a per-
turbation expansion of the polarization �here, the polarization
is expressed as an integral equation containing Green’s func-
tion for the electric field�.8 The expansion yields a set of
microstructure-dependent parameters known as point prob-
ability functions. Truncation of the expansion provides the
following approximate formula for three-dimensional micro-
structures:

�ef f = �0�1 + 2f� − 2�1 − f���2

1 − f� − 2�1 − f���2 � , �26�

where � is the microstructure-dependent three-point param-
eter and is a function of f . The parameter � is
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� =
�1 − �0

�1 + 2�0
. �27�

Equation �26� will subsequently be referred to as the
Torquato �TQ� model. Torquato provides three-point param-
eter values for f =0.10–0.70 for sc, bcc, fcc, and random
microstructures of impenetrable spheres, and for f
=0.10–0.90 for penetrable spheres.8

Since the positions of inclusions on a periodic lattice are
well defined and can be concisely represented with unit cells
and symmetry operations, the effective properties of these
microstructures should be computable to very high accuracy
using multipole expansion methods.9–12 These methods were
first derived by Rayleigh, and formulate the electrostatic
fields for a sphere in a lattice as follows:

�
n,m

Anmr�
nYnm���,��� = �

i�0
�
n,m

Bnm

Ri�
n+1Ynm��i�,�i�� + E0z .

�28�

Here, Anm represents the field coefficients for the central
sphere �sphere ��, Bnm represents the field coefficients for all
of the other spheres in the lattice, and the summation over i
is for all the other spheres except sphere �. The coordinates
Ri�, �i�, �i� describe the relative position vector between
the ith sphere and sphere � �equivalent to R�� in Fig. 1�, and
E0z is the applied external field in the z direction. Equation
�28� is known as the Rayleigh identity, and with application
of addition theorems and lattice symmetries, provides a lin-
ear system of equations for solution of Anm and Bnm.

Rayleigh originally solved Eq. �28� for the sc lattice.9

Rayleigh’s solution, however, contained a number of math-
ematical errors. McPhedran and McKenzie corrected these
errors in their solution for the sc lattice.10 McKenzie et al.
further presented solutions for the bcc and fcc lattices.11

These revised solutions, however, incorrectly omitted azi-
muthal terms �m�0� on the assumption that they were neg-
ligible. Sangani and Acrivos further refined the Rayleigh
method by including calculations having accuracies to the
ninth order and all of the azimuthal terms.55 Finally, Cheng
and Torquato corrected a sign error in the Sangani-Acrivos
solutions.12

Cheng and Torquato provided an exact solution for the
effective conductivity up to multipole order n=9 for sc, bcc,
and fcc lattices of inclusions with interfacial resistance.12 In
terms of effective conductivity and by neglecting the resis-
tance, this solution is

�ef f = �0�1 −
3f

D
� , �29�

where

D = − �1
−1 + f + c1�3f10/3 + c2�5f14/3 + c3�3

2f17/3

+ c4�7f6 + c5�3�5f7 + c6�9f22/3 + O�f25/3� , �30�

�i =
i��1 − �0�

i��1 + �0� + �0
. �31�

The parameters c1, c2, c3, c4, c5, and c6 are microstructure-
dependent numerical constants for the sc, bcc, and fcc lat-
tices. Equations �29�–�31� provide standard exact lattice so-
lutions derived from the Rayleigh method and will be
subsequently referred to as the Cheng-Torquato �CT� model.

III. RESULTS

A. Lattice simulations

Simulations were first performed on a bcc suspension
with 0.50 particle-volume fraction to determine the effects of
template size and suspension size �particle number� on the
IM model’s accuracy. The simulations where performed to
nmax=7. Figure 2 compares the results of these simulations
with the value for an infinite lattice from the CT model. The
results show that the IM model overpredicts the effective
permittivity with small template sizes, but becomes asymp-
totically more accurate as the template size—and, therefore,
the number of nearest interacting neighbors—increases.
These results demonstrate that the differences between IM
and CT model predictions are at least partly due to the IM
model’s capability of simulating only a finite number of
particle-particle interactions.

Figure 2 also shows that with a sufficiently large template
size �4000 possible interacting neighbors in this case� and
with the particle-volume fraction held constant �0.50�, the
size of the suspension �number of particles� has little effect
on the effective permittivity in the range of 250–2500 par-
ticles. The fact that the size of the suspension had no effect
on the predictions was surprising. The model predictions
were also found to be insensitive to the shape of the particle
pack or suspension �sphere, cube, or cylinder�. All subse-
quent lattice simulations were performed with a 4000-
particle template, the largest template possible with the per-
sonal computing resources available.
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FIG. 2. Effect of template size and particle pack size on iterative
multipole �IM� model results for the effective permittivity of 1.0 cm
glass spheres in air. Results are for a bcc lattice and 0.50 particle-
volume fraction, and are compared against the results from the
Cheng-Torquato �CT� model for an infinite lattice.
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Figure 3 displays the effective permittivities of 1.0 cm
glass spheres in air as a function of particle-volume fraction
for the MG model, and for the CT and IM models for fcc
lattices. The IM results where computed to nmax=7, and the
CT and IM data were modeled with particle-volume fractions
in steps of 0.025. Figure 3 indicates that the models closely
agree for dilute suspensions ��0.30 particle-volume frac-
tion�, but that the CT and IM models increasingly deviate
from the MG model at higher volume fractions as expected.
Additionally, the CT and IM models appear to exhibit good
agreement. Similar results were observed for simulations of
glass spheres in water where the CT and IM permittivities
deviate below the MG predictions due to the background and
inclusion permittivity contrast reversal. Differences between
the models are difficult to assess, however, when the data are
displayed in this format. The results were, therefore, normal-
ized by taking the percent deviation of the effective permit-
tivity from the MG model—a recognized standard model
that also forms a lower bound for the predictions when the
inclusion permittivity is higher than the background. Figure
4 displays the results of this normalization for the data in
Fig. 3. The deviations of the CT and IM models from the
MG model are clear, as is the degree of variation in the IM
predictions.

Figures 5–8 show normalized effective permittivities for
sc, bcc, fcc, and hcp lattices, respectively. For these data sets,
the particle-volume fractions were modeled in steps of 0.10.
Figures 5–8 additionally display data for the TQ model and
for a single-scattering �SS� model where the iterative steps in
the IM computations were disabled. Exact lattice models pre-
dicting the permittivity for a hcp structure were not available
from the literature. Therefore, TQ and CT fcc models were
used for comparison since both hcp and fcc lattices are close-
packed structures with local 12-fold coordination. Of the
four lattice models, the IM sc model results �Fig. 5� show the
closest agreement to the TQ and CT models. The IM bcc and
fcc model results �Figs. 6 and 7� display greater scatter. Fi-
nally, the IM hcp model produced effective permittivities
much greater than predicted by the CT and TQ models for
the analogous fcc lattice �Fig. 8�.

B. Random packing simulations

Figures 9 and 10 display model results for the two random
glass sphere microstructures and experimental data from
close-packed glass beads. Comparison with the CT model is
not shown since the CT model is only applicable to lattices.
The IM predictions for the two microstructures are similar
and show very good agreement �1.76% for the non-
normalized permittivities� with the TQ model up to 0.50 vol-
ume fraction. The IM results underpredict the effective per-
mittivities at higher volume fractions, however, with a 9.72%
deviation from the TQ model at 0.60. The TQ model also
shows good correspondence to the experimental data from
random close-packed glass beads. However, the experimen-
tal data exhibit a large spread in effective permittivities for
the four measurements. �Note that random microstructure 1
did not have a simulated structure with a 0.60 volume frac-
tion due to the nature of the Monte Carlo packing routine and
resultant structure formed.�
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FIG. 3. Effective permittivities for fcc lattices from MG model,
CT model, and IM model. Results are for 1.0 cm glass spheres in
air and as a function of particle-volume fraction.
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FIG. 4. Effective permittivities for fcc lattices from the CT and
IM models. Results are normalized to the MG model by taking the
percent deviation, and are for particle-volume fractions in step sizes
of 0.025.
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FIG. 5. Effective permittivities for sc lattices from the single-
scattering �SS� model, the CT model, the Torquato perturbation ex-
pansion �TQ� model, and the IM model. Results are normalized to
the MG model, and are for particle volume-fractions in step sizes of
0.10.
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One feature of the random microstructure results is that
they exhibit higher effective permittivities than the sc, bcc,
and fcc lattice results and are more similar to the IM results
for the hcp lattice. Figure 11 compares the model results for
random microstructure 2 with those from the hcp lattice and
two effective-medium approximations. The adjustable pa-
rameter � in the SK model was optimized to fit the TQ
model ��=0.14�. This comparison reveals that the IM results
for the random structures most closely resemble the hcp lat-
tice results. The comparison also shows the deficiencies of
the effective-medium approximations by either overpredict-
ing the effective permittivities at low volume fractions �DEM
model� or underpredicting them at high volume fractions
�SK model�. Although the trend for the SK model deviates
from that of the TQ model at higher volume fractions, the
shape of the SK trend follows that predicted by the IM model
for the random microstructures and hcp lattice.

C. Convergence behavior

The convergence of the multipole simulations is a func-
tion of the maximum computed multipole moment nmax,

particle-volume fraction, and frequency due to the role of
higher-order multipole moments in the convergence of the
Mie solutions. These higher-order moments are generated
from the partial wave expansions for the initial plane waves
and are enhanced by the microstructure. The accuracy of the
vector addition theorems is also dependent on nmax. The con-
vergence behavior of the vector addition theorems and cor-
responding translation coefficients has been reported else-
where and is affected by both particle-particle separation and
frequency.42

Figure 12 shows the convergence of the effective permit-
tivity values for the multipole simulations as a function of
nmax and microstructure. The volume fractions of the lattice
and random microstructures were kept constant at 0.50 to
provide a valid comparison. Due to the low frequency of the
simulations in comparison to the particle diameters and sepa-
rations, the simulations converge rapidly and plateau by
nmax=7. Simulations of a bcc suspension at 0.60 volume
fraction shows that this plateau extends to nmax=12. Due to
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FIG. 6. Effective permittivities for bcc lattices from the SS, CT,
TQ, and IM models. Results are normalized to the MG model, and
are for particle-volume fractions in step sizes of 0.10.
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FIG. 7. Effective permittivities for fcc lattices from the SS, CT,
TQ, and IM models. Results are normalized to the MG model, and
are for particle-volume fractions in step sizes of 0.10.
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FIG. 8. Effective permittivities for hcp lattices from the SS and
IM models, and for fcc lattices from the CT and TQ models. Results
are normalized to the MG model, and are for particle-volume frac-
tions in step sizes of 0.10.
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FIG. 9. Effective permittivities for random microstructure 1
from the SS and IM models, random TQ model, and experimental
data �Expt� from close-packed glass beads. Results are normalized
to the MG model.
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the large jump in the permittivity between nmax=2 and nmax
=3 for the sc structure, Fig. 13 omits the sc convergence plot
in order to expand and show the other convergence plots in
greater detail.

Two features observable in Fig. 13 can be attributed to
microstructure. First, the plots for the bcc, fcc, and hcp lat-
tices share a steep step in the permittivity between nmax=4
and nmax=5. This step probably arises from a common sym-
metry in these lattices. Second, the plots for the random mi-
crostructures are surprisingly smooth in comparison to the
lattices. This smoothness can be ascribed to the random mi-
crostructures containing a much greater variety of particle-
particle orientations than the lattices. These random orienta-
tions are averaged over in the computations, resulting in the
smooth convergence behavior. A similar smooth convergence
curve is observed for random suspensions of glass spheres in
water.

Another measure of convergence is the number of itera-
tions required to reach the convergence limit. The conver-

gence limit is a user-specified lower bound to the fractional
change in the computed fields between iteration steps. Once
the convergence limit is reached, the iterations terminate. For
most of the simulations, this limit was set at 10−6. Figure 14
displays the number of iterations required to reach the con-
vergence limit for each microstructure and particle-volume
fraction. The plots all show a gradually increasing trend in
iterations with particle-volume fraction. This trend increases
dramatically as the particles approach one another in the mi-
crostructures, resulting in nonconvergence at or above 0.60
volume fraction for the bcc, fcc, and hcp simulations and for
a 10−6 limit. Lowering the convergence limit allowed the
iterations to converge, but with poorer accuracy. The in-
crease in iterations with volume fraction indicates a rising
instability in the iterative solution process. Closer examina-
tion of the fractional change in the computed fields of the
nonconverging simulations showed that the model partially
converges, but then diverges. This partial convergence has
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FIG. 10. Effective permittivities for random microstructure 2
from the SS and IM models, random TQ model, and experimental
data �Expt� from close-packed glass beads. Results are normalized
to the MG model.
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FIG. 12. Convergence of multipole model results as a function
of maximum computed multipole order �nmax� comparing all lattice
and random suspensions of glass spheres in air at 0.50 particle-
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FIG. 13. Convergence of multipole model results as a function
of maximum computed multipole order �nmax� comparing lattice
and random suspensions of glass spheres in air at 0.50 particle-
volume fraction, excluding sc lattice to accentuate the plots of the
other suspensions.
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also been observed in iterative multipole simulations of elas-
tic wave scattering in dispersions of spherical particles.42

D. Frequency dependence

Simulations were performed for the 0.5–20.0 GHz fre-
quency band for random microstructure 2 and a fcc lattice of
1.0 mm glass spheres at 0.50 volume fraction to ascertain the
frequency dependence �dispersion� of the effective permittiv-
ity. Figures 15 and 16 display the results for the fcc lattice
and random microstructure 2, respectively. In each figure,
data are plotted for three increasingly higher degrees of mul-
tiple scattering, starting at single scattering �no nearest
neighbors�, multiple scattering with 500 nearest neighbors
�small template�, and multiple scattering with either 4000
�fcc� or 1000 �random� nearest neighbors �large template�.
The multiple-scattering data terminate before 20 GHz in

both figures since the number of iterations required for con-
vergence climbed steeply near the end data points and the
models became unstable. This is thought to be due to the
wavelength of the electromagnetic wave decreasing with in-
creasing frequency and approaching the particle diameter to
within an order of magnitude.

The dispersion curves for both the fcc and random micro-
structures display significant changes as a function of
multiple-scattering involvement. They also show striking dif-
ferences between each other, indicating microstructural ef-
fects. The electrostatic values for the fcc lattice �Cheng-
Torquato model� and random microstructure �Torquato
model� are also shown for comparison. Of particular note is
the steep rise in the effective permittivity for the random
microstructure at high frequency �10 GHz�, which is ab-
sent for the fcc lattice. Additionally, the fcc dispersion curve
flattens dramatically to almost a straight line with increasing
template size.

E. Spatial distribution of fields

One advantage of simulation approaches is their ability to
predict the microscopic structure of the electromagnetic
fields in space. This is shown in Fig. 17 for the electric
field in a random glass sphere/air suspension at 0.50 volume
fraction. The dark gray regions in the sphere interiors are due
to the suppression of the electric field arising from the per-
mittivity of the glass. The white and light gray regions be-
tween particles represent localized areas where the electric
field strength is enhanced due to the particle configuration,
field superposition, and multiple scattering. Images such as
Fig. 17 are useful for diagnosing model performance since
they reveal whether the model is producing physically real-
istic results. They are also valuable in determining anoma-
lously high field concentrations in heterogeneous materials
and in identifying regions in the microstructure where elec-
tromagnetic fields may be enhanced relative to the external
applied field.
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comparing lattice and random suspensions of glass spheres in air at
nmax=7.
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mittivity of a fcc suspension of 1.0 mm glass spheres in air with a
particle-volume fraction of 0.50. Results are compared as a function
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computing permittivity �p=0 for single scattering�.
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IV. DISCUSSION

A. Lattice results

When the effective permittivity values from the IM and
CT models are compared �sc, bcc, and fcc lattices�, the IM
model predictions deviate from those of the CT model by
less than 3.31%. Figure 2 demonstrates that an important
parameter in the IM model with regards to accuracy is the
number of nearest interacting neighbors �template size� used
in the simulations. With a sufficiently large template and
lattice, the asymptotic behavior of the plot in Fig. 2 would
eventually bring it into almost perfect agreement with the
exact lattice calculations of the CT model.

Although Fig. 3 displays good agreement between the IM
and CT models, Fig. 4 shows that the IM model exhibits
considerable variation in its predictions when amplified in
detail. This variation most likely arises from the changing
particle configurations �particle-to-particle orientations and
distances� as the particle pack density increases. The IM
model variations are also observed in Figs. 6–8 and are the
primary source of error in the effective permittivity predic-
tions. The same variation trends in the SS model indicate that
the source of the variation is not in the iterative process but
more likely in the change in particle configuration. Also, Fig.
2 shows that the variation does not arise solely from a
change in particle number �since the particle density was
held constant in Fig. 2�. Rather, it appears that when the
particle density changes, as in Figs. 4–8, the particle-to-
particle geometries �angles and distances� change, thereby
producing variations in the predicted effective permittivities.

The SS model typically predicted effective permittivity
values lower than those of the IM model but higher than
those of the MG model �Figs. 5–8�. For the random micro-
structures, the SS model results were most consistent with
the MG model �Figs. 9 and 10�. The SS model excludes all
particle-particle interactions by computing the scattered
fields from the particles independently and superimposing
the fields without calculation of a mean or average field. The

MG model, on the other hand, statistically averages the
particle-particle interactions by computing the local electric
field inside a theoretical cavity excised from an effective
medium. Since the effective medium is characterized as hav-
ing an average polarizability, the MG model should account
for some particle-particle interactions �specifically dipole-
dipole interactions� and should, therefore, be more in agree-
ment with the exact lattice �CT model� or perturbation ex-
pansion �TQ model� results than the single-scattering �SS
model� results. The conclusion of these simulations shows
that this appears not to be the case and that the MG model is
most consistent with a zero-order approximation that does
not account for particle-particle interactions. An explanation
that accounts for this conclusion is that multipole moments
higher than dipole moments play a much more significant
role in the particle-particle interactions than previously be-
lieved.

B. Random packing results

The random microstructure IM models �Figs. 9–11�
showed much less scatter in their effective permittivity pre-
dictions than the lattice models, particularly in comparison to
the bcc and fcc lattices �Figs. 4, 6, and 7�. This is due to the
fact that random microstructures provide a smoother distri-
bution of particle-to-particle configurations than finite lat-
tices, which are restricted to discrete angles and distances
due to the lattice symmetries. This distribution will only be
quasicontinuous since the random microstructures are finite.
However, the randomization of the particle configurations
will minimize large variations in the simulation results as the
particle density is changed.

The IM model predictions for the random microstructures
are in good agreement with the TQ model up to 0.50 particle-
volume fraction, but predict lower values than expected for
higher particle densities �Fig. 10�. This underprediction may
be due to an artifact created by the template method used for
the random microstructures. This template limits the nearest-
neighbor particle positions to grid points on spherical shells,
and therefore cannot adequately model particle pairs very
close to one another or in contact. The interactions of these
close particle pairs will be more significant in random micro-
structures than in lattices �since some will be present at all
volume fractions in the random packings� and will also
dominate at high volume fractions.

Surprisingly, the random microstructure results most
closely match those of the hcp lattice �Fig. 11�, suggesting
that the dielectric behavior of the hcp lattice is more similar
to that of a random microstructure than a cubic lattice. Ad-
ditionally, the convergence behavior of the hcp lattice �Fig.
12� has a smoother trend than exhibited by the bcc and fcc
lattices due to the lack of a step between nmax=2 and nmax
=3. Therefore, the hcp convergence behavior appears to
more closely match that of the random microstructures. The
similarities between the hcp and random microstructure may
be attributable to the lower symmetry of the hcp lattice as
compared to the cubic lattices.

The experimental data �Figs. 9–11� displayed consider-
able spread, possibly since the close packing of glass beads

FIG. 17. Model-generated two-dimensional image of the electric
field amplitudes in a random three-dimensional suspension of 2870
glass spheres in air with a particle-volume fraction of 0.50. Dark
regions represent low field strengths within particles, whereas light
regions indicate high field strengths between particles.

MODELING THE PERMITTIVITY OF TWO-PHASE MEDIA… PHYSICAL REVIEW B 76, 054203 �2007�

054203-11



in gravity may lead to microstructures with varying degrees
of anisotropy or order. Of the two effective medium models
examined �SK and DEM�, the DEM model produced results
that agreed the least with the other modeling approaches.
Because of its adjustable variable �, the SK model can be
optimized to fit any of the other models, and the shape of its
trend appears to agree with the IM trends for the random and
hcp structures �Fig. 11�. However, the SK model predictions
deviate from the TQ model approach �Fig. 11� at high
particle-volume fractions when optimized across the entire
particle density range. Additionally, the SK and IM models
fail to predict the experimental data from the close-packed
glass spheres. These results illustrate the challenges of mod-
eling suspensions with high �0.50� particle densities.

C. Convergence behavior

The convergence of the multipole models is well behaved
for most volume fractions and microstructures. The effective
permittivity exhibits a fairly stable convergence by nmax=7
for all of the microstructures simulated at 0.50 volume frac-
tion. Similarly, the iterative convergence is well behaved ex-
cept at high volume fractions �0.60�, where the number of
iterations required for convergence increases dramatically.
The convergence is also a function of frequency, however,
and becomes problematic for frequencies with wavelengths
smaller than 20 times the particle diameter.

The convergence behaviors for the bcc, fcc, and hcp lat-
tices as a function of nmax �Fig. 13� are similar with regular
steps in the plots. The random suspensions also displayed
convergence behavior similar to the bcc, fcc, and hcp lat-
tices, but with the steplike features smoothed out �Figs. 12
and 13�. In contrast, the convergence behavior of the sc sus-
pensions differed most significantly from the other micro-
structures with an anomalously large increase in permittivity
from nmax=2 to nmax=3, indicating that the interactions in
the sc lattice may have unusual properties that are not com-
mon to the other microstructures. These properties may be
related to the coordination number of nearest neighbors in
the microstructures since the sc lattice has the lowest coor-
dination number �6� compared to the bcc �8�, fcc �12�, and
hcp �12� lattices. Although the particles in a random suspen-
sion will exhibit a range of coordination numbers, hard-
sphere computations have rigorously shown that the average
coordination number is exactly 6 for maximally random
jammed packings �0.64–0.65 volume fraction�.56

Since the simulated random suspensions in this work had
no touching particles �i.e., they were not close packed�, the
number of nearest neighbors for the 0.50 volume fraction
suspension �random microstructure 1� was calculated based
on the nearest-neighbor distances for the bcc, fcc, and hcp
lattices at the same volume fractions. These calculations
yielded 7.05 nearest neighbors using the bcc lattice distance,
and 7.43 nearest neighbors using the fcc and hcp lattice dis-
tances. The number of nearest neighbors for the random sus-
pensions is, therefore, greater than the sc lattice and closer to
the bcc lattice.

D. Frequency effects

The most striking effect of microstructure on effective
permittivity has been observed at high frequencies between

the fcc and random suspensions �Figs. 15 and 16�. Above
10 GHz, the effective permittivity for the random suspension
sharply increases, whereas for the fcc suspension the effec-
tive permittivity slightly decreases. It is currently not known
what is causing this effect, although the sharp permittivity
increase for the random microstructure may be due to Mie
resonances. These resonances would be weakened and
broadened by multiple scattering, possibly corresponding to
the shift in the shape and position of the dispersion curves in
Fig. 16 as a function of template size. Since the random
microstructure is truly arbitrary, there should be no other
structural effects to influence the Mie resonances such as
order or periodicity.

In contrast, the fcc suspension has an ordered structure
that would most likely create interference effects that may
counter the Mie resonances. These interference effects are
also known as photonic band gaps, and it is possible that the
20 GHz region represents the edge of a band gap in the fcc
lattice. In contrast to the Mie resonances in the random sus-
pension, multiple scattering should sharpen and intensify the
band gap, as possibly indicated by the change in slope of the
dispersion curve from single scattering to the 500-particle
template �Fig. 15�. These photonic band gaps would be ab-
sent in the random suspension due to the lack of periodicity.
Other modeling parameters that may give rise to spectral
features are the finite size of the simulated suspension and
particle configuration effects discussed in Sec. IV A. The re-
sults from these initial studies indicate, however, that disper-
sion effects arising from complex microstructures can be
modeled, identified, and studied with the presented modeling
approach. They also reveal the effects of multiple scattering
on effective permittivities at high frequency and the impor-
tance of accurately accounting for multiple scattering in elec-
tromagnetic computations.

E. Future improvements

In addition to the current insights provided on the dielec-
tric properties of arbitrary suspensions, the iterative multi-
pole model is capable of modeling more complex micro-
structures. These structures could include particles of varying
sizes and properties, layered particles, hierarchical, nested, or
fractal microstructures, and anisotropic microstructures.
Modeling these types of microstructures may offer a more
complete understanding of the structural and compositional
parameters affecting the effective permittivity. Additional
improvements could also include the modeling of particles
with multiple, noncentrally located inclusions or pores,57 and
the modeling of nonspherical particles using prolate and ob-
late spheroidal wave functions.58

The computational simplicity of a direct iterative ap-
proach also allows larger particle suspensions to be modeled
in contrast to other approaches. In the present work, up to
3467 particles were modeled for random suspensions on a
desktop computer. This is in comparison to research reported
for the T-matrix method, which modeled up to only 120
particles,24 and research using a matrix approach, a central
cell containing 200 particles, and modified interactions to
account for surrounding periodic cells.31 The IM method is
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well suited for parallel computation processes, and imple-
mentation of the method on a supercomputing cluster would
greatly enhance its capabilities. The convergence limitations
of the iterative approach, however, presently prevent its use
for simulations at high frequencies and tightly packed sus-
pensions. Work on this problem is essential for future
progress on the IM modeling approach.

V. CONCLUSIONS

Iterative multipole simulations have been performed for
both lattice �sc, bcc, fcc, and hcp� and random suspensions of
glass spheres in air and water to calculate their effective
permittivities. The suspensions contained approximately
100–3600 spheres at volume fractions of 0.025–0.60. The
results show fair to very good agreement with both a pertur-
bation expansion model by Torquato8 and an exact lattice
model using the Rayleigh method by Cheng and Torquato.12

The effective permittivities predicted by the iterative multi-
pole model deviated from those predicted by the exact lattice
model by less than 3.31%. These deviations varied with par-
ticle packing density and can be attributed to effects arising
from changes in the particle-to-particle lattice geometries
�distances and angular orientations� that correspond to the
particle packing density changes. These geometric effects are
randomized out in the random microstructure simulations,
which show much less variation with particle packing den-
sity. No geometric effects were found due to the overall
shape of the particle suspensions, however, even in the lattice
suspensions. Also, the effective permittivity was observed to
remain constant when the particle packing density was kept
constant, although the number of particles in the suspension
and the resultant size of the suspension were varied.

Comparison of the random microstructure results to those
of the lattices indicates that the hcp simulations most closely
approximate those of the random microstructures. This is
probably due to the lower symmetry of the hcp lattice. The
random microstructures also display smoother convergence
curves as a function of nmax than the lattices, a result of the

random distribution of particle-to-particle orientations in the
suspensions. The sc lattice displayed an anomalously large
increase in its convergence curve from nmax=2 to nmax=3.
This anomaly can be ascribed to the low coordination num-
ber of the sc lattice and possibly to differences due to the
symmetry group. It was additionally discovered that the
Maxwell Garnett model best approximates a single-
scattering model with no multiple-scattering interactions.4 Of
the effective-medium models tested, the Sihvola-Kong
model most closely agreed with the Torquato and iterative
multipole models.7,8 Comparison of the simulation results
with experimental data from randomly close-packed glass
beads shows that the iterative multipole model underpredicts
the data, indicating a possible deficiency with the model for
random microstructures at high particle densities.

The simulations demonstrate that the effective permittivi-
ties of spherical particle suspensions will be observably af-
fected by microstructure, particularly at higher particle-
volume fractions and higher frequencies. These effects
appear to be related to one or more parameters including
disorder, lattice symmetries, and coordination number of
nearest neighbors. Frequency spectra also reveal that accu-
rate modeling of multiple scattering is essential for predict-
ing the dispersion behavior of the effective permittivity. The
present capabilities of the iterative multipole approach addi-
tionally allow it to model spatially dependent phenomena
and image the microscopic fields in arbitrary suspensions of
spherical particles. However, convergence and stability is-
sues limit its current use to low frequencies and long wave-
length ���20 times the particle diameter� and to suspen-
sions that are not tightly packed ��0.60 particle density�.
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