Utah State University DigitalCommons@USU

Presentations

Materials Physics

Summer 6-2015

Electrical Properties of Annealed and Coated Boron Nitride under Electron Beam Irradiation

Kevin Guerch

Thierry Paulmier

JR Dennison Utah State Univesity

Justin Dekany

Sophia Guillemet-Fritsch

Pascal Lenormand

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation

Guerch, Kevin; Paulmier, Thierry; Dennison, JR; Dekany, Justin; Guillemet-Fritsch, Sophia; and Lenormand, Pascal, "Electrical Properties of Annealed and Coated Boron Nitride under Electron Beam Irradiation" (2015). Proceedings of the 13th International Symposium on Materials in the Space Environment. *Presentations.* Paper 118.

https://digitalcommons.usu.edu/mp_presentations/118

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Electrical properties of annealed and coated boron nitride study under electron beam irradiation

K. Guerch ^(1,2,3), T. Paulmier⁽¹⁾, JR Dennison⁽²⁾, J. Dekany⁽²⁾, S. Guillemet-Fritsch⁽³⁾, P. Lenormand⁽³⁾

⁽¹⁾ ONERA, The French Aerospace Lab, F-31055, France
 ⁽²⁾ Materials Physics Group, Physics Department, Utah State University, Logan, UT – United States
 ⁽³⁾ Institut Carnot CIRIMAT (CNRS), UMR 5085, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex 9 – France

etour sur innovation

13th International Symposium on Materials in the Space Environment (ISMSE-13) 22 - 26 June 2015 – Pau, France

Spacecraft

Context

Insulator materials such as **boron nitride** (**BN**) are exposed to electron radiation during the operation of THALES's electronic application

Issue

- Charging of BN under irradiation
 The application efficiency decreases
- Alumina coating on BN to limit charging
 Properties degrade over time

Motivation

- Identify the physical mechanisms of charging and degradation in materials
- Optimise the electrical properties of ceramics to limit these phenomena

1 Scientific approach

2 Experimentation

 Charging study of annealed and coated BN

Aging study of annealed BN/Al₂O₃

6 Conclusion & outlooks

2 Experimentation

Scientific approach

 Charging study of annealed and coated boron nitride

④ Aging study of an−BN/Al₂O₃

S Conclusion & outlooks

CEDRE facility and method

Study the charging and relaxation kinetics and the aging in representative conditions

- Secondary vacuum (P ~ 5 10⁻⁷ hPa)
- 20 °C < T < 400 °C
- Electron gun :

1 keV < E_i < 20 keV 50 pA.cm⁻² < J_i < 100 µA.cm⁻²

Surface potential (V_s) measurement with an electrostatic probe (Kelvin Probe – KP)

2 Experimentation

Scientific approach

 Charging study of annealed and coated boron nitride

• Aging study of an–BN/Al₂O₃

S Conclusion & outlooks

CVC chamber and method

Study the dark conductivity in representative conditions

- Secondary vacuum (P ~ 1 10⁻⁵ hPa)
- -150 °C < T < 200 °C

Constant Voltage Conductivity (CVC) method^[1] – 70 V < V < 470 V I(t) > 10⁻¹⁶ A

$$\sigma^{CVC}(t) = \frac{I(t) \times d}{S \times V}$$

Aim: Identify the influence of coating and thermal treatments on the surface potential regulation of BN

3 configurations of unused industrial ceramics:

- Boron nitride substrate BN
- BN with alumina coating BN/Al₂O₃
- Annealed BN/Al₂O₃ an–BN/Al₂O₃

The energy for a penetration length of 300 nm in AI_2O_3 is ≈ 6.4 keV (Monte-Carlo simulations)

E_i = 5 keV (non-penetrating beam for the coating) : No charging in coated BN samples

 $E_i \ge 8$ keV : Critical and low charging in BN and coated BN, respectively but the V_s is limited in an-BN/Al₂O₃

 \Rightarrow The alumina coating decreases the surface potential through its higher $\delta_{SEE}^{[2]}$ than that of BN^{[3][4]}

\Rightarrow The annealing treatment under vacuum limits the V_s :

- Defects generation has been determined which may increase the conduction mechanisms
- Hypothesis: decrease of the critical threshold of surface discharges

^[2] P. H. Dawson, « Secondary Electron Emission Yields of some Ceramics », J. Appl. Phys., vol. 37, no 9, p. 3644, 1966

^[3] L. G. Sherstnyov et Al., Report of the Moscow Energetic Institute, (87) N° 68091701, 1969.

^[4] B. V. Prokofiev, « Pyrolytical Boron Nitride as a Window Material for High Power Microwave Electron Devices », IEEE, 2010

Output Study of annealed and coated BN

T_{room} °C

0.9 0.8

0.7

0.6

0.5 0.4 0.3

0.2

0.1

0

BN/Al₂O₃

an-BN/Al₂O₃

V_s^{norm} (V), t_{relax} = 10 min

After $E_i = 5$ keV : Charge relaxation from alumina coating and especially in the annealed one

After $E_i \ge 8$ keV : Low relaxation rates even though some charges are evacuated in the annealed sample

Intrinsic conductivities of industrial samples determined through CVC method

BN	BN/Al ₂ O ₃	an-BN/Al ₂ O ₃		
$(0,5\pm0,1).10^{-15}~S.m^{-1}$	$(0,2\pm0,1).10^{-15}~S.m^{-1}$	$(8 \pm 1).10^{-15} \ S.m^{-1}$		

⇒ The annealing treatment increases the total conductivity (by 25 – 30)

• Charging characterisation of an-BN/Al₂O₃ under continuous irradiation with the REPA method^[5]:

Partial discharge phenomenon has been identified (unmeasurable with the KP method)

Does this annealing treatment allow limiting the charging potential after a long time exposure ?

^[5] K. Guerch et Al., « Characterisation of charging kinetics of dielectrics under continuous electron irradiation through real time electron emission collecting method », Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., vol. 349, 2015

O Aging study of an–BN/Al₂O₃

Scientific approach

2 Experimentation

Charging study of annealed and coated boron nitride

S Conclusion & outlooks

Electrical aging under high electron flux

Aim: Accelerate the material degradation to reproduce the critical exposure in spacecraft over time

3 regimes :

- Temporary equilibrium (0 < t < 50 min)
- Transitory (50 min < t < critical time $t_c = 134$ min)
- Critical $(t > t_c)$

Critical dose corresponds to the sudden electrical aging beyond $t_{\rm c}$:

•
$$D_c(Al_2O_3) \approx 7.4 \ 10^7 \ Gy$$

• $D_c(BN) \approx 1.3 \ 10^8 \ Gy$ $D_{c(x)} = \frac{J_i}{q_e} \times \frac{t_c}{\rho_m} \times \frac{E_i}{R(E_i)}$

Flux and Energy affect the electrical aging : $T_c \propto 1/J_i$ $\alpha \propto 1/E_i$

Electrical	aging	irreversible	and σ	tends	towards	that of	FBN :
			••				

an-BN/Al ₂ O ₃	$(8 \pm 1).10^{-15} S.m^{-1}$			
an–BN/Al ₂ O ₃ (aged)	< (2 ± 3).10 ⁻¹⁵ S.m ⁻¹			

What is the chemical degradation process that leads to this electrical aging ?

4 Aging study of an-BN/Al₂O₃

Scientific approach

2 Experimentation

Charging study of annealed and coated boron nitride

Conclusion & outlooks

11/13

Chemical degradation

8

Normalised intensiy (u.a)

RAMAN Spectroscopy (CIRIMAT) :

Laser 532 nm, 600 tr/mm

- ~ 1365 cm⁻¹ : E_{2g} phonon mode of hBN
- ~ 4361 et 4391 cm⁻¹ : Cr³⁺ impurities (R2 & R1) in annealed alumina coating

R1:4391 cm⁻¹ Irradiated area 7 Non-irradiated area Cr³⁺ in alumina 6 coating R2:4361 cm⁻¹ 5 3 hBN E_{2g} : 1365 cm⁻¹ 2 1 1325 1350 1375 1400 4300 4325 4350 4375 4400 4425 1300 4450 Raman shift (cm⁻¹) δ_{SEE} \mathfrak{D} Thin film of contaminants < 300 nm | Al₂O σ_{elec} \mathfrak{D} BN

In the irradiated area (deteriorated):

- Decrease of species concentration in coating and/or decrease of coating thickness
- Effect of a contaminant thin film^{[6] [7]}

[6] J. E. I. Rau, « The effect of contamination of dielectric target surfaces under electron irradiation », *Appl. Surf. Sci.*, vol. 254, nº 7, p. 2110-2113, 2008.
 [7] R. E. Davies and J. R. Dennison, « Evolution of Secondary Electron Emission Characteristics of Spacecraft Surfaces », *J. Spacecr. Rockets*, vol. 34, nº 4, p. 571-574, 1997.

4 Aging study of an-BN/Al₂O₃

Scientific approach

2 Experimentation

Charging study of annealed and coated boron nitride

Conclusion & outlooks

Chemical degradation

XPS (CIRIMAT) :

Monochromatic source

- Decrease of bonds Al(2p) and O(1s)
 Signals decreased by 53 % and 70 % respectively
- Chemical shift (1 eV) of the oxygen environment

More bonds C-C in the irradiated area (signal increased by 41 %)

Chemical evolution of insulator especially in annealed Al₂O₃ coating = electrical properties deterioration
 Important contamination which is favoured under electron radiation (depending on flux)

12/13

Scientific approach

Charging mechanisms

- > Critical charging of BN substrate for the electronic application (in the beam energy range which is used)
- > The alumina coating decreases the charging through higher δ_{SEE} and the lower roughness (R_s decreases)
- The annealing treatment limits V_s because the electrical conductivity increases (and partial discharges)

Degradation mechanisms

- \flat Electrical aging (decrease of δ_{SEE} and σ) of an–BN/Al_2O_3 sample after a critical dose
- > **Degradation & contamination processes** especially of the annealed alumina coating

Optimisation of industrial coating process

- ▶ High roughness ⇒ Heterogeneous coating = properties deterioration
- Substrate roughness & coating thickness should be optimised to increase the life time of coated ceramics

Outlooks

- Study the deterioration evolution as a function of flux and energy to optimise our degradation model
- > Study the electrical aging under electron radiation as a function of the coating thickness

Thank you for your attention

Ja

Acknowledgment:

retour sur innovation

Partial discharges characterisation through the REPA Method

