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ABSTRACT

A Novel Technique of Network Auditability

with Managers in the Loop

by

Rian Shelley, Master of Science

Utah State University, 2008

Major Professor: Robert Erbacher
Department: Computer Science

Network management requires a large amount of knowledge about the network. In

particular, knowledge about used network addresses, access time, and topology is useful. In

a network composed of managed devices, much of the data necessary can come from simple

network management protocol (SNMP) queries. Other data can come from other databases,

or analysis of existing data. In particular, layer-two network topology can be determined by

analyzing the mac address forwarding tables of layer-two devices. The layer-two topology

can be merged with a layer-three topology to generate a complete topology of the network.

This information is useless unless it is easily accessible to the network manager; therefore,

a simple interface should be used to give access to all of this data.

(57 pages)
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CHAPTER 1

INTRODUCTION

In any network, a manger must know what is happening, where it is happening, and

when it is happening. It is necessary for the manager to be able to track down compromised

boxes, and to be aware of his network topology.

1.1 Topology

In any network, proper management requires a good knowledge about topology [14].

For a small network, it is fairly easy to keep track of changes to the topology. This is also

true for a large, well-planned, well-funded network. However, in some cases, because of the

demographics of the users, it is difficult to keep track of the network topology, such as in

the case of a university. Control of the network is difficult because of frequent tampering

by experimenting professors and students. In this case, the layout of the network is not

particularly important, as long as the managers understand it well.

1.2 Computer Management

Large networks can have many dynamically changing users. There are many solutions

for keeping track of and authenticating these users, but in a flexible low-budget environment

few of these solutions are available. Also, in the event of compromise or a network attack, it

may be necessary to shut off network ports on layer-two and layer-three devices to prevent

the spread of worms.

1.3 Overview

All of these problems can be solved by querying switches and routers for information.

The trick is to cross-reference the information to make it useful. One can map layer-two

devices using a variety of methods, such as the link layer discovery protocol (LLDP), MAC

address forwarding tables, or by extracting the spanning tree used by the spanning tree

protocol (STP). One can map the layer-three topology using trace routes, subnet locations,

or route tables. The two topologies can be merged into a single map by replacing links

between routers with sets of layer-two switches that are on the same subnet. It is easy
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to keep track of users by querying the address resolution protocol (ARP) tables from the

routers, and by querying the bridge MAC addresses from the switches. Cross referencing

MAC addresses and IP addresses with registration information makes possible tracking

down anomalies and users.

1.4 Purpose

The information that can be obtained about a network is to sort through. Given nothing

more than an IP address and a timestamp, finding a compromised computer can be a huge

job. It would be ideal to have a single place to make queries, that is, a place in to enter

the item being searched for, and then (within reason), have the system return everything it

could find out about the item in question. Thus, the initial user interface would start with

nothing more than an input box and a submit button. It should also contain a minimum

of dynamic content, so that web browsers could cache static information. That way, if the

network were performing badly due to an outbreak or attack, very little information would

be needed to update the screen.

The novelty of this solution lies in two areas. The first is the method for mapping

layer-two devices. The layer-two map is merged into a layer-three map obtained using

conventional methods. The second lies in the simple interface, and with the wealth of

information that it can provide. The project, titled GULv3, a program that can track and

display this information, but also display it in an easily usable manner.
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CHAPTER 2

SOURCES OF INFORMATION

While this project pulls together information from many different sources, there are

three primary methods for obtaining that information. The first is to assume that the

information is readily available from a different source, usually a database of some sort.

The second is to use some sort of query on the network device. The third is to process

previously existing information to obtain new information.

2.1 The Physical Layer

For our purposes, we obtain information about the type of link (fiber optic, Ethernet,

wireless, other) from the SNMP ifType management information base (MIB) value [20,

22]. We obtain the information about switch port to wall jack mappings from a database

maintained by the people who installed the equipment. While useful, this information may

not be necessary and is, therefore, not included in the initial version of the project.

2.2 The Data Link Layer

We obtain information about VLANs from SNMP queries of layer-two devices using

the dot1qVlan subtree of the bridge extensions MIB [21]. Information about neighboring

switches found by discovery protocols can be obtained via the IETF physical topology MIB

[4, 13]. Information about the current spanning tree topology can be obtained using the

dot1dStp group of the bridge MIB [21]. The MAC address forwarding table can also be

obtained using the dot1dTpFdb table of the bridge MIB [21].

2.3 The Network Layer

IP routing paths, and, to a lesser degree, topology can be obtained using trace routes

[37]. The ipAddressTable or the ipAddrTable of the IP MIB can be used to find the IP

address and subnet mask associated with an interface [33]. Discovery methods, such as

discovery protocols [4] and even internal routing protocols like OSPF [25] or ISIS [27] can

reasonably identifier who their neighbors are. Routing tables are available via ipRouteTable

in the IP MIB [33].
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2.4 Other

There are other pieces of information useful to this project. Registered MAC ad-

dresses and contact information an be made readily available by access to some registration

database. The first three bytes of a MAC address can be used to identify the manufacturer

of a network card [3, 12]. Such identification can easily be defeated by spoofing the MAC

address, but this is more of a management tool than a security tool. Used bandwidth can

be obtained via the ifTable in the interfaces MIB [23], or from another source that collects

it such as Cricket or MRTG [15, 26]. Flow information can be exported from some types

of routers [19], or by using the FProbe software [9]. SFlow [28] packets can be exported

from most managed networking devices. Most of these sources of information are useful,

but they are outside of the initial scope of this project.
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CHAPTER 3

LAYER-TWO MAPPING

Discovery protocols, the spanning tree, and the MAC forwarding table can be used to

discover the topology of a layer-two network.

3.1 Discovery Protocols

Several discovery protocols are capable of finding nearby network devices, such as LLDP

[4] or CDP [7]. However, most of them are either proprietary, or relatively new, and they do

not interoperate with each other. Thus while useful, they may not be widespread enough

to solely rely on them.

3.2 Spanning Tree

The spanning tree designated root field in the dot1dStp MIB [21] can help find the

topology as well. Doing so is as simple as creating a list of edges between the current switch

and the designated root, wherever the designated root is not the current switch. Such a

maneuver has the advantage of also showing links that are shut down by STP. This will

allow us to extract the real world graph from the switches, instead of the used spanning tree.

If there is a mismanaged switch, it is still possible to find its MAC address if it happens to

be the designated bridge of a link. However, in this case, the topology may be incomplete.

3.3 Mac Forwarding Table

If the MAC address forwarding table is available, a topology can be built from the

bottom up using the following algorithm. We developed this algorithm so that there is a

method of discovering topology when discovery protocols are not available.

Consider a switch N1 as a node on the graph T . The switch has p∪u ports, where p is

the set of ports that are connected to other switches, and u is the set of ports connected to

users, or not used at all. p ∪ u is what is obtained when the switch is queried. We remove

the set p from p ∪ u by obtaining the MAC addresses used by each switch. Then, we select

only those ports that have forwarding entries for other network devices.

If a spanning tree is not established as the topology of the set of switches, then the
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network is not functional because of broadcast storms [2]. Therefore we can assume that

each forwarding entry follows a branch of a spanning tree. Each port in p knows the MAC

addresses for all of the network devices that should be forwarded through it. The following

is the port forwarding table for the network shown in Figure 3.1:

A = ((C), (B), (D,E,F,G))

B = (A,C,D,E, F,G)

C = (A,B,D,E,F,G)

D = ((A,B,C), (E), (F,G))

F = ((A,B,C,D,E), (G))

G = (A,B,C,D,E, F )

Figure 3.2 also illustrates this data. Using the MAC forwarding table, we can now write

an algorithm to reconstruct the topology. Consider each node N , in the set T to be a tree

with one element. Then:

1. Consider each N in T

2. Consider each port pn in N

3. Consider each M in T where M 6= N

4. If the tree M contains all of the nodes in the direction of pn, then remove M from T ,

and add M as a child of the tree N

Figure 3.1. A simple switched network.
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5. Repeat until no more changes are made to T , or T only contains one tree.

Thus, the example given in Figure 3.1 is solved in three passes. Figure 3.2 shows the

initial setup, in which the circular nodes are trees and the rectangular nodes represent

forwarding tables. Figure 3.3 is the first pass, which shows the leaf nodes being absorbed

into the other trees. Figure 3.4 shows the second pass, which moves node A into the tree

at node D. The last phase, shown in Figure 3.5, shows node F moved into the tree with

the root D, and the algorithm terminates, because we have a single tree. The resulting

tree is not the same tree as the original, but if it is considered as a graph, then both trees

represent the same spanning tree.

It is possible to infer the existence and position of an unmanaged switch if this algorithm

completes, and there are pn’s without children. A set S of N ’s in G that composes all of

the nodes in the direction of pn indicates at least one unmanaged switch connected to pn

that also connects to the trees in S. If we use the same topology as is shown in Figure 3.1

except we assume that we are not polling switch D, the completed algorithm is as shown

in Figure 3.6, which implies the network shown in Figure 3.7

This algorithm follows the logical topology, not the physical connection of the switches,

but if there are no VLANS, or only simple VLANs, the two spanning trees are the same.

Figure 3.2. The initial data obtained by polling the MAC forwarding database on layer-two
devices

Figure 3.3. The first pass. All of the leaf nodes are absorbed into the other nodes.
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This is the only method capable of producing a complete tree when missing key information.

While the complete tree is not necessarily correct, its inconsistencies are predictable, and

the information can be used in combination with other methods to produce a more accurate

tree.

3.4 Combining All the Methods

Each algorithm produces the same tree on a well managed network. However, if a

network has badly behaved or unmanaged devices, each algorithm produces slightly different

trees. Consider the network in Figure 3.8. The MAC forwarding algorithm produces the

tree in Figure 3.7. The presence of the missing node is inferred, but there is no knowledge

of the redundant link. The spanning tree algorithm produces the tree in Figure 3.9. The

tree is produced by using the designated root of each link to infer edges. This means that

any known node knows about any link to a higher numbered node.

If we merge the two graphs by combining their lists of edges, and if we trust the

spanning tree method wherein the edges conflict, the graph in Figure 3.8 is rebuilt without

using any information from the unmanaged bridge.

In general, we can generate a topology using more than one method and combine the

Figure 3.4. The second pass. Tree A gets placed into tree D.

Figure 3.5. The last pass. Tree F gets placed into tree D. The original spanning tree has
been recovered.
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results to form a more accurate graph.

Figure 3.6. Without any knowledge of node D, this is as far as the algorithm can get.
Because the forwarding tables of all three trees contain all the nodes from the other two
trees, it is obvious that they are connected via an unknown bridge.

Figure 3.7. The tree inferred using the MAC forwarding based algorithm
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Figure 3.8. The node marked with ? is unmanaged, and the dotted line is a redundant link
that has been shut down.

Figure 3.9. The tree inferred by extracting the spanning tree
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CHAPTER 4

DEVELOPMENT

We developed this project on a live network with real data, with the target users being

a heterogeneous group of security professionals, administrators, and service desk personnel.

Additionally, we used a spiral model [16] to implement and refine the project. The require-

ments for each iteration of the spiral are included below. Finally, unit tests like the one

shown in Figure 4 were used to verify the requirements and the stability of the code.

4.1 Initial Requirements

Initially, the only requirement was a mechanism that could be used to gather and query

ARP information. We created this as a single interface that could accept an IP address or

a MAC address.

4.2 More Data

The next iteration of the cycle included a requirement that the system also query MAC

addresses from the forwarding tables of layer-two devices. Created as a separate interface,

it could accept a layer-two device or a MAC address

4.3 Less Complication

Per a suggestion that the interface be simplified, we modified the requirements ac-

cordingly. Instead of multiple interfaces for different types of searches, we combined the

interfaces into a single interface that displayed the results of both searches.

4.4 Even More Data

Searching more than one location for the same piece of data resulted in requests for

more places to be searched. Thus, we included known registration information such as the

registered IP address, MAC address, and any contact information. We also looked up and

displayed the MAC Vendor code.
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4.5 Cleanup and Presentation

The displayed data was too cluttered and disorganized to read easily necessitating a

clear hierarchical display of the data. Our test runs also showed us that when a search did

not yield a match, an alternative search should be included. For example, if a search on

a hostname resulted in an IP address, an ARP search could yield a MAC address, which

in turn could be applied to a search for the MAC address in the switch forwarding entries.

We also tried highlight and describe obvious problems.

4.6 Topology

Frustration with the inability to keep track of topology resulted in including a mapping

mechanism in the project. To accomplish this, the system first automatically created layer-

two and layer-three and then merged into a cached map that could be recalled on demand.

Any search for a network device now automatically displayed this topology.

4.7 Storage, Reliability, and Detail

Up to this point, the data was stored in flat files, which were completely loaded and

searched every time the interface was used. Only a limited amount of precision and data

was kept in order to keep search times reasonable. The project only kept track of the first

and last occurrence of its ARP and MAC tables. ARP entries were only updated every 15

minutes. MAC tables every half an hour. The polling was adjusted to store its results in

a database, keeping track of detailed intervals. The polling was set to occur as often as

possible, and could poll multiple instances at a time.

4.8 Data Relationships

When there were conflicts in the relationships among the data, the presentation was

confusing. For instance, a search for a hostname could yield a MAC address and an IP

address. A search in the ARP database might return different MAC addresses and IP

addresses than the current registration, in which case, the search would include the newly

discovered addresses. It was difficult to tell the relationship of each search to the original

search term. A subquery embedded in the original search allowed the user to search only
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the terms s/he was interested in, and it clearly (see Figure 4.2) showed the relationship

between the original search and the new search.

4.9 Current Use Cases

The following sections discuss use cases for which GULv3 has been designed to handle.

4.9.1 Looking Up Registration Information

The simplest use case is looking up registered information about a computer, and

perhaps seeing if the registration varies from what is really happening. Searching for a

computer by hostname, MAC address, or IP address returns contact information, and ad-

dresses associated with the search term.

4.9.2 Finding a Compromised Machine

Frequently, an organization’s security group obtains information about a machine that

may be compromised. Usually, all they have is an IP address and a timestamp. Searching

GULv3 for the IP address either yields nothing, which tells us that the IP address was

spoofed during the attack, or if the IP address is registered, it yields contact information

and ARP information which tells us the MAC address being used during the time of the

attack. Running a subsearch on the MAC address tells us exactly which switch port the

computer was plugged into, and very likely also yields contact information.

4.9.3 Tracking Rogue Wireless Access Points

Currently, USU has a campus-wide 802.11b/g implementation. The managed wireless

access points report the MAC address of any rogue wireless network on campus. Frequently

these networks are broadcast using off-the-shelf wireless routers that also do NAT [34, 35].

These devices typically have a different MAC address on the network-facing side than on the

client-facing side. GULv3 can search the first then reported by the campus AP. This finds

any MAC address that matches the first 10 digits, and thus yields both MAC addresses used

by the NAT device. Expanding the MAC address plugged directly into a switch returns

any information known about that MAC, including what switch port it is plugged into.
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4.9.4 Finding Evidence of ARP Poisoning

A malicious machine on a network may try to poison the ARP cache of the router [38].

Evidence of this shows up in GULv3. A targeted IP address shows up as having more than

one MAC address. Over a period of time, a MAC address that is probing for data will show

that it is using different IP addresses, as shown shown in Figure 4.3. Even if the MAC

address is spoofed, it will show up in the switch forwarding table, and so can be traced to

the switch port and possibly the wall jack.

4.9.5 Searching for Bottlenecks

If a network administrator wants to find the source of a bottleneck, s/he can find the

switch attached to one end of his link, and use the mapping feature to follow it to the other

end, or to the border of the network. Thus he knows which links are being used to transfer

the data.

4.9.6 Verifying Network Topology

After new devices are added to the network an administrator can search for devices in

GULv3 and use it to audit the network topology, thus allowing the administrator to verify

the shape and make-up of the network.

4.9.7 Troubleshooting Network Connections

If a customer’s connection to the network is not working properly, an administrator can

quickly use GULv3 to determine if the switch is aware of the customer and if the customer

is using a valid IP address. This allows the administrator to answer many of his/her own

questions, rather than relying on the answers the customer, who is often an inexperienced

user, is likely to provide.
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class ArpTest(unittest.TestCase):

def testWalk(self):

self.CreateTable()

self.arptable.poll(self.db)

result = self.db.query("""

select ip,mac,startstamp,stopstamp

from arpentries

where ip=’%s’;

"""%(self.gateway))

self.assertTrue(result)

startstamp = ""

stopstamp=""

for row in result:

if row[0] == self.gateway:

startstamp = row[2]

stopstamp = row[3]

break

else:

self.assertFalse(1)

self.arptable.poll(self.db)

result = self.db.query("""

select ip,mac,startstamp,stopstamp

from arpentries

where ip=’%s’ and startstamp=’%s’;

"""%(self.gateway, startstamp))

self.assertTrue(result)

os.kill(self.snmpdpid, signal.SIGINT)

self.assertFalse(self.arptable.poll(self.db))

self.arptable.save(self.db)

result = self.db.query("""

select ip,mac,startstamp,stopstamp

from arpentries

where ip=’%s’ and startstamp=’%s’;

"""%(self.gateway, startstamp))

self.assertTrue(result)

self.assertNotEqual(result[0][3], stopstamp)

Figure 4.1. Part of the unit test for the ArpTable class
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Figure 4.2. A host-based query, with a subquery on its IP address

Figure 4.3. Evidence of ARP poisoning. A single MAC address has multiple IP addresses
during overlapping time intervals.
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CHAPTER 5

IMPLEMENTATION

This project contained no CPU-intensive tasks and lent itself to a convenient object-

oriented interface. The large amount of data collected, stored, and searched, required a

database. We chose Python as the language to implement this project because it met the

criteria nicely, and supported the rapid development cycle necessary. PyUnit was used to

implement unit tests. These were used to quickly verify code stability and to verify that

the requirements were being met. In total, there are 4648 lines of code in 47 files.

5.1 Database

The database class contains all the searches and queries required by the rest of the

code. It maintains a connection to the database backend during the lifetime of the object.

Initially, the database class was created using PostgreSQL database [10]. After concerns

about performance, the database class was separated into backend specific and backend

independent code. A MySQL [8] backend class was created to compare with the PostgreSQL

class as shown in Figure 5.1. At the time, the MySQL backend performed much better than

the PostgreSQL backend, so the majority of the development since then has been on the

MySQL code. Currently, tests show nearly equal performance between the two.

The database agnostic interface verifies the existence and configuration of the tables

needed to store the data. If they are not present, it tries to create them. Additionally, it

indexes any that are searched.

Initially, the database kept the list of open ARP entries and MAC entries in a separate

Figure 5.1. The database object
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table from the closed intervals. However, this did not create a performance increase, so

they were combined by allowing the stop time for an entry to be null.

5.2 Pollers

A large number of our data sources are based on SNMP. This lends itself to a polling

paradigm, wherein multiple targets need periodic polling. The speed of the polls is bound

by the network latency, so the ability to poll multiple devices at once increases performance.

This works well even on a single processor. Each Poller creates its own database object.

This yields two inherent classes, a Poller and an IPollable interface. The IPollable interface

is implemented by classes that gather information on a periodic interface. Figure 5.2 shows

the class diagram representing this relationship.

A Poller maintains a queue of IPollable objects. The object at the front of the queue

is polled and placed at the back of the queue. New items may be inserted or removed from

the queue at any time.

IPollable objects have a Poll() method and a minimum wait time. The minimum wait

time is necessary to prevent a particular data source from being polled too often.

The driver program creates multiple Pollers, and distribute the IPollable objects among

them. Each Poller object maintains its own thread and can execute in parallel. It is possible

Figure 5.2. The Poller object, with the IPollable interface.
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to place the Pollers on different machines if necessary. Each Poller also maintains its own

database connection, which is provided to the IPollable object when its Poll() method is

called. In this way, multiple machines using multiple processes can simultaneously poll

several devices at once.

Figure 5.3 shows the thread that does the polling. The first if statement checks to see if

we need to do any jobs when the queue cycles. Currently, it only contains a check to verify

that the queue does not cycle too fast. This would be the case if the queue were empty or

only contained a few items. The second if statement checks to see if the IPollable object

needs to be removed from the queue. If not, the system polls the IPollable object, and then

places it in the end of the queue.

Given the long lifetime of the Pollers, each one can optionally log everything it does to

a file. This is necessary to be able to track down bugs that only occur after a significant

amount of running time. The logging code can optionally email exceptions to an email

def __threadPoller(self):

pollstart = time.clock()

self.counter = len(self.queue)

while self.running:

if (self.counter <= 0):

now = time.clock()

if now < pollstart + MINELAPSED:

time.sleep(MINELAPSED)

self.counter = len(self.queue)

pollstart = time.clock()

if len(self.queue) > 0:

if (len(self.removable) > 0 and

self.removable[0] == self.queue[0]):

self.removable.pop(0)

self.queue.pop(0)

self.counter -= 1

continue

self.queue[0].poll(self.db)

self.queue.append(self.queue.pop(0))

self.counter -= 1

Figure 5.3. The polling thread.
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address. We added this feature in order to track down several bugs involving broken devices

that returned inconsistent data.

5.3 GenericGenerator

There were many IPollable objects that had to be created and placed into Pollers.

We created the GenericGenerator class to ease the loading of these objects. Figure 5.4

contains its code. It takes a class object and a filename, and reads a colon separated list of

constructor arguments for each new object of the class from the file.

5.4 SNMPQuerier

Many of the objects that inherit the IPollable interface use SNMP [18] to gather infor-

mation. An SNMPQuerier class associates a UDP port, an SNMP OID, and a community

string together. We use the resulting object to query a target. A callback function in the

calling object returns the results of an SNMP walk. We initially implemented the SNM-

PQuerier object using the pysnmp [11] library, but its performance was not sufficient. A

second SNMPQuerier class is currently used, which uses piped command line output from

class GenericGenerator:

def __init__(self, IPollableClass, filename):

self.IPollableClass = IPollableClass

self.filename = filename

def GetPollables(self, start=None, stop=None):

file = open(self.filename)

newclasses = []

for line in file:

if (len(line) == 0 or line[0] == "#"):

continue

args = line.rstrip().split(":")

if (start != None and stop != None):

args = args[start:stop]

newclasses.append(self.IPollableClass( *args ))

return newclasses

Figure 5.4. The GenericGenerator class
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utilities in the Net-SNMP suite [5].

5.5 DeviceInterfaces

DeviceInterfaces implements the IPollable Interface. It queries ifTable from the inter-

faces group of MIB-II [22] for the interface MAC address and description, the sysServices

value from the system group of MIB-II [29], the ipAddrTable from the IP group of MIB-II

[33] for the IP addresses and subnet masks present on an interface, and the ifAlias value

from the ifXTable of the ifMIB group of MIB-II [22].

The IP address is not available for an interface which is solely layer-two, so the

sysServices value is used to differentiate between layer-two and layer-three devices. The

Database object, provided by the Poller, shores these values in the database. This makes a

list of every interface on every device available, along with any IP addresses or descriptions

configured on the device.

The information provided by this class only changes when new devices are added or

new subnets configured. This information may not change very often, so the minimum wait

time between polls can be fairly large. The default is set to 24 hours.

5.6 ArpTable

The ArpTable class models objects that are associated with a single device. It polls the

ipNetToMediaPhysAddress value from the ipNetToMediaTable of the IP group of MIB-II.

This gives us all the ARP entries on a layer-three device. A list of all the ARP entries

discovered during the previous poll is obtained from the database. If the ARP entry still

exists, it is left unchanged. If it no longer exists, an ending timestamp is associated with the

ARP entry. Thus, the ArpTable maintains a list of ARP entries associated with starting

and ending times for when they were seen. For the sake of convenience, it also maintains a

table that merely records the last time an ARP entry was seen.

ARP entries change frequently, so each device should be polled as often as it can. No

minimum wait time is associated by default with this class.

Figure 5.6 shows the code for the ArpTable class. The initialization creates the SNMP

poller and saves the device. The poll uses the SNMP poller to walk the SNMP tree for the
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ARP table and saves the data. The class implements the eachwalk() function required by

the SNMP poller which uses it as a callback. The save loads all the existing ARP entries,

and marks the ones that are not part of the new set polled as closed. The remaining entries

from the new set are added to the database.

The ArpTable was the first class we implemented for GULv3. Its simple design has

left it relatively unchanged throughout the development cycle. Figure 4 shows part of the

unit test associated with the ARP table, although some of the setup and cleanup code is

omitted. This class creates a temporary SNMP server, and queries the routing tables of the

tester to get an idea of what data should be obtained. It then uses that to get the results of

class ArpTable(IPollable):

"Query and store an arp table from a device"

def __init__(self, device, port=161):

self.device = device

self.poller = SNMPPoller(

(1,3,6,1,2,1,4,22,1,2), "snmpcommunity", port)

IPollable.__init__(self, device)

self.iptomac = {}

def poll(self, dbconn):

if (self.poller.walk(self.device, self)):

self.save(dbconn)

return True

return False

def save(self, db):

for arp in db.getcurrentarps(self.device):

if ((not self.iptomac.has_key(arp[0])) or

self.iptomac[arp[0]] != arp[1]):

db.stoparp(arp[0], arp[1], self.device)

for ip in self.iptomac.keys():

db.savearp(ip, self.iptomac[ip], self.device)

del self.iptomac

self.iptomac = {}

def eachwalk(self, name, object):

mac = object.split(":")

self.iptomac["%d.%d.%d.%d" % name[-4:]]=

"%02x%02x%02x%02x%02x%02x" % [int(d, 16) for d in mac]

Figure 5.5. The ArpTable class. This is a typical IPollable object.
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the test. We eliminated many painful bugs because of the unit testing done in this project.

5.7 MacTable

The MacTable class looks up MAC address forwarding tables for a specific device. This

essentially associates a MAC address with a port. It links the MAC address to a device

port discovered by the InterfaceTable class.

Not all of this information is blindly committed to the database. Theoretically each

switch in a layer-two broadcast domain is aware of each MAC address in the same domain.

The class checks to see if a MAC address seen on a port belongs to a different managed

device. If it is, this implies that the port is not directly connected to a user. This information

is redundant and not useful for locating computers, as they will already have an entry on the

port they are physically plugged into. However, the MAC address of the remote device is

useful in determining the layer-two topology as described in Section 3.3. Therefore unknown

MAC addresses on a port pointing to another device are discarded, but known device MAC

addresses are stored in a separate table to be processed for topology information.

Any information on a port that does not appear to point to another managed device is

then committed to the database. The class maintains start and stop times for each entry

the same way as is maintained by the ArpTable class.

Mac forwarding information changes as frequently as ARP information does. This class

similarly has no minimum wait time.

5.8 Registration

The Registration class inherits the IPollable interface. It is different from InterfaceTable

and ArpTable in that it does not obtain its information via SNMP but from a separate

database maintained by network administrators. The current implementation reads the

information from a complex flat file. Pyparsing [24] is used to parse the file for useful

information. In tests this usually takes several seconds so the information is cached in the

database for rapid searching. Initially, buggy information was obtained using a line-by-line

scanner that queried the file directly, but profiling revealed that 95% of the search time was

spent parsing the file.
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At USU, automated updates to registration happen every hour, although manual

updates can happen at any time. Most of the information never changes. Therefore, we set

the default minimum wait time to an hour.

5.9 TraceRoutes

We did not implement the TraceRoutes class in the current project. However, we

include it here because it was implemented in previous versions of GUL. It uses output

from the traceroute [37] command to obtain information about layer-three logical topology.

It is somewhat useful because it can obtain information from layer-three devices that are

not managed. However, from the perspective of a single Poller, it is unlikely that it will

find redundant links, since the paths for packets will tend to be the same.

5.10 SpanningTree

Similarly, we did not implement the SpanningTree class. However, it has immense

benefits, especially if it is combined with other mapping methods as described in Section 3.2

and Section 3.4.

Figure 5.6. The composition of the Topology class
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5.11 Topology

The Topology class implements the IPollable interface. Its functionality is divided up

as shown in Figure 5.6. A Topology object combines the edges provided by RouterTopology

and the edges provided by SwitchTopology. If an edge contained in RouterTopology con-

nects two nodes, A and B, and there exists a graph G in SwitchTopology that contains both

A and B, it is assumed that the L3 edge AB is a layer-three representation of the graph

G. Thus, AB is removed, and G is used instead. This corresponds to the case wherein two

routers are not connected directly but have a network of switches between them.

5.12 SwitchTopology

SwitchTopology is a class that combines the data represented by MacTopology and

SpanningTree as described in Section 3.4. It includes as many different types of layer-two

mapping algorithms together as necessary to produce an accurate graph.

5.12.1 MacTopology

MacTopology is a class that implements the MAC address forwarding table mapping

algorithm as described in Section 3.3. It uses the data produced by the MacTable objects

for this purpose. Figure 5.7 shows the initialization code. This code translates the MAC

addresses into the nodes they represent, and sorts them by category. A MAC that represents

a router goes into a special case, so that we can attach the resulting network into a layer-

three map. A MAC that exists on its own device is discarded. This happens when somebody

for (portid, mac) in db.topologyinfo():

if (mac in routermacs):

nodes[porttodevice[portid]].routers[portid] = routermacs[mac]

elif (mac in mactodevice and portid == mactodevice[mac]):

pass

elif (mac in mactodevice):

nodes[porttodevice[portid]].addrelation(

portid, mactodevice[mac])

Figure 5.7. This loop sorts the information gleaned by the MAC addresses.
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plugs a switch into itself and it confuses the algorithm. The rest are listed as ”relations” of

the node, since we don’t know what the exact relationship is.

Figure 5.8 shows the code used to find a node whose descendants match the given set.

Currently, this is done using a sequential search, but this code could be optimized by using

a hash table or something similar to find a match. If the algorithm finds the given node,

the system removes it from the list and returns it. Figure 5.9 shows the main part of the

algorithm. It looks through all the node ports searching for a matching subtree for the set.

If the algorithm finds said matching subtree, it adds it as a subtree of the current node.

def findsubtree(siblings):

for subtree in list(nodes.itervalues()):

if siblings == subtree.getdescendants():

del nodes[subtree.id]

return subtree

return None

Figure 5.8. The findsubtree function. This locates a subtree whose descendants match the
given set.

done = False

while not done:

done = True

for sw in set(nodes.itervalues()):

if not sw in nodes.values():

continue

for port in set(sw.ports()):

if not port in sw.ports():

continue

if not port in sw.routers:

subtree = findsubtree(sw.getrelations(port))

if (subtree):

sw.childrenlist[port] = subtree

if (sw.id in subtree.idtoport):

subtree.uplinkport = subtree.idtoport[sw.id]

done = False

Figure 5.9. The main part of the layer-two MAC mapping algorithm
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The process is continued as long as there is a change made to the tree. When we consider

a port, we immediately verify that it is still valid, since the loop can change the ports we

are considering.

This complexity analysis is done assuming that n is the number of vertices, m is the

average degree of its vertices, and o is the average number of vertices per disconnected

subgraph. The code in Figure 5.8 has a complexity of O(n), due to its linear search. The

code in Figure 5.9 is more complex to analyze. Each pass through the outer loop removes

an arbitrary number of nodes from the list. The best case (which is unlikely) is that all

of the switches are ordered so that every switch analyzed is a child of a switch yet to be

analyzed. The average case is that half of the switches analyzed are eliminated on each

pass. The worst case is that only one switch is removed each time. Therefore the best case

is O(1), the average case is O(logm(n)), and the worst case is O(n). Looping through the

nodes is obviously O(n), and looping through the ports is O(m). The sw.getrelations() call

is O(o). All the rest of the operations are either reference assignments, which are O(1), or

are sequentially executed with a bigger operation that eclipses them. Thus the total worst

case complexity is O(n ∗n ∗m ∗ (o + n)), which reduces to O(n2 ∗m ∗ (o + n)). The average

case is O(logm(n) ∗ n ∗m ∗ (o + n)). In real world examples, m and o tend to be very small

compared to n. USU’s values at the time of writing were n ≈ 708, m ≈ 3, o ≈ 3. o and m

tend to stay fairly low, in order to keep network manageable. Thus the worst case reduces

to O(n3), the average case O(n2log(n)), and the best case O(n).

5.12.2 SpanningTreeTopology

SpanningTree is a class that implements the spanning tree mapping algorithm as de-

scribed in Section 3.2. Although currently not implemented, it would process the data saved

by the SpanningTree objects.

5.13 RouterTopology

The RouterTopology class combines the results of TraceRouteTopology and Subnet-

Topology. The edges produced by the two objects are combined together to form a single

graph.
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5.13.1 SubnetTopology

The SubnetTopology class can generate a graph by assuming that any two interfaces in

the data produced by the InterfacePoller objects that reside on the same subnet represent

an edge. There are cases wherein this is not necessarily true, but the data is corrected

later. If there happen to be more than two routers on the same subnet, and there is not

a layer-two map that shows the relationship between them, we infer the existence of an

unmanaged bridge.

5.13.2 TraceRouteTopology

The TraceRouteTopology passes through the list of edges obtained from the TraceRoute

object. This also is not currently implemented, because of the higher accuracy from other

methods.
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CHAPTER 6

THE USER INTERFACE

The goal of the user interface portion of this project was to gather all these sources of

information into a convenient interface that is simple and easy to use.

6.1 The Initial Page

The interface is very simple, as recommended by Raskin and Tidwell [31, 36]. It initially

displays textbox and a submit button, as shown in Figure 6.1.

6.2 A Query

When a user makes a query on a hostname, the results will are shown in Figure 6.2. The

information that is directly known about the hostname entered is displayed in a hierarchical

manner. Most of the information is shown as a label, which is bold, and the value or values

associated with it. The values are separated using lines in a manner that outlines the

relationships among the different pieces of data. For instance, the logical entity girr.usu.edu

contains contact information, an IP address, a MAC address, and an HINFO record. The

contact information also contains a list of entries similarly displayed.

6.3 A Subquery

In a query, some of the data displayed is also searchable. For example, the IP address

shown in Figure 6.2 is also a term that may be searched. The searchable elements are shown

as links to the browser. They also have a plus sign next to them. The plus sign is used

to display a subquery, as shown in Figure 4.2. The plus sign changed into a minus sign,

Figure 6.1. The initial layout
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indicates that the user can use it to remove the subquery from the screen if desired. The

purpose of the subquery mechanism is to allow us to see how the new data relates to the

old data. The entire subquery is outlined in a separate color, so that it can be easily seen as

separate from the rest of the data. The data in the subquery itself is basically identical to

the initial query, but it is included because the system does not determine whether or not

the data is redundant. There is no HINFO record associated with the IP address, but it

does have ARP entries, which are not associated with a hostname. The data is shown in two

formats. The first is a graph where the X axis is time, and the Y axis is the MAC address

using the IP address during that time. In this example, the MAC address was constantly

associated with this IP for the entire time span shown by the graph. The second format is

a list of time intervals, which is shown for completeness. More interesting examples of this

time graph are shown in Figure 6.3 and in Figure 4.3.

Clicking on a MAC address searches the database from the perspective of the MAC

address as shown in Figure 6.4. The ARP lookup is now a list of IP addresses, rather than

a list of MAC addresses. There is also a MAC lookup section that contains the location of

Figure 6.2. A host-based query
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switches where the MAC address has been seen.

6.4 Network Devices

Clicking on a network device or entering it into the search field gives us a slightly

different view. It shows a list of ports and a network map similar to the one shown in

Figure 6.5. The map contains the devices, the connections between them, and the port

numbers for the connections. The searched device shows up as a different color than the

rest, and serves as the root of the displayed tree. The exception is that the immediate

parent of the searched node is also shown. We may click on any of the nodes on the map,

which runs a search on that particular node. In this way, we have the ability to traverse

Figure 6.3. A dynamic IP, used by different MAC addresses during different intervals

Figure 6.4. A search for a MAC address
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the topology of the network entirely by clicking on the nodes on the map. The current

implementation maps routers, switches, and wireless access points. Internally, the wireless

access points are treated like switches.

Figure 6.5. A localized map of the network. This example happens to contain a router, two
switches, and two wireless access points.
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CHAPTER 7

IMPLEMENTATION OF THE USER INTERFACE

As described, the user interface breaks down into two types of classes for which there

are natural interfaces: the ISearch interface, and the IDrawable interface. The main page

creates any number of ISearch objects that produce a tree of IDrawable objects to represent

the results. The IDrawable objects are displayed as HTML for the user. This relationship

is shown in Figure 7.1

7.1 IDrawable

The IDrawable interface represents a class that contains an ordering, and can be rep-

resented as HTML [30] or XML [17].

7.1.1 Basic

Basic implements the IDrawable interface. It represents a simple string value. This

class also checks the value to see if it is searchable. If it is, and it renders HTML, it includes

Figure 7.1. A diagram showing the relationship between the search and the results
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a link so that the user can search by the term it contains.

7.1.2 KeyValuePair

KeyValuePair implements the IDrawable interface. It represents a key and a value.

The key is a string and the value can be any IDrawable object. It is implemented in HTML

by using divs and a cascading stylesheet to show the relationship between them. This is

one of the two IDrawable classes that contain other IDrawable objects.

7.1.3 Table

Table implements the IDrawable interface. It displays information in a tabular format.

It contains an array of strings that represent the column labels and a two-dimensional array

of Basic objects. It is implemented in HTML as a table.

7.1.4 Graph

Graph implements the IDrawable interface. Graph represents a list of nodes and edges.

It is currently partially implemented and uses the dot utility from graphviz [6] to produce

a PNG [32] image. It outputs an HTML img tag that directs the browser to retrieve the

produced image via a helper script.

7.1.5 DurationGraph

DurationGraph implements the IDrawable interface. It is designed to show periods

of time. The current implementation outputs a PNG [32] image similar to that shown in

Figure 4.3. It outputs an HTML img tag that uses the same mechanism used by the Graph

class to retrieve a produced image.

7.1.6 List

List implements the IDrawable interface. It organizes a list of IDrawable objects. It is

implemented in HTML as a ul [30] tag. This is one of the two IDrawable classes that can

contain other IDrawable objects
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7.2 ISearch

The ISearch interface describes an object with a doSearch() method that can return an

IDrawable object. If the type of search is not applicable, it returns None.

7.2.1 RegistrationSearch

RegistrationSearch is an ISearch class that associates search terms with registered

information that is gathered by the Registration poller. Typically, this returns a List of

KeyValuePairs as shown as rendered HTML in Figure 6.2.

7.2.2 EthernetSearch

EthernetSearch is an ISearch class that searches for MAC addresses in the data collected

by the MacTable class. It generates both a DurationGraph and a Table representing the

data, encapsulated by a List. An example of this is the Mac Lookup section in Figure 6.4.

7.2.3 ArpSearch

ArpSearch is an ISearch class that searches for MAC or IP addresses in the data

collected by the ArpTable class. It generates a DurationGraph and a Table encapsulated

by a List, similar to the EthernetSearch object. An example is the ARP Lookup section in

Figure 6.4.

7.2.4 DeviceSearch

DeviceSearch is an ISearch class that searches for MAC addresses, IP addresses, or

hostnames that belong to managed devices monitored by GULv3. It formats each port

associated with the device as a List of KeyValuePairs and encapsulates them as a List. It

also displays a Graph if it can find topology information associated with the device. An

example of the results is shown in Figure 7.2
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Figure 7.2. A search against the root switch of the CS department at USU. There are three
switches and two wireless access points on this map.
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CHAPTER 8

REAL WORLD TESTING

As described, we implemented GULv3 at Utah State University. We used a test phase

to find bugs and to make improvements. In these tests, network administrators and ser-

vice desk personnel with access to GULv3 used the system and provided feedback for its

improvement. The users are Utah State University employees who have signed a privacy

agreement as part of their positions. We used a subjective test was used because there has

not been a similar tool available prior to the initial inception of GUL. We built a mecha-

nism into the webpage that allows users to easily and anonymously submit suggestions for

improvement and comments. Indeed, we implemented many of these suggestions as part of

the project.

8.1 Suggestions

A number of suggestions were made for small improvements to the project. There was

also some positive feedback.

The first suggestion was to change the displayed order of ARP and MAC entries.

Previously, there was no ordering, which meant entries were displayed in the order they

were created in the database. This was modified so that the most recent entries were

displayed first.

The next suggestion was to change the font to make it more readable and to separate

the elements more. In response, some padding was added to various elements to better

separate them. The font size was increased slightly to increase readability.

Another suggestion was the ability to search for partial IP and MAC addresses. This

was implemented using the SQL query like the one shown in Figure 8.1. The result of such

a search is shown in Figure 8.2.

A fairly serious bug was noted, in which old data was being preferred over newer data.

It turned out that many searches assumed that there would be only one result, and so the

system used the result of the first row. The database displayed records in the order that

they were created, which meant that the oldest record was always on top. The search was
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modified to do a reverse sort on the timestamp field. Many other searches appeared to be

vulnerable to a similar bug, so they were modified to either do the sort, or to only consider

records newer than a default interval of 24 hours.

Another bug was noted wherein it was possible to do an SQL injection. We created a

SearchTerm class to classify and sanitize the search term, which is accessible by using the

term member variable. The sanitized version of the variable was not being used during a

search for ARP information. That bug has also been fixed.

Pages that displayed network maps were noted to be slow. Some investigation revealed

an O(n2) operation occurring each time a map was drawn, where n was around 1500. One

of the n terms was a linear search through an array. This term was removed by using a set

to contain the data instead of an array, which does searches in O(1) time. The webpage

select

mac,

count(mac),

device

from

macentries

where

mac like "001aA0%"

group by mac

order by count(mac) desc

limit 20;

Figure 8.1. SQL query used to find partial matches

Figure 8.2. The results of a search for a partial MAC address
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loads very quickly now.

Another submission suggested that the ability to search for registrations by the contact

information would be useful. This feature fit neatly into the PartialSearch class, and works

well. It returns results as shown in Figure 8.3.

8.2 Performance

The test machine used to run the pollers and the database has a hyperthreaded [1]

3GHz Intel Xeon processor, with 4GB of RAM.

Figures 8.5 and 8.6 show CPU use of the database and poller over time. The processes

tend to use the CPU in bursts. The reason for this is seen by examining the code in

Figure 5.6. This class is a typical pollable object in that it first polls the information and

then saves it as two separate states. The polling itself is network bound, waiting on the

Figure 8.3. The results of a search for a partial name

Figure 8.4. CPU usage for the frontend and database processes
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remote device to respond, and uses very little CPU time. The saving has to process the

data, and uses the CPU for a short period of time. For the most part, the CPU usage stays

low, although it can spike if a particularly busy switch gets polled. The average CPU usage

over a period of 479 seconds was 14.91%.

Figure 8.4 compares the average CPU use of the pollers and the database backend with

how many simultaneous pollers are running. Because of the simple code, with only one

poller, the CPU usage stays relatively low. As the number of pollers increase, the CPU

usage increases linearly until about five pollers. After this, the sum of the CPU usage hits

100%. Because of the hyperthreading, some increase past 100% is still possible, but after

about seven pollers, it more or less levels out.

Figure 8.5. CPU usage for the database process

Figure 8.6. CPU usage for a single poller.
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Figure 8.7 shows the relationship between the targets that can be processed per second

and the CPU usage. The relation is more or less linear until the system is strained.

Figure 8.8 shows the disk usage compared to the number of pollers. The reads are

apparently non-existent, which can be explained by the disk caching done by the operating

system. The writes show the data that are committed to the disk after each poll. The data

writes level off with the same number of pollers the CPU usage does in Figure 8.4

8.3 Usage

To get an idea of how useful users considered GULv3, the web page logs tracked how

many requests per week were processed by GULv3; see Figure 8.9. A week-long period per

data point was chosen to minimize the effect of scheduling differences between employees,

Figure 8.7. Targets per second related to the CPU percentage

Figure 8.8. The disk usage compared to the number of pollers
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and the lack of use on weekends. The IP address wherein most of the code changes were

made was filtered out of the results. The trial period began in week 10, and the partial

search feature was implemented in week 11.

Figure 8.9. The number of requests per week over the lifetime of GULv3
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CHAPTER 9

FUTURE IMPROVEMENTS

Much of the implementation of this project was a response to a specific need, or was a

unique solution to a problem. A much more useful project would include more sources of

information and combine them in meaningful ways.

It would be beneficial to include support for more types of network devices that support

SNMP, such as wireless access points, printers, servers, etc. Using vendor-specific MIBs for

devices would also be an improvement.

Much of the topology code included in this project is used to discover information that

is readily available via LLDP. LLDP would also reveal more information about unknown

nodes, and could provide a means of automatically discovering network devices, rather

than using a network manager provided list. However, as described in Section 3.4, the most

benefit would be derived by combining the two methods together to cover up their different

shortcomings.

In a couple of places, the project currently uses deprecated MIB values. For instance,

the ipNetToMediaTable value used in Section 5.6 only returns IPv4 addresses, and therefore

is deprecated [33]. The ipNetToPhysicalTable should be used instead. On a similar thread,

the project only supports IPv4 addresses. It could be easily updated to support IPv6

addresses as well.

It would be a simple matter to save the last successful query time of a device, and then

indicate the status of that device on the network maps. The network maps should also

indicate which devices are leaf nodes.

Likewise, the interface associated with an ARP entry should be saved. Otherwise, the

location of that MAC address may only be known to the VLAN, and not the port itself.

Unknown MAC addresses on uplink ports are currently discarded. This is to prevent broken

devices from littering our database with bogus data. It is possible for somebody to set up

an unmanaged bridge between two managed ones, and if s/he plugs into it, his/her physical

location is invisible to GULv3. However, if the information from other switches is available,

the MAC address could be saved if it appears on no other leaf port. One would have to
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follow the topology to determine which port the MAC address is actually located at.

It would be better if the registration information were obtained more directly than by

polling. However, polling is done because of the nature of information available during

the time of implementation. There may also be other useful sources of information that

could be automatically included in the search. For instance, at USU, there is a database

maintained that keeps track of which wall jack a switch port is plugged into. There should

be a generic way to include extra sources of information into GULv3.

Currently, whether or not something is considered a searchable term in the display is

governed by a set of regular expressions. It would be more useful if a searchable term only

showed up as such if it was actually in the database.

Network traffic graphs could be generated per interface, or more likely embedded from

another source since there are many solutions that already generate this information [15, 26].

A search on a switch should display the users attached to each port.



45

CHAPTER 10

CONCLUSION

GULv3, as a project, was a success. It uniquely provides the ability to map both layer-

two and layer-three network devices, without relying on STP or on any discovery protocols.

In particular, the MAC forwarding table based mapping algorithm described in Section 3.3

is a new way of generating a layer-two topology map without relying on LLDP [4]. It

also provides a wealth of network information in a simple format, all using a new type

of simple interface. This project ties together many sources of information, and allows

the user to organize the information in such a way as to show the relationships among

the different searches. This greatly simplifies troubleshooting for network managers and

service desk personnel. Indeed, such individuals have come to rely on it in their daily tasks.

An objective test was impractical, because there has never been a tool like this on USU’s

campus with which to compare it to. Even so, the subjective user test shows that users are

using it and examining its features, and the access logs show that the usage is increasing.

GULv3 will continue to be developed, with user feedback driving most of the features and

the bug fixes. Eventually, it will be released as an open source project so that it can benefit

anyone who needs it.
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