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Introduction—What is ESD? 

Consider a simple parallel 

plate capacitor. 

• At low fields current 

flow is restricted.

• At high enough fields or after long times the insulator 

can breakdown.

• Large currents can flow. 

• Electrostatic discharge (ESD) is a permanent, 

catastrophic failure of a dielectric material. 

• What was an insulator is now essentially a conductor 

in the system. 



Why should we care about ESD?

ESD is the primary cause of failures attributed to spacecraft interactions 

with the plasma space environment.



Why should we care about ESD?

Smaller 

devices=bigger 

problems

Electrostatic field strength is affected 

by many factors

Important to understand how FESD

varies under different conditions

Past work in USU’s MPG has looked at FESD

dependence on temperature, voltage ramp rate, 

duration of applied electric field, etc
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ESD Test Assembly:

(A) Adjustable pressure springs,

(B) Insulating layer

(C)Cryogen reservoir,

(D)Thermally conductive,

electrically isolating layer,

(E) Sample and mounting plate,

(F) Sample

(G)HV Cu electrode

(H)Cu thermocouple electrode,

(I) Insulating base.



Breakdown Test Dependence on T and dV/dt

FESD depends significantly on both temperature and ramp rate. 

 ASTM D3755 standard tests recommend a 500 V/s ramp rate until breakdown.

 However these tests are not very repeatable and tend to overestimate 

breakdown strengths for slower ramp rates.

 Slow (even VERY SLOW) ramp rate better model real charging applications. 

LDPE Data Kapton E Data

FESD Temperature Dependence FESD Ramp Rate Dependence

rASTM



If you use the recommended ramp rate of 
500 V/s to test spacecraft charging

You’re gonna have a bad time



This summer



This summer

Ohmic slope

I = V/R



This summer



This summer

𝐹𝐸𝑆𝐷 𝑟 ≈ 𝐹𝐸𝑆𝐷 𝑟0 1.1346 ln 𝑟 + 1 + 𝑟2
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VALENCE 
BAND EDGE

UPPER 
MOBILITY EDGE

LOWER 
MOBILITY EDGE

The effect of 
disorder 

spatially and 
energetically 
introduces 
localized 

states in the 
bad gap. 

The density 
and 

occupation
of defects 
determine 
electrical 

properties.

LOCALIZED 
DEFECT STATES

ENERGY BAND 
GAP

Defect Theory of Highly Disordered Insulating Materials

Ordered Materials  Disordered Materials  
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States

Filled 
States

No States
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𝐹 = 𝑞𝑒𝐸

𝑊 = 𝐹 ∗ 𝑎 = 𝑞𝑒𝑎𝐹

𝑃𝑑𝑒𝑓 𝐹, 𝑇, ∆𝑡 =
2𝑘𝐵𝑇
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𝑘𝐵𝑇
sinh

𝜀0𝜀𝑟𝐹
2
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Future Work

ASTM

satellite

𝐹𝐸𝑆𝐷 𝑟 ≈ 𝐹𝐸𝑆𝐷 𝑟0 1.1346 ln 𝑟 + 1 + 𝑟2



Future Work

• Look into ramp rates on extreme ends of graph 

• Expand ramp rate tests already done on 

Kapton/LDPE

• Begin testing temperature dependence of all 

three



References

Allen Andersen and JR Dennison, “Pre-breakdown Arcing in Dielectrics under Electric Field 

Stress,” American Physical Society Four Corner Section Meeting, University of Denver, Denver, 

CO, October 18-19, 2013.

Allen Andersen, JR Dennison, Alec M. Sim and Charles Sim, “Measurements of Endurance Time for 

Electrostatic Discharge of Spacecraft Materials: A Defect-Driven Dynamic Model,” 13th Spacecraft 

Charging Technology Conference, (Pasadena, CA, June 25-29, 2014). 

Allen Andersen and JR Dennison, “Electrostatic Discharge in Solids,” Utah State University 

Physics Colloquium, Utah State University, Logan, UT, October 8, 2013.

USU MPG 

Webpage


	Dependence of Electrostatic Field Strength on Voltage Ramp Rates for Spacecraft Materials
	Recommended Citation

	PowerPoint Presentation

