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Consider a simple parallel

plate capacitor.

« At low fields current
flow is restricted.

At high enough fields or after long times the insulator
can breakdown.

e Large currents can flow.

« Electrostatic discharge (ESD) is a permanent,
catastrophic failure of a dielectric material.

« What was an insulator is now essentially a conductor
In the system.
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ESD is the primary cause of failures attributed to spacecraft interactions
with the plasma space environment.
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Smaller
devices=bigger
problems

Electrostatic field strength is affected
by many factors

Important to understand how Fesp
varies under different conditions

Past work in USU’s MPG has looked at Fesp
dependence on temperature, voltage ramp rate,
duration of applied electric field, etc

Solar panel damaged by localized charging event s '"‘.’_.,,,is Re‘sea,ch Center
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Supply
Computer

« Simple parallel plate
capacitor

* Vacuum ~10° torr
» Applies up to 30 kV

* 6 electrode carousel



ESD Vacuum Chamber DN SRSNTY

Naouum Chamber T TTTTTTTOT ESD Test Assembly:

! Aluminum Cold Reservior ] .

(A) Adjustable pressure springs, -
Test Sample )
(B) Insulating layer
Bl | (C) Cryogen reservoir,

P SN (D) Thermally conductive, @

ety ] electrically isolating layer, D

(E) Sample and mounting plate, £~ <§ e
« Simple parallel plate

capacitor (F) Sample
« Vacuum ~10-6 torr (G)HV Cu electrode
» Applies up to 30 kV (H) Cu thermocouple electrode,

* 6 electrode carousel (I) Insulating base.
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Fesp Temperature Dependence

LDPE Data
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Fesp depends significantly on both temperature and ramp rate.

00
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O ASTM D3755 standard tests recommend a 500 V/s ramp rate until breakdown.

O However these tests are not very repeatable and tend to overestimate
breakdown strengths for slower ramp rates.

O Slow (even VERY SLOW) ramp rate better model real charging applications.

1000



If you use the recommended ramp rate of
500 V/s totest spacecraft charging
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Breakdown Field (MV/m)
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FESD(T') =~ FESD(TO)\/1134‘6 In (T + 1+ 7'2)



Defect Theory of Highly Disordered Insulating Materials
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Ordered Materials

The effect of
Empty disorder

States spatially and

CONDUCTION energetically

BAND EDGE introduces
localized

states in the

No States ENERGY BAND bad gap.

e —e—e—eee—— |[Uhedensity
VALENCE and

BAND EDGE occupation
of defects

determine
electrical
properties.

Filled
States

Disordered Materials

UPPER
MOBILITY EDGE

< LOCALIZED
DEFECT STATES
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Under an applied
electric field,
charge can ‘hop’
between defect
sites. The
probability of a
transition in a
given time step
depends upon
temperature,
well depth, and
applied field.

Position
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Under an applied
electric field,
charge can ‘hop’
between defect
sites. The
probability of a
transition in a
given time step
depends upon
temperature,

F = qeE well depth, and
applied field.

W =F xa = qeaF

>
Position
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Under an applied
electric field,
charge can ‘hop’
between defect

:
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Defect Theory of Highly Disordered Insulating Materials
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Assumes all depths
and hopping
distances are the
same

F = qeE

W =F xa = qeaF

2kpT
Pger(F,T,At) = ( -

h/At

Under an applied
electric field,
charge can ‘hop’
between defect
sites. The
probability of a
transition in a
given time step
depends upon
temperature,
well depth, and
applied field.
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Breakdown Field (MV/m)
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Future Work

LI ERE DTS

Breakdown Field (MV/m)

600
400

200

+--------'r---Ii---'r-i-i-i-'r1---------'r----1'---i--i--'r-'r-'n'-}--------1'-----i---'r--i--'r-'r-'ri+--------1-----'r---'r--'r-1'-1'-1'-'r|r

I ESPRREESS FSSE RIS 58 5 1 OSSO RS A8 5 11 ARG AN 5 508 1 0 AN OO N8 0N S M N

800F

0.1 satellite 1 10 100

Ramp Rate (V/s)

FESD(T') =~ FESD(TO)\/1134‘6 In (T + 1+ 7'2)

1000



UtahState
Future Work AT ———

* Look into ramp rates on extreme ends of graph

* Expand ramp rate tests already done on
Kapton/LDPE

* Begin testing temperature dependence of all
three
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