August 28, 2012 CALCON Technical Conference

> Geostationary Satellite (COMS)

Polar orbital Satellite (Metop-A / IASI)

Inter-calibration of COMS Infrared and Visible Channels

Dohyeong Kim, Won-Seok Lee*, Ho-Seung Lee, Sungduck Yoon, Hee Sang Lee

National Meteorological Satellite Center Korea Meteorological Administration

*ufoifo@korea.kr

Introduction of COMS

Inter-calibration of infrared channel

Moon calibration of visible channel

Introduction of COMS

- Communication, Ocean, and Meteorological Satellite(COMS)
- Location : 128.2E
- Launch date : June 27, 2010 (Kourou in French Guiana)

Design life time : 7 years(~2017)

S-/L-/Ka-Band Comm	Channel	Center wavelength(岬)	Spatial Resolution(km)
Solar array	Visible	0.67	1
Meteo. Imager	Shortwave IR (IR4)	3.7	4
	Water Vapor (IR3)	6.7	4
Ocean Color Imager	IR1	10.8	4
Bus	IR2	12.0	4

COMS MI Observation Area

- FD : Full Disk
- ENH : Extended Northern Hemisphere
- LA : Local Area(Korean peninsula)

Inter-calibration of infrared channel GSICS(Global Space-based Inter-Calibration System)

- COMS launch date : June 27, 2010
- In-orbit test : July 2010 ~ January 2011
- Official service : April 2011 ~
- quality check for first one year

- Inter-calibration period : April 2011 ~ March 2012
- COMS MI data : level1B
- Reference data : Metop-A IASI level1C

Inter-calibration methodology(1/2) Collocation

COMS channel	Weather Condition	Dt _{max} (minutes)	ε1	ε2	Gaussian
IR1 (10.8 μm)	Clear	5	0.01	1.65	2
	Cloudy	5	0.03	3.31	2
IR2 (12.0 μm)	Clear	5	0.01	1.82	2
	Cloudy	5	0.03	3.64	2
WV (6.8 μm)	All	5	0.01	0.311	1
SWIR (3.8 μm)	Clear	5	0.01	0.0151	2
	Cloudy	5	0.03	0.0302	2

Inter-calibration methodology(2/2) Simulated COMS MI radiance from IASI observations

Constraint method

Generate a super channel consisting of combination of the hyper channel to imitate a broadband channel. Proposed by Tahara (JMA)

i : Channel index numbers of IASI

COMS MITB vs. Metop-A IASI TB

(Day) (Day & Night)

r= 0.999

280

n= 15673

rmse= 1.223

r= 0.999

300

(Night)

r= 0.995

300

6

n= 16154

bias= -0.215

rmse= 1.705

290

n= 33220

ΔTB(COMS MI - Metop-A IASI)

ΔTB(COMS MI - Metop-A IASI) Time Series

- Negative bias : IR2, IR4
- Slope of monthly variation < 0.01

KMA/NMSC web

Activi	ties	GSICS / COMS satellite			HOME > Activities > GSICS > COMS satellite	
+ GSICS						
- COMS s	satellite	IR Channel IR1(10.8 µm)	LEO Da	ata IASI(asc.9:30pm) 🔽 Display Scatter plot	TB différence	
+ RARS		Date 2012 / 04	~ 2012 /	08 Search		
http://nmsc.kma.go.kr/jsp/homepage/ eng/contents/main/main.jsp						
				COMS IR1 vs. METOP-A/IASI		
• Tin	ne sequence (TB difference)	ir.cm ^{_1}) 100	HRIT Count to Sounder Radiance Intercept: 171.0013 (0.1033) Slope : -0.167140 (0.000178)		
• <i>R</i> e	gression coef	ficients	(mW/m ² .s 80 1	Cons Radience to Sounder Radience Intercept: -0.325362 (0.009235) Slope : 1.009041 (0.001076) SD Error : 1.518332 Number : 2267		
be	tween COMS r	adiance and	Radiance 40 60			
IAS	SI radiance		r Sounder 20 4	+ IASI Ascend (Day)		
Sc	atter plot (COI	MS rad. vs. IASI	Hype - o	0 20 40 60 80 100		
rac	I. and IASI TB	– COMS TB)		COMS Radiance (mW/m ² .sr.cm ⁻¹)		

Moon Calibration of COMS visible (1/3)

- COMS has observed moon monthly for visible channel monitoring moon calibration since Feb. 2011.
- For observing moon, KMA choose two kind of moon observation method by using Local Area observation mode for moon(direct) and Full disk observation with moon(indirect).

• To process these observed data, KMA has used its own Moon Processing system in Image Processing Subsystem(IMPS) for Moon Calibration.

Moon Calibration of COMS visible (2/3)

- To measure the total degradation of the instrument visible channel
- Comparison between the Moon signal and ROLO model(moon irradiance computation model) of USGS
 - as a Function of Phase angle(Sun-Moon-Earth)
- Imager Response $P = \frac{I_{instrument}}{I_{ref}}$

 $I_{instrument}$ is the Moon irradiance as measured by the Imager I_{ref} is the Moon irradiance computed from the ROLO model, under the same conditions(phase angle, positions of sun, moon, satellite, etc.)

11

• All Imager responses are linearly trended over the various Moon images with the ratio $k = \frac{P(t)}{P(t_0)}$ expressed in percentage.

•Trend shows that there is about 3.4% COMS visible channel degradation from Feb 2011 to May 2012.

 For obtaining more precise result, We need more data through the long term observation.

- Infrared channel
- COMS MI IR channels have low-bias within 0.5K accuracy
- IR1, IR3 of difference between COMS TB and IASI TB showed positive bias while IR2, IR4 showed negative bias.
- Although there is a slight bias, infrared channels are stable and working well.
- Visible channel
- There is about 3.4% visible channel degradation from Feb 2011 to May 2012

Thank You